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Abstract

The distinction between letter strings that form words and those that look and sound plausible but 

are not meaningful is a basic one. Decades of functional neuroimaging experiments have used this 

distinction to isolate the neural basis of lexical (word-level) semantics, associated with areas such 

as the middle temporal, angular, and posterior cingulate gyri that overlap the default-mode 

network. In two functional magnetic resonance imaging (fMRI) experiments, a different set of 

findings emerged when word stimuli were used that were less familiar (measured by word 

frequency) than those typically used. Instead of activating default-mode network areas often 

associated with semantic processing, words activated task-positive areas such as the inferior 

prefrontal cortex and supplementary motor area, along with multi-functional ventral occipito-

temporal cortices related to reading, while nonwords activated default-mode areas previously 

associated with semantics. Effective connectivity analyses of fMRI data on less familiar words 

showed activation driven by task-positive and multi-functional reading-related areas, while highly 

familiar words showed bottom-up activation flow from occipito-temporal cortex. These findings 

suggest functional neuroimaging correlates of semantic processing are less stable than previously 

assumed, with factors such as word frequency influencing the balance between task-positive, 

reading-related, and default-mode networks. More generally, this suggests results of contrasts 

typically interpreted in terms of semantic content may be more influenced by factors related to 

task difficulty than is widely appreciated.

Introduction

The ability to recognize a letter string as forming a word has been extensively investigated, 

and is a critical step in the reading process. One major task used to investigate word 

recognition is lexical decision, where participants decide whether a string of letters is a valid 

word. Several decades of behavioral research using this task (Balota, Cortese, Sergent-
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Marshall, Spieler, & Yap, 2004; Rubenstein, Garfield, & Millikan, 1970), and over a decade 

of brain imaging research (McNorgan, Chabal, O’Young, Lukic, & Booth, 2015; Perani et 

al., 1999), have established some consistent findings. Behaviorally, when the nonword foils 

are well-formed such that they contain legal combinations of orthographic (letter 

combination) and phonological (sound combination) units, word recognition (1) takes longer 

to initiate, and (2) is more influenced by semantic variables such as imageability than when 

the nonword foils do not contain legal constituents (Evans, Lambon Ralph, & Woollams, 

2012). These findings, combined with the fact that by definition words are meaningful and 

nonwords are not, has led numerous functional brain imaging researchers to conclude that 

areas more active for words compared to well-formed nonwords are involved in processing 

word meanings, or semantics (Binder, Desai, Graves, & Conant, 2009; Cattinelli, Borghese, 

Gallucci, & Paulesu, 2013; McNorgan et al., 2015; Taylor, Rastle, & Davis, 2013).

Comparing neural responses to words and nonwords, however, is not entirely 

straightforward. Since lexical decisions to words are typically faster than to nonwords, this 

simple difference in time-on-task must be accounted for in order to draw conclusions about 

differences in semantic information processing, rather than differences in more domain-

general process. Put another way, if one condition in a task is more difficult than the other, 

this difference could arise from many different sources, and take many different forms. For 

example, differences between harder and easier conditions could result in differences in 

extent of visual attention between letter strings, recruitment of working memory resources, 

or level of effort. These differences, particularly when revealed by behavioral performance 

data, will necessarily manifest in the brain imaging data, possibly in the form of activation in 

areas that support domain-general processes. Some examples could include a response-

selection mechanism for mapping contents of working memory to a response (Rowe, Toni, 

Josephs, Frackowiak, & Passingham, 2000), a response-inhibition system for preventing 

premature or prepotent responses from being made in error (Wager et al., 2005), and an 

error-monitoring system for adjusting response criteria (Ullsperger & von Cramon, 2004).

Under the right conditions, however, differences in behavioral performance data between 

conditions are clearly meaningful, as over a century of progress in experimental psychology 

has shown. Indeed, the choices of word frequency and imageability as factors to manipulate 

in the current experiments were motivated in large part by the extensive psycholinguistic 

literature on what performance differences that result from manipulating these factors tell us 

about cognitive processes involved in recognizing words. Effects of word frequency are 

among the most reliable and extensively studied in psycholinguistics. The basic finding is 

that lower frequency words, compared to higher frequency words, take longer to initiate 

responses to and are more error prone (Monsell, 1991). Effects of word frequency may arise 

throughout the lexical system (Monsell, Doyle, & Haggard, 1989), and are related to 

constructs such as word familiarity (Baayen, Feldman, & Schreuder, 2006; Colombo, Pasini, 

& Balota, 2006) and contextual diversity (Adelman, Brown, & Quesada, 2006). For the 

current experiments, we crossed levels of word frequency with levels of word imageability, 

with the aim of investigating the neurocognitive basis of lexical and semantic processing.

Although there is controversy regarding the exact role of semantics and imageability in 

reading aloud, semantic effects are clearly and consistently found for the lexical decision 
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task used here (Balota et al., 2004). Values for imageability are obtained from humans rating 

the degree to which a word calls to mind an image. More highly imageable words generally 

have richer semantic representations (Paivio, 1991) and more semantic features (Plaut & 

Shallice, 1993), suggesting that imageability effects are straightforwardly interpreted in 

terms of semantics. Thus we manipulated word imageability to reveal neural responses to 

semantic processing, as in several previous studies (Bedny & Thompson-Schill, 2006; 

Binder, 2007; Graves, Desai, Humphries, Seidenberg, & Binder, 2010; Hauk, Davis, Kherif, 

& Pulverm-ller, 2008; Wise et al., 2000). We should then be able to compare this 

straightforwardly semantic manipulation with other contrasts related to semantics, such as 

words compared to nonwords.

A meta-analysis by Binder et al. (2009) examining the neural basis of semantic processing 

across 120 studies focused on studies contrasting semantically rich conditions to 

semantically poor conditions. For example, studies were included that compared neural 

responses to meaningful words against meaningless pronounceable nonwords 

(pseudowords), or comparisons of high-imageability words against low-imageability words. 

They also used selection criteria to control for differences in “effort” or time-on-task 

between conditions by only including studies with either no differences in performance 

between conditions of interest, or that had made an effort to account for those differences in 

some way, such as statistically modeling neural variance due to response times (RT). The 

consistent results across functional neuroimaging studies for semantically rich conditions 

compared to semantically impoverished conditions revealed a set of brain areas that 

strikingly overlapped with what has come to be known as the “default-mode” (DM) network 

(Buckner, Andrews-Hanna, & Schacter, 2008; Gusnard & Raichle, 2001). This prominently 

includes a largely bilateral set of regions such as the angular gyrus (AG), posterior cingulate 

(PC), precuneus, middle temporal gyrus (MTG), anterior temporal lobes (ATL), and dorso-

medial prefrontal cortex. It contrasts with, and is spatially non-overlapping with, the “task-

positive” network (Fox et al., 2005). This latter set of regions has been associated with a 

diverse array of resource-demanding functions, leading it to also be termed the “multiple-

demand” (MD) network (Duncan, 2010). Like the DM network, the MD network is also 

largely bilateral and includes the inferior frontal junction (IFJ, centered at the junction of the 

inferior frontal and precentral sulci), intraparietal sulcus (IPS), and supplementary motor 

area (SMA). There was also a small third set of regions that showed some spatial overlap 

between these two networks, including the supramarginal gyrus (SMG) and ventral occipito-

temporal cortex (vOT; Binder et al., 2009). Because words primarily differ from well-

matched nonwords in that words are meaningful, areas more activated for words that largely 

correspond to the DM network have been interpreted as carrying out semantic processing 

(Binder & Desai, 2011; Binder et al., 2009; Binder et al., 1999; Cattinelli et al., 2013; 

McNorgan et al., 2015; Taylor et al., 2013).

The original goal of the first experiment reported here was to replicate in a single fMRI 

study the overall pattern of results from the basic semantic contrast in the Binder et al. 

(2009) meta-analysis. These data, however, showed a surprising pattern. We found activation 

in the MD network for words compared to nonwords, and activation in the putative semantic 

network for nonwords compared to words. This was surprising considering that nonwords do 

not have meaning. To better understand the source of this finding, we turned again to the 
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Binder et al. (2009) meta-analysis, which included numerous studies using the lexical 

decision task. A representative example is an earlier study by Binder et al. (2005). As in the 

current study, their participants performed lexical decision on stimuli that were either words 

or pronounceable nonwords. The nonwords were well-matched to the words in terms of 

phonological and orthographic measures. The words also varied in imageability and 

concreteness – semantic factors that were treated as essentially the same due to their high 

correlation of 0.94 based on ratings from the MRC Psycholinguistic Database (Coltheart, 

1981). Words were matched for frequency across levels of imageability. In comparing the 

Binder et al. (2005) stimulus words with ours, we found that although they did not differ in 

imageability, the median word frequency of their words was 16.8 occurrences per million 

(midpoint of the lowest quartile: 6.6), whereas ours were 12.4 occurrences per million 

(midpoint of the lowest quartile: 2.6), both according to the CELEX lexical database 

(Baayen, Piepenbrock, & Gulikers, 1995). This difference suggested word frequency as a 

possible source of the diverging patterns for the lexical contrast.

A follow-up fMRI experiment was then conducted to both check for replication of the 

unexpected results and further explore their source. Specifically, we tested the possibility 

that individual word characteristics (in this case, word frequency) can influence the neural 

correlates of a distinction as basic as lexicality (word/nonword status) to such an extent as to 

reverse its typical neural signature. A possible mechanism for this reversal is hypothesized to 

be the differential engagement of MD and DM networks due to asymmetries in difficulty 

between the words and nonwords.

Materials and Methods

Experiment 1

Stimulus material—A total of 312 words and 312 pseudowords were selected for lexical 

decision. Words were divided into high and low levels of frequency and imageability in a 

completely crossed 2 × 2 factorial design, producing four unique conditions (high frequency, 

high imageability; high frequency, low imageability; low frequency, high imageability; low 

frequency, low imageability) with 78 words per condition. Log-transformed per-million 

values for word frequency were obtained from the CELEX lexical database (Baayen et al., 

1995) and ranged from a minimum of 0.004 (“kelp”) to a maximum of 3.083 (“first”), with a 

mean of 1.155. Words were selected to have a clear bimodal distribution. Words with 

frequency greater than 1.2 were considered high frequency and this category had a mode of 

1.91 (in terms of occurrences per million, the median was 75.2). Words with frequency less 

than 0.7 were considered low frequency and this category had a mode of 0.56 (and a median 

of 2.6 occurrences per million). Imageability values were derived from ratings studies in 

which participants were asked to rate words in terms of the degree to which they bring to 

mind an image (Bird, Franklin, & Howard, 2001; Clark & Paivio, 2004; Cortese & Fugett, 

2004; Gilhooly & Logie, 1980; Paivio, Yuille, & Madigan, 1968; Toglia & Battig, 1978). 

Imageability ranged from a minimum of 1.8 (e.g., “guile”) to a maximum of 6.6 (“beach”), 

with a mean of 4.4. The distribution was again bimodal, with the low imageability category 

defined as less than or equal to 4 (mode: 2.9), and high imageability as greater than 4.7 

(mode: 5.8). Words did not reliably differ across conditions in terms of number of letters, 
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bigram frequency, trigram frequency, orthographic neighborhood size, or spelling-sound 

consistency. As expected, words categorized as high or low frequency showed reliable 

differences in word frequency values. Likewise, high and low imageability words differed 

reliably in terms of imageability. To help ensure surface similarity to words, pseudowords 

were generated to contain only trigram sequences valid in English. They also did not reliably 

differ from words in terms of number of letters, bigram frequency, or trigram frequency.

Participants—A total of 20 participants (13 female), mean age 25.3 years, mean years of 

education 16.6, all right handed (> 70 on the Oldfield handedness questionnaire), with no 

history of neurological, psychiatric, or learning impairment diagnosis underwent fMRI 

scanning. All had English as a first language. They gave written informed consent and the 

study protocol was approved by the Institutional Review Board of the Medical College of 

Wisconsin.

Task and imaging—Participants were instructed in the lexical decision task in the scanner 

by being told they would see letter strings. Their task was to decide as quickly and 

accurately as possible whether or not each letter string was a valid English word. Each 

stimulus was displayed for 400 ms before being replaced with a single fixation cross. 

Fixation served as an implicit baseline. The scanning session was split into six runs, each 

containing 52 words and 52 pseudowords. These were intermixed with 52 fixation trials in a 

fully randomized rapid event-related design, with a mean inter-trial interval (ITI) of 3.1 s 

(SD: 2.0). E-prime (Psychology Software Tools, Inc.; http://www.pstnet.com/eprime) was 

used for stimulus presentation and response recording.

MRI data were acquired using a 3.0 Tesla GE Excite system with an 8-channel array head 

coil. To ensure high signal quality across the whole head, we obtained T1-weighted 

anatomical images in both the axial (180 slices, 0.938 × 0.938, × 1.000 mm) and sagittal 

(180 slices, 1.000 × 0.938 × 0.938 mm) planes using a spoiled-gradient-echo sequence 

(SPGR, GE Healthcare, Waukesha, WI). Task-based functional scans were acquired using a 

gradient-echo echoplanar sequence with the following parameters: 25 ms TE, 2 s TR, 208 

mm field of view, 64 × 64 pixel matrix, in-plane voxel dimensions 3.25 × 3.25 mm, and slice 

thickness 3.3 mm with no gap. Thirty three interleaved axial slices were acquired, and each 

of the six functional runs consisted of 168 whole-brain image volumes. Resting-state 

functional scans were also acquired with a gradient-echo echoplanar sequence, but with the 

following parameters: 25 ms TE, 3 s TR, 240 mm field of view, 128 × 128 pixel matrix, in-

plane voxel dimensions 1.875 × 1.875 mm, and slice thickness 2.5 mm with no gap. Forty 

one interleaved axial slices were acquired in a single run of 140 image volumes.

Image analyses were performed using AFNI (http://afni.nimh.nih.gov/afni) (Cox, 1996). The 

one exception was the early step of B-field un-warping, in which the time series data were 

processed using the FSL (Smith et al., 2004) program, FUGUE, based on a field map 

acquired in the same dimensions as the task-based functional data. Subsequently, for each 

participant, the first six images in the time series were discarded to avoid saturation effects. 

The remaining images were spatially co-registered (motion corrected; Cox & Jesmanowicz, 

1999), and the resulting motion parameters were saved for use as noise covariates. 

Voxelwise multiple linear regression was performed using the AFNI program 3dDeconvolve. 
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This included the following covariables of no interest: a third-order polynomial to model 

low-frequency drift, the six previously calculated motion parameters, and a term for signal in 

the ventricles used to model noise. Covariables of interest were modeled as impulse 

responses convolved with a gamma variate approximation of the hemodynamic response. 

They consisted of the following: (1–4) an indicator variable for each word type responded to 

correctly in the 2 × 2 design (high-frequency, high-imageability; low-frequency, low-

imageability; high-frequency, low-imageability; low-frequency, high-imageability), (5) an 

indicator variable for each nonword responded to correctly, (6) an indicator variable for each 

erroneous response, and (7) RT values for each correct trial. Because RT for words and 

pseudowords would be highly correlated with the indicator variables for correct trials, the 

RT values for each trial were mean-centered by subtracting the overall mean RT of each 

participant’s correct responses and dividing the result by the standard deviation for all 

correct trials (essentially z-scoring the RT values). The relevant contrast of words – 

nonwords was performed by first combining across the four word types and then performing 

the contrast. Similarly, contrasts between levels of word frequency were performed by 

collapsing across levels of imageability, and contrasts between levels of imageability were 

performed by collapsing across levels of word frequency. We also tested for multiplicative 

interaction of the effects of word frequency (high – low) and lexicality (word – nonword).

The resulting contrast coefficient maps for each participant were linearly resampled into 

Talairach space (Talairach & Tournoux, 1988) with a voxel size of 1 mm3 and spatially 

smoothed with a 6 mm full-with-half-maximum (FWHM) Gaussian kernel. These smoothed 

coefficient maps were then passed to a random effects analysis comparing the coefficient 

values to a null hypothesis of zero across participants. The resulting group activation maps 

were thresholded at a voxelwise p < 0.01, uncorrected. A cluster extent threshold was then 

calculated using the AFNI program 3dClustSim to perform Monte Carlo simulations 

estimating the chance probability of spatially contiguous voxels passing this threshold. 

Clusters smaller than 812 μl were removed, resulting in a whole-brain corrected threshold of 

p < 0.05.

A functional connectivity analysis of the resting state (fixation baseline) was also performed 

using a seed in the posterior cingulate to verify that participants showed the typical pattern 

of resting state functional connectivity, and to provide regions of interest for the effective 

connectivity analyses derived from independent data on this group of participants, in order 

to avoid over-fitting from multiple analyses of the same data. Methods for this analysis and 

the results are provided as supplemental material.

Experiment 2

Stimuli and task—Stimuli were identical to the previous experiments, with the exception 

that all high-frequency words were presented for lexical decision in the first half of the 

experiment, followed by all low-frequency words. This was done to isolate effects of word 

frequency context and provide an optimal design for the planned effective connectivity 

analyses.
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Participants—The 11 participants (8 female) had a mean age of 21.6 years, with 14.2 

mean years of education. This new set of participants had attained fewer years of education 

than the previous sample (t = 4.1, p < 0.001), presumably as a consequence of their being 

younger (t = 2.9, p < 0.01). All participants met inclusion criteria as described above, and 

gave written informed consent for the study as approved by the Rutgers University 

Institutional Review Board.

Image acquisition and analysis—The MRI data for this experiment were acquired in 

the Rutgers University Brain Imaging Center, using a 3T Siemens MAGNETOM Trio with a 

12-channel array head RF receive coil. High resolution, T1-weighted anatomical reference 

images were acquired as a set of 176 contiguous sagittal slices (1 mm3 voxels) using a 

Magnetization Prepared Rapid Gradient Echo sequence (MPRAGE, Siemens Healthcare, 

Flanders, NJ) for whole-head coverage. Functional scans were acquired using a gradient-

echo echoplanar imaging (EPI) sequence with the parameters: 25 ms TE, 2 s TR, 192 mm 

field of view, 64 × 64 pixel matrix, and 3 mm3 voxels. Thirty-five interleaved axial slices (no 

gap) were acquired for whole brain coverage, and each of the six functional runs consisted 

of 168 image volumes.

Analysis of the MRI data were as described for Experiment 1 above, with the following 

exceptions: (1) nonwords appearing in the first half of the experiment as foils for high-

frequency words were modeled separately from those appearing in the last half of the 

experiment as foils for low-frequency words (note that the order of nonwords was fully re-

randomized across the entire experiment for each participant), (2) because of the slightly 

smaller voxel size in this dataset compared to Experiment 1, the mapwise cluster correction 

to p < 0.05 resulted in excluding clusters smaller than 805 μl, and (3) effective connectivity 

analyses were performed on the minimally processed fMRI task data using Independent 

Multiple-sample and Greedy Equivalence Search (IMaGES; Ramsey et al., 2010), as 

implemented in the Tetrad (version 4.3.10-7) software environment. In an approach similar 

to that described previously (Boukrina & Graves, 2013), we provided ROIs as priors for the 

Bayesian framework used in IMaGES. The ROIs shown in Figure 4 were generated from the 

resting-state functional connectivity results from Experiment 1 (Figure S1), but kept in 

volume space for 3D functional image analysis. Unlike dynamic causal modeling (Friston, 

Harrison, & Penny, 2003), where the exact connections must be specified beforehand, 

IMaGES is a search algorithm that discovers the maximally likely set of connections. This is 

made computationally tractable by only considering as separate those connections that fall 

into different Markov equivalence classes, estimated using conditional independence 

relations, and do not form cyclic loops. Once the significant connections are found, 

directionality is determined using the LOFS algorithm (stands for LiNG Orientation, Fixed 

Structure, where LiNG stands for Linear, Non-Gaussian). Its general approach is to test, 

using linear models, directionality of flow among groups of ROIs, with the most likely 

direction corresponding to the model whose residual error is least Gaussian (Ramsey, 

Hanson, & Glymour, 2011).
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Results

Experiment 1

Behavioral results—Means for all conditions are shown in Table 1. Analyses with RT as 

the dependent variable showed lexical decisions to words being faster than nonwords 

(itemwise t622 = 16.7, p < 0.0001). Effects of word frequency and imageability were also 

significant, with high-frequency and high-imageability words eliciting faster responses than 

low-frequency and low-imageability words. RT showed reliable effects of word frequency 

(F1,19 = 134.5, p < 0.0001) and imageability (F1,19 = 111.0, p < 0.0001). There was also a 

reliable interaction between word frequency and imageability (F1,19 = 43.1, p < 0.0001), 

such that effects of imageability were greater for low-compared to high-frequency words, 

and effects of word frequency were greater for low- compared to high-imageability words.

Analyses with accuracy (1-error rate) as the dependent variable showed lexical decisions to 

nonwords being more accurate than those to words (t18 = 15.9, p < 0.0001). The 

combination of faster and less accurate responses to words compared to nonwords suggests 

the possibility of a speed-accuracy tradeoff. Word frequency and imageability significantly 

influenced error rates, with high frequency and high imageability words eliciting more 

accurate responses than low-frequency and low-imageability words, resulting in reliable 

effects of word frequency (F1,19 = 80.1, p < 0.0001) and imageability (F1,19 = 124.3, p < 

0.0001). Unlike the word-nonword contrast, this pattern is consistent with the RT results, 

suggesting that speed-accuracy tradeoff was not an issue for words. Also consistent with RT, 

there was a significant interaction (F1,19 = 90.3, p < 0.0001), with greater effects of 

imageability for low-compared to high-frequency words, and greater effects of word 

frequency for low- compared to high-imageability words.

Because of the apparent speed-accuracy trade-offs between the word and nonword 

conditions, and to get an overall sense of which conditions are the “hardest”, we calculated 

the Inverse Efficiency Score (IES; Bruyer & Brysbaert, 2011; Townsend & Ashby, 1978). 

The lexicality effect was significant, with words showing a higher IES than pseudowords 

(t622 = 2.611, p < 0.01). ANOVA with items (words) as the random variable showed main 

effects of word frequency (F308 = 14.6, p < 0.001) and imageability (F308 = 14.3, p < 0.001) 

in the expected direction, and a significant interaction (F308 = 10.3, p < 0.001).

Imaging results—A direct contrast of word (warm colors in Fig. 1A) compared to 

nonword (cool colors in Fig. 1A) trials showed primarily left-lateralized activation for words 

in the IFJ, bilateral occipital cortices and vOT (with a larger spatial extent on the left), left 

SMA, and left basal ganglia (coordinates in Table S1). Activation for nonwords compared to 

words was primarily in bilateral AG, dorsal and medial prefrontal, ATL, PC, cuneus, and 

precuneus.

To examine the extent to which the areas that activated for words compared to nonwords 

corresponded to known networks previously identified in terms of functional connectivity 

(Fox et al., 2005), analysis of resting state data was performed on the same 20 participants 

using a seed placed in the posterior cingulate (PC), as described in the Methods. Areas with 

a resting-state time series significantly positively correlated with PC are shown in cool 
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colors in Fig. S1, and areas with a time series significantly negatively correlated with PC are 

shown in warm colors (for coordinates see Table S2). This color scheme was chosen for ease 

of comparison with the word-nonword contrast in Fig. 1A. Visual comparison of resting-

state data (Fig. S1) with the lexicality contrast (Fig. 1A) shows areas activated for words 

corresponding to areas anti-correlated with the PC seed, and areas activated for nonwords 

corresponding to the PC-correlated resting state/default-mode network.

Degree of overlap between activation for nonwords in the lexicality contrast and the putative 

semantic network from Binder et al. (2009) was examined by mapping both results onto the 

same brain in atlas space (Fig. 1B). Activations shown in cool colors in Fig. 1A are shown in 

red in Fig. 1B, and its overlap with the putative semantic network is in yellow. These 

overlaps occur most prominently in the AG, dorsal and ventro-medial prefrontal cortex, PC, 

precuneus, and ATL. Areas of the putative semantic system were generally more extensive 

than those activated for nonwords on the lateral surface, while the opposite was true (a larger 

spatial extent of activation for nonwords than the semantic system) on the medial surface. 

Areas associated with semantics but not activated for nonwords extended along the MTG 

and included the orbital and triangular parts of the inferior frontal gyrus (IFG).

Analysis of the behavioral data in terms of IES suggested that the word condition was more 

difficult than the nonword condition, when taking into account both RT and accuracy. 

Similarly, high frequency words were responded to more accurately and quickly than low 

frequency words, suggesting lexical decision to high frequency words was less difficult than 

for low frequency words. If the relative balance between engagement of task-positive and 

default-mode networks is being determined, at least in part, by relative difficulty of the 

stimuli, then areas activated for high-compared to low-frequency words should show a 

similar pattern to that seen for nonwords compared to words. Indeed, this is largely the 

pattern we observed (cf. Figure 1A and Figure 2A). In each case, the more difficult, or 

“harder,” condition (words in the lexical contrast, low-frequency words in the frequency 

contrast) activated left IFJ, while the less difficult, or “easier,” condition (nonwords in the 

lexical contrast, high-frequency words in the frequency contrast) activated bilateral ATL, 

PC, dorsal and medial prefrontal cortices, precuneus, and right AG. There were also some 

reading-related areas where activation did not overlap across the lexicality and frequency 

analyses. In the left inferior parietal lobule, the AG activated more for words than nonwords, 

while the SMG activated more for high than low frequency words. Additionally, the left vOT 

activated for words compared to nonwords, while there were no reliable differences in this 

area for the word frequency analysis. Overall, there was a great deal of overlap for areas 

activated when contrasting hard and easy conditions, whether that contrast was between 

words and nonwords, or between high and low frequency words.

We also contrasted activations for high-imageability words with those of low-imageability 

words (Fig. 2B). High-compared to low-imageability words showed activation in several 

areas including right superior frontal gyrus, left parahippocampal gyrus, and bilateral 

precuneus and PC cortices. Low- compared to high-imageability words showed activation 

only in left IFG.
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A final question was whether the pattern seen in the lexicality contrast would differ 

depending on whether the nonwords were being contrasted with either high or low frequency 

words. Qualitatively, although the high frequency (HF) words minus nonwords contrast (Fig. 

2C) yielded results similar to those from the low frequency (LF) words minus nonwords 

contrast (Fig. 2D), the LF – nonwords contrast looked more similar to the lexicality contrast 

(Fig. 1A). We checked for statistical reliability of this pattern by testing for areas showing an 

interaction between the word frequency contrast and the lexicality contrast (Fig. 2E). Graphs 

for four representative regions are shown in Fig. 2E, where activation levels for HF, LF, and 

nonwords are graphed relative to fixation baseline. The left IFJ, which showed activation for 

words compared to nonwords, here shows activation for LF words compared to either HF or 

nonwords. The other regions in warm colors all show a different pattern. Bilateral SMG is 

adjacent to the bilateral AG regions that showed more activation for nonwords than words, 

and the interaction analysis shows that rather than nonwords being more activated than 

words relative to baseline, they are instead less deactivated than LF words compared to 

baseline. HF words showed a very different pattern from LF words, instead closely 

following the pattern seen for nonwords.

Experiment 2

To test for replication of the results from Experiment 1, and to further explore the possibility 

that inclusion of relatively unfamiliar, low-frequency words may have driven the unexpected 

result in Figure 1A, a new sample of participants (N = 11) was scanned in a different scanner 

at a different institution. Word stimuli were blocked by frequency, with all high-frequency 

words appearing in the first half of the session, and all low-frequency words appearing in the 

last half. This was done to determine the influence of word frequency list context and to 

optimize the design for effective connectivity analysis, as described in the Experimental 

Procedures section.

Behavioral results—Means for each condition are given in Table 1. This new set of 

participants showed an RT pattern similar to the previous participants in that words were 

responded to more quickly than nonwords (itemwise t622 = 11.4, p < 0.0001). The factorial 

manipulation of word properties also yielded a pattern of results similar to those from the 

previous set of participants. High-frequency words were responded to more quickly than 

low-frequency words (F1,10 = 153.5, p < 0.0001), and high-imageability words were 

responded to more quickly than low-imageability words (F1,10 = 23.4, p < 0.001). The 

interaction of word frequency and imageability also followed the same pattern as the 

previous participants, with the effect of imageability being greater for low compared to high 

frequency words, and the effect of word frequency being greater for low compared to high 

imageability words (F1,10 = 19.9, p < 0.001).

Accuracy rates were also similar to the previous group, with less accurate responses to 

words than nonwords (t10 = 16.3, p < 0.0001). Factorial manipulations for words revealed a 

higher accuracy for high-frequency compared to low-frequency words (F1,10 = 100.9, p < 

0.0001), and greater accuracy for high-imageability compared to low-imageability words 

(F1,10 = 187.9, p < 0.0001). There was also a significant interaction between word frequency 

and imageability (F1,10 = 102.7, p < 0.0001), following the pattern described for the RT data.
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As in Experiment 1, we calculated the IES as a way of combining RT and accuracy to 

determine conditions under which participants found lexical decision most difficult. 

Analysis by items revealed the IES for words to be significantly higher than for 

pseudowords (t618 = 5.3, p < 001). ANOVA was performed with median replacement of 4 

words in the low-frequency, low-imageability condition because they were not responded to 

correctly by any of the 11 participants. As with RT and accuracy, there were significant main 

effects in the expected direction, with performance on high frequency words being better 

than low frequency words (F1,308 = 44.1, p < 0.001), and performance on high imageability 

words being better than low imageability words (F1,308 = 32.4, p < 0.001). The interaction of 

word frequency and imageability was also significant in the expected direction (F1,308 = 

24.9, p < 0.001).

Overall, the main effects and interactions are consistent across both participant groups. 

Although error rates were higher overall for words compared to nonwords, this pattern 

appears to have been driven by word frequency. When considered separately, high-frequency 

words had error rates comparable to nonwords, whereas error rates to low-frequency words 

were considerably higher.

Imaging results—In spite of this experiment being conducted on a different scanner, in a 

different region of the United States, with different participants compared to Experiment 1, 

they produced broadly similar results, particularly for the lexicality contrast. Words activated 

bilateral vOT and lateral occipital regions, along with subcortcal regions and SMA (warm 

colors in Fig. 3A). Nonwords activated bilateral ATL, AG, medial prefrontal cortex, PC, 

precuneus, and parahippocampal gyrus (cool colors in Fig. 3A, full coordinates in Table S3).

Contrasts of high-compared to low-frequency words revealed activation for high-frequency 

words in bilateral superior temporal gyrus, MTG, SMG, SMA, medial occipital, mid-

cingulate, and dorso-lateral prefrontal (DLPFC) cortices, and IPS (Fig. 3B). No areas were 

activated for low- compared to high-frequency words. Contrasts of high-compared to low-

imageability words revealed activation for high-imageability words in areas including 

bilateral SMG and DLPFC, and right STG and MTG (Fig. S2). No areas were activated for 

low-compared to high-imageability words.

Blocking the word stimuli by frequency allowed us to test the hypothesis that inclusion of 

very low frequency, unfamiliar words was driving the engagement of the dorsal attention 

network or task-positive network for words. Contrasting high-frequency words to nonwords 

revealed activation for high-frequency words in left middle frontal gyrus, opercular IFG, and 

MTG, along with bilateral activations in vOT, and IPS. Activations for nonwords included 

bilateral ventro-medial prefrontal cortices and right PC (Fig. 3C). The contrast of low-

frequency words with nonwords revealed a strikingly different pattern (Fig. 3D). Low-

frequency words activated several areas including left IFG and anterior insula, vOT, bilateral 

subcortical structures and SMA. Activations for nonwords included bilateral AG, ATL, 

dorsal and medial prefrontal cortices, parahippocampal cortex, PC, and precuneus.

To determine areas where these lexicality results are reliably different across levels of word 

frequency, we tested for areas showing an interaction between levels of word frequency and 
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the word-nonword (lexicality) contrast. Activation for each condition is graphed relative to 

the fixation baseline in Fig. 3E. Areas showing an interaction included left-sided IFJ, an 

activation spanning SMG and AG, IPS, right SMG, and bilateral precuneus. The pattern of 

activation is broadly similar to that seen in the fully randomized design of Experiment 1 

(Fig. 2E), with the exception of an interaction effect in the IPS that was not present in 

Experiment 1 (cf. Fig. 2E and 3E). The pattern of activation in IPS is graphed for both 

experiments in Fig. S3. Unlike the other graphs, this shows greater activation for high-

frequency words than for low-frequency words and nonwords. However, the prevailing 

pattern across the other areas where word frequency and lexicality interact is that activation 

for low frequency words differs from nonwords more than does activation of high frequency 

words compared to nonwords.

The final analysis reported here examined the role of six major brain areas that are both 

highlighted by the lexicality contrasts reported here, and are key components of the task-

positive network (IFJ, IPS), default-mode network (AG, PC), or possibly both (vOT, SMG). 

We performed a Bayesian effective connectivity analysis using these ROIs. They were 

generated based on the resting state data from Experiment 1, as described in the Methods 

and shown in Fig. 4A. In general, responses to high-frequency words were dominated by 

bottom-up activation from vOT to areas previously associated with phonological (SMG), 

semantic (AG) and attentional (IPS) processing (Fig. 4B). Responses to low-frequency 

words (Fig. 4C), on the other hand, were characterized by relatively more top-down 

activation from IFJ, PC, and IPS to vOT.

Discussion

An initial fMRI experiment showed an unexpected result when contrasting words with 

nonwords, in that nonwords activated regions associated in numerous other studies with 

semantic processing. Words activated a combination of areas broadly corresponding to what 

has been described as the dorsal attention, task-positive, or multiple-demand (MD) network 

(including IFJ and SMA), along with vOT, which has been associated both with the dorsal 

attention network (Vogel, Miezin, Petersen, & Schlaggar, 2012) and reading-specific 

processes (Dehaene et al., 2010). The set of areas activated for nonwords, on the other hand, 

broadly corresponded to the default-mode network (Fox et al., 2005). This pattern was 

confirmed in a follow-up experiment with different participants in a different scanner but 

with the same stimuli. To test the hypothesis that the reversal of the expected pattern was 

driven by effects of familiarity or word frequency, high- and low-frequency words were 

presented in separate halves of the follow-up fMRI experiment. The presence of low-

frequency words did appear to be a major factor determining engagement of areas in the 

default mode or putative semantic network. This was shown by the pattern of greater 

activation for low-frequency words compared to both high-frequency words and nonwords 

in the task-positive regions of the IFJ (Fig. 3E) and IFG (Fig. 2E). High frequency words 

and nonwords, however, showed similar levels of modest activation in these task-positive 

areas, and less deactivation compared to low-frequency words in default-mode areas such as 

the bilateral PC. The bilateral SMG, which is adjacent to but does not entirely overlap either 

the default-mode or the task-positive network (Humphreys & Lambon Ralph, 2015; Nelson 

et al., 2010), showed a similar pattern to the one seen in the precuneus, in that across both 
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experiments, low-frequency words showed more deactivation relative to high-frequency 

words and nonwords.

Contrasts between levels of word frequency and imageability were performed with the aim 

of revealing neural components of lexical and semantic processing. Although one of us 

(WG) has previously performed similar contrasts and interpreted activation for high-

frequency and high-imageability words in terms of lexical and semantic processing, it is 

striking that the areas activated for high-frequency words in the word frequency contrast 

(Fig. 2A) are largely the same ones activated for meaningless nonwords when contrasted 

with low-frequency words (Fig. 2D). These areas include many that are often interpreted as 

carrying out semantic processing, such as the ATL, PC, and precuneus. Activation in the 

precuneus was also found for high-compared to low-imageability words, again pointing to a 

diverging pattern of activation in that this putative semantic area activated for both 

semantically rich (high-imageability words) and semantically impoverished (nonwords) 

conditions.

One way of interpreting the fMRI data is with respect to the behavioral data (Table 1). 

Overall, lexical decisions to words seemed to be harder than to nonwords, in that when RT 

was weighted by proportion of correct responses according to the IES, the weighted RT was 

significantly longer for words than nonwords. Low-frequency words also had longer RTs 

and were less accurate overall than high-frequency words. Thus, lexical decisions to low-

frequency words were the most difficult. Corresponding patterns in the fMRI data showed 

the most activation for the most difficult condition in regions of the task-positive network, 

and the most deactivation for the most difficult condition in regions of the default-mode 

network. Altogether, this suggests these areas are responding to difficulty of the task 

condition rather than, for example, the detailed semantic content associated with the words.

Reconciling difficulty effects with neurocognitive components of reading

A recent study by Taylor et al. (2014) presented a thoughtful and detailed analysis of the 

issue of how to treat the combination of domain-general and information-specific effects of 

RT in functional neuroimaging data. Although their focus on RT only covers part of what 

went into the combination of RT and accuracy for the difficulty effects seen here, their 

treatment of general effort compared to engagement of particular cognitive processes is 

highly relevant. They used a reading aloud task with regular words, irregular words, and 

pseudowords. RT was modeled in their fMRI analyses essentially the same way we have 

modeled it here. Contrasting words with pseudowords revealed activation for words in left 

AG, both before and after RT was included as a regressor. This is in line with what is 

typically seen for this contrast, whereas this area activated for pseudowords in the current 

study. Pseudowords were also the more difficult condition in their study, whereas words 

were more difficult in ours. Their basic argument is that accounting for variance in fMRI 

data due to RT accounts for differences in effort between conditions, which may result from 

multiple sources both specific and non-specific to reading, and what remains is the neural 

basis of any cognitive process, or representation, differentially engaged between the 

conditions being compared.
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This framework from Taylor et al. (2014) may be useful for interpreting the current results. 

While our results are counter to theirs and to what is typically seen when contrasting words 

with well-formed, pronounceable nonwords, it is in line with previous results across studies 

for reading words compared to various low-level baselines (Fiez & Petersen, 1998; 

Turkeltaub, Eden, Jones, & Zeffiro, 2002). Those meta-analyses highlight areas for word 

reading such as the IFG and vOT, areas found here to be particularly activated for low-

frequency words compared to nonwords (Fig. 2D and 3D). Therefore areas known to be 

involved in word reading may be more highly recruited for more difficult words.

What, then, makes lexical decisions to low-frequency words so difficult? Although we do 

not yet have a clear answer, we can rule out one possibility. Perhaps low-frequency words 

are simply unknown to the participants who get them wrong, and are therefore being treated 

like nonwords. If this were the case, low-frequency words would be expected to have 

behavioral and neural responses similar to nonwords. That is not the pattern seen in our data. 

Instead, it is the high frequency words that were more like nonwords. The sole exception to 

this is in the IPS (Fig. S3), but this was only significant in Experiment 2, so the 

dependability of the IPS pattern remains to be determined. The overall pattern strongly 

suggests predominance of difficulty effects, since essentially the only factor high-frequency 

words and nonwords have in common is that they were less difficult than low-frequency 

words.

As for why participants have such difficulty with LF words in particular, the two-factor 

model of lexical decision from Balota & Chumbley (1984) may offer a clue. They 

considered word frequency as an objective approximation of familiarity. Using familiarity as 

a basis for setting the lexical decision criterion, HF words are relatively easily classified 

because they are familiar, and pseudowords are classified as nonwords because they are 

clearly unfamiliar. In between are LF words. Based on a familiarity criterion alone, 

responses to LF words should be intermediate between HF words and nonwords, as typically 

shown by RT data. However, because of their intermediate status between HF words and 

nonwords, additional non-lexical factors may come into play, perhaps related to the decision 

component of the lexical decision task. Indeed, the requirement to make a binary decision is 

common across numerous tasks that may or may not require lexical processing (go/no-go, 

N-back, etc.), consistent with LF words engaging the multiple-demand network (Duncan, 

2010). Thus, the insufficiency of familiarity as a basis for making rapid lexical decisions to 

LF words may lead to engagement of domain-general decision-related components of the 

type supported by the multiple-demand network.

In addition to checking for replication of the main effects and interactions, we also 

conducted the second experiment so we could separate high-from low-frequency words to 

optimize for effective connectivity analyses. The comparisons described above highlight 

activation differences across different putative networks; they do not speak to the flow of 

information between networks. Considering the role of the IFJ and IPS in the task-positive 

network, AG and PC in the default-mode network, and the potentially intermediate role of 

vOT and SMG, these regions were chosen for our effective connectivity analyses. Lexical 

decisions for high-frequency words elicited a generally bottom-up, ventral to dorsal pattern, 

with activation flowing from vOT to SMG, AG, and IPS. There was, however, a generally 

Graves et al. Page 14

J Cogn Neurosci. Author manuscript; available in PMC 2017 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



top-down, anterior and dorsal to ventral pattern of activation for the block of low-frequency 

words, with activation flowing from IPS, PC, and IFJ to vOT. These results provide 

converging neural evidence supporting explanations of lexical decision, such as by Balota 

and Chumbley (1984), that an effortful, decision-related component is more involved for 

low- than high-frequency words, due presumably to the words being relatively unfamiliar. 

Overall, these patterns suggest the neural basis of the word-nonword distinction in lexical 

decision can be fundamentally influenced by word frequency. More generally, these findings 

suggest that results of contrasts typically interpreted in terms of relative semantic content 

may be more influenced by additional factors related to task difficulty than is widely 

appreciated.

This apparent preponderance of task difficulty effects leaves open the question of what areas 

are processing orthography, phonology, and semantics. Although this study was not designed 

to distinguish the neural basis of these cognitive components of reading, we noted above that 

many areas that are active for word reading compared to baseline, such as the IFG and vOT, 

are also part of the MD network, and activated here for words (particularly those of low 

frequency) compared to nonwords. Many studies have also shown the IFG to be involved in 

phonological processing (Poldrack et al., 1999; Vigneau et al., 2006), and the vOT in 

orthographic processing (Dehaene, Cohen, Sigman, & Vinckier, 2005), or perhaps some 

combination of orthographic and phonological processing (Mano et al., 2013; Yoncheva, 

Zevin, Maurer, & McCandliss, 2010). No doubt the question of what cognitive components 

are reflected in the activations for the hard compared to easy condition is related to the 

question of what makes the low-frequency words in our set more difficult to accept as words 

than it is to reject the nonwords. Since the high frequency words and meaningless nonwords 

showed more similar activation than did the low-frequency words and nonwords, semantic 

information is unlikely to be the primary contributor to this difference. We also ensured the 

nonwords were pronounceable by constructing them to consist of valid English trigrams, and 

they did not differ from the words on multiple measures of orthographic typicality. Detailed 

matching on phonological variables, however, is not straightforward, as there may be 

multiple acceptable pronunciations for nonwords. If it were the case that lexical decisions 

could be made using phonological information, or information about orthography-

phonology mapping, that would not be inconsistent with an interpretation of the recruitment 

of IFG and vOT components of the task-positive network for the more difficult condition.

The results call into question the idea that the network of areas found in meta-analyses of 

lexical decision (McNorgan et al., 2015) and semantics (Binder et al., 2009) to be activated 

across studies is specifically related to semantic processing. Instead, our findings are more 

consistent with an interpretation in which activation of task-positive regions such as the IFJ 

and IPS are balanced against activation of areas associated with the DM network such as the 

AG and PC. A recent study by Humphreys et al. (2015), however, suggested the semantic 

and DM networks are at least partially distinct, with the ATL more associated with semantic 

processing and the AG more with the DM network. Additional work from the same group 

suggests the ATL plays a central role in semantic processing (Lambon Ralph, 2014). For 

example, although relatively dorsal areas of the ATL were found here to activate for 

nonwords, more ventral areas activated in conditions specific to semantics across multiple 

tasks (Humphreys et al., 2015), and during reading under conditions in which semantics is 
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predicted to be most relevant (Hoffman, Lambon Ralph, & Woollams, 2015). The more 

ventral part of the ATL is also suffers from signal dropout in standard echo-planar imaging 

(Visser, Embleton, Jefferies, Parker, & Lambon Ralph, 2010), which is another reason why 

the current study does not directly speak to the role of the ventral ATL in semantics.

Our finding of both ATL and AG activation for meaningless nonwords does, however, 

suggest a trade-off between the MD and DM networks based on relative task demands. 

Other groups have also hypothesized demand-based trade offs between the MD and DM 

networks (Fox & Raichle, 2007). For example, when working memory demands and RT 

increase during parametric modulation, inter-regional correlations within medial frontal 

nodes of the DM network increase (Hampson, Driesen, Skudlarski, Gore, & Constable, 

2006), along with an overall shift away from modularity and toward more coherence within 

the DM network (Vatansever, Menon, Manktelow, Sahakian, & Stamatakis, 2015). Our 

results suggest a similar shift away from modularity and toward network-level processing 

with heightened difficulty effects during word recognition.

Potential Limitations

One concern with dividing the words into two large blocks based on frequency is the 

potential for non-specific order effects, rather than findings being related to word frequency 

per se. However, to the extent that activity in the IFJ reflects engagement of attention, 

general engagement of attention would be expected to be greater at the beginning of the scan 

than at the end. The fact that task-positive effects from IFJ emerged only for the low-

frequency words, in the second half of the experiment, argues against any concerns related to 

disengagement of attention due to fatigue.

One specific point about the fMRI analyses: The RT regressor values for each trial were z-

scored to avoid correlation with the binary regressors for each stimulus type. Indeed, this 

resulted in RT regressors that were never correlated with any other regressor at more than r = 

0.35. While still modestly correlated, this is well within the acceptable range for 

multicollinearity in multiple linear regression models (Kutner, Nachtsheim, Neter, & Li, 

2005), so that the RT regressor will account for variance most associated with RT, while the 

regressors for the various stimulus conditions will account for variance most associated with 

those conditions.

Regarding the task, we should acknowledge that participants were responding essentially at 

chance for the low frequency/low imageability condition in Exp. 2. This makes neural 

activity for correct responses in this condition difficult to interpret, as it is unclear whether 

these were trials on which participants recognized the words or just happened to select the 

YES response. Additionally, use of a single lexical decision task leaves open the possibility 

that effects of semantic processing would be different in tasks that, for example, require an 

explicit semantic judgment. This certainly bears future investigation. There is, however, 

ample evidence for the influence of semantic variables in lexical decision tasks using well-

formed nonwords. Studies have shown effects not only of the imageability variable used 

here, but also semantic priming (Evans et al., 2012), lexical semantic ambiguity (Borowsky 

& Masson, 1996; Rodd, Gaskell, & Marslen-Wilson, 2002), and semantic richness (Pexman, 

Hargreaves, Siakaluk, Bodner, & Pope, 2008).
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Interpretation of Deactivations Relative to Baseline

Implicit in the direct contrast between words and nonwords is the idea that direct task 

comparisons are interpretable even if both conditions deactivate relative to a baseline such 

as, in this case, silent fixation (as in the PC activations in Fig. 2E and 3E). This raises the 

question of what is happening during “baseline.” Prominent suggestions include semantic 

processing (Binder & Desai, 2011; Binder et al., 1999), recall of other information such as 

phonology, syntax, or episodic memory (Cabeza, Ciaramelli, Olson, & Moscovitch, 2008; 

Humphreys & Lambon Ralph, 2015), or a general idling relative to the task-positive state 

that involves internal metalizing or largely random associations of thought (Andreasen et al., 

1995; Buckner et al., 2008). We propose a dynamic alternative in which, for example, the PC 

activates for semantic processing under conditions of minimal task difficulty (or at least does 

not activate for nonwords more than high frequency words) but can be deactivated even for 

meaningful compared to non-meaningful stimuli when stimulus characteristics make the 

task difficult.

Conclusion

The distinction between words and well-formed, pronounceable nonwords is thought to 

primarily arise from the fact that the word condition consists of meaningful strings and the 

nonword condition does not. This distinction has been a major factor in mapping brain areas 

thought to be related to semantic processing. Our results suggest that the neural basis of this 

fundamental distinction between words and nonwords can be altered by stimulus difficulty 

effects. Specifically, the finding that areas such as the AG and PC that feature prominently in 

the putative semantic network can be more active for nonwords than words calls into 

question the role of these areas in semantic processing. Overall, our results suggest that 

information-processing accounts may only partly explain neuroimaging data, while effects 

of task difficulty exert a greater influence than previously appreciated.
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Figure 1. 
Correspondence between task-based and resting-state fMRI data. Panel A shows a direct 

contrast between words (warm colors) and nonwords (cool colors). Panel B shows 

overlapping (yellow) and separate maps of significant findings from the semantics meta-

analysis (orange; Binder et al., 2009) and activations for nonwords from Experiment 1 (red). 

Left-hemisphere only shown here.
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Figure 2. 
Experiment 1 contrasts for high minus low frequency words (A), high minus low 

imageability words (B). Separate contrasts are also shown for high frequency words minus 

nonwords (C) and low-frequency words minus nonwords (D). Panel E shows the interaction 

of word block type (high or low frequency words) with the lexicality contrast, with 

parameter estimates graphed for four representative ROIs.
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Figure 3. 
Experiment 2 lexicality (word – nonword) contrasts for all stimuli together (A), high minus 

low frequency words (B), high-frequency words and the nonword background against which 

they appeared (C), and low-frequency words with their nonword background (D). Panel E 

shows the interaction of word block type (high or low frequency words) with the lexicality 

contrast, with parameter estimates graphed for four representative ROIs.
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Figure 4. 
Effective connectivity analysis results for ROIs (A) within high-frequency word trials (B) 

and low-frequency word trials (C). Note the generally top-down (anterior to posterior) 

direction of connectivity for the low-frequency words compared to the primarily bottom-up 

(posterior to anterior) direction of connectivity for the high-frequency words.
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