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Abstract

Human aging is characterized by reductions in the ability to remember associations between items, 

despite intact memory for single items. Older adults also show less selectivity in task-related brain 

activity, such that patterns of activation become less distinct across multiple experimental tasks. 

This reduced selectivity, or dedifferentiation, has been found for episodic memory, which is often 

reduced in older adults, but not for semantic memory, which is maintained with age. We used 

functional magnetic resonance imaging (fMRI) to investigate whether there is a specific reduction 

in selectivity of brain activity during associative encoding in older adults, but not during item 

encoding, and whether this reduction predicts associative memory performance. Healthy young 

and older adults were scanned while performing an incidental-encoding task for pictures of objects 

and houses under item or associative instructions. An old/new recognition test was administered 

outside the scanner. We used agnostic canonical variates analysis and split-half resampling to 

detect whole brain patterns of activation that predicted item vs. associative encoding for stimuli 

that were later correctly recognized. Older adults had poorer memory for associations than did 

younger adults, whereas item memory was comparable across groups. Associative encoding trials, 

but not item encoding trials, were predicted less successfully in older compared to young adults, 

indicating less distinct patterns of associative-related activity in the older group. Importantly, 

higher probability of predicting associative encoding trials was related to better associative 

memory after accounting for age and performance on a battery of neuropsychological tests. These 

results provide evidence that neural distinctiveness at encoding supports associative memory and 
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that a specific reduction of selectivity in neural recruitment underlies age differences in associative 

memory.

Introduction

Associative or relational memory, i.e., binding contextual information to stimulus attributes, 

is more vulnerable to aging than memory for single features or items (Old & Naveh-

Benjamin, 2008). According to Naveh-Benjamin (2000), the associative deficit in aging 

consists of a reduced ability to link multiple units of information or representations. 

Impaired episodic memory for associations between items, but intact memory for single 

items, has been observed for scenes, word pairs, face-name pairs, face-location pairs and 

objects (Old & Naveh-Benjamin, 2008). These data illustrate the difficulty older adults have 

in remembering associations, regardless of the type of stimuli or paradigm used to test 

memory.

Functional magnetic resonance imaging (fMRI) has provided valuable insights into age 

differences in memory mechanisms. A number of areas, including the hippocampi, are often 

under-recruited in older adults during item (Davis, Dennis, Daselaar, Fleck, & Cabeza, 2008; 

Dennis et al., 2008; Gutchess et al., 2005) or associative (de Chastelaine, Wang, Minton, 

Muftuler, & Rugg, 2011; Leshikar, Gutchess, Hebrank, Sutton, & Park, 2010; Spreng, 

Wojtowicz, & Grady, 2010) encoding, and activity in the frontal lobes is less lateralized in 

older compared to younger adults during associative memory tasks (Leshikar et al., 2010; 

De Chastelaine et al., 2011). In addition to these reports of reduced task-related brain 

activity, studies have shown that older adults also have more diffuse patterns of activation 

(Cabeza, 2002), and/or less specificity in task-relevant regions (for reviews, see Grady, 2012; 

Grady, 2008). This was first noted among posterior visual structures, such as the 

parahippocampal place area and fusiform face area, that are primarily responsive to specific 

categories of visual stimuli (e.g., Carp, Park, Polk, & Park, 2011; Park et al., 2004), but also 

has been reported in other areas of cortex during visual tasks (Grady, 2002).

These findings of reduced selectivity of task-related activation have been argued to support 

the view that aging leads to a lack of specificity in the brain, known as dedifferentiation. 

Although the term dedifferentiation was originally proposed to account for the finding that 

behavioural measures across different cognitive tasks become more highly correlated with 

age (Lindenberger & Baltes, 1994), it has more recently been used to describe less distinct 

patterns of activity in the aging brain (Grady, 2002). Dedifferentiation of the neural signature 

for different categories of visual stimuli (e.g. Carp et al., 2011), could result in neural 

representations for these stimuli that are less distinct in older adults. In addition, the neural 

patterns that underlie memory tasks also become less selective in older adults (Carp, 

Gmeindl, & Reuter-Lorenz, 2010; Dennis & Cabeza, 2011; Sambataro et al., 2012; St-

Laurent, Abdi, Bondad, & Buchsbaum, 2014; St-Laurent, Abdi, Burianova, & Grady, 2011). 

If neural activity, and the subsequent stimulus representations, becomes less distinct with 

age, this could result in memory deficits, specifically those that demand subtle differences or 

relations between stimuli to be identified. For example, work by St-Laurent and colleagues 

(2011) has shown that dedifferentiation in neural patterns is evident on tasks in which age 
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differences are most apparent, such as episodic and autobiographical memory tasks, but not 

on tasks in which age differences are lacking, including semantic memory tasks. If it is the 

case that greater distinctiveness in neural activity, especially at encoding, would result in 

stronger memory representations, then dedifferentiation, or a lack of neural selectivity, in 

older adults should be more important for associative than item encoding, and could be a 

potential mechanism underlying the reduction in associative memory performance.

Thus, our main question of interest was to identify whether a brain effect could be found that 

shows the same pattern as the behavioral effect consistently reported in the literature, such 

that brain selectivity would differ across age groups for associative encoding, but not for 

item encoding. A number of studies have examined brain activity during associative tasks, 

but typically, with the exception of one study (Dennis et al., 2008), participants are provided 

with an associative encoding task and then tested later for their memory of the items and 

associations (Giovanello & Schacter, 2012; Jackson & Schacter, 2004; Kim & Giovanello, 

2011; Kukolja, Thiel, Wilms, Mirzazade, & Fink, 2009; Rajah, Languay, & Valiquette, 

2010). However, with this approach, the material is always encoded in an associative 

manner, leaving open the question of whether age differences exist in the processes needed 

to encode single items vs. associations between two items, and whether these differences 

would differentially impact later memory. Furthermore, Dennis and colleagues (2008), 

observed under-recruitment in older adults in visual processing regions (fusiform gyrus and 

parahippocampal gyrus) during item encoding, and in middle temporal and prefrontal 

regions during associative encoding, but they did not assess whether this under-recruitment 

results in a loss of distinctiveness in the neural patterns underlying different forms of 

encoding. In order to test the idea that age differences in associative memory are related 

directly to dedifferentiation during associative encoding, the experimental design would 

need to provide specific encoding instructions to allow for a direct comparison to be made 

between item and associative encoding, as well as provide a metric of measuring neural 

selectivity across the item and associative encoding conditions. Should age differences in 

neural activity be confined to associative memory, it would further support the view that 

aging produces deleterious effects for associative memory, whereas other forms of episodic 

memory, such as item memory, are relatively spared.

To address this question, we scanned younger and older adults while they were encoding 

pictures of houses or household objects, as well as house/object pairs, to assess item and 

associative memory, respectively. We determined how well we could predict when older and 

younger participants were engaged in associative or item encoding, based on their brain 

activity patterns. The rationale for this predictive modeling approach is as follows: 1) age-

related dedifferentiation of brain activity during a particular type of cognitive processing 

should make it more difficult to predict the brain state that accompanies that processing in an 

older adult, and 2) this should be the case primarily for those types of processing that result 

in robust age effects, such associative encoding, but not for those accompanied by minimal 

age differences, such as item encoding. Predictive modeling has been used in a previous 

memory study to demonstrate that older adults lack neural selectivity during mental replay 

of memories (St-Laurent, et al., 2014), but has not been used to examine age differences 

during encoding. Here, we aimed to determine whether lack of neural selectivity when 

making an association between two items, compared to the processing of single items, is 
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detrimental to older adults’ associative memory. We used a predictive modeling approach 

known as agnostic canonical variates analysis (aCVA), a variant of linear discriminant 

analysis (Evans, Todd, Taylor, & Strother, 2010). ACVA is a multivariate technique that 

identifies whole-brain patterns of neural activation that are predictive of different class 

labels. The class discrimination in the current study was between item and associative 

encoding events, allowing for a metric of prediction to be computed for each age group and 

each type of encoding.

In terms of the brain regions whose activity would predict the two types of encoding, we 

hypothesized that the brain regions where activity would predict item vs. associative 

encoding would be the same regions shown by prior studies to be active during item and 

associative encoding. That is, activity in areas along the ventral visual stream that are active 

when people encode houses and objects (e.g., Grady, McIntosh, Rajah, & Craik, 1998; Grill-

Spector, Kushnir, Edelman, Itzchak, & Malach, 1998; Haxby et al., 2001) should predict 

item encoding trials, and activity within the medial temporal lobe and prefrontal cortex, 

known to be active during associative memory (e.g. Dennis, et al., 2008; Kim, 2011), should 

predict trials involving encoding of item pairs.

Materials and Methods

Participants

Twenty right-handed young adults and 20 older adults participated in the study. All 

participants were healthy and had no reported history of untreated hypertension, diabetes or 

stroke. Structural magnetic resonance images (MRIs) were inspected for abnormalities or 

severe white matter changes by a neuroradiologist, and based on this inspection 3 young 

adults and 1 older adult were removed due to incidental findings. In addition, 1 young adult 

and 1 older adult were excluded based on poor behavioural performance (i.e., >2 SD on 

recognition tests), leaving a final sample of 16 young adults and 18 older adults (see Table 

1). Informed consent was obtained prior to the experiment and participants received 

monetary compensation for their participation. This study was approved by the Research 

Ethics Board of Baycrest Centre.

All participants completed a battery of neuropsychological tests to establish the cognitive 

profile for young and older adults. Years of education were comparable across age groups 

(Table 1). The Mini-Mental State Exam (MMSE), with a cut-off score of 26, was used as a 

screening test for dementia (Folstein, Folstein, & McHugh, 1975). Additional 

neuropsychological tests assessed the domains of: 1) memory, using Wechsler Memory 

Scale’s (WMS-IV) Logical Memory, Verbal Paired Associates and Designs (Wechsler, 

2009), California Verbal Learning Test (CVLT-II, Delis, Kramer, Kaplan, & Ober, 1987); 2) 

attention and processing speed, using Trails A (Reitan, 1958), Wechsler Adult Intelligence 

Scale’s (WAIS-R) Digit Span Forward (Wechsler, 2008), WAIS-R Symbol Search and Digit 

Symbol Coding (Wechsler, 2008); 3) working memory/executive function, assessed with 

Trails B (Reitan, 1958), WAIS-R Digit Span Backward (Wechsler, 2008), FAS Controlled 

Verbal Fluency Test (Benton & Hamsher, 1976), Delis Kaplan Executive Function System 

(DK-EFS) Design Fluency (Delis, Kaplan, & Kramer, 2001), and the Stroop Color-Word 

Test (Golden, 1978); and 4) vocabulary, using the Extended Range Vocabulary Test 

Saverino et al. Page 4

J Cogn Neurosci. Author manuscript; available in PMC 2017 September 01.

C
IH

R
 A

uthor M
anuscript

C
IH

R
 A

uthor M
anuscript

C
IH

R
 A

uthor M
anuscript



(Ekstrom, French, & Harman, 1976). Mood was measured using the Positive and Negative 

Affect Scale (PANAS, Watson, Clark, & Tellegen, 1988).

Experimental Design

Participants performed item (10 min 4 sec) and associative (10 min 4 sec) incidental 

encoding runs in the scanner, both of which were preceded and followed by resting-state 

runs (5 min 4 sec; data from the resting runs will not be reported here). A practice trial was 

given prior to the encoding runs. The order of item and associative encoding runs was 

counterbalanced across participants, such that half of the participants received item and the 

other half received associative encoding first. A surprise recognition test was given outside 

the scanner.

For item encoding trials participants were presented with a picture of an object or a house 

placed on the right or left side of a fixation cross (Figure 1A). The opposite side of the 

display was the same image but scrambled to ensure that item and associative encoding tasks 

had the same amount of visual input. Scrambled images were created using Photoshop 8.0 

(www.photoshop.com). Associative encoding trials had an image of an object and a house 

situated on either side of a fixation cross (Figure 1A). The images (house/object or 

scrambled image for item; house or object for associative) were equally likely to occur on 

the right and left side of the fixation cross. Half of the pictures were modern in design and 

the other half traditional. All the objects could be found within a house. Pictures for item 

and associative tasks were drawn from online sources. E-prime (www.psynet.com) was used 

to present the task and collect responses.

During item encoding participants were instructed to: “Please indicate if the style of the 

house or object is modern or traditional”. During associative encoding, for each house/object 

pair participants were asked to indicate: “Based on the style of the object and house, how 

likely would it be for the object to be found in the house?” Participants made a modern 

versus traditional response or likely versus unlikely response, via a button press using their 

dominant right-hand. They were told that that there was no correct answer to the question 

and that their decision should be subjective. The purpose of these decisions was to focus 

attention either on the object attributes during item encoding, or to facilitate an associative 

link between the house and object during associative encoding trials. Half of the image pairs 

in associative encoding were similar in design (i.e., modern with modern or traditional with 

traditional), whereas half were different in design (i.e., traditional with modern). Practice 

trials consisted of the same parameters but included only 5 trials for each type of encoding 

using stimuli not seen during scanning. Responses and reaction times were recorded.

Each encoding trial began with a fixation cross (with a duration that varied from 1–5 sec), 

followed by the presentation of the stimulus (5 sec). There were a total of 75 trials in each 

encoding run: 48 initial presentations, 12 repetitions (to ensure an adequate number of 

correct recognitions for later analysis), and 15 null events (fixation cross 5 sec in duration, 

preceded by a jittered inter-stimulus interval).

A surprise memory test was given outside the scanner consisting of separate recognition 

tests for item and associative memory. An approximate 30 min delay occurred between 
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presentation and recognition for each memory type, as the recognition tests were given in 

the same order as encoding runs. The item recognition test consisted of 32 old items and 32 

new items. Participants were instructed to make their decision based solely on the intact 

image (see Figure 1A). For item memory, participants were instructed to indicate if the item 

had been seen during scanning (“old”) or not (“new”). Associative recognition consisted of 

32 intact pairs, 16 rearranged pairs and 16 new pairs. For associative memory, participants 

were instructed to indicate if the paired items had been seen together during scanning (“old” 

for intact pairs) or not (“new” for rearranged or new pairs). Memory was computed as the 

proportion of hits (correct old judgments) minus the proportion of false alarms (FA; 

incorrect old judgments) for item and associative tests. A repeated samples analysis of 

variance (ANOVA) was used to identify differences between age groups.

fMRI Data Acquisition and Analyses

Participants were scanned using a Siemens Trio 3T scanner. The scanning session was 

approximately 1 hour and 23 min, which included set-up and removal of participants, as well 

a high resolution structural scan, three resting state runs, two encoding runs, and diffusion 

tensor acquisition. Anatomical scans were acquired with a 3D MP-RAGE sequence (TR=2s, 

TE=2.63 ms, FOV=25.6 cm2, 256 × 256 matrix, 160 slices of 1mm thickness). Functional 

runs were obtained with an EPI sequence (300 volumes for the encoding runs and 150 

volumes for the resting state runs, TR=2 s, TE=30 ms, flip angle=70N, FOV=20 cm2, 64 × 

64 matrix, 30 interleaved axial slices of 5mm thickness, no gap). Pulse and respiration were 

measured throughout the scan.

Preprocessing of the images was performed with Analysis of Functional Neuroimages 

(AFNI, Cox, 1996). The following steps were carried out: realignment of the subject’s 

functional volume to their structural volume, physiological motion correction, slice timing 

correction, rigid-body motion correction, spatial normalization to the Montreal Neurological 

Institute (MNI) template, smoothing with an 8 mm Gaussian filter (final voxel size was 4 

mm isotropic). We regressed out white matter, ventricular and large blood vessel signal, as 

well as the six-motion parameter estimates from each voxel time series, for each 

participant’s run (Grady et al., 2010). The first 2 TRs from each run were also dropped to 

avoid signal instability.

Lastly, to further reduce the influence of head motion, as proposed in Siegel et al. (2014), we 

employed a method that removes images considered to be outliers based on motion 

parameter estimates recorded for each person and on measurement of voxel intensity 

changes in each brain volume, across each time course. We identified and removed volumes 

that were outliers in both the 6 rigid-body motion parameter estimates (MPEs), and in the 

fMRI signal using a multivariate approach (for details see Campbell, Grigg, Saverino, 

Churchill, & Grady, 2013; Churchill, Spring, Afshin-Pour, Dong, & Strother, 2015). This 

involved the decomposition of the motion parameter estimates and fMRI signal intensity 

data matrices for each run and participant using a principal component (PC) analysis. For 

each of the two PC-space data sets the median PC-space coordinate vector was computed 

and the degree of displacement for each data point was measured. The data points that 

deviated using a Gamma probability distribution at p<.05 for both the image and motion 
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medians were then removed and replaced by interpolating voxel values from adjacent 

volumes, using cubic splines. This controls for potential spikes, while minimizing 

discontinuities in the fMRI time courses due to removal of outliers. The number of scans 

dropped did not differ between groups (older adults M=10.8, SD=3.5; younger adults 

M=8.7, SD=3.8, p=.11).

Only stimuli (items or pairs) that were correctly identified as “old” at recognition were 

included in the analyses so that our results would be based only on those stimuli for which 

encoding was sufficient for accurate recognition. An average of 38 events for item encoding 

(young M=37.6, SD=3.8; old M=38.2, SD=3.3) and 32 events for associative encoding 

(young M=34.6, SD=3.2; old M=29.9, SD=5.9) were included. We included both first 

presentation trials and second presentation trials to obtain maximal statistical power and the 

most robust effects. The analysis described below was event-related and assessed activity in 

each event across 8 lags or time points (i.e., a 16 second interval) post-stimulus onset. For 

the predictive modeling analysis we chose to perform a combined analysis of all our data to 

allow for age-dependent differences in expression of common neural substrates to emerge in 

a data driven fashion, supported by measures of prediction and spatial pattern reproducibility 

across training and test groups.

Whole brain predictive modeling—Non-parametric prediction, activation, influence, 

and reproducibility resampling (NPAIRS, Strother et al., 2002; 2004; 2010) was used to 

determine whether specific brain patterns were predictive of item and associative encoding, 

respectively (Java version available at: http://code.google.com/p/plsnpairs/). With this 

multivariate approach, which applied aCVA (a multi-class linear discriminant) within a split-

half cross-validation framework, we determined if the brain states associated with encoding 

items or item pairs could be predicted in each participant at above chance levels, and 

assessed the reproducibility of the spatial patterns associated with these brain states across 

participants. Prediction is based on the ability of a model generated from a training subset of 

the data to predict the two brain states from an independent test subset of the data, using 

iterative split-half resampling. Reproducibility, on the other hand, is a measure of how well a 

spatial pattern seen in the training model can be reproduced using the independent test 

datasets.

NPAIRS-CVA starts by reducing the dimensionality of the dataset using principal 

component analysis (PCA) decomposition. This first PCA provides a computational speedup 

by providing PCs as features, instead of voxels, in subsequent data analysis stages. Split-half 

resampling was then applied to the set of PCs from the combined group of young and old 

participants. These data were partitioned 50 times into two independent subject datasets (i.e., 

N=M/2 where M=34) to produce training and test datasets, which consist of both item and 

associative encoding runs per subject (the partition is based on subjects and not runs). The 

first subset of subjects was used to train a classifier with 16 classes, defined by the 8 lags 

from the item and associative encoding HRFs, and the second set was used to test the 

classifier’s accuracy. In the current study younger and older adults were both included in the 

analysis to provide a common set of brain patterns underlying the prediction and 

reproducibility metrics, from which we could then determine age differences. After splitting 

the data, the dimensions/components of each split fMRI dataset were reduced using a second 

Saverino et al. Page 7

J Cogn Neurosci. Author manuscript; available in PMC 2017 September 01.

C
IH

R
 A

uthor M
anuscript

C
IH

R
 A

uthor M
anuscript

C
IH

R
 A

uthor M
anuscript

http://code.google.com/p/plsnpairs/


PCA. This acts as an independent denoising step for each split dataset and is needed to 

produce stable, non-singular data matrices that can be subsequently analyzed using aCVA 

(Strother et al., 2004). The number of principal components was varied from 2 to 25 in steps 

of 1 to produce a curve reflecting prediction-reproducibility tradeoffs (Rasmussen, Hansen, 

Madsen, Churchill, & Strother, 2012). Canonical variables (CVs) were generated from the 

aCVA to identify condition-consistent covariance in the data across subjects. Each CV was 

associated with an eigenvalue that represents the signal-to-noise-ratio (SNR) of that variable. 

The percentage of variance accounted for can be computed by dividing the eigenvalue of the 

CV by the sum of all eigenvalues for all CVs (we retained two CVs based on the amount of 

variance accounted for, see Results). Canonical eigenimages express the spatial patterns in 

the brain associated with each CV, and for each participant a CV score was calculated for 

each HRF time point, per condition, indicating the participant’s expression of the spatial 

patterns.

Based on the eigenimages, reproducibility was computed for each independent pair of split-

half data sets as the average correlation coefficient (r) between voxels within these paired 

canonical eigenimages. The median r is calculated across the 50 split half partitions as the 

measure of overall reproducibility. Prediction is measured in the test set of subjects as the 

posterior probability of each scan’s true class membership for each subject (i.e., the HRF 

time point for item or associative encoding brain states) based on the training set parameters 

(Strother, et al., 2004). The number of PCs retained in the solution reported here was 18, and 

was chosen because this was the model with maximum prediction for a reproducibility > 0.5 

(refer to Figure 2). To ensure the stability of this result, we also examined the results 

obtained with fewer PCs (13 PCs, which would emphasize reproducibility over prediction) 

and more PCs (23 PCs, which would emphasize prediction over reproducibility). See 

Rasmussen et al. (2012) for a validation of this approach in identifying the known left and 

right network components of the motor system in an alternating finger tapping task. The age 

differences in prediction that we report below were also found with these additional 

solutions, indicating that our results were not biased by our choice of 18 PCs.

A repeated measures ANOVA with condition (item vs. associative) and time (i.e., 8 time 

points in the analysis window) as within subjects factors and age group (young vs. old) as a 

between subject factor, was used to determine whether significant condition, time, and group 

differences were present in prediction probabilities. An additional repeated measures 

ANOVA was carried out on the CV scores from both CVs to look for age differences in 

brain patterns, since both CVs contributed to the prediction. For this analysis of CV scores 

we focused on the time points in the event where prediction peaked for item (time point 3) 

and associative (time point 4) conditions. In this analysis, condition (item and associative), 

CV (CV1 vs. CV2), and time (time points 3 and 4) were entered as within subjects factors, 

with age group as the between subjects factor.

To examine the effect of mean NPAIRS-CVA prediction on item and associative recognition 

accuracy we carried out a hierarchical regression analysis. Given the age differences in 

scores on some of the neuropsychological tests, we thought it would be important to control 

for these variables, as well as age, in our exploration of this relation. In order to reduce the 

number of variables in the regression, we first ran a series of PCA analyses using the 
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neuropsychological tests to compute factors for the cognitive domains that were represented. 

These consisted of an immediate memory factor (derived using immediate memory from the 

Logical Memory, Verbal Paired Associates, Designs and CVLT scales), a delayed memory 

factor (delayed memory scores from the aforementioned memory tests), an executive 

function factor (Trails B, Digit Span Backward, Verbal Fluency, Design Fluency, Stroop 

Interference) and an attention/speed of processing factor (Trails A, Digit Span Forward, 

Symbol Search, and Digit Symbol Coding). We then calculated the correlations between 

item or associative recognition accuracy and these factor scores, as well as vocabulary, and 

the positive and negative mood scores from the PNAS, across the entire sample of 

participants. Variables that were significantly correlated were included in the subsequent 

regression model to predict memory performance. Hierarchical regression analyses were 

done separately for the item and associative conditions, with age group entered first, 

followed by the neuropsychological scores that correlated with performance (using a 

forward regression), and with associative brain prediction and the interaction of this variable 

with age entered as the third step (also with forward regression). Thus, these analyses 

determined whether prediction at the brain level could predict memory performance after 

accounting for age and differences in neuropsychological scores, and whether any such 

relation characterized memory performance regardless of age, or was influenced by age (i.e., 

if the interaction term was significant).

Results

Neuropsychological test results

Table 1 summarizes the results from the neuropsychological test battery. Consistent with the 

literature on cognitive aging (see review by Old & Naveh-Benjamin, 2008), older adults 

performed worse on tests of associative memory (Verbal Paired Associates and Designs), but 

were comparable to younger adults on tests of item memory (CVLT). Also consistent with 

previous findings of normal aging (Park et al., 2002), older adults were better than younger 

adults on tests that measure crystallized intelligence (e.g., vocabulary) and poorer on tests 

that assess fluid intelligence (e.g., symbol search). In regards to mood, older adults had 

higher ratings of positive affect and lower ratings of negative affect compared to younger 

adults, as a number of studies have reported (e.g., Carstensen et al., 2011; Charles, 

Reynolds, & Gatz, 2001).

fMRI Behavioural Results

Encoding—Differences across groups for item (modern/traditional) and associative (likely/

unlikely) responses during encoding were explored via an independent samples t-test. 

Modern decisions were equal across groups during item encoding [p=.825], whereas 

younger adults made more likely decisions during associative encoding [t(32)=2.93, p=.006, 

Table 1]. A repeated measures ANOVA with Age as a between subjects factor and Memory 

Task as a within subjects factor (item or associative) was performed for encoding RT. RTs 

were unavailable for one older adult during associative encoding. Significant effects of Age 

[F(1,31)=26.1, p<.001] and Task [F(1, 31)=31.0, p<.001] were found for RT, such that older 

adults were slower to make decisions than younger adults, and both groups were slower to 

make associative (likely/unlikely judgments) than item decisions (modern/traditional; t >9.0, 
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p<.001; Table 1). The interaction of age and task was not significant; indicating that the 

additional time needed for the associative judgment was equivalent in the two age groups.

Recognition—Using a similar 2×2 repeated measures design for recognition scores, we 

found significant effects of Age [F(1, 32)=8.8, p=.006], Task [F(1, 32)=44.5, p<.001] and a 

significant interaction between Age and Task type [F(1, 32)=29.9, p<.001] (Figure 1B). 

Older adults performed worse on associative relative to item recognition tests [t(17)=9.4, p<.

001], but no difference between item and associative recognition tests was found for young 

adults [t(15)=.78, p=.45; paired t-test]. Performance was equal across age groups for item 

recognition [t(32)=.32, p=.75], but older adults performed more poorly on associative 

recognition [t(32)=4.8, p<.001; independent samples t-test]. Compared to the younger 

adults, the older group had a lower number of hits [t(32)=2.7, p=.012] and a higher number 

of FAs [t(32)=−2.9, p=.007] for associative trials (Table 1).

To test whether the number of likely decisions at encoding had any influence on associative 

recognition scores, an additional 2×2 repeated measures analysis was performed with age as 

a between subject factor and decision type as a within subjects factor (% likely vs. unlikely 

decisions that led to hits). A significant effect of Age [F(1, 31)=10.23, p=.003] was found, 

whereby older adults had fewer associative hits than younger adults. However, neither the 

effect of a likely/unlikely decision [F(1, 31)=.01, p=.93) nor the interaction between Age 

and Decision type [F(1, 31)=.25, p=.62] was significant. This demonstrates that associative 

decisions at encoding do not account for the age difference in associative memory.

fMRI Results

We turn next to the question of whether predictive modeling would reveal a neural effect that 

is similar to the associative deficit seen in behavior (i.e., age differences in prediction for 

associative memory but not for item memory). Prediction probabilities, averaged across 

subjects for each of the 8 time points for each condition and group, are shown in Figure 3. 

These plots indicate that maximal prediction was found at the third and fourth time points 

for the item condition (Figure 3A) and the fourth for the associative condition (Figure 3B). 

First, we tested whether overall prediction was significantly greater than chance (1/16 or 

0.07) in both groups. Both young and older adults had robust overall prediction (young 

M=0.30±0.08, old M=0.23± 0.07; one-sample t-tests, t’s>10.0, p’s<0.001 for both 

contrasts). Next, we entered the prediction values into a repeated-measures ANOVA with 

group, condition, and time as factors. Prediction was higher overall in younger than in older 

adults (significant effect of age F(1, 32)=8.02, p=.008). However, this age difference was 

qualified by significant interactions between age group and condition (F(1,32)=7.63, p=.009) 

and age group and time (F(7,224) =5.17, p=.001). Separate analyses for item and associative 

conditions showed that prediction for item encoding did not differ across age groups 

(F(1,32)=1.19, p=.284), whereas for associative encoding prediction was significantly 

weaker in older relative to younger adults (F(1,32)=14.91, p=.001). There also was a 

significant interaction of group and time for associative prediction (F(7,224)=3.14, p=.013), 

suggesting that the group difference was largest when prediction was maximal. Thus, 

prediction of brain patterns linked to item encoding was comparable across age groups, 
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whereas brain patterns related to associative encoding were more distinct and predictable in 

younger than in older adults.

The spatial patterns that underlie the prediction of item and associative brain states are 

represented primarily by the canonical eigenimages of the first two CVs, which together 

accounted for 86% of the variance in the data (63% and 23%, respectively) and will be 

reported here (Figure 4). To determine differences across conditions and groups in the 

activity expressed in these CVs, we focused on the time where prediction was maximal, i.e., 

time points 3 and 4 (see Figure 3). We entered the scores from these times for both CVs into 

an ANOVA with group, condition, CV score and time as factors (data from both CVs were 

entered into the analysis because the combined effect of these spatial patterns contributes to 

prediction). The critical 4-way interaction was significant (F[1,32]=3.98, p=0.05), so we 

followed up with separate analyses of each age group. Here, we were primarily interested in 

the main effect of condition and the interaction of CV score and condition, which would 

indicate whether activity for the item and associative conditions was differentially expressed 

in the two spatial patterns within each group. In young adults the effect of condition was not 

significant (F<1) but the interaction of CV score and condition was significant 

(F[1,15]=7.00, p=0.018), reflecting greater activity for item encoding on the first CV score 

and greater activity for associative encoding on the second CV score (Figure 4A and B). In 

older adults neither the effect of condition (F[1,17]=1.03, p=0.324) nor the CV score by 

condition interaction (F[1,17]=1.57, p=0.227) was significant, although there was a trend for 

higher activity during item encoding on CV1 in the older group (Figure 4A). This group 

difference in expression of the CV patterns suggests that the reduced prediction in older 

adults, especially for associative encoding, is related to a reduction in the differential 

expression of the activity patterns that characterize item vs. associative encoding in younger 

adults.

The spatial patterns represented by CV1 and CV2 are displayed in Figure 4C and D, 

respectively. CV1 was associated with more activity in regions typically activated during 

object and house perception (middle occipital gyrus) and motor processing (pre and post 

central gyrus). Activity on CV2 (Table 2) was higher in left inferior frontal gyrus, anterior 

cingulate cortex, left motor/premotor cortex, and fusiform gyrus extending into the medial 

temporal lobe (MTL).

Finally, we determined whether item or associative prediction values in the brain were 

predictive of recognition accuracy. A number of the neuropsychological covariates were 

correlated with associative memory. Therefore, we carried out a hierarchical regression 

analysis using forward stepwise regression, to predict associative recognition accuracy. Age 

group was entered as the first step, followed by the neuropsychological scores that correlated 

with associative recognition (this included the factor scores for immediate memory, delayed 

memory, executive function/working memory, and attention/speed of processing, and the 

PANAS negative mood scores) as the second step, and mean associative prediction values 

and the interaction of this variable with age were entered as the last step. The only 

significant predictors of associative memory were age (F(1,32)=23.04, p<0.001, R2=.42) and 

associative prediction in the brain (Fchange(1,31)=4.21, p=.049, R2
change=.07). A scatterplot 

of the relation between associative prediction and recognition (residuals after controlling for 
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age are plotted in Figure 5), shows an increase in associative memory accuracy as 

associative prediction in the brain increases. In contrast, item recognition accuracy was not 

significantly correlated with any of the covariates, and a similar hierarchical regression 

carried out to predict item recognition from age, brain prediction and the interaction of these 

two variables was also not significant (F<1).

Discussion

This study examined the neural correlates of the associative memory deficit in older adults 

by examining brain activity that was predictive of memory encoding conditions, across 

young and older adults. As hypothesized, an associative deficit was observed in both 

behavioural and neuroimaging findings. Age differences in prediction of brain activity 

associated with item vs. associative encoding provide evidence of dedifferentiation of brain 

activation patterns in aging, but this was specific to associative encoding. Critically, the 

ability to predict the brain activity accompanying associative encoding was related to better 

associative memory, even after accounting for age and neuropsychological performance, 

suggesting that this measure of neural specialization is important for supporting associative 

memory.

Consistent with earlier work, we found that older adults had worse memory for associations 

but intact memory for items compared to young adults. The associative deficit in the current 

study was driven by a lower number of hits and a higher number of FAs, as reported by 

others (Bender, Naveh-Benjamin, & Raz, 2010). It has been suggested that the age-related 

reduction in episodic memory can be accounted for by greater reliance on familiarity rather 

than recollective processes (Yonelinas, 2002). Relying on familiarity would lead to correct 

recognition for items, but doing so for associations would result in a high number of FAs. 

Although we did not assess recollection and familiarity directly, our results support the view 

that the associative memory deficit is in part attributable to an age related increase in 

familiarity-based recognition.

Our NPAIRS-CVA approach demonstrated that the dissociation observed in the behavioural 

literature is also apparent in the brain. We were able to successfully predict neural activity 

for item and associative conditions across groups; however, older adults had reduced 

prediction of associative trials. These results are consistent with dedifferentiation, i.e., less 

task selectivity, specifically for the associative encoding condition. Critically, the associative 

prediction probabilities were also related to associative recognition, whereas item prediction 

in the brain was not associated with item memory. Reduced selectivity of brain activity in 

older adults during associative encoding and the relation between predictability of the 

associative “brain state” and subsequent memory for stimulus pairs both support the idea 

that age-related dedifferentiation plays a critical role in the associative deficit. To our 

knowledge this is the first report of a direct link between a specific age difference in brain 

activity during associative encoding (i.e., the ability to predict brain activity during 

associative encoding) and reduced associative memory in older adults. Although others have 

examined predictive patterns of brain activity during associative encoding, these studies 

were restricted to young adult participants (for examples refer to Duncan, Tompary, & 

Davachi, 2014; Kuhl, Johnson, & Chun, 2013).

Saverino et al. Page 12

J Cogn Neurosci. Author manuscript; available in PMC 2017 September 01.

C
IH

R
 A

uthor M
anuscript

C
IH

R
 A

uthor M
anuscript

C
IH

R
 A

uthor M
anuscript



Our result adds to previous literature on dedifferentiation in aging, which found that older 

adults have less distinct neural representations across stimulus categories in visual (Carp, 

Park, Polk, et al., 2011; Park, et al., 2004; Payer et al., 2006), motor (Carp, Park, Hebrank, 

Park, & Polk, 2011), and auditory (Grady, Charlton, He, & Alain, 2011) systems. Specific to 

memory, brain activity is also less distinct in older compared to younger adults when 

contrasting implicit and explicit memory (Dennis & Cabeza, 2011), episodic, semantic and 

autobiographical retrieval (St-Laurent, et al., 2011), episodic encoding and working memory 

(Sambataro, et al., 2012), and perception and mental replay (St-Laurent et al., 2014). Taken 

together with earlier work, our result provides compelling evidence to support the idea that 

older adults have less task selectivity in regions that are task-specific in young adults, and 

that this dedifferentiation has a negative impact on associative memory in older adults.

The patterns obtained from the NPAIRS-CVA analyses characterizing item and associative 

encoding revealed regions that were commonly identified in the literature to be linked to 

encoding of items or associations. Areas that differentiated item encoding from associative 

encoding were related to activity in visual processing areas, such as the middle occipital 

gyrus, which are highly responsive to the presentation of objects and houses (e.g., Gutchess 

et al., 2005; Dennis et al., 2008). On the other hand, activity in the precuneus and fusiform 

gyrus/MTL (see Kim, 2011) accompanied associative encoding, at least in younger adults. 

The precuneus may predict associative encoding because it plays a pivotal role in source 

memory effects, particularly for pictorial information (Kim, 2011), and is an important area 

for mental imagery (Cavanna & Trimble, 2006). The fusiform gyrus/MTL is of interest in 

this context as it has been identified as a structure with reduced specificity in older adults on 

tasks of memory encoding (St-Laurent et al., 2014) and visual perception (Carp, Park, Polk, 

et al., 2011; Lee, Grady, Habak, Wilson, & Moscovitch, 2011). In addition, our finding that 

left inferior frontal gyrus activity was predictive of associative encoding in young adults, but 

not in older adults, is consistent with numerous reports that this region is active during 

encoding of multiple types of stimuli in young adults (for a meta-analysis, see Spaniol et al., 

2009), but often is less so in older adults (e.g., Grady et al., 1995; Logan, Sanders, Snyder, 

Morris, & Buckner, 2002). Taken together, these results suggest that activity in brain regions 

typically seen during encoding, even if the encoding is incidental, can be differentially 

predictive of specific encoding processes that are sensitive to age differences.

Given the evidence for dedifferentiation of brain activity in older adults, and our finding of 

less predictable brain activity for associative encoding, one might wonder about the 

underlying mechanism of this effect. One possibility is that the object and house 

representations in visual cortex are less distinct in older adults and this overlap in 

information is propagated to other cortical areas involved in associative encoding. The prior 

reports of reduced category-specific activity in visual areas in older adults mentioned above 

and broader tuning curves in visual cortex in monkeys (Yu, Wang, Li, Zhou, & Leventhal, 

2006) would support this interpretation. Alternatively, the reduction of associative-specific 

neural activity in older adults and more overlap in activity during item and associative 

encoding, reflected in poorer prediction, may reflect a broader and less-specific engagement 

of neural resources in older individuals, relative to younger adults, to complete the task. 

Consistent with this view is that older adults often show greater activity in the frontal lobes 

than young adults during cognitive tasks (e.g. Cabeza, 2002; Park & Reuter-Lorenz, 2009). 
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Thus, it may be that older adults need to pool their neural resources to perform the same task 

as younger adults, particularly for associative encoding, resulting in less distinction across 

conditions and poorer prediction.

It is important to note that additional factors also could have influenced age differences in 

the level of prediction across conditions. For instance, previous work has argued that the 

associative deficit in aging may result from differences in attention or inhibitory control, 

whereby older adults fail to inhibit irrelevant information and consequently encode too much 

information compared to younger adults (“hyperbinding”; Campbell, Hasher & Thomas, 

2010). Although this is an intriguing idea, it is unclear whether encoding too much 

information would lead to improvements or declines in neural specificity. Furthermore, eye-

movements are known to differ between young and older adults during associative encoding. 

A recent study by Kamp and Zimmer (2015) found age differences in the time course of 

fixation transitions between items encoded as a pair, suggesting differences in visual 

scanning while making associations between items. We did not measure eye movements 

during encoding so cannot rule out whether differences in such movements are contributing 

factors to the current findings. However, if eye movements were involved in predicting 

associative encoding, we would expect to see activity in CV2 corresponding to the frontal 

eye fields (FEF), which are linked to eye movements (Choi & Henderson, 2015). Although 

activity in dorsal motor/premotor cortex predicted associative encoding trials (see CV2 in 

Figure 4) this activity is not consistent with the location of the FEF (e.g., Paus, 1996; 

Vincent, Kahn, Snyder, Raichle, & Buckner, 2008) and is lateralized to the left hemisphere, 

so may correspond to motor activity related to the button press response. In addition, activity 

in other regions such as the fusiform/MTL and cingulate cortex, is not easily explained by 

eye movements, suggesting that eye-movements are not a major contributor of differences in 

prediction between age groups.

In conclusion, our results provide evidence that dedifferentiation contributes to reductions in 

associative memory performance in older adults. Even though younger and older adults were 

found to activate the same neural networks during item and associative encoding, we found 

that neural activity across encoding conditions was more selective and predictable in 

younger compared to older adults. The neuroimaging results mirror the behavioural effect 

observed in the literature: older adults had less selective activity, as measured by less 

predictable brain activity, for associative but not for item encoding. In addition, greater 

specificity in the brain, such that different patterns of brain activity predicted item vs. 

associative conditions, was associated with better relational memory. This suggests that 

predictably selective activity during different kinds of encoding is important for subsequent 

memory, perhaps because it leads to more distinct memory representations, and that a lack 

of distinctiveness in neural recruitment is specifically detrimental to associative processing 

in older age.
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Figure 1. 
A. Examples of pictures presented during encoding and recognition. B. Performance (hits 

minus FA) during item and associative recognition tests. Error bars represent standard error 

of the mean (S.E.M.).
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Figure 2. 
The NPAIRS results depicting the prediction (mean probability of correctly classifying a 

scan’s encoding type) by reproducibility (mean correlation between voxels across split half 

partitions) curve spanning across solutions with 1PC (high reproducibility but low 

prediction-far right) to 25 PCs (low reproducibility but high prediction-far left). The 18 PC 

solution lies just to the right of the line at reproducibility = 0.5, which represents the point of 

maximal prediction at a level of 0.5 reproducibility.
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Figure 3. 
A. NPAIRS prediction values for item encoding events. B. NPAIRS prediction values for 

associative encoding events. Prediction values are shown for all 8-time points, for young and 

older adults. Note that maximal prediction occurs at time points 3 or 4. Error bars represent 

S.E.M. Similar plots for the 13 and 23 PC solution can be found on our website (https://

sites.google.com/site/gradylabgroup/).
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Figure 4. 
NPAIRS results for CV1 and CV2 by age group and condition. A. Mean canonical scores for 

CV1. B. Mean canonical scores for CV2. C. The Z-scored eigenimage corresponding to 

CV1, showing regions that were more active for item encoding in both groups. D. The Z-

scored eigenimage corresponding to CV2, showing regions that were more active for 

associative encoding in young adults. Error bars represent S.E.M. A minimum Z of 3 was 

used for all images (equivalent to p <.005). Eigenimages are displayed using Mango 

(Research Imaging Institute, UTHSCSA).
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Figure 5. 
Scatterplot of associative prediction values and recognition scores (hits minus FA) for young 

and older adults using the residuals obtained when controlling for age. The solid line shows 

the slope for younger adults and the dashed line represents the older adults.

Saverino et al. Page 23

J Cogn Neurosci. Author manuscript; available in PMC 2017 September 01.

C
IH

R
 A

uthor M
anuscript

C
IH

R
 A

uthor M
anuscript

C
IH

R
 A

uthor M
anuscript



C
IH

R
 A

uthor M
anuscript

C
IH

R
 A

uthor M
anuscript

C
IH

R
 A

uthor M
anuscript

Saverino et al. Page 24

Table 1

Participant demographic data and scores on neuropsychological, encoding and recognition tests. Mean values 

are reported with standard deviations. Differences across age groups (p <.05) are indicated with asterisks. Age 

differences determined via independent sample t-test or chi-square test for categorical variables.

Demographic data Young Old

N 16 18

Males 7 8

Age 21.1 (2.2) 69.2 (4.2)*

Education 14.9 (1.1) 15.9(2.8)

MMSE 29.6 (0.7) 29.2 (1.2)

Extended Range Vocabulary Test 22.9 (8.3) 31.7 (8.3)*

Neuropsychological scores Young Old

Memory

Logical Memory Immediate Recall 28.8 (5.7) 25.8 (4.9)

Logical Memory Delayed Recall 27.3 (7.1) 22.5 (6.8)

Verbal Paired Associates Immediate Recall 45.2 (9.2) 31.0 (10.1)*

Verbal Paired Associates Delayed Recall 12.7 (1.9) 10.8 (7.8)

Designs Immediate Recall 86.5 (13.9) 65.1 (14.1)*

Designs Delayed Recall 76.3 (17.6) 53.3 (12.0)*

CVLT-Short Delayed Recall 13.0 (3.2) 12.1 (2.9)

CVLT-Long Delayed Recall 13.5 (2.5) 12.3 (2.9)

Attention

Trails A (s) 15.3 (3.5) 25.8 (10.9)*

Digit Span Forward 12.2 (2.7) 11.2 (3.1)

Processing Speed

Symbol Search 46.6 (7.2) 30.3 (6.8)*

Digit Symbol Coding 87.1 (12.1) 61.6 (12.3)

Working Memory

Trails B (s) 34.4 (9.8) 59.3 (18.2)*

Digit Span Backward 10.6 (2.2) 10.0 (2.2)

Executive Function

Verbal Fluency 44.3 (9.0) 43.2 (11.0)

Design Fluency 11.7 (2.6) 9.0 (2.6)*

Stroop Colour Word Interference 54.1 (6.9) 38.5 (6.0)*

Mood

PANAS Positive 32.8 (7.2) 39.9 (5.7)*

PANAS Negative 17.6 (6.6) 13.2 (2.8)*

fMRI encoding task Young Old

% Responses

Modern Decisions .57 (.06) .56 (.07)
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Demographic data Young Old

Likely Decisions .62 (.07) .55 (.07)*

Task RT (ms)

Item Encoding 1288 (303) 1828 (415)*

Associative Encoding 1911 (329) 2579 (423)*

Recognition task Young Old

% Hits

Item Recognition .83 (.10) .85 (.08)

Associative Recognition .84 (.09) .72 (.15)*

% False Alarms

Item Recognition .10 (.07) .12 (.09)

Associative Recognition .12 (.09) .22 (.12)*
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