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Abstract

Excessively choosing immediate over larger future rewards, or delay discounting (DD), associates 

with multiple clinical conditions. Individual differences in DD likely depend on variations in the 

activation of and functional interactions between networks, representing possible endophenotypes 

for associated disorders, including alcohol use disorders (AUDs). Numerous fMRI studies have 

probed the neural bases of DD, but investigations of large-scale networks remains scant. We 

addressed this gap by testing whether activation within large-scale networks during “Now/Later” 

decision-making predicts individual differences in DD. To do so, we scanned 95 social drinkers 

(18–40 years; 50 females) using fMRI during hypothetical choices between small monetary 

amounts available “today” or larger amounts available later. We identified neural networks 

engaged during Now/Later choice using independent component analysis (ICA) and tested the 

relationship between component activation and degree of DD. The activity of two components 

during Now/Later choice correlated with individual DD rates: a temporal lobe network positively 

correlated with DD, while a frontoparietal-striatal network negatively correlated with DD. 

Activation differences between these networks predicted individual differences in DD and their 

negative correlation during Now/Later choice suggests functional competition. A generalized 

psychophysiological interactions (gPPI) analysis confirmed a decrease in their functional 

connectivity during decision-making. The functional connectivity of these two networks 

negatively correlates with alcohol-related harm, potentially implicating these networks in AUDs. 

These findings provide novel insight into the neural underpinnings of individual differences in 

impulsive decision making with potential implications for addiction and related disorders in which 

impulsivity is a defining feature.
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INTRODUCTION

Humans and other animals show a preference for immediate versus future rewards (Mazur, 

1987; Rachlin, 2000). The behavioral economic principle of reward devaluation as a 

function of time, commonly referred to as “delay discounting” (DD), has been extensively 

studied in the laboratory using intertemporal choice tasks in which subjects decide between 

smaller, sooner rewards, or larger, later rewards. In such tasks, individuals vary considerably 

in their reward preference, demonstrating the highly subjective nature of intertemporal 

decision-making. A greater bias for sooner rewards, widely accepted as a form of 

impulsivity, is associated with addictive disorders (Becker & Murphy, 1988; W. K. Bickel, 

Odum, & Madden, 1999; Dixon, Marley, & Jacobs, 2003; Kris N. Kirby & Petry, 2004; K. 

N. Kirby, Petry, & Bickel, 1999; J. MacKillop et al., 2011; John R. Monterosso et al., 2007; 

Reynolds, 2006), attention-deficit hyperactivity disorder (Barkley, Edwards, Laneri, 

Fletcher, & Metevia, 2001; Paloyelis, Asherson, & Kuntsi, 2009; Sonuga-Barke, Sergeant, 

Nigg, & Willcutt, 2008; Wilson et al., 2015), and eating disorders (Davis, Patte, Curtis, & 

Reid, 2010; Weller, Cook, Avsar, & Cox, 2008). Therefore, an improved understanding of 

the neural processes underlying individual differences in DD could provide novel insight 

into disorders of impulsivity and identify potential biomarkers and treatment targets.

The component processes supporting intertemporal decision-making have been examined by 

a multitude of noteworthy studies. For example, McClure and colleages (McClure, Ericson, 

Laibson, Loewenstein, & Cohen, 2007; Samuel M. McClure, David I. Laibson, George 

Loewenstein, & Jonathan D. Cohen, 2004) described two competing brain systems – a 

cognitive control system and impulsive system – whose relative activity has been construed 

to predict choice behavior on a trial-by-trial basis. Other investigators posit a single 

valuation network that represents the subjective value of reward choices (Kable & Glimcher, 

2007; J. R. Monterosso & Luo, 2010). Still others emphasize the role of several neural 

networks that each contribute to different aspects of DD behavior, including cognitive 

control, valuation, prospection, and emotion processes (Jan Peters & Büchel, 2011; van den 

Bos & McClure, 2013). The variations in activation and functional interactions between 

these various systems are proposed to underlie individual differences in DD behavior 

(Boettiger et al., 2007; Jan Peters & Büchel, 2011). Crucially, the identification of neural 

systems that predict the degree of DD across individuals could offer potential intermediate 

phenotypes of disorders of impulsivity.

Previous work suggests that individual differences in impulsive decision-making correlates 

negatively with variations in fMRI activation in prefrontal and anterior cingulate cortical 

regions proposed to support executive control processes (Ballard & Knutson, 2009; 

Boettiger et al., 2007; J. Peters & Buchel, 2010; Stanger et al., 2013) and positively with the 

ventral striatum and medial temporal lobe structures proposed to underlie reward 

motivational processes (Boettiger et al., 2007; Hariri et al., 2006; Stanger et al., 2013). 

Despite the emphasis on neural systems and “networks” of brain regions in published 

literature, most previous studies have focused on standard univariate voxel-wise or region-

of-interest based analytical approaches, and multivariate investigations of large-scale neural 

networks contributing to individual differences in DD in healthy adults remain lacking. 

Based on the existing literature, we hypothesized that individual differences in DD would be 
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predicted by at least two sets of brain regions: greater activation of a network of prefrontal 

brain regions implicated in cognitive control would associate with less impulsive decision-

making whereas greater activation of a network primarily consisting of subcortical regions 

implicated in reward motivational processes would associate with more impulsive decision-

making.

To test this hypothesis, we scanned ninety-five healthy adults using fMRI while they 

performed a DD task in which they made numerous choices between smaller amounts of 

hypothetical money “today,” or larger amounts available later. We employed independent 

component analysis (ICA) to identify large-scale neural networks engaged during 

intertemporal choice and tested the relationship between component activation and 

individual differences in choice behavior. We identified two neural systems in which activity 

during intertemporal choices significantly correlated with the degree of DD across subjects: 

a medial and lateral temporal lobe network positively correlated with immediate reward bias, 

whereas a frontal-parietal-striatal network correlated negatively with immediate reward bias, 

consistent with our hypothesis. Furthermore, negative correlations in task-related functional 

connectivity between these two systems suggest a competing functional relationship. 

Overall, our results suggest that enhanced recruitment of a temporal lobe network in lieu of a 

functionally-competitive frontal-striatal-parietal network is associated with disadvantageous 

decision-making. Such perturbations in the activity and connectivity of neural networks 

supporting individual differences in intertemporal decision-making may contribute to 

pathological behaviors, such as substance misuse.

MATERIALS AND METHODS

Subjects

Healthy adult (ages 18–40 years; mean=25.9) participants (n=95; 50 females) were recruited 

from the University of North Carolina, Chapel Hill (UNC) campus and surrounding 

communities. The participant sample was 62% white, 15% black, 11% Asian, 4% Hispanic, 

and 8% mixed or other race. Participants had completed an average of 16.3 ± 2.5 years of 

education. Social status as a proxy for socioeconomic status was characterized by the Barratt 

Simplified Measure of Social Status (BSMSS; Barratt 2006), and the sample average was 

50.0 ± 12.4 (range: 8–66) out of a possible range of 8–66. Exclusion criteria included use of 

psychoactive drug or medication use (excluding moderate alcohol or caffeine intake), a 

neurological or psychiatric diagnosis, including history of treatment for a substance use 

disorder or a lifetime history of alcohol or other drug dependence based on a structured 

clinical interview using DSM-IV criteria (Sheehan et al., 1998). All participants were native 

English speakers, right-handed, and had at least a high school education (or equivalent). 

Participants were screened for drug or alcohol use on the day of the scan via breathalyzer 

test and urine drug screen. Each participant provided written, informed consent as approved 

by the UNC Office of Human Research Ethics.

Alcohol use data

Although this study included only healthy control participants, the primary motivation for 

this investigation was to identify potential intermediate phenotypes of AUDs. Therefore, 
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each participant completed the Alcohol Use and Disorders Identification Test (AUDIT) 

(Saunders, Aasland, Babor, de la Fuente, & Grant, 1993) to provide measures of alcohol 

consumption, harmful alcohol use, and alcohol dependence symptoms. While no participants 

met criteria for an alcohol use disorder, all participants reported having consumed alcohol at 

least once, and alcohol consumption levels ranged from low to heavy, based on AUDIT 

consumption subscale scores.

Delay discounting task

Participants performed a DD task designed for use in the MRI scanner (Boettiger, Kelley, 

Mitchell, D’Esposito, & Fields, 2009; Boettiger et al., 2007), and described in detail 

previously (Altamirano, Fields, D’Esposito, & Boettiger, 2011; Kelm & Boettiger, 2013; 

Smith & Boettiger, 2012; Smith, Sierra, Oppler, & Boettiger, 2014; Smith, Steel, Parrish, 

Kelm, & Boettiger, 2015). Participants were given task instructions, completed a short 

practice, and then completed six blocks of 42 trials each (~8 minutes in length). In each trial, 

participants were asked to select one of two presented options, a smaller, immediate 

monetary reward (“Now”), or a larger, delayed reward (“Later”). Selections were indicated 

by pressing one of two buttons on an MRI-compatible response box. Each trial began with 

an instruction cue, followed by a screen presenting the Now and Later options. Later options 

were hypothetical monetary rewards of $2, $5, $10, $20, or $100 at one of five future delays 

(1 week, 2 weeks, 1 month, 3 months, or 6 months), while the Now option was reduced by 

30%, 15%, 10%, or 5% from the Later amount and was available “Today”. Later option 

delays and amounts, as well as the Now option “discount” and left/right position were 

randomized across trials. Each choice trial was preceded by an instruction cue presented for 

4.4 seconds to indicate one of four choice trial types: “WANT,” “DON’T WANT,” 

“SOONER,” or “LARGER.” For Want trials, subjects chose their preferred option. In the 

Don’t Want trials, subjects selected the option that they did not prefer. Sooner and Larger 

trials represented objective choice control (CON) trials in which subjects indicated which 

option was available sooner in time, or which reward was larger, respectively. In addition to 

the chosen option, we also collected the response time for each response. Accuracy in CON 

trials verifies adherence to task instructions, and comparison of response time (RT) between 

the CON, WANT and DON’T WANT trials indicates whether additional cognitive processes 

are being engaged in the WANT and DON’T WANT conditions, relative to the simple 

objective comparisons required in CON trials. The options appeared on the screen for 4.4 

seconds and were followed by a jittered inter-trial interval of 4.4–8.8 seconds; the instruction 

cue remained on the screen during this time. During “null” trials, the instruction cue was 

presented but no choice options were presented. WANT trials comprised 50% of the choice 

trials whereas the other 50% were divided equally among DON’T WANT, SOONER, and 

LARGER trials, with trial type pseudorandomly ordered across trials.

Task behavioral measures

As the primary measure of impulsive decision making, an impulsive choice ratio (ICR, 

Mitchell et al., 2005) was calculated as the proportion of Now choices made in the WANT 

condition. Higher ICR values indicate more impulsive decision making. Although the delay 

discounting paradigm used in this study was not designed to optimally estimate model-based 

discounting rates, we present secondary analyses for which the degree of impulsive choice 
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was quantified using the q-exponential discount function based on Tsallis’ statistics 

(Takahashi et al., 2008; Takahashi, 2009):

(Eqn. 1)

where D represents delay time, and kq and q are measures of impulsivity and of 

inconsistency across delay times, respectively. To estimate kq and q, we conducted nonlinear 

curve fitting with the Levenberg–Marquardt algorithm implemented in R (Team, 2014) with 

the minipack.lm package (Elzhov TV, 2015). Discounted Value was calculated as the 

cumulative selected/maximum dollar ratio at each delay, D. (Smith et al., 2014; Smith et al., 

2016). Higher values of kq indicate greater discounting of delayed rewards (more 

impulsivity) and lower values of k indicate less delayed reward discounting (less 

impulsivity). Based on a threshold of R2>.2, the q-exponential model failed to adequately fit 

the data of n=43 subjects. Therefore, for the secondary analyses that considered the kq 

metric, only subjects for whom the model was deemed valid were included. All primary 

analyses utilized the ICR metric and included all 95 subjects.

Magnetic Resonance Imaging (MRI) data acquisition

Task fMRI datasets were acquired as T2*-weighted images (EPI) on a Siemens 3T Tim Trio 

MRI whole body scanner equipped with a TEM send-receive radio frequency (RF) head 

coil, using a 1-shot gradient-echo EPI pulse sequence to measure localized blood 

oxygenation level dependent (BOLD) contrast. Acquisition parameters were as follows: TR 

= 2000 ms, TE = 25 ms, flip angle = 50°, 35 slices tilted by 30° from the horizontal plane; 

FoV = 192×192 mm; voxel size=3×3×4 mm with a 0.5 mm gap, matrix = 64×64. The fMRI 

acquisition was preceded by 11s of dummy gradient RF pulses to achieve steady-state tissue 

magnetization and minimize startle-induced motion. Duration for each run acquisition was 

approximately 9 minutes (243 frames). Low-resolution T1-weighted coplanar images were 

acquired for each participant. In addition, a high-resolution magnetization prepared rapid 

gradient echo (MPRAGE) T1-weighted structural image was acquired from each participant 

for alignment and tissue segmentation purposes. The MPRAGE pulse sequence parameters 

were as follows: TR =2530 ms TE=2.27 ms, flip angle=90, matrix=176×512, 512 slices, 

final resolution=1×0.5×0.5mm3. Head movement during the scanning session was restricted 

through the placement of padding, to minimize confounding effects on image quality. E-

Prime-2 software (PST, Inc., Pittsburg, PA) synchronized the stimulus display to the fMRI 

acquisition and recorded participant responses via an MRI-compatible fiber-optic keypad. 

An LCD projector (Avotec Inc., Stuart, FL) projected visual stimuli onto a rear projection 

screen, which the participants viewed via a mirror mounted within the head coil.

MRI data preprocessing

The data were processed offline using Analysis of Functional Neuroimages [AFNI version 

16.0.13, (Cox, 1996)] software and included the following steps: slice time correction, 

reorienting of oblique slices to the axial plane, realignment of images, despiking of noise 

time points, alignment to the subject’s T1 image, warping to a Montreal Neurological 

Institute (MNI) template, removal by regression of signal from white matter and cerebral 
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spinal fluid as well as the six motion covariates, linear detrending, Gaussian smoothing with 

an 8 mm full-width half-maximum smoothing kernel, and scaling to percent signal change. 

The Artifact Detection Tools toolbox (ART; http://www.nitrc.org/projects/artifact_detect) 

was used to identify time points with high amounts of noise according to head motion and 

global signal intensity measures.

General linear modeling of task activations

Task-related activation was detected from the fMRI task design matrix produced using 

Statistical Parametric Mapping (SPM8) software and analyzed using a general linear 

modeling approach (K. J. Friston et al., 1994) conducted with restricted maximum 

likelihood estimation in 3dREMLfit in AFNI. Task cues were modeled as delta functions 

and decision-making periods were modeled as short epochs with their onset at the time the 

Now and Later options appeared and a duration equal to the trial-specific RT. The six fMRI 

runs were concatenated to form a single data set. Zero, first, and second order polynomial 

regressors were specified for each of the six runs to remove trends within and between runs. 

Six head motion parameters as well as covariates denoting outlier time points based on the 

ART analysis were also included in the GLM. Beta estimates from WANT trials were 

contrasted with CON trials to isolate activity specific to making subjective intertemporal 

reward choices.

Voxel-wise relationships with behavior

Voxel-wise statistical analyses utilized a permutation-based method that is robust against 

departures from statistical assumptions required for parametric tests, provides stringent 

protection against false positives (α = 0.05), and provides comparable or improved Type II 

error rates over other methods (Huang et al., 2015). The main effect of task was examined 

using the WANT>CON contrast maps of all 95 subjects calculated from estimations of brain 

activation using 3dDeconvolve in AFNI; the analysis covaried for age and sex. The neural 

correlates of Individual differences in impulsive choice were similarly calculated in a voxel-

wise permutation test of the relationship between ICR and WANT>CON contrast values, 

covarying for age and sex. These voxel-wise analyses provided results that enable direct 

comparisons with the existing literature and against which the findings of the network-level 

analysis could be validated and interpreted.

ICA approach

ICA is a data-driven method for data reduction that has been adopted for use with fMRI data 

to derive spatially-independent brain networks of functionally connected voxels (Calhoun, 

Adali, Pearlson, & Pekar, 2001). Data reduction for group fMRI data is often a multi-step 

process to reduce individual subject four dimensional (spatial and temporal) data into three 

dimensional principal components, and then an ICA is performed on concatenated principal 

components to provide a group result. Components resolved in this fashion from resting-

state data are purported to represent intrinsic connectivity networks; however, this approach 

carries several limitations for task fMRI data. Since components derived from task-related 

fMRI time series comprise multiple brain states (i.e. passive fixation, task cues, control 

trials, experimental trials, etc.), the interpretation of components derived from such data is 

less straightforward. Although these components can be related back to specific task 
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conditions using back reconstruction methods, general linear modeling, and statistical 

contrasts (Stanger et al., 2013), the spatial organization of the components is influenced by 

all constituents of the task regardless of their relevance for the specific task condition or 

psychological construct of interest.

For this study, we sought to examine the neural systems underlying intertemporal reward 

decision-making. As such, the WANT>CON contrast maps derived from the voxel-wise 

GLM analysis (Fig. 1A) were entered into an ICA to identify networks of brain regions 

specific to this decision making process that covary across individuals (Fig. 2A). Thus, 

rather than using a multistep process to identify group components from fMRI time series, 

we derived components in a single step using the contrast maps from all 95 subjects. The 

ICA was conducted with the GIFT group ICA toolbox (v3.0a; (Calhoun et al., 2001)) using 

the Infomax algorithm following variance normalization. We ran 20 ICASSO iterations in a 

series of analyses solving for 25, 20, 15, or 10 components and determined that solving for 

10 components yielded the tightest clustering of results across iterations, suggesting good 

stability. Thus, we conducted our analysis using 10 independent components. We visually 

inspected the 10 component spatial maps to identify those representing obvious artifacts, 

resulting in the removal of three components: two for which peak values were around the 

outside edges of the brain and one that was focused in the ventricles.

Next we calculated the degree of task-related activation of each of the remaining seven 

components across subjects. The relationship of each component to intertemporal reward 

decision-making was tested by regressing component maps on each subject’s WANT>CON 

contrast maps (Fig. 1C) as an alternative to estimating this relationship with GLM analyses 

of component time series (James, Tripathi, & Kilts, 2014). The resulting contrast estimates 

were mean and variance normalized by converting them to z-scores.

Network activation relationships with behavior

A group-level statistical measure of WANT>CON component activation was calculated by 

one-sample t-test of contrast estimates across all 95 subjects. Additionally, the relationship 

between individual differences in decision making and task-related component activation 

was tested using Spearman’s partial correlation between ICR and contrast estimates for each 

component, controlling for age and sex. Results were corrected for multiple comparisons 

using a false discovery rate (FDR) correction (Benjamini & Yekutieli, 2001).

RESULTS

Behavioral data

We quantified individual DD tendency as the ratio of Now options selected in the WANT 

condition, relative to all choices made in the WANT condition (Mitchell, Fields, D’Esposito, 

& Boettiger, 2005), which we refer to as the impulsive choice ratio (ICR). Participants in 

this sample demonstrated the full range of ICR values (i.e., 0 to 1) with a mean value of 0.62 

(Q1=0.35; Q2=0.71; Q3=0.92). As a DD index, ICR has the advantage of very strong 

internal reliability (Smith et al., 2015; Smith et al., 2016), coupled with the fact that ICR 

avoids the assumptions of model-based metrics. In contrast, indices derived from temporal 
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discounting models, such as temporal discount rates (“k”), are influenced by the 

assumptions of the particular model employed, and some participants’ data may not conform 

to these assumptions. This DD task includes objective choice control (CON) trials that allow 

us to verify participants’ adherence to task instructions in two ways. First, we verified high 

accuracy in CON trials (mean: 96.1 ± 5.4%). Second, we compared RTs between the WANT 

and CON conditions, which indicates whether additional cognitive processes are engaged in 

the WANT condition, relative to the simple objective comparison needed in CON trials; 

mean WANT-CON RT difference: 588 ± 358 ms. In this study, n=8 participants were 

excluded from all analyses due to insufficient CON trial accuracy and/or to equivalent RTs 

in the WANT and CON trials, yielding the final sample of 95 participants.

ICA of activity during subjective intertemporal choice

To identify large-scale networks engaged during subjective intertemporal choice, we first 

generated whole brain contrasts of activity associated with choice evaluation in the WANT 

and CON trials (WANT>CON contrast) for each participant (Fig. 1A). We next tested the 

main effect of task on these contrast maps (Fig. 2A), which closely matched findings 

reported by previous studies (Warren K. Bickel, Pitcock, Yi, & Angtuaco, 2009; John R. 

Monterosso et al., 2007). Statistical maps depicting the voxel-wise relationship between ICR 

and activity during subjective intertemporal decision-making (WANT>CON contrast) are 

shown both unthresholded (Fig. 2B), and thresholded with a cluster-level correction for 

multiple comparisons (Fig. 2C). As shown in Figure 2C and detailed in Table 1, ICR 

positively correlated with enhanced activity during subjective choice in a multitude of 

regions, including clusters in the medial temporal lobe (i.e., amygdala, hippocampus, 

parahippocampal gyrus), superior frontal gyrus, retrosplenial cortex, and cerebellum. In 

contrast, ICR negatively correlated with activity during subjective intertemporal decision-

making in the dorsal anterior cingulate cortex, right lateral frontal and parietal cortices and 

caudate tail.

The ICA identified seven physiologically relevant networks that covaried across subjects 

during intertemporal decision-making (Fig. 3A). Three obviously artifactual components, 

numbered 1, 2, and 7, were excluded from further analyses (see Methods). The statistical 

association of each component with the WANT>CON contrast based on one sample t-test is 

reported in Table 2. Three networks demonstrated significant activation during subjective 

choice (Components 3, 4 and 8; Fig. 3, red bounding box), and three others showed 

significant deactivation during subjective choice (Components 5, 6 and 10; Fig. 3, blue 

bounding box). Moreover, of the seven components, two significantly correlated with ICR 

(Figs. 3–4). Component 3, a frontal-striatal-parietal network (Fig. 3, third row), negatively 

correlated with ICR (ρ=−0.28, p=0.006), as shown in Figure 4A. Conversely, Component 9, 

a network incorporating the amygdala, hippocampus, parahippocampal gyrus, posterior 

insula, and superior temporal gyrus (Fig. 3, bottom row) positively correlated with ICR 

(ρ=0.29, p=0.005; Figure 4B). While ICR has advantages as a DD metric, as noted above, it 

is a rather blunt measure. In contrast, the q-exponential discount function can distinctly 

parameterize both Now bias (impulsivity; kq) and the inconsistency (q) in such Now bias 

across delay times in intertemporal choice tasks (Smith et al., 2014; Smith et al., 2016; 

Takahashi, 2009; Takahashi, Oono, & Radford, 2008). Consistent with our prior findings 
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(Smith et al., 2014; Smith et al., 2016), ICR and kq values were very highly correlated 

(ρ=0.92, p<0.001), and the relationships between kq and components 3 and 9 were 

qualitatively similar to the relationships between ICR and these components, despite reduced 

statistical power (Component 3: ρ=−0.26, p=0.067; Component 9: ρ=0.32, p=0.024). In 

addition to their relationship with ICR, the WANT>CON contrast estimates for components 

3 and 9 demonstrated a negative correlation with each other (r=−0.39, p<0.001; Figure 4C) 

based on Pearson partial correlation controlling for age and sex. Furthermore, the difference 

in activity of these two neural systems (Component 3 minus Component 9) explained more 

variance in ICR than did the activity of either system alone (ρ=−0.34, p<0.001; Figure 4D), 

suggesting their relative activity predicts individual differences in impulsive choice.

Psychophysiological interactions (PPI) analysis

To explore whether these two networks operate in a competing manner during intertemporal 

reward choice decision-making, we examined the task-specific functional connectivity of 

Component 3 and Component 9 using a generalized psychophysiological interactions 

analysis [gPPI, (K. Friston et al., 1997; McLaren, Ries, Xu, & Johnson, 2012)]. As opposed 

to examining the correlation of component contrast estimates across subjects as presented in 

Figure 4B, gPPI is a within-subject analysis that examines their correlation across the task. 

Component time series were estimated by regressing component spatial maps on each 

subject’s whole brain fMRI time series data using on the spatial-temporal regression method 

implemented in GIFT. We developed a general linear model to estimate the task-related 

modulation of functional connectivity between the networks. Notably, a separate regressor is 

included for each task condition. A simplified schematic of the gPPI procedure is depicted in 

Figure 5. Specifically, we tested the dependence of Component 3’s time series on the 

following predictors: 1) Component 9’s time series, 2) the task design matrix, 3) the 

interaction of the Component 9’s time series and each task condition, and 4) a set of 

nuisance regressors (i.e. six motion parameters, linear and quadratic trends). Likewise, the 

corresponding model in which Component 9 was similarly predicted by Component 3 was 

also tested. These models were estimated using the glmfit function in Matlab R3013a and 

the β coefficients for the interaction term corresponding to the WANT condition were 

contrasted with that of the CON (SOONER and LARGER) trials. We took the average 

WANT>CON contrast value for the two models as an estimate of the task-dependent 

connectivity between Components 3 and 9. The significance of intertemporal decision-

making-related connectivity was calculated with one-sample t-tests of gPPI contrast 

estimates across all 95 subjects, indicating a significant negative relationship between 

Components 3 and 9 (t=−3.13, p=0.002).

As noted in the Introduction, an excessive tendency to discount delayed rewards (e.g. high 

ICR) is associated with alcohol and other substance use disorders. While this was a healthy, 

non-clinical sample, accumulating evidence suggests that excessive delay discounting may 

be a pre-existing intermediate phenotype for alcohol use disorders (Anokhin, Grant, 

Mulligan, & Heath, 2014; Dougherty et al., 2014; James MacKillop, 2013; Smith et al., 

2015). Therefore, we probed whether connectivity between these brain networks was 

associated with aspects of subclinical alcohol use. Partial correlation analyses controlling for 

age and sex revealed a significant relationship between gPPI contrast estimates and the 
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AUDIT subscale measuring harmful alcohol use (ρ=−0.26, p=0.013), but not the subscales 

measuring the quantity of alcohol consumption or alcohol dependence symptoms (p>0.05). 

The gPPI contrast estimates were unrelated to ICR (ρ=0.01, p=0.93), however, indicating 

that although activity levels of each of these networks during decision making predicts 

impulsive choices, the connectivity between them does not.

DISCUSSION

This study utilized a novel approach to identify neural networks associated with individual 

differences in immediate reward selection bias in healthy adults. An ICA-based approach 

revealed two components of activation during intertemporal choice that associated with ICR: 

a network of brain regions including the medial temporal lobe, insula and superior temporal 

gyrus was associated with greater impulsivity, whereas a network encompassing striatal, 

frontal and parietal brain regions was associated with less impulsive choice behavior. 

Activity within these two networks was inversely correlated during decision-making, and 

task-dependent decreases in connectivity between these networks indicate that these brain 

regions functionally compete during intertemporal choice.

Consilience with existing DD neuroimaging literature

The independent component (#3) whose activity during intertemporal decision-making was 

negatively correlated with ICR (Fig. 4A) incorporated many brain regions previously 

proposed to comprise a cognitive control system central to favoring selection of delayed 

rewards. For example, McClure and colleagues (2004) reported enhanced activity in a 

constellation of areas with remarkable spatial similarities with Component 3, including the 

bilateral posterior parietal cortex, right dorsolateral and ventrolateral prefrontal cortex, and 

right inferior frontal cortex/anterior insula, when subjects opted for larger, later rewards (S. 

M. McClure, D. I. Laibson, G. Loewenstein, & J. D. Cohen, 2004). Several studies have also 

identified similar activity related to DD in brain regions corresponding to a right-lateralized 

frontal-parietal network (Warren K. Bickel et al., 2009; Boettiger et al., 2007; John R. 

Monterosso et al., 2007; Stanger et al., 2013; Xu, Liang, Wang, Li, & Jiang, 2009), whereas 

others emphasize the role of the left lateral prefrontal cortex in overriding impulsive choices 

(Figner et al., 2010; Hare, Camerer, & Rangel, 2009). Notably, Component 3 also 

incorporates substantial activity in the dorsal and ventral striatum, regions implicated in 

reward-based decision making processes (Balleine, Delgado, & Hikosaka, 2007; Kable & 

Glimcher, 2007). The association of less activity within this component with more impulsive 

choices supports the contention that impulsive choice behavior is related to diminished 

influence of executive control mechanisms, which override the tangible value of immediate 

rewards to enable the choice of less tangible but larger delayed rewards (Rick & 

Loewenstein, 2008). The lateral frontal, anterior cingulate and parietal regions of the 

Component 3 network (Fig. 3) correspond closely with a previously described working 

memory network (Zurowski et al., 2002). Notably, working memory training has been 

shown to decrease DD rates (W. K. Bickel, Yi, Landes, Hill, & Baxter, 2011) suggesting 

possible shared neural substrates for intertemporal choice and working memory processes. 

Cognitive control may enable prospective processes to “find” and value delayed rewards 

(Benoit, Gilbert, & Burgess, 2011; Kurth-Nelson, Bickel, & Redish, 2012; J. Peters & 
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Buchel, 2010; Rick & Loewenstein, 2008). The recent demonstration that a network of 

lateral prefrontal, dorsomedial prefrontal, and parietal brain regions convert subjective value 

information from value-encoding regions into actual choices is consistent with this idea 

(Rodriguez, Turner, Van Zandt, & McClure, 2015). Building on these theories, we propose 

that engagement of this network may reflect a strategy of utilizing approximate 

mathematical computations to evaluate choices based on delay interval and objective value 

of reward options (Arsalidou & Taylor, 2011; Fehr, Code, & Herrmann, 2007).

In contrast to Component 3, described above, Component 9 incorporated activations in the 

amygdala, hippocampus, parahippocampal gyrus, posterior insula and superior temporal 

gyrus (Fig. 3). This set of brain regions has been implicated in such processes as memory, 

emotion, visceral responses, and reward motivation (Gottfried, O’Doherty, & Dolan, 2003). 

The association between greater activity within this network and greater DD suggests that 

reliance on affective processes in decision-making biases choices towards the immediate 

reward (Antoine Bechara, 2005; Gupta, Koscik, Bechara, & Tranel, 2011). In other words, 

activation of this component may reflect a decision-making strategy in which visceral 

responses to reward choices guide behavior, consistent with Component 9’s incorporation of 

posterior insula and amygdala activations (A. Bechara, Damasio, & Damasio, 2003; Craig, 

2002). The role of the medial temporal lobe regions in intertemporal choice has alternatively 

been proposed as supporting episodic prospection (Benoit et al., 2011; J. Peters & Buchel, 

2010; Winstanley, Theobald, Cardinal, & Robbins, 2004). Our finding that greater activity in 

Component 9 was associated with more impulsive decision-making seems in conflict with 

this hypothesis; however, imagining future outcomes may be more closely related to the 

functional connectivity between prefrontal and medial temporal lobe regions (Benoit et al., 

2011; J. Peters & Buchel, 2010).

Competing networks engaged during subjective choice

The relative balance of activity between a putative fronto-striatal-parietal “control” network 

and a putative medial temporal and insula “impulsive” network predicted individual 

differences in intertemporal choice behavior. Furthermore, these networks demonstrated 

inversely related activity across participants and decreased connectivity across decision-

making trials. These relationships suggests that these networks may operate competitively in 

influencing choice behavior. The relative activation of these anticorrelated networks may not 

determine choice behavior per se, but rather indicate individual differences in neural 

strategies engaged to make intertemporal reward decisions. The functional relevance of the 

anticorrelated nature of these systems was further highlighted by the negative relationship 

between gPPI estimates and a measure of alcohol-related harm (i.e. negative consequences 

of drinking). This relationship suggests that subclinical hazardous alcohol use is associated 

with the reliance on a single neural system while making decisions, which may reflect a 

deficit in the integration of information across systems.

Other networks engaged during intertemporal choice

Along with Component 3, the activity of which predicted individual differences in DD, 

Components 4 and 8 were also significantly active across individuals during intertemporal 

choice. Component 4 has a high spatial correspondence to the well-studied “default-mode 
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network” (Raichle et al., 2001), with activations focused in the posterior cingulate cortex; 

this network is involved in prospection, and activation in these regions are proposed to 

represent temporal delays (Luhmann, Chun, Yi, Lee, & Wang, 2008). In contrast, 

Component 8 contains medial prefrontal and anterior insula activations consistent with the 

proposed “salience network” (Seeley et al., 2007); however, its focus in the medial prefrontal 

cortex is consistent with its potential involvement in subjective reward valuation in which 

the relative values of the reward choices are integrated in a single system (Kable & 

Glimcher, 2007; J. R. Monterosso & Luo, 2010; van den Bos & McClure, 2013; Wang et al., 

2014). It is noteworthy that neither of these components demonstrated a relationship with 

individual differences in ICR, indicating that these networks are activated regardless of 

whether subjects tend to select immediate or delayed rewards more frequently.

Intertemporal choice networks and substance use disorders

As elevated DD is linked extensively with substance use disorders (Becker & Murphy, 1988; 

W. K. Bickel et al., 1999; Dixon et al., 2003; Kris N. Kirby & Petry, 2004; K. N. Kirby et 

al., 1999; J. MacKillop et al., 2011; John R. Monterosso et al., 2007; Reynolds, 2006), 

alterations in neural networks predicting individual differences in intertemporal decision-

making represent potential biomarkers of alcohol and other substance use disorders. 

Neurocognitive impairments associated with addictive disorders are related to functional 

deficits in frontal cortical regions consistent with parts of Component 3 in the current study 

(Bolla et al., 2003; Hester & Garavan, 2004; Hoffman et al., 2008; Lundqvist, 2010). Drug-

dependent individuals also demonstrate altered striatal responses to reward (Kalivas & 

Volkow, 2005; Kreek & Koob, 1998; Volkow et al., 2010), further implicating the network 

represented by Component 3 in addiction-related processes. In addition, drug craving 

elicited by stress or drug cues is associated with increased activity in limbic and paralimbic 

regions included in Component 9 (Garavan et al., 2000; Kilts et al., 2001; Potenza et al., 

2012). Moreover, impulsive behavior associated with drug addiction has been attributed to 

impairment in executive control over impulsive processes related to motivation for 

immediate rewards (Antoine Bechara, 2005; Jan Peters & Büchel, 2011), suggesting that 

interactions between executive and motivational systems may be particularly disrupted in 

addictive disorders. Furthermore, DD processes are more directly implicated in drug use 

behavior by data demonstrating that heightened DD among addicts is associated with poorer 

treatment outcomes (Stanger et al., 2011; Washio et al., 2011). DD among drug-dependent 

individuals can be reduced by working memory training (W. K. Bickel et al., 2011), 

suggesting that improving frontal-parietal network functioning and increasing cognitive 

control has potential as a therapeutic strategy for improving substance use outcomes 

(Boettiger et al., 2009; Leeman, Bogart, Fucito, & Boettiger, 2014). However, the extent to 

which changes in these networks influence addiction processes remains to be tested.

Limitations

We acknowledge several limitations of the present study. First, the ICR values for seven 

subjects fell at either extreme (i.e., 0 or 1), suggesting that the choices offered in the task 

were not sufficiently challenging for all subjects. Furthermore, the truncated distribution 

may have limited our power to detect significant correlations with ICR. Additionally, 

because the difficulty of choice options was not controlled across individuals, some 
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individual differences in neural activity during choice could be driven by differences in the 

recruitment of decision-making processes, rather than differences in subjective valuation of 

immediate versus delayed rewards. Finally, this study included both males and females, and 

sex steroids differences have been linked to differences in DD behavior (Bobova, Finn, 

Rickert, & Lucas, 2009; Peper et al., 2013; Smith et al., 2014). Although our analyses 

controlled for sex, and we identified no significant sex effects in our analyses, future studies 

should consider how the neural correlates of impulsive choice may differ between males and 

females.
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Figure 1. 
Schematic diagram of independent component analysis (ICA) approach. Voxel-wise maps of 

the WANT>CON contrast from 95 subjects (A) were entered into an ICA solving for 10 

independent components (B). (C) Component maps were then regressed on each subject’s 

WANT>CON contrast maps to obtain estimates of the relationship of each component to the 

contrast for each subject; these subject-level contrast estimates were entered into group level 

analyses represented by Table 2 and Figures 3 and 4.
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Figure 2. 
Voxel-wise statistical relationships. A) Results of the voxel-wise test of the main effect of 

task (WANT>CON contrast) corrected for multiple comparisons (α = 0.05) using 

permutation testing. B) The voxel-wise relationship between individual impulsive choice 

ratio (ICR) and activation during subjective intertemporal decision-making (WANT>CON 

contrast), unthresholded for visualization purposes. C) The voxel-wise relationship between 

ICR and activation during subjective intertemporal decision-making, as in panel B, but 

corrected for multiple comparisons (α = 0.05) using permutation testing. W: Wald statistic.
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Figure 3. 
Spatial maps of the seven physiologically relevant networks identified from independent 

component analysis (ICA) sorted by their relationship to intertemporal decision-making. 

Numbers at left represent the component number; note that components 1, 2, and 7, were 

excluded as noise. Components significantly activated during intertemporal decision-making 

are surrounded by a red bounding box; significantly deactivated components are surrounded 

by a blue bounding box. Components significantly correlated with the impulsive choice ratio 

(ICR) are indicated with an asterisk (*). Components are displayed with a threshold of |z|>1.
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Figure 4. 
Scatter plots depicting the relationships between task-related component activation and 

intertemporal choice. A) Scatter plot of the relationship between the impulsive choice ratio 

(ICR) and Want>Control (WANT>CON) contrast estimates for Component 3. B) Scatter 

plot of the relationship between ICR and WANT>CON contrast estimates for Component 9. 

C) Scatter plot of the relationship between WANT>CON contrast estimates for Components 

3 and 9. D) Scatter plot of the relationship between ICR and the difference in WANT>CON 

contrast estimates for Components 3 and 9. Least squares fit lines are plotted for 

visualization purposes. Correlation coefficients represent partial correlations controlling for 

age and sex.
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Figure 5. 
A visual representation of the generalized psychophysiological interactions analysis (gPPI) 

employed to investigate the subjective decision-making-related modulation of connectivity 

between Component 3 and Component 9. The dependence of one time series (i.e., TS1) was 

predicted by the second time series (i.e., TS2), the task conditions, the interaction of the task 

design and TS2, and covariates of no interest (not pictured). The task conditions modeled 

included subjective decisions (i.e., WANT), objective (control; CON) decisions (i.e., 

SOONER, LARGER), as well as DON’T WANT decisions and corresponding cues for each 

decision type (not pictured). Similarly, the interaction between TS2 and each task condition 

was modeled. The interaction beta estimates corresponding to WANT, SOONER, and 

LARGER trials were used to estimate a WANT>CON contrast. Component 3 and 

Component 9 were tested as dependent variables in two separate models.
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Table 2

Relationship of independent components to intertemporal decision-making

Task Activation Component # t value p value

positive 4 t=7.70 <0.001

8 t=6.65 <0.001

3 t=4.55 <0.001

negative 10 t=−10.65 <0.001

6 t=−9.73 <0.001

5 t=−6.33 <0.001

none 9 t=−0.66 0.51

Results from one-sample t-tests of the WANT>CON contrast representing decision-making-related activation of independent components. The 
reported positive and negative activations survived an FDR correction for multiple comparisons (p<0.05). Exact p-values reported, except where 
p<0.001.
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