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Abstract

W Because everyday actions are statistically structured, know-
ing which action a person has just completed allows predicting
the most likely next action step. Taking even more than the pre-
ceding action into account improves this predictability but also
causes higher processing costs. Using fMRI, we investigated
whether observers exploit second-order statistical regularities
preferentially if information on possible upcoming actions pro-
vided by first-order regularities is insufficient. We hypothesized
that anterior pFC balances whether or not second-order informa-
tion should be exploited. Participants watched videos of actions
that were structured by first- and second-order conditional prob-
abilities. Information provided by the first and by the second

INTRODUCTION

Humans use knowledge about structural regularities to
shape their expectations about upcoming events (Kok,
Brouwer, van Gerven, & de Lange, 2013; Bubic, von
Cramon, & Schubotz, 2010; Turk-Browne, Scholl, Johnson,
& Chun, 2010, Friston & Kiebel, 2009; Summerfield,
Trittschuh, Monti, Mesulam, & Egner, 2008). A good exam-
ple of this ability is action observation: Actions provide a
conditional structure of sequential action steps, so that
knowing about a preceding action step improves predict-
ability of the upcoming action (Zacks, Kurby, Eisenberg, &
Haroutunian, 2011). Therefore, it appears that the more
preceding action steps an observer takes into account,
the more accurate the prediction will be. For instance,
we do expect that a person will put a tea bag into a mug
after switching on a kettle, but we do not if we observed
that person putting a descaler into the kettle right before.
Here, the first-order conditional probability of “putting a
tea bag in a mug” after observing “switching on a kettle”
is modulated by taking one additional previous action step
into account, which constitutes a second-order conditional
probability. However, retrieving this second-order informa-
tion comes with processing costs and may thus not always
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order was manipulated independently. BOLD activity in the ac-
tion observation network was more attenuated the more informa-
tion on upcoming actions was provided by first-order structure,
reflecting expectation suppression for more predictable actions.
Activation in posterior parietal sites decreased further with
second-order information but increased in temporal areas. As ex-
pected, second-order information was integrated more when less
first-order information was provided, and this interaction was me-
diated by anterior pFC (BA 10). Observers spontaneously used
both the present and the preceding action to predict the upcom-
ing action, and integration of the preceding action was enhanced
when the present action was uninformative. il

be worth the investment. This leads to the question: Do
observers always consider as many preceding action steps
as possible to optimize their predictions, or do they only
do so if their expectation is hardly informed by the directly
preceding action? We know that humans do not take into
account all available sources of information to make opti-
mal decisions, but often jump to conclusions, taking heu-
ristic shortcuts (Gigerenzer & Goldstein, 1996). A basic
question in human cognition concerns this cost-benefit ra-
tio: How much information processing is invested (as a
cost) to optimize expectations and behavior (as a benefit)?

Behavioral and fMRI findings strongly suggest that
predictive mechanisms are engaged during action observa-
tion. Humans are particularly fast and accurate at recogniz-
ing actions, even if visual information is sparse (Blake &
Shiffrar, 2007) or parts of the action are occluded (Stadler
et al., 2011; Zacks et al., 2011). The so-called action obser-
vation network (AON), including premotor cortex, inferior
parietal lobule, and posterior temporo-occipital regions
(Caspers, Zilles, Laird, & Eickhoff, 2010), shows reduced
activation for expected compared with unexpected actions
(expectation suppression; see Summerfield & de Lange,
2014; Summerfield et al., 2008). For instance, AON acti-
vation is attenuated by previous encounters of an action
(Schiffer, Ahlheim, Ulrichs, & Schubotz, 2013), success-
ful inference of action goals (Wurm, Hrka¢, Morikawa, &
Schubotz, 2014), or predictive regularities between action
steps (Ahlheim, Stadler, & Schubotz, 2014; Schubotz,
Wurm, Wittmann, & von Cramon, 2014). This shows that
the human brain exploits previous action steps to prepare
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for upcoming action steps. However, it is so far unknown
how many previous action steps are considered to improve
predictability, and whether this occurs as a function of the
uncertainty regarding the next action step.

In general, the predictability of an upcoming event de-
pends on the degree of structure that underlies the event
sequence, and knowledge of this structure allows for
more accurate predictions. Using various paradigms and
stimuli, it has been shown that humans spontaneously
learn about first-order structures defined by conditional
probabilities between successive items, which can be ac-
cessed directly through pairwise associations. Humans
use knowledge of those probabilities to prepare for up-
coming stimuli, both in abstract stimulus sequences as well
as actions (Ahlheim et al., 2014; Turk-Browne, Scholl,
Chun, & Johnson, 2009; Baldwin, Andersson, Saffran, &
Meyer, 2008; Swallow & Zacks, 2008; Fiser & Aslin, 2002).
However, most everyday actions are not guided by simple
first-order conditional probabilities but involve higher-
order (e.g., second-order) structures. Contrary to first-
order information, second-order information cannot be
assessed directly but requires retrieving information about
the event # — 2 from memory and integrating it with the
first-order information. This integration is necessary, as
the event ¢ — 2 alone does not constitute the second order,
but only in combination with the event # — 1. Although the
beneficial effects of first-order regularities on neural pro-
cessing and behavior are uncontroversial, it remains un-
clear whether and how second-order regularities
influence behavior and prediction of upcoming events
and how this depends on concurrently available first-order
information. Findings are mixed, as some studies do not
show an effect of higher-order structures (Gureckis & Love,
2010), whereas others show that learning of higher-order
structures is slower (Remillard, 2008) or not different from
first-order learning (Domenech & Dreher, 2010). Research
in amnestic patients revealed a specific deficit in the learn-
ing of higher-order conditional structures, whereas learning
of first-order associations remained intact (Curran, 1989).
This suggests that the hippocampal formation, which is fre-
quently damaged in amnesia, specifically contributes to
learning of higher-order compared with lower-order struc-
tures, additionally to its critical role in episodic memory and
associative knowledge (Kumaran & Maguire, 2009; Fortin,
Agster, & Eichenbaum, 2002; Strange & Dolan, 2001).

To account for the mixed findings on learning of higher-
order structures, it has been suggested that humans are
biased toward attending to lower-order structures and only
attend to higher-order structures if the information pro-
vided by the lower-order structure is insufficient to reliably
predict the upcoming event (Gureckis & Love, 2010). It is
so far unclear whether the same principle holds for action
observation and which neural structures could underpin
this process of integration of predictive information. Re-
cent findings indicate that the search and use of further in-
formation is orchestrated by the lateral BA 10 (Badre, Doll,
Long, & Frank, 2012; Daw, O’Doherty, Dayan, Seymour, &

1910  Journal of Cognitive Neuroscience

Dolan, 2006). Badre et al. (2012) showed that activation in
the BA 10 increases with relative uncertainty about a poten-
tial action outcome, but only in participants that showed a
so-called explorative behavior, that is, participants that
were searching for additional information from unknown
choices. This links the BA 10 to explorative choice. In a sim-
ilar vein, Daw et al. (2006) showed that activation in the lat-
eral BA 10 is higher for explorative or information-gathering
choices. Exploration can be understood as search for infor-
mation, and higher activation in the BA 10 is also frequently
observed during episodic or source memory retrieval tasks
(Ramnani & Owen, 2004), that is, when information needs
to be gathered from memory. Furthermore, the BA 10 has
been associated with the integration of different sources of
information (Nee, Jahn, & Brown, 2013).

In the present fMRI study, we tested the hypothesis
that observers’ exploitation of second-order statistical in-
formation in action sequences depends on how much in-
formation was already provided by the first order. We
used fMRI to test whether information from an observed
action’s second-order statistical structure is used the
more the less informative the action’s first-order statisti-
cal structure is and whether this cost-efficient integration
of information would be signified by BA 10 activity.

We presented observers with videos of action sequences
structured by first- and second-order conditional probabil-
ities. That is, the probability of a given action step # was to a
quantifiable amount determined by the preceding action
step ¢ — 1 (first-order statistical structure) and to another
amount by the combination of the preceding (¢ — 1) and
the last but one preceding action step ¢ — 2 (second-order
statistical structure). Importantly, the amount of informa-
tion provided by first- and second-order structure was var-
ied independently. This enabled us to estimate both effects
independently and also their interaction. We modeled the
BOLD effect at the beginning of action ¢ as a function of the
amount of information provided by the action # — 1 alone
and by the combination of action  — 1 and ¢ — 2. We ex-
pected three effects:

1. First, we expected to replicate findings from our previ-
ous studies (Ahlheim et al., 2014; Wurm et al., 2014),
showing that facilitating the prediction of the upcoming
action step leads to attenuation of activity in the AON.
The more informative action # — 1, the better the predic-
tion of the upcoming action . Accordingly, we expected
the BOLD response in the AON to decrease with the
amount of information provided by action # — 1.

2. At the same point in time, integrating information from
action ¢ — 2 with information from action £ — 1 can ef-
fectively modulate expectations based on the relation
between the actions # — 1 and ¢ and thereby increase
predictability of action ¢. Unlike first-order information,
second-order information cannot be accessed through
direct associations between stimuli but requires action
t — 2 to be retrieved from working memory and inte-
grated with action ¢ — 1. Moreover, previous encoun-
ters of a particular combination of preceding action
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steps need to be retrieved from long-term memory to
derive information on upcoming actions from the com-
bination. We expected the retrieval and integration of
second-order information to be reflected in the hippo-
campal formation, due to its role in learning of higher-
order sequences (Kumaran & Maguire, 2009; Fortin
et al., 2002; Strange & Dolan, 2001; Curran, 1989). Ac-
tivation of the hippocampus has furthermore been
found to correlate positively with the amount of infor-
mation provided on an upcoming event (Harrison,
Duggins, & Friston, 2006). We assumed that this effect
generalizes to higher-order structures and hypothe-
sized that activation in the hippocampal formation will
correlate positively with the amount of information
provided by the second order. Furthermore, we ex-
pected use of second-order information to draw on
the AON. Here, we considered two potential scenarios.
First, given that the exploitation of second-order infor-
mation improves predictability of the upcoming action,
it can be expected to result in a further attenuation of
the AON, paralleling the effect of first-order informa-
tion and pointing toward an interpretation of AON ac-
tivity as reflecting a gain in predictability. Alternatively,
activation in the AON could also be expected to in-
crease with the amount of second-order information.
This is because the more information is provided by
the second-order structure, the more the predictions
are based on the first-order change, and thus, integrat-
ing second-order information is more demanding. This
pattern would point toward sensitivity of the AON to
the costs of integrating second-order information with
the previously provided first-order information.

3. Lastly, we were particularly interested in the question
as to how exploitation of second-order information
depends on the amount of information already pro-
vided by the first-order—that is, which brain areas
show a stronger modulation by second-order informa-
tion when first-order is low compared with when it is
high. We hypothesized that integration of second-order
information should be especially enhanced when ac-
tion £ — 1 alone was less informative about the upcom-
ing action ¢ and the need for further information is
high. Thus, we expected a stronger modulation of the
BOLD signal by second-order information for trials with
low compared with trials with high first-order informa-
tion. We expected BA 10 at the frontal pole to show this
interaction effect, as it has not only been reported to be
activated by integration of information (Nee et al.,
2013) but also to orchestrate uncertainty-driven search
for information (Badre et al., 2012; Daw et al., 2000).

METHODS
Participants

Twenty-two healthy, right-handed participants volunteered
for the study and were paid € 80 for their participation. The

local ethics committee of the University of Minster ap-
proved the experimental protocol, and written informed
consent was obtained from each participant. Three partici-
pants had to be excluded after completing the experiment,
one because of poor performance in the control task (score
below 2 SD from mean) and two because of self-reported
inattentiveness and sleep during the fMRI session. All fol-
lowing analyses are based on the data of the remaining
19 participants (mean age = 25.35 = 2.13 years, 14 women).

Stimuli and Task

We employed a paradigm that required constant moni-
toring of sequences of action steps that were structured
by first- and second-order conditional probabilities. To
construct sequential actions devoid of semantic expecta-
tions, we used eight objects from the constructional toy
Baufix and defined the grasping and manipulation of an
object as one action step. Overall, we created a total of
140 action sequences, ranging from four to nine action
steps. Base rate probability of occurrence was nearly
identical for all action steps, ranging from 12% to 14%.
Therefore, predictions of upcoming action steps could
not reliably be based on frequency.

To prevent participants from episodically remembering
entire video clips as a basis for prediction, we shot every
sequence in seven versions, each with different starting
scaffolds, which consisted of various different mounted ob-
jects (see Figure 1A for an illustration of the video clips).

Action videos were displayed on a gray background in
the middle of a computer screen. A fixation circle with a
duration of 3 sec, or adjusted length after question trials,
preceded all videos. Within the videos, onset asyn-
chronies of the single action steps ranged from 1.28 to
12.24 sec (mean = 4.39 sec).

Approximately half of the video clips (64 of 140 during
the training, 32 of 70 during the fMRI session) were fol-
lowed by questions trials. Here, participants were required
to answer questions concerning the previous video, for
example, “Has a long screw been used?” Responses were
given via computer mouse with the right button (i.e., mid-
dle finger of the right hand) corresponding to the answer
“no” and the left button (i.e., right index finger) corre-
sponding to “yes.” Half of the questions required a positive
answer, and all participants responded according to the
same response contingencies. Questions were presented
for 3 sec or until the first response and had to be answered
within 3 sec (see Figure 1A). The duration of the fixation
circle following responses was adapted to compensate for
different RTs and could range from 2 to 5 sec. Questions
were followed by a feedback of 2 sec indicating correct
(“+”), incorrect (“—"), or delayed (“/”) responses.

Markov Matrix

The succession of action steps within the sequences
followed predefined first- and second-order conditional
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Figure 1. (A) Illustration of the trial course. A fixation circle preceded
each video, and 46% of the videos were followed by a two-alternative
forced-choice question. Feedback on correctness of responses was
only given during the training sessions. (B) Excerpt of the employed
transition matrix. Rows 1-4 show first-order conditional probabilities
between action steps; Rows 5-12 show second-order conditional
probabilities. Objects marked in rows depict the preceding objects of
the transition. Red marks are two examples for possible first-order
transitions with high or low information. Transitions with high
information provided by the first-order structure are marked with
criss-cross lines (red for first-order conditional probabilities, light or
dark blue for second-order conditional probabilities). Light blue
fields show exemplary transitions with low, dark blue fields with

high modulatory influence of the second-order structure.

probabilities (see Figure 1B for an excerpt of the transi-
tion matrix). First-order conditional probability refers to
the probability of each action step based on the immedi-
ately preceding action, ranging from 12.5% to 37.5%
(rows 1-4 in the transition matrix; Figure 1B). The larger
the difference between probabilities of the possible up-
coming actions, the more information about the upcom-
ing action was provided by the first-order structure. For
instance, the blue cube provided more first-order infor-
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mation than the short screw, as it allowed for a better pre-
diction of the upcoming action. Paralleling the first-order,
the second-order conditional probability refers to the prob-
ability of each action step based on the combination of the
two preceding actions, ranging from 12.5% to 87.5% (Rows
5-12 in the transition matrix; Figure 1B). Here, the larger
the difference between probabilities of the possible up-
coming actions, that is, between all actions within one
row of the matrix, the more information was provided by
the second-order structure. For instance, if a screw nut pre-
ceded the short screw, it provided much information on
the upcoming action: The previously balanced probabili-
ties on the first-order structure would become biased,
and putting the triangle would become the most likely ac-
tion step. Contrary to that, a long screw preceding the
short screw provided little information, as the probability
ratio between the next possible actions stays the same.
As can be seen from the matrix, the amount of information
provided by the second-order structure varied indepen-
dently of the information provided by the first-order struc-
ture. This feature of the statistical structure is important as
it allowed us to test if the amount of information provided
by the first order affects exploitation of the second order as
an additional source of information.

Experimental Procedure

Before the fMRI scan, each participant completed three
90-min training sessions on three successive days to acquire
implicit knowledge of the statistical structure. Because we
wanted to test if human observers spontaneously attend
to different levels of statistical structure, participants did
not receive explicit learning instructions at any point either
in training or during the fMRI session and were not told
that there was a certain systematic concerning the struc-
ture of the action sequences. Participants were familiarized
with the eight different objects as well as with the type of
question they would be asked before they started the train-
ing sessions.

The course of the fMRI session was identical to the
training session, but no feedback was provided after ques-
tion trials. To account for the limits in maximal duration of
fMRI sessions, only 70 of the 140 action sequences were
presented, resulting in approximately 45 min of fMRI scan.
The selected 70 sequences were a representative sample of
the total set of sequences, while ensuring that rare action
combinations (i.e., with low first- or second-order condi-
tional probabilities) occurred with sufficient frequency.

To test our prediction that participants would be capa-
ble of learning both first- and second-order conditional
probabilities, we implemented two postscanner tests to
assess participants’ knowledge of the action syntax.

The first computer-based posttest was a serial RT task
(SRTT; Nissen & Bullemer, 1987) wherein pictures of the
eight Baufix objects occurred at different locations on the
screen. Unknown to the participants, the succession of
the objects was defined by the same statistical structure
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as in the main experiment. Participants had to press a
button, specifically assigned to each of the objects, on
an eight-button response pad as fast as possible. Wrong
answers were followed by a negative feedback. This test
was designed to test whether RTs would be modulated
by both first- and second-order conditional probability
of the occurring object.

The second posttest was a paper and pencil test. Eight
video clips were presented in randomized order. Videos
ended after the actor had used one object and reached
for another. The participants’ task was to mark those ob-
jects out of the set of eight that they expected to be used
next and to weight them according to their respective
probability. They made this judgment in the form of eight
crosses, which they could assign among the eight objects.
For instance, if participants saw a clip in which the long
screw had been used and they expected the board and
the screw nut afterwards with equal probabilities, they
assigned four crosses to each of them. The number of eight
crosses allowed participants to select up to all eight pos-
sible objects and to weigh them accurately (each cross
corresponded to p = .125).

Data Acquisition

A 3T Siemens Magnetom Trio (Siemens, Erlangen, Germany)
system equipped with a standard birdcage head coil was
used in the functional imaging session. Participants lay su-
pine in the scanner, and their right hand was placed on a
four-button response box. Index and middle fingers were
placed on the response buttons, and response contingen-
cies were the same as in the training sessions. Participants’
heads and arms were stabilized using form-fitting cushions,
and earplugs were provided to attenuate scanner noise.
The experiment was presented via a mirror that was built
into the head coil and adjusted individually to provide a
good view of the entire screen.

During the functional imaging, 28 axial slices (128.8 mm
field of view, 4 mm thickness, 0.6 mm spacing; in-plane res-
olution of 3 X 3 mm) parallel to the bicommissural line
(AC-PC) were collected using a single-shot gradient-echo
planar (EPI) sequence (repetition time = 2000 msec; echo
time = 30 msec, flip angle = 90°, serial recording, 1260
repetitions) BOLD contrast. After the functional imag-
ing, 28 slices of anatomical T1-weighted MDEFT images
(4 mm thickness, 0.6 mm spacing) were acquired.

High-resolution 3-D T1-weighted whole-brain MDEFT
sequences (128 sagittal slices, 1 mm thickness) were re-
corded for each participant in a separate session for im-
proved localization of activation foci. Functional data
were offline motion-corrected using the Siemens motion
protocol PACE (Siemens, Erlangen, Germany). Further
processing was conducted with the LIPSIA software package,
version 2.1 (Lohmann et al., 2001). To correct for temporal
offsets between the slices acquired in one scan, a cubic-
spline interpolation was used. To remove low-frequency
signal changes and baseline drifts from the BOLD signal,

we applied a high-pass filter of 1/89-1/70 Hz, defined by
an algorithm implemented in the Lipsia software package.
Functional data slices were aligned with a 3-D stereotactic
coordinate system. The matching parameters (six degrees
of freedom, three rotational, three translational) of the T1-
weighted 2D-MDEFT data onto the individual 3D-MDEFT
reference set were calculated. These parameters were used
in a transformation matrix for a rigid spatial registration,
normalized to a standardized Talairach brain size (x =
135, y = 175, z = 120 mm; Talairach & Tournoux, 1988)
by linear scaling. Thereafter, the normalized transformation
matrices were applied to the functional slices to transform
them using trilinear interpolation and align them with the
3-D reference set in the stereotactic coordinate system.
The spatial resolution of the resulting functional data was
3mm X 3 mm X 3 mm (27 mm°). A spatial Gaussian filter
of 8 mm FWHM was applied to the data.

Data Analyses
Information Theoretical Modeling

To operationalize the amount of information provided by
the first and second order, respectively, we used mea-
sures derived from information theory and an ideal ob-
server model to estimate conditional probabilities of
action steps (cf. Ahlheim et al., 2014; Bornstein & Daw,
2012; Harrison et al., 2006; Strange, Duggins, Penny, Dolan,
& Friston, 2005). Therefore, simulated probabilities were
calculated across the training session and continued
through the scanning session. The base probabilities (p)
of single items were calculated as the number of occur-
rences 7 of item x; divided by the sum of all items x; that
have appeared so far (see Equation 1a). Conditional prob-
abilities were calculated by dividing the probability of cooc-
currence of two items by the preceding item’s base
probability (see Equation 1b); this formula was extended
for the case of second-order conditional probabilities.
Calculation of base probabilities:

nx) +1
plo) = L -1 (1)
ZX{ +1
i
Calculation of first-order conditional probabilities:
plocNx—q)
Xelxi—1) =—F———= 1b
p( t| t 1) p(xl—]) ( )

The amount of information provided by an event can
be quantified as the degree to which uncertainty about
an upcoming event is reduced. Uncertainty can be repre-
sented as entropy (H; Equation 2), which is higher when
unexpected events are probable (Cover & Thomas, 1991,
Shannon, 1948). Entropy is therefore also referred to as
expected surprise. The surprise of an event is defined as
the negative logarithm of its probability, that is, the sur-
prise of an event is higher if the event was less likely. For-
mally, entropy is maximal if all possible events are equally
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likely to occur, so that pevent = 1/#2events On the first order,
the entropy about possible upcoming events (members
of X) after occurrence of one other event (member x; _ 4
of all X)) can be quantified as forward entropy (Ahlheim
et al., 2014; Bornstein & Daw, 2012; see Equation 3). If
the forward entropy H(X|x, — 1) is smaller than the general
entropy H(X), occurrence of x, _ 1 provided information
about the occurrence of X. This information /; can be quan-
tified as the difference between the general entropy H(X)
and the forward entropy (taking the preceding event into
account, i.e., H(X|x; _ 1)). The same logic applies to infor-
mation provided by the second order />, which can be
quantified as the difference between the first-order forward
entropy H(X|x, _ 1) and the second-order forward entropy
HX|x, - 1,x; — ») (Equation 4). To ensure that differences
between first- and second-order forward entropy were not
driven by different first-order conditional probabilities, we
normalized the forward entropy by the first-order proba-
bility of cooccurrence.

Calculation of the general entropy:

H(X) = Z p(x) x —log p(xf) @)
Calculation of the first-order forward entropy:
H(Xx,-1) ZP(xtfl)ZP (oe—1) x — log p (], —1)

6)

Calculation of the second-order forward entropy:
H(Xxi—1,%-2) :p(xt,l,x,,z)Zp(xﬂxt,l,xt,z) X (@
T
—logp (XJ, X —1,%-2)

Behavioral Analysis of Post-fMRI Tests

The behavioral analysis was conducted with the statistic
software package R, version 3.1 (R Foundation for Statis-
tical Computing, Vienna, Austria) and SPSS statistics ver-
sion 22 (SPSS Inc., Chicago, Illinois). If not indicated
otherwise, all inferential decisions were based on an alpha
level of .05.

SRTT analysis. The first post-fMRI test, the SRTT, was
designed to measure whether RTs were modulated by
first- and second-order conditional probability. This would
provide evidence for implicit learning of the respective or-
ders. To test for this, we conducted a multiple regression
analysis separately for each participant, which included the
predictors of first-order conditional probability and second-
order conditional probability (see Equation 1b) as well as
the trial number to control for general learning effects.
Using multiple regressions enables us to identify how
much each predictor contributes to the observed data in
the context of the simultaneously available predictors. Only
correct trials with an RT between 100 and 2000 msec were
included in the analysis. On average, 7% (45 of 651 trials)
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were excluded per participant. One participant had to be
excluded because of excessively prolonged RTs (z > 2), re-
sulting in 18 participants in the final analysis of the SRTT.
To account for the non-normal distribution of the RT data,
all RTs were logarithmized before analysis. For each partic-
ipant, we obtained one standardized regression coefficient
that reflected how strongly their RTs were modulated by
the first-order conditional probabilities and one that re-
flected how strongly RTs were modulated by second-order
conditional probabilities, while controlling for effects of the
respective other predictor. Those standardized regression
coefficients were tested for significant deviation from zero,
using separate one-sample ¢ tests (cf. Bornstein & Daw,
2012, for a similar approach).

Paper and pencil analysis. The second post-fMRI test
was a paper—pencil test where we assessed participants’
explicit knowledge of the first-order structure. One partic-
ipant failed to complete the posttest and was thus excluded
from the analysis. We aggregated the number of crosses for
the underlying true probability level (0, 12.5, 25, 37.5), for
instance, how many crosses a participant distributed on av-
erage for a .25 conditional probability between action
steps. These data were entered into a univariate ANOVA
with the factor Probability (0, .125, .25, .375) to test for sig-
nificant differences between the levels. To test for the ex-
pected increase of probability ratings with implemented
probabilities, planned paired # tests between the successive
probability levels were conducted.

JMRI Data Analysis

For the statistical evaluation of the BOLD signal, a design
matrix was generated modeling events with a delta (stick)
function, convolved with the hemodynamic response
function (gamma function; Glover, 1999). All modeled
actions had a minimal interstimulus interval of 2 sec.
The first two actions of each sequence were discarded,
as second-order information was not available for those.
The general linear model included five regressors, which
were modeled time-locked to the onset of the action
steps and with a duration of 1 sec. Onset of action steps
was defined as the moment the hand started to reach to-
ward the next object. The first regressor served as a base-
line and was modeled with an amplitude of 1.

To model information provided by the first order, we
included a parametric regressor in which entries in the
amplitude vector corresponded to the amount of infor-
mation provided by the first order (/). Paralleling this ac-
count, we included another parametric regressor in
which entries in the amplitude vector corresponded to
the amount of information provided by the second order
(I2). To assess whether exploitation of the second-order
information depended on whether the first-order struc-
ture provided more or less information, we constructed
an additional parametric regressor, which modeled only
those events for which the amount of information provided
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by the first order fell within the first or fourth quartile of
the distribution of information provided by the first order
(lowest and highest 25%). The amplitude entries on this
regressor corresponded to the interaction term of first-
and second-order information, calculated as their mean-
centered product (see Figure 2A for an illustration for
the course of the parametric regressors during an excerpt
of the experiment).

In addition to the parameters modeling amount of pro-
vided information, we included the first-order conditional
surprise, that is, the negative logarithm of each action
step’s conditional probability, as a nuisance regressor.
Amplitudes of all parametric regressors were separately
z-scored for each participant.

To account for question trials and general effects of ob-
serving actions, we included question trials with a dura-
tion of 3 sec and video clips with a duration according to
the duration of the video, both with an amplitude of 1.

We corrected for multiple comparisons by applying a
two-step correction approach, resulting in a correction
at p < .05 at the cluster level. In the first step, an initial
z threshold of 2.57 (p < .01, two-tailed) was defined. All

voxels showing activation above this threshold entered
the second step of the correction. Here, a Monte Carlo
simulation was used to define thresholds for cluster size
and cluster value at a significance level of p < .05. The
combination of cluster size and cluster value decreases
the risk of neglecting true activations in small structures.
Thus, all reported activations were significant at p < .05,
corrected for multiple comparisons at the cluster level.

RESULTS

Participants answered on average 26.4 of 32 question tri-
als correctly (SD = 3.27), indicating high attentiveness
during the fMRI session.

Behavioral Results
Results of the Post-fMRI SRTT

The multiple regression testing for effects of the first-order
and second-order conditional probabilities on the loga-
rithmized RTs revealed a significant negative relationship
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Figure 2. (A) Example course of the parametric regressors for first-order information (red), second-order information (blue), and their interaction
term (black) during an excerpt of the experiment. (B) Parametric effects of the amount of information provided by the first-order statistical structure.
(C) Parametric effects of the amount of information provided by the second-order statistical structure. TempPole = temporal pole. (D) Overlay
of the parametric effects of the first- and second-order statistical structure in observed action videos. Effects of first-order information are displayed
in red, second-order in blue. Effects of both parameters overlapped in the mIPS (yellow) and comprised 1188 mm?® (59.46% of the activation cluster
revealed in the first-order contrast) in the right and 432 mm? (5.05%) in the left hemisphere. (E) Interaction of parametric effects of the amount
of information provided by the second-order statistical structure and the amount of information provided by the first-order structure. The bar

chart depicts beta values in the BA 10 when the interaction term modeled only events with high first-order information (light blue, #(18) = —0.18,
p = .855), low first-order information (dark blue, #(18) = —3.12, p = .000), and the interaction effect when events with high or low first-order
information were modeled (middle blue, #(18) = —3.41, p = .003). Error bars depict =1 SD. preCun = precuneus.
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Figure 3. Results of the serial RT posttest. (A) Mean beta weights expressing the relationship between first- and second-order conditional
probabilities and RTs. RTs decreased with increasing first-order conditional probabilities and increased with increasing second-order conditional
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between first-order conditional probability and RTs,
showing that higher first-order probabilities led to faster
RTs (¢(17) = —6.92, p < .001, two-tailed, M = —0.12,
SD = 0.07 of the standardized coefficients). This effect
was consistent across all participants. The effect of the
second-order conditional probability was also significant
t(17) = 2.37, p = .030, two-tailed, M = 0.03, SD =
0.06), indicating slower RTs with higher second-order
probabilities (see Figure 3). Thirteen of the 18 tested par-
ticipants showed a positive correlation between second-
order conditional probabilities and RTs. As we conducted
multiple regressions, those results show that RTs were
slower for higher second-order conditional probabilities
while controlling for an effect of first-order conditional
probabilities.

We furthermore wanted to test whether the effect of
second-order conditional probabilities depended on the
degree to which expectations based on first-order condi-
tional probabilities had been modulated by these second-
order conditional probabilities. To that end, we conducted
a median split of the data for each participant, dividing tri-
als by whether the second order modulated the first order
to a greater or lesser extent. We performed two multiple
regressions parallel to the multiple regression described
above, with first-order and second-order conditional prob-
ability, as well as trial number, as predictors. The resulting
standardized coefficients for the second-order conditional
probability depending on how strongly the second order
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changed the expectations based on the first-order condi-
tional probabilities were tested against each other using a
paired ¢ test. A marginally significant difference was re-
vealed (#(17) = 2.04, p = .057, two-sided). Thus, RTs
showed a trend for being more strongly modulated by
second-order probabilities if those modulated the expec-
tations based on first-order probabilities strongly (M =
0.11, SD = 0.15) compared with if the modulation was
weak (M = 0.03, SD = 0.11; see Figure 3).

Results of the Post-fMRI Paper and Pencil Test

The results of the paper and pencil posttest, which assessed
knowledge of the first-order structure, further corroborated
the significant effect of first-order conditional probabilities
on RTs. The repeated-measures ANOVA testing for an
overall effect of the factor probability on the assigned
weight turned out significant (F(3, 51) = 18.17, p < .001,
partial n = .52). As we expected rated probabilities to re-
flect actually implemented probabilities, planned paired
t tests were conducted between the single successive
levels. We found no difference between probabilities of
0 and .125 (z(17) = 1.61, p = .063, one-tailed, d =
0.38), a marginally significant difference between proba-
bilities of .125 and .25 (¢(17) = 2.09, p = .026, one-tailed,
d = 0.49) and a significant difference between .25 and
375 ((17) = 3.48, p = .002, one-tailed, d = 0.82), with
an alpha level of .017, adjusted for the three comparisons
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(see Figure 4; note that the mean assigned values were
scaled by the factor 12.5 to match the scaling of the imple-
mented probabilities). This indicates that participants
formed predictions based on the first-order conditional
probabilities and that their representation of first-order
conditional probabilities was more precise for higher
probability values. None of the participants claimed con-
scious knowledge of the structure when interviewed after
the experiment.

fMRI Results

Manipulating the amount of information provided by the
first and second order of the statistical structure inde-
pendently of each other allowed us to assess functional
correlates of the exploitation of each of the levels indepen-
dently. Furthermore, it enabled us to investigate how the
amount of information provided by the first order affects
exploitation of further information provided by the second
order.

Effects of First-order Information

The contrast testing for a modulation of the BOLD re-
sponse by the amount of information provided by the
first-order structure yielded an attenuation of activation
in the predicted network of ventral premotor cortex
(PMv), the midposterior part of the intraparietal sulcus
(mIPS), and the fusiform gyrus and posterior middle tem-
poral gyrus (pMTG), which is classically reported for action
observation (see Table 1 for a list of all activations;
Figure 2B). Because information provided by the first-order
structure and information provided by the second order
were modeled simultaneously, this finding shows that in-
creased predictability based on information provided by
the first-order structure can reduce activation even when in-
formation from the second-order structure is also available.
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Figure 4. Results of the paper and pencil posttest, showing that assigned
probabilities increased as implemented probabilities increased. Number
of assigned crosses was multiplied by 12.5 to achieve same scaling as
underlying probabilities. Error bars depict =1 SD. *p < .017, *p < .03.

Table 1. MNI Coordinates and Maximal z Scores of Significantly
Activated Clusters following Correction for Multiple
Comparison for the Parametric Contrast of Information
Provided by the First-order Structure

MNI Coordinates z Values,
Local  Cluster ;S‘z'ze

Localization X y z Maxima (mn’)
PMy —41 1 33 —4.39 11691
37 4 33 —4.22 9855
mIPS -17 =062 48 —3.99 8559
25 =53 42 —3.38 1998
mIPS/precuneus 13 —65 54 —2.87 567
(BA 19) 28 =71 22 —2.97 810
Fusiform =50 =59 0 —3.96 6939
guspMIG o 5o —21 0 —3.06 1107

Effects of Second-order Information

We expected second-order information to draw on ac-
tivation of the AON as well, although we considered ei-
ther a positive or a negative correlation as possible.
Higher second-order information was associated with a
decrease of activation in mIPS, which overlapped with the
cluster observed in the first-order contrast (1188 mm? in
the left, 432 mm?® in the right hemisphere; see Figure 2D
for a conjunction of the two contrasts). The mIPS was the
only area for which an overlap was revealed. We found an
increase in activation with higher second-order informa-
tion in pMTG and superior parieto-occipital cortex (SPOC).
An unhypothesized positive correlation between BOLD ac-
tivation and second-order information was furthermore re-
vealed in the right temporal pole (see Table 2 for a list of all
activations; Figure 2C). Those findings show that second-
order information is spontaneously integrated, indepen-
dent of first-order information. To additionally test which
areas are more sensitive toward first- than toward second-
order information, we calculated the direct contrast be-
tween the two parametric regressors. This contrast revealed
significantly higher activation for the second-order in the pre-
motor cortex and the pMTG, showing that activation there
was more strongly attenuated by first-order information
(see Supplementary Table 1 and Supplementary Figure 1).
To test for the hypothesized correlation between second-
order information and activation in the hippocampal
formation reflecting effects for retrieval of second-order
information, we additionally conducted an ROI analysis in
the anterior hippocampus. ROI coordinates were taken
from a previous publication of our group (Ahlheim et al.,
2014) and were based on reported effects of sensitivity of
the hippocampus to entropy (Bornstein & Daw, 2012;
Harrison et al., 2006; Strange et al., 2005). The center
of the ROI in the left hippocampus was at x = —25,
y = —16,z = —18, and the center of the ROI in the right
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Table 2. MNI Coordinates and Maximal z Scores of Significantly
Activated Clusters following Correction for Multiple Comparison
for the Parametric Contrast of Information Provided by the
Second-order Structure

MNI Coordinates  z Values,
Local Cluster
Localization X y z Maxima  Size (mn’)
Dorsal premotor 28 —11 54 3.82 4725
cortex
Local maximum 7 -12 39 3.58
in posterior
cingulate
cortex
mIPS -29 =59 30  —-2091 594
25 =50 36 —3.31 3294
pPMTG -50 —68 18 3.11 405
37 =062 9 423 4455
SPOC (BA 18) -20 -89 15 3.00 648
16 —-92 21 4.56 13851
Temporal pole 52 4 =30 3.50 4401
anterior hippocampus was atx = 31,y = =17,z = —19.

Both ROIs had a sphere with a radius of two adjacent
voxels (6 mm). Unexpectedly, neither ROI showed a sig-
nificant modulation by second-order information (all p >
.09, Bonferroni-corrected alpha level of .025; see Table 3
for inferential statistics).

First-order Dependent Exploitation of
Second-order Information

We hypothesized that exploitation of the second-order
information depends on the amount of information pro-
vided by the first-order structure. To test this, we included
an interaction term modeling only those events for

Table 3. Inferential Statistics of Hippocampal ROI Analyses
1(18) p

Parametric effect of first-order information

Left hippocampus 1.75 .097
Right hippocampus 0.42 .683

Parametric effect of second-order information

Left hippocampus 1.29 212

Right hippocampus 1.75 .096
Parametric effect of interaction term

Left hippocampus -0.25 .806

Right hippocampus —0.07 943

which the first-order structure provided least information
(lowest 25% of the distribution) or the most information
(uppermost 25% of the distribution). The interaction
therefore reveals areas that were significantly more strongly
modulated by information provided by the second-order
structure if the first-order structure provided only little infor-
mation about the upcoming event. We found that activa-
tion in the premotor cortex (PMd), the intraparietal
sulcus (IPS), the precuneus, and the occipitotemporal lobe
were more strongly modulated by information provided by
the second order of the statistical structure when less infor-
mation was provided by the first-order structure.

Additionally, the interaction contrast yielded the pre-
dicted modulation of activity in lateral BA 10. BA 10 did
not show a significant modulation by second-order infor-
mation or first-order information alone, which indicates
that it is more strongly modulated by information provided
by the second order if integration of this information was
actually beneficial, that is, when the first-order provided
less information (see Table 4 for a list of all activations;
Figure 2E). As can be seen from the bar chart in
Figure 2E, this interaction effect was indeed driven by
the cases in which first-order information was low.

Table 4. MNI Coordinates and Maximal z Scores of Significantly
Activated Clusters following Correction for Multiple Comparison
for the Interaction Contrast of Information Provided by the
Second-order Structure, Depending on the Amount of
Information Provided by the First-order Structure

MNI Coordinates  z Values,
Local Cluster i
Localization X y z Maxima ~ Size (mm’)
Anterior pFC
BA 10 32 52 9 —3.23 5481
BA 11 14 50 =15 —3.82
Dorsal premotor — —23 -8 60  —4.27 5076
conex 22 -2 57T -372 4428
Parietal and occipital lobe
IPS —29  —44 57 —5.49 201285
33 —40 56 —4.68
Precuneus -9 —62 68  —4.90
13 —65 46 —4.56
SPOC —-15 —101 -6 —5.20
pPMTG —38 -87 —-13 =513
39 =70 —17 —4.47
Thalamus 16 —26 12 —4.00 1080
Cerebellum 10 -71 =33 —=3.03 621
Temporal pole 52 4  —=30 3.50 4401
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Notably, the pattern of this revealed interaction effect
also held when modeling all instead of only the most
(un-)informative 25% of trials (data not shown).

DISCUSSION

Although it is well established that humans use predictive
information in their environment to prepare for upcom-
ing events, it is still unclear to what extent and under which
conditions they do so. It is one of the currently most urgent
questions how the brain selects the sources of information
to generate predictions (Phillips, 2013; Blokpoel, Kwisthout,
& van Rooij, 2012). This study investigated whether infor-
mation from an action’s second-order statistical structure is
exploited in dependence on the information provided on
the first level; in other words, whether the brain predicts
upcoming actions in a cost-benefit sensitive manner.

Our results show that the brain exploits first- as well as
second-order statistical information and that it does so in
a cost-benefit effective manner. Our findings are three-
fold: first, the information derived from the action at
t — 1 saves processing costs of the upcoming action. Sec-
ond, at the same point in time, information from the ¢ — 2
action is additionally exploited and facilitates the observer’s
predictions further. And finally, information derived from
the £ — 2 action is exploited more when the last action
alone is less useful in shaping expectations.

Attenuation in the AON Based on First-order
Statistical Information

The first aim to this study was to replicate and expand
previous findings concerning the neural correlates of an
increase in predictability by the first-order structure in ac-
tion sequences (Ahlheim et al., 2014). We established in
our behavioral posttests that human observers learned
first-order conditional probabilities and were particularly
good at discriminating between action pairs of high con-
ditional probability, even though no participant reported
noticing those regularities in a postexperimental survey.
Previous studies reported that valid prediction of up-
coming events leads to decreased activity levels in brain
areas that code for these events and that predictive in-
formation facilitates perception (den Ouden, Kok, & de
Lange, 2012; Kok, Jehee, & de Lange, 2012; Summerfield
et al., 2008; Bar, 2004). We extended these findings to the
case of action observation and found that an increase
in the amount of first-order information led to the pre-
dicted attenuation of activity in the AON, composed of
PMv, mIPS, and posterior temporal cortex (Caspers et al.,
2010; Jeannerod, 2001). This shows that prediction of the
upcoming action step was facilitated by information pro-
vided by the first-order structure. The established atten-
uation in this network adds to previous findings, showing
that prediction-facilitating effects of first-order structure
also occur in the presence of a second-order structure.

Integration of Second-order Statistical Information

To test whether human observers are capable of process-
ing the second-order conditional probabilities in our par-
adigm, we modeled the amount of information provided
by the second-order structure. We found that activation
of the mIPS decreased with the additional information
provided by the second order, on top of the decrease
that mIPS showed as a function of first-order information.
The mIPS was the only component of the AON that
showed this pattern. The mIPS has been found to be a
central focus of execution as well as observation of reach-
ing movements (Vingerhoets, 2014). It is particularly in-
teresting here that the mIPS area that we found is
suggested to underlie the coupling of reaching and eye
movements that is needed when we pursue visual hand
input during reaching (Vesia & Crawford, 2012). Using
temporally occluded targets during smooth pursuit eye
movements, Lencer and coworkers (2004) found that this
area bridges target occlusion, pointing to a role in anticipa-
tory saccade tuning. In our paradigm, using second-order
information increases the predictability of the upcoming
action step further, which allows for a more precise predic-
tion of which object is going to be grasped next, and where
this object can be found in the scene. This interpretation is
in line with a recent finding showing that separable subre-
gions of the IPS are modulated by processing unexpected
events as well as events that require an adaptation of a cur-
rently valid predictive model (O’Reilly et al., 2013). The fur-
ther attenuation of mIPS activation with second-order
information here reflects the further reduced processing
costs of the upcoming reaching of the object, as target
and direction of the reaching can be better predicted.
Contrary to first-order information, second-order infor-
mation could not be accessed directly through a pairwise
association between action ¢ — 2 and ¢. Instead, it was
necessary to retrieve information about the action step
t — 2 from memory and furthermore integrate this infor-
mation with the information provided by the action # — 1
on the first order, as the action step at £ — 2 alone was
not informative of ¢. Potentially, these additional process-
ing costs could further account for the unpredicted find-
ing of increased RTs with second-order conditional
probabilities in our post-fMRI SRTT: Here, RTs increased
with higher second-order conditional probabilities while
controlling for an effect of first-order conditional probabili-
ties. Furthermore, a trend level effect (p = .057) tentatively
suggests that these processing costs, reflected in RT in-
crease, is higher when second-order information changed
expectations based on the first-order conditional probabil-
ities to a larger extent. Studies on learning of second-order
statistical regularities using a SRTT reported a decrease of
RTs as reflection of statistical learning (Remillard, 2008;
Curran, 1989). Speculating on possible reasons for the di-
verging results, it should be noted that our SRTT differed in
a critical point from a standard SRTT: Statistical regularities
among the action steps were already established at the
beginning of the testing, whereas the association between
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observed object and button press was not. How and when
the processing costs of higher-order information begin to
turn into a behavioral benefit thus needs to be explored
further.

On the neural level, we expected that the retrieval of in-
formation about the action step ¢ — 2, which is necessary to
assess second-order information, would be reflected in an
increased hippocampal activation with more second-order
information. Yet, using an ROI analysis, we did not find ev-
idence for an increase of activation (p > .09) with increas-
ing information provided by the second-order structure in
the hippocampus. We found, however, an unhypothesized
increase of activation in the right temporal pole, the more
information was provided by the second-order, as well as in
the pMTG and the SPOC. The temporal pole is considered
as “semantic hub” where semantic information about enti-
ties is processed, irrespective of their modality (Patterson,
Nestor, & Rogers, 2007). In particular, it decodes concep-
tual object properties that go beyond the object’s proper-
ties, as for instance, the associated manipulation or the
usual location of the object (Peelen & Caramazza, 2012).
Furthermore, the temporal pole has been found to show
a higher activation for initially biased perceptual decisions
and to pass this perceptual bias to visual areas (Summerfield
& Koechlin, 2008). In this study, higher second-order infor-
mation led to an increase in predictability of the upcoming
action step and its associated object—in other words, the
expectation of the upcoming action became more biased.
This allows for a retrieval of semantic knowledge about the
object—for instance, its shape or how it will be grasped
and manipulated. We suggest that this retrieval of concep-
tual knowledge also drove the activation in the temporal
pole in our study. Conceptual information is then passed
to visual areas, that is, the SPOC and pMTG. Area SPOC,
at the mesial boundary between IPS and occipital lobe,
is proposed to store internal representations of reach-to-
grasp goals (Vesia & Crawford, 2012). We propose that
here enhanced activation in SPOC reflects the maintenance
of likely reach targets and their locations, which informs
monitoring of the reaching movement in more parietal
sites. Processing of this target, which is an object, is addi-
tionally enhanced in pMTG, which is a key site of the pro-
cessing man-made tools (Beauchamp & Martin, 2007). It
should be noted though that we did not distinguish be-
tween different aspects of an action, that is, the involved
object and its manipulation. However, the amount of infor-
mation provided by a certain object or action step varied
depending on its position in the sequence, ensuring that
the identity of the object itself could not be the cause of
the effects revealed here.

Evidence for Information State-dependent Use of
Second-order Information

To test the hypothesis that exploitation of the second-order
statistical structure depends on the amount of information
provided by the first order, we conducted a parametric
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analysis for those events on which the first order was of
very high or low informative value and tested for an inter-
action effect of first- and second-order information. We
found that activation in the PMd, the IPS, the pMTG, and
the SPOC was more strongly modulated by the interaction
term. Those areas, which have been described as the core
areas of the AON (Caspers et al., 2010), were thus modu-
lated more strongly by second-order information when
first-order information was low. This provides evidence
for our hypothesis that higher-order information is prefer-
entially used if first-order information is insufficient to gen-
erate precise predictions. Exploitation of second-order
information causes higher processing costs, as a retrieval
of the action at ¢ — 2 is necessary and second-order infor-
mation needs to be integrated with first-order information.
Thus, we hypothesized exploitation of second-order infor-
mation to depend on a cost-benefit criterion: We expected
second-order information to be used more, the less infor-
mation was provided by the first order. Areas implement-
ing this cost-benefit criterion should show a correlation
with the interaction term of first- and second-order infor-
mation, rather than with either main effect. We hypothe-
sized that BA 10 implements this cost-benefit trade-off
by bolstering search for additional information from the ac-
tion at ¢ — 2 if action ¢ — 1 was of only little informative
value. With the current paradigm and methods, some un-
certainty remains as to whether BA 10 activation reflects
the cost-benefit optimized exploitation of second-order in-
formation or the increased search for additional informa-
tion from preceding actions.

In line with our hypothesis, we found that activity in
the lateral BA 10 was correlated with the interaction term.
This correlation resulted from a stronger correlation of
activity in the BA 10 with second-order information if
the first order provided only little information, that is, if
the action step ¢ — 1 did not allow for a sufficiently pre-
cise prediction of action ¢. Notably, significant activation
of the BA 10 was only revealed in the interaction contrast.
This corroborates our hypothesis that BA 10 recruitment
increases under low first-order predictability and enhances
the exploitation of second-order information. Across a va-
riety of different paradigms, BA 10 has been reported to be
activated when several relations among tasks or rules have
to be integrated or organized (Nee et al., 2013; Schubotz,
2011; Golde, von Cramon, & Schubotz, 2010; Koechlin &
Hyafil, 2007; Ramnani & Owen, 2004). Here, and in line
with findings from Golde et al. (2010), we showed that
the BA 10 is also engaged when information derived from
actions needs to be integrated. A particularly interesting
parallel to our paradigm is the engagement of BA 10 in
uncertainty-driven search for information, when available
cues provide insufficient information (Badre et al., 2012).
Whereas information in the study by Badre and co-workers
(2012) could be gained by searching the environment, in
this study information was gained through retrieval of the
action at £ — 2. Our results suggest that BA 10 may partic-
ularly contribute to a strategic retrieval of associations if
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these associations provide a clear gain in information. In
other words, BA 10 may implement an efficiency criterion
for the exploitation of higher-order information, presum-
ably both in actions as well as in abstract stimuli.

Conclusion

The present findings provide several novel insights about
the neurofunctional mechanisms underlying the predic-
tion of observed action sequences. It shows that human
observers spontaneously use both first- and second-order
statistical structure to predict upcoming actions, especially
when little information is provided by the first order. In
particular, first-order statistical information in action se-
quences is automatically exploited and results in a faster
and more efficient processing of the upcoming action
step, manifesting in smaller RTs and a significant attenua-
tion in the AON, respectively. Furthermore, information
provided by the second-order structure is retrieved and in-
tegrated to sharpen expectations, as indicated by activa-
tion increase in the temporal pole and by attenuation in
the IPS. Findings suggest that frontolateral BA 10 moder-
ates the retrieval and integration of second-order informa-
tion, in line with the emerging understanding of this brain
area as a hub for strategic integration of information from
various sources.
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