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Abstract

Recent theories assert that visual working memory (WM) relies upon the same attentional 

resources and sensory substrates as visual attention to external stimuli. Behavioral studies have 

observed competitive tradeoffs between internal (i.e., WM) and external (i.e., visual) attentional 

demands, and neuroimaging studies have revealed representations of WM content as distributed 

patterns of activity within the same cortical regions engaged by perception of that content. 

Although a key function of WM is to protect memoranda from competing input, it remains 

unknown how neural representations of WM content are impacted by incoming sensory stimuli 

and concurrent attentional demands. Here, we investigated how neural evidence for WM 

information is affected when attention is occupied by visual search—at varying levels of difficulty

—during the delay interval of a WM match-to-sample task. Behavioral and functional magnetic 

resonance imaging (fMRI) analyses suggested that WM maintenance was impacted by the 

difficulty of a concurrent visual task. Critically, multivariate classification analyses of category-

specific ventral visual areas revealed a reduction in decodable WM-related information when 

attention was diverted to a visual search task, especially when the search was more difficult. This 

study suggests that the amount of available attention during WM maintenance influences the 

detection of sensory WM representations.
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We are constantly called upon to maintain information temporarily in mind, but this working 

memory (WM) must also operate in the face of immediate and variable demands for our 

attention in the environment (e.g., rehearsing a shopping list while navigating heavy traffic). 

While attention has typically been described as the selective processing of information that 

is currently available to the senses—and WM conversely acts on information unavailable to 

the senses—a large body of evidence indicates that demands on WM and attention 

reciprocally influence one another (Awh & Jonides, 2001; Awh, Vogel, & Oh, 2006; 

Gazzaley & Nobre, 2012), and engage many of the same brain regions (Ikkai & Curtis, 
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2011; Jerde, Merriam, Riggall, Hedges, & Curtis, 2012; LaBar, Gitelman, Parrish, & 

Mesulam, 1999; Mayer et al., 2007; Nee & Jonides, 2009; Nobre et al., 2004). This has 

encouraged the reconceptualization of WM as internally-oriented attention that 

endogenously activates perceptual representations in much the same way as attention to 

external stimuli would (Chun, 2011; Chun & Johnson, 2011; D’Esposito & Postle, 2015; 

Kiyonaga & Egner, 2013). Accordingly, WM-related sustained increases in mean neural 

population activity, as indexed by univariate fMRI signal (in dorsolateral prefrontal cortex, 

for instance), were once assumed to represent the information being held in WM; however, 

many now consider those responses to reflect attentional control over sensory regions that 

represent the information content itself (Lara & Wallis, 2015; Postle, 2015; Sreenivasan, 

Curtis, & D’Esposito, 2014). In other words, attention is recruited to activate sensory 

representations for the purpose of WM.

Recent multivariate neural evidence also supports this “sensory recruitment” model of WM, 

whereby short-term representations are maintained via distributed patterns of activity within 

the same sensory cortical regions engaged by perceptual attention toward that content (e.g., 

area MT for memory of moving dot arrays; Riggall & Postle, 2012). The orientation of a 

Gabor grating maintained in WM, for instance, can be successfully decoded or reconstructed 

based on early visual cortex activity patterns derived from actually perceiving oriented 

stimuli (Albers, Kok, Toni, Dijkerman, & de Lange, 2013; Ester, Anderson, Serences, & 

Awh, 2013; Harrison & Tong, 2009; Serences, Ester, Vogel, & Awh, 2009). Conversely, 

perceived spatial locations can also be decoded from parietal cortex based on activity 

patterns derived from spatial WM maintenance (Jerde et al., 2012), providing further 

evidence for overlap in the representational codes for perception and WM. If WM content is 

indeed maintained in sensory cortices, via attention-dependent activation, a critical question 

is: What happens to such internally-attended information in the face of incoming sensory 

input and concurrent attentional demands? Behavioral studies have shown that WM often 

suffers when attention is otherwise occupied during the WM delay (e.g., Fougnie & Marois, 

2009), and the extent of that impairment scales with the time-consumption of the intervening 

task (Barrouillet, Portrat, & Camos, 2011). Here, we employed fMRI to determine how this 

competition between internal and external attentional demands impacts the patterns of neural 

activation associated with sensory representations of WM content.

Many behavioral studies suggest that concurrent attentional demands can alter the 

“activation status” of a WM representation, relegating it to a distinct format outside of an 

internal focus of attention (i.e., “silent coding,” Stokes, 2015), into which it can be reinstated 

when it becomes task-relevant again (Gunseli, Olivers, & Meeter, 2015; Kiyonaga & Egner, 

2014; Kiyonaga, Egner, & Soto, 2012; Olivers, Peters, Houtkamp, & Roelfsema, 2011; van 

Moorselaar, Olivers, Theeuwes, Lamme, & Sligte, 2015). Correspondingly, the active neural 

trace of a WM representation—as detected by multivariate pattern analyses—is modulated 

by internal shifts of attention across a trial; immediately task-relevant representations elicit 

measurable neural signatures, while evidence for task-irrelevant memory representations is 

degraded (LaRocque, Lewis-Peacock, Drysdale, Oberauer, & Postle, 2012; LaRocque, 

Riggall, Emrich, & Postle, 2016; Lewis-Peacock, Drysdale, Oberauer, & Postle, 2012; Rose 

et al., 2016; Sprague, Ester, & Serences, 2016).
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If activation in visual WM occurs by directing attention internally toward perceptual 

representations, then directing attention outwardly toward a visual task should similarly 

modulate WM representational information, and neural activation patterns in regions that 

represent the WM content should become less discriminable. Here, we used multivariate 

pattern classification of fMRI data to investigate whether WM category decoding is 

impacted when attention is occupied by visual search—at varying levels of difficulty—

during the delay interval of a WM match-to-sample task. If WM and visual search both rely 

on attention, neural evidence for WM category representations should be degraded during 

visual search, and that degradation should be even more pronounced when a more difficult 

visual search condition diverts attention away from WM maintenance for a longer period of 

time.

Materials and Methods

Participants

Thirty healthy volunteers gave written informed consent to participate in accordance with 

the Duke University Institutional Review Board. All participants were fluent in English, 

reported normal or corrected-to-normal vision, and were compensated $20 per hour for their 

participation. Two participants were excluded for missing data, leaving 28 participants in the 

final analyses (16 male; mean age: 30; range 18–45).

Design

The experimental protocol was designed to independently vary “internal” (i.e., WM) and 

“external” (i.e., visual) attentional load in a fully balanced 2 (WM load: 1 item vs. 2) × 2 

(visual search difficulty: easy vs. hard) factorial design. The task comprised a delayed 

match-to-sample WM test, with a sequence of delay-spanning visual searches (Figure 1a). 

We employed WM sample stimuli with known cortical sensitivities (i.e., faces and houses), 

so that we could examine the discriminability of visual cortical WM representations, via 

classifiers trained on the WM category, in the fusiform face (FFA; Kanwisher, McDermott, 

& Chun, 1997) and parahippocampal place areas (PPA; Epstein & Kanwisher, 1998).

Across different trials, participants had to maintain either one (low WM load) or two (high 

WM load) faces or houses for a later memory probe (Figure 1b). During the WM delay, 

participants performed a series of four visual searches for a perfectly vertical target stimulus 

among horizontal (easy search) or slightly tilted (hard search) distractors (Figure 1c). We 

borrowed this attentional manipulation approach from the time-based resource-sharing 

model of WM storage and processing, whereby a harder visual search task should occupy 

attention—that would otherwise be dedicated to WM maintenance—for a longer period of 

time (Barrouillet et al., 2011). Our main analyses focus on this search epoch of the trial, as 

we wanted to characterize how WM would be impacted by this secondary demand. In order 

to produce a balanced design, wherein WM category classification would be uncontaminated 

by overlapping visual input, visual search stimuli were either bodies (which have been 

shown to preferentially recruit the extrastriate body area [EBA; Downing, Jiang, Shuman, & 

Kanwisher, 2001]) or tools (which have been shown to recruit lateral occipitotemporal 

cortex; Chao, Haxby, & Martin, 1999). The design thus produced four main conditions: Low 
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WM/Easy Search, Low WM/Hard Search, High WM/Easy Search, and High WM/Hard 

Search.

Dual-task WM/Visual Search Procedure

The task was programmed and presented in Matlab (Mathworks Inc., Natick, MA) using the 

Psychophysics Toolbox extensions (Brainard, 1997). Face stimuli were 144 trial unique 

grayscale images of male and female faces, drawn from several databases (Endl et al., 1998; 

Kanade, Cohn, & Tian, 2000; Lundqvist, Flykt, & Ohman, 1998; Minear & Park, 2004; 

Oosterhof & Todorov, 2008; Tottenham et al., 2009), and cropped to include only the “eye 

and mouth” region. House stimuli were 144 trial unique grayscale exterior images drawn 

from local real estate websites. Visual search stimuli were 16 male and female bodies, with 

heads cropped (Downing et al., 2001), and 16 tools (hammers and wrenches) drawn from 

freely available online sources. Stimuli were displayed on a back-projection screen against a 

neutral grey background (RGB: 128 128 128), and viewed through a mirror mounted to the 

head coil simulating a viewing distance of approximately 80 cm. Behavioral responses were 

executed with the left and right hands on MRI-compatible response boxes.

Each trial began with a variable inter-trial interval, followed by the WM sample for 2 s. Low 

load WM samples consisted of a single, centrally-presented face or house. High load WM 

samples consisted of either two faces or two houses presented side-by-side. After a variable 

inter-stimulus interval, a series of four visual search displays appeared for 1.5 s each, 

separated by 500 ms fixation intervals, producing a search sequence lasting 8 s in total. Each 

search array comprised four stimuli (either all tool or all body images) at the corners of an 

imaginary square. In all conditions, the target stimulus was perfectly vertical, while three 

distractors were tilted to the left or right. The task was to indicate whether the target 

stimulus was oriented right-side up or upside down. For easy search trials, the distractors 

were perfectly horizontal (i.e., tilted 90° to the left or right), making them easily 

discriminable from the vertical target. For hard search trials, on the other hand, distractors 

were slanted only 15° to the left or right, making their orientation less discriminable from 

the vertical target (Treisman & Gelade, 1980). Importantly, the type and number of stimuli 

were identical for easy and hard searches, equating the amount of perceptual input across all 

conditions—only the orientation difference between the target and distractor stimuli varied, 

serving as the manipulation of search difficulty. All searches within a given trial were of the 

same difficulty level. The search sequence was followed by a variable inter-stimulus interval, 

then a WM probe for 3 s. Participants were asked to rate their confidence, on a 4-point scale, 

that a single WM probe item was either a match (50% of trials) or non-match to an item 

from the WM sample set. Underneath the probe image, a visual guide instructed which 

finger of the left hand should be used to indicate a response of either “Definitely the same”, 

“Maybe the same”, “Maybe different”, or “Definitely different”.

WM samples were selected in random order and never repeated across the experiment, 

except as matching probes. Visual search stimuli, locations, and orientations were also 

selected in random order on every trial, but could repeat across trials. The duration of all 

inter-trial as well as pre- and post-search inter-stimulus intervals were jittered between 2.5–5 

s (step-size = 500 ms), selected at random from a pseudo-exponential distribution (Dale, 
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1999), and counter-balanced to equate the length of all runs. Therefore, the onset of the 

visual search series was unpredictable, and the total length of individual trials could vary, but 

the duration of the search series was held constant at 8 s for all trials. Participants completed 

a practice run of 16 trials outside of the scanner, then nine experimental runs inside the 

scanner—each comprising 16 trials—for a total of 144 trials. All trial conditions occurred 

equally often, and in random order, both within and across runs.

Functional Localizer Procedure

Participants also completed a functional localizer task to define cortical regions of interest 

(ROIs) that preferred each of the WM and visual search stimulus categories (i.e., faces, 

houses, bodies, and tools). Each stimulus category was presented in separate blocks; each 

block entailed a series of 15 images, centrally-presented for 750 ms, and separated by a 250 

ms fixation. Participants were asked to make a button response to direct repetitions of a 

specific stimulus (i.e., 1-back task). The run comprised 16 blocks (4 of each condition) 

which were separated by 10 s inter-block intervals and occurred in random order.

Image Acquisition

Functional data were recorded on a 3.0 tesla GE MR750 scanner, using a gradient-echo, 

T2*-weighted multi-phase echoplanar imaging (EPI) sequence. Forty contiguous axial slices 

were acquired in interleaved order, parallel to the anterior-posterior commissure (AC-PC) 

plane (voxel size: 3 × 3 × 3 mm; repetition time [TR] = 2 s; echo time [TE] = 28 ms; flip 

angle = 90°; FOV: 24 cm). Structural data were obtained with a 3D T1-weighted fast 

inversion-recovery-prepared spoiled gradient recalled (FSPGR) pulse sequence, recording 

154 slices of 1 mm thickness and an in-plane resolution of 1 × 1 mm.

fMRI Analyses

Analyses were done in Matlab using SPM8 (Wellcome Department of Imaging 

Neuroscience, London, UK; http://www.fil.ion.ucl.ac.uk/spm/software/spm8). The first five 

volumes of each run were discarded to allow for a steady state of tissue magnetization. 

Functional data were then slice-time corrected and spatially realigned to the first volume, 

coregistered with participants’ structural scans, and normalized to the Montreal Neurological 

Institute (MNI) template brain. Normalized functional images retained their native spatial 

resolution.

Mass-univariate Analyses—For analyses based on task-related changes in mean signal 

intensity, the normalized images were spatially smoothed with a Gaussian kernel of 9 mm3 

full width half maximum, before applying a 128 s temporal high-pass filter in order to 

remove low-frequency noise. A model of the main task was created for each subject via 

vectors corresponding to the onset of the visual search series (8 s boxcar) for each 

experimental condition; the model accounted for WM and visual search load conditions, as 

well as stimulus category for both WM and search task components, resulting in a total of 16 

regressors of interest. All univariate analyses collapsed across stimulus category conditions, 

however, producing four main conditions of interest—Low WM/Easy Search, Low WM/

Hard Search, High WM/Easy Search, High WM/Hard Search. WM sample and probe 

periods, error trials (for both visual search and WM probe), head-motion parameters, and 
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grand means of each run were also modeled as separate nuisance regressors. Onset vectors 

were convolved with a canonical hemodynamic response function (HRF) to produce a 

design matrix, against which the blood-oxygenation level-dependent signal at each voxel 

was regressed.

Single-subject contrasts were then calculated to establish the hemodynamic correlates of 

working memory load (all 2 item WM > all 1 item WM), visual search difficulty (all Hard 

Search > all Easy Search), and their interaction effects (High WM + Easy Search > Low 

WM + Hard Search; Low WM + Hard Search > High WM + Easy Search). Group effects 

were subsequently assessed by submitting the individual statistical parametric maps to 1-

sample t-tests where subjects were treated as random-effects. To control for false-positives 

we applied a whole-brain voxel-wise FDR-correction (p < .05, combined with a cluster 

extent of 20 voxels). To illustrate the nature of the observed activations, mean β estimates 

for each condition were extracted from 6 mm spherical ROIs, centered on peak group 

activations, using MarsBaR software (http://marsbar.sourceforge.net).

ROI definition—Regions of sensitivity for the WM categories were derived from the 

independent functional localizer task. A model of the localizer was created for each subject 

via vectors corresponding to the onset of the stimulus blocks (15 s duration) for each of the 

four stimulus categories (face, house, body, tool). Single-subject contrasts were then 

calculated to establish the hemodynamic correlates of house-viewing (all House > all other 

categories) and face-viewing (all Face > all other categories). Group maps were furthermore 

constrained by anatomical masks of the fusiform and parahippocampal gyri (generated with 

the WFU_Pickatlas Toolbox; Maldjian, Laurienti, Kraft, & Burdette, 2003), for the face and 

house contrasts, respectively, and submitted to FDR-correction (p < .05) to identify clusters 

of maximal responsivity to the stimulus categories.

Multivariate Analyses—While standard mass-univariate analyses allow us to localize 

regions where mean signal intensity is sensitive to internal and external load demands, such 

variations do not convey precise informational content. Instead, the strength of multivariate 

decoding can arguably serve as a proxy for the quality of a neural representation (Emrich, 

Riggall, LaRocque, & Postle, 2013; Ester et al., 2013). We therefore created two models for 

multivariate analyses, using unsmoothed images, with the purpose of gauging how the 

discriminability of the neural WM representation is impacted when attention is diverted to 

processing external stimuli. The first ‘temporal’ model included WM category (face vs. 

house) and visual search load (easy vs. hard) conditions via vectors of onsets (2 s duration; 

i.e., a single TR) for each event in a trial—WM sample, WM delay, search trials, pre-probe 

delay, WM probe—convolved with a canonical HRF. The second ‘searchlight’ model was 

identical except visual searches within a trial were now reflected by a single onset (8 s 

duration). Head-motion parameters and grand means of each run were also modeled as 

separate nuisance regressors. ROI and searchlight classification analyses were implemented 

by training linear support vector machines (SVM), via the “caret” and “kernlab” packages in 

R (Kuhn, 2008; Zeileis, Hornik, Smola, & Karatzoglou, 2004) and The Decoding Toolbox 

(Hebart, Görgen, & Haynes, 2015), using a leave-one-run-out cross-validation procedure. 

Our design produced 9 experimental runs, wherein each condition occurred equally often. 
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Each classifier was thus trained on the patterns corresponding to maintenance of each WM 

category over 8 runs, then tested on its ability to decipher the remembered category on the 

9th run. The training set was then shuffled so that each run served once as the testing set, and 

classifier accuracy for a given searchlight or ROI would reflect the average classifier 

performance over those 9 iterations.

Event-related ROI-based MVPA—Activity patterns coding WM information fluctuate 

over the course of an unfilled WM delay (Lewis-Peacock et al., 2012; Meyers, Freedman, 

Kreiman, Miller, & Poggio, 2008; Myers et al., 2015; Sreenivasan, Vytlacil, & D’Esposito, 

2014; Stokes et al., 2013; Wolff, Ding, Myers, & Stokes, 2015). Furthermore, behavioral 

findings have shown that attention demands and time-related decay can interact in their 

impact on WM maintenance (Kiyonaga & Egner, 2014). Because the fate of neural WM 

representation patterns in a dual-task setting—when external stimuli must be attended—is 

unknown, we examined how the neural activity patterns conveying WM content would be 

impacted by the difficulty of a secondary task, and moreover, how this impact might 

accumulate or evolve over the course of a trial as attention continued to be otherwise 

occupied. Specifically, we wanted to assess the discriminability of WM information (i.e., 

whether the remembered category was a face or a house) across distributed regions that are 

engaged for the perception of the WM categories. We therefore conducted event-related 

multivariate pattern analysis (MVPA) within PPA and FFA ROIs that were independently 

and functionally defined with a separate localizer task. Classifiers were trained and tested on 

beta estimates from all voxels in each ROI; to account for differences in univariate activity 

that might influence decoding performance, these classifier inputs were mean-centered and 

scaled for each condition, at each time-point, within each ROI. To assess decoding of WM 

category across time, separate classifiers were trained for each task event, wherein the inputs 

were beta estimates for each 2 s event across a trial, at both levels of visual attentional load 

(i.e., from the ‘temporal’ model). Furthermore, to account for random resampling and model 

calculations within the “caret” package, each classifier was repeated 50 times; these 

accuracies were averaged to produce a single accuracy value for the classification. We 

therefore obtained, for each participant, two WM category mean classification accuracies 

(one each for easy and hard visual search conditions) at each of 8 trial time points. To assess 

any potential differences in classification between easy and hard external attention 

conditions, these mean accuracy values were submitted to one-sample t-tests against chance 

(50%), and paired t-tests against one another.

Searchlight MVPA—While ROI-based classification analyses test how memory 

information is represented by brain regions known to be sensitive to specific categories, we 

further examined the distribution of WM category information across the entire brain. 

Although many recent studies have decoded WM content information from primarily 

sensory regions that perceive that content (during an unfilled delay), a handful of studies 

have also found multivariate WM information in prototypically “attentional” frontal and 

parietal regions (Christophel, Hebart, & Haynes, 2012; Ester, Sprague, & Serences, 2015; 

Sprague et al., 2016). One study also suggests a unique role for parietal cortex in WM 

content representation in the face of predictable irrelevant distractors—which can 

presumably be anticipated and ignored (Bettencourt & Xu, 2015). To identify regions that 
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might convey locally distributed patterns of WM category information, during completion of 

a delay-spanning visual task, we conducted whole-brain searchlight MVPA (Haynes et al., 

2007; Kriegeskorte, Goebel, & Bandettini, 2006). The searchlight was a spherical cluster 

with a radius of 3 voxels, thus containing up to 123 voxels. Unlike in the ROI-based MVPA, 

inputs to the searchlight analysis were beta estimates across the entire 8 s search sequence 

(i.e., from the ‘searchlight’ model). A separate classifier was trained to discriminate the WM 

category based on multivariate patterns of input from all the voxels in a given searchlight, 

and that procedure was repeated for searchlights surrounding every grey matter voxel in the 

brain. The resultant subject-level accuracy maps were submitted to t-tests at the group-level 

against chance performance (50%) and thresholded with an FDR-correction of p < .05.

Results

Behavioral Results

Visual search accuracy (% correct) was lower when the search distractors were less 

discriminable from the target (Easy: M = 94.8%, SD = 9.1%; Hard: M = 84.8%, SD = 

12.9%), F(1, 27) = 27.3, p < .001, and search correct response time (RT) was also drastically 

slower in this high attentional load condition (Easy: M = 848 ms, SD = 105 ms; Hard: M = 

1126 ms, SD = 112 ms), F(1, 27) = 257.1, p < .001. The external attentional load 

manipulation was, therefore, an effective means of modulating the time-consumption of WM 

delay-spanning processing: When the search was harder, it took more time to complete, 

suggesting that attention would be diverted from WM maintenance during that time (Figure 

2a). While search accuracy was unaffected by internal (WM) load (Figure 2b, p = .7), search 

was slightly faster when 2 items were maintained in WM, F(1, 27) = 4.2, p = .052. Although 

we expected increased WM demands to impair concurrent attentional performance, this 

unexpected finding is consistent with the theory that increased attentional load should reduce 

processing of irrelevant distraction (de Fockert, Rees, Frith, & Lavie, 2001; Kim, Kim, & 

Chun, 2005; Lavie, 2005), which would improve search efficiency. Alternatively, higher 

demands may engage more cognitive control, and therefore benefit ongoing processing (e.g., 

Jha & Kiyonaga, 2010; Waskom, Kumaran, Gordon, Rissman, & Wagner, 2014). However, 

neither search accuracy nor RT displayed an interaction between internal and external 

attention factors (all p > .4).

WM probe performance was slower (Low: M = 1464 ms, SD = 296 ms; High: M = 1636 ms, 

SD = 260 ms), F(1, 27) = 76.2, p < .001 (Figure 2c), and less accurate (Low: M = 91.7%, SD 
= 9.1%; High: M = 80.4%, SD = 12.3%), F(1, 27) = 103.3, p < .001 (Figure 2d), when 2 

items were remembered (vs. 1). The WM manipulation was thus effective at increasing 

internal attentional demands. Face WM (88%) was slightly better than house WM (85%), 

but not significantly so (p = .07), whereas the visual search stimulus category had no 

influence on WM performance (p = .4). WM probe responding was unexpectedly faster after 

harder visual search sequences, F(1, 27) = 8.2, p = .008. Like the unexpected improvement 

to visual search RT during higher WM load, this finding also suggests that the engagement 

of control during harder visual search may have benefitted WM speed (e.g., Jha & 

Kiyonaga, 2010; Waskom et al., 2014). However, probe accuracy was unaffected by the 
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search difficulty, and neither probe accuracy nor RT displayed an interaction between 

internal and external load factors (all p > .4).

While participants had the option to submit WM responses on a 4-point scale, responses 

disproportionately favored the extremes of the scale (either “definitely same” or “definitely 

different”). Fewer than 25% of all responses used either “maybe” option, and four 

participants neglected to use those responses at all; thus, we report WM probe performance 

collapsed across confidence levels. Nonetheless, we conducted an additional control 

ANOVA of WM accuracy, with the added factor of Response Confidence, and found no 

interactions between the Confidence factor and either WM load (p = .12) or Search 

Difficulty (p = .5), nor a 3-way interaction (p = .35). Because the jittered delay lengths 

produced total WM delays that ranged from 12.5–17.5 s, we also conducted a control 

ANOVA with a factor of Delay Length—split into three bins for long, medium, and short 

delays—and found no main effect of Delay Length on WM probe accuracy (p = .5) and no 

interactions between Delay Length and any other factors (all p > .2). Thus, neither WM 

recognition confidence nor total duration of the WM delay appear to have significantly 

impacted the results.

The absence of an interaction between the WM and visual search load factors was surprising 

because of the abundant prior evidence that WM performance can be impaired by concurrent 

attention demands (but see Hollingworth & Maxcey-Richard, 2012; Vogel, Woodman, & 

Luck, 2006; Woodman, Vogel, & Luck, 2001; Woodman & Luck, 2007). Thus, we 

investigated whether any potential reciprocity between internal and external attention 

demands may have manifested in another way in the present data set—for instance, via a 

tradeoff between the two task components. First, we conducted a mixed-effects logistic 

regression analysis, wherein the probability of a correct WM response was predicted by 

visual search RT on a trial-by-trial basis, accounting for individual differences within 

subjects (i.e., modeling a random effect of subject). We limited the predictive factor of 

search RT to correct responses on the first search in each series, when WM encoding 

processes are expected to spillover and be maximally impacted by the external attentional 

task. Indeed, visual search RT significantly predicted a correct WM response, odds ratio = 

0.50 [95% CI 0.30, 0.83], p = .007, whereby faster search RT predicted better WM accuracy 

on a trial-by-trial basis. Within this model, WM accuracy was predicted by neither search 

load, p = .96, nor the interaction between search RT and search load, p = .61. These results 

are consistent with the idea that faster completion of the visual search task freed up (shared) 

attention for WM maintenance, and therefore facilitated WM performance.

We also examined correlations between mean visual search and WM “load effects” (i.e., 

High Load – Low Load), and found that the two were negatively correlated with one 

another, r = –.52, p = .005. A larger effect of visual search load on search RT was associated 

with a smaller effect of WM load on probe accuracy. A larger visual search load effect was 

also strongly associated with better WM accuracy overall (r = .75, p < .001). To better 

characterize this association, we examined correlations between normalized visual search 

RT and WM accuracy at each search difficulty level (Figure 2e). When the search series was 

easy, faster search performance was associated with better memory, r = –.73, p < .001. When 

the search series was harder, however, the pattern was reversed: instead, slower search RT 
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was associated with better memory accuracy, r = .65, p < .001. This pattern might emerge if 

the current visual search load were to impact the WM maintenance strategy that would most 

benefit WM performance. For instance, when the intervening visual task is hard and cannot 

be completed quickly, it may benefit WM maintenance to alternate attention between visual 

searching and refreshing the WM content (which would extend the search time). When the 

search is easier, however, it may be most effective to complete is as quickly as possible and 

then turn to WM maintenance processes. Thus, while harder visual search did not reduce 

WM accuracy overall, performance on the visual search task component was strongly related 

to WM performance both across the entire task (Figure 2e) and on a trial-by-trial basis. We 

next examined how these simultaneous WM and visual attention demands are reflected in 

neural measures.

Mass-univariate fMRI Results

We initially conducted mean signal intensity-based analyses to localize areas that respond to 

attentional task load, and may reflect competition between internal and external task 

demands. First we identified regions that displayed a main effect of the external (visual 

search) attentional load, during the search sequence (Figure 3a; all whole-brain FDR-

corrected, p < .05). These encompassed a large bilateral network of frontal, parietal, and 

occipital cortical regions that are considered part of a “cognitive control network” and are 

typically engaged when task demands are high (Bertolero, Yeo, & D’Esposito, 2015; 

Niendam et al., 2012; Power & Petersen, 2013), as well as the cerebellum, thalamus and 

basal ganglia. Thus, both visual search behavior and univariate neural measures were highly 

responsive to the external (visual attentional) load manipulation.

While we observed no main effect of WM load (during completion of the search task), there 

was a robust interaction between visual search and WM demands (Figure 3b). Lateral 

prefrontal, parietal, posterior temporal (around the temporo-parietal junction [TPJ]) and 

cerebellar clusters were sensitive to the combination of load in both the internal and external 

domains. Unthresholded t-maps for both main and interaction effects are available online 

(http://neurovault.org/collections/AZELKTWQ/). As illustrated with beta values extracted 

from ROIs centered on local maxima of the interaction (Figure 3b), the magnitude of the 

response to search difficulty was dramatically magnified when WM load was high as well. 

Notably, rather than an activation increase with each increasing level of task demand, the 

heightened response to WM load during the harder visual search was reversed during the 

easier search. This interaction is consistent with the suggestion, from the behavioral results, 

that fundamentally different WM maintenance strategies may be employed during different 

attentional states. In sum, both the behavioral and univariate neural responses to WM load 

were impacted by concurrent visual search demands. Next we assessed the fate of distributed 

neural patterns of WM category information in the face of competition for attention by 

external stimuli.

Multivariate fMRI Results

ROI-based MVPA Results—Our primary multivariate analysis addressed (1) how the 

discriminability of WM category information evolves across the trial in face- and house-

sensitive ROIs, and (2) how that evolution is impacted by the difficulty of an intervening 
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visual task. WM category classification in the PPA (which was independently defined by 

univariate contrasts of a separate functional localizer task), displayed a u-shaped pattern 

across the trial (Figure 4a). Unsurprisingly, regardless of the search difficulty of the current 

trial, classification of the WM category was highly accurate (M = 85%) during presentation 

of the WM sample (i.e., when the stimulus was actually being perceived). Regardless of the 

difficulty condition of the visual search, WM decoding accuracy dropped after the offset of 

the WM sample. WM classification performance diverged, however, with start of the visual 

search series, depending on the attentional demands of that search sequence. When the 

search was easier, WM category classification remained above chance (S1: t(27) = 2, p = .

05). When the search was more difficult (and therefore diverting attention for a longer 

period of time), however, WM category classification dropped down to chance levels (S1: 

t(27) = −.26, p = .8), and remained at chance throughout the rest of the search series (S2: 

t(27) = −1.3, p = .2; S3: t(27) = .8, p = .4; S4: t(27) = .7, p = .5). This difference between the 

easy and hard visual search conditions with respect to chance-level decoding were also 

borne out in direct comparison between these conditions: WM category classification was 

significantly better for the easier search condition, especially early in the search series (F(1, 

27) = 4, p = .05; S1: t(27) = 1.9 , p = .07; S2: t(27) = 2.3, p = .03; Figure 4b). The 

distribution of classifier accuracies for individuals at the second search trial (when 

classification between the two conditions significantly differs) also illustrates that many 

more participants displayed highly accurate classification when the visual attention demands 

were low (Figure 4b). Thus, even in the face of persistent visual input—as well as a 

secondary task being performed on that input—category-diagnostic WM stimulus 

information was present in distributed patterns of neural activity when external visual 

attention demands were low, but not when external demands were high.

As more time passed across the visual search task, classifier performance converged to 

chance regardless of the difficulty of the search, suggesting that repeated perceptual input 

and attentional processing can eventually impede the detection of sensory WM patterns, 

even in a lower demand condition. When the probe appeared, however, WM category 

classification again increased above chance (M = 68%). A mixed-effects logistic regression 

analysis also revealed that longer visual search RTs significantly predicted worse classifier 

accuracy in PPA on a trial-by-trial basis, particularly for higher WM performers (search RT 

× WM performance interaction, p = .033). Accordingly, when we median split the group by 

behavioral WM probe performance to illustrate this result, the attention-sensitive decoding 

pattern was especially pronounced (Figure 4c). Only the higher WM performance group 

displayed more accurate WM category classification for easy versus hard search conditions 

(S2: t(13) = 2.4, p = .036), whereas the lower WM performance group displayed highly 

similar classifier performance for easy and hard search conditions across the entire trial (S2: 

t(13) = .67 p = .5). Here, we thus have evidence that the neural patterns of activity that 

convey information about the WM content are impeded—or possibly recoded in a different 

format (Olivers et al., 2011; Stokes, 2015)—when demands on visual attention are high and 

require longer processing times. While these mean differences between conditions (and 

improvement over chance performance) are modest, the classifier accuracies are consistent 

with previous decoding studies of WM category and the modulation of that classifier 

evidence via a retro-cueing (Lewis-Peacock, Drysdale, & Postle, 2014) or external magnetic 
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stimulation (Rose et al., 2016). Here, however, rather than endogenously shifting attentional 

priority within WM (e.g., in response to a retro-cue), attention was occupied by a demanding 

perceptual task.

An alternative explanation for this outcome is that, while the WM representations 

themselves remain unaltered by the search difficulty, their detection is affected by unrelated 

attentional activity within the same brain regions. While the classification preprocessing 

steps (i.e., mean-centering and scaling of classifier inputs) help to mitigate this concern, if 

this were true, we would expect the univariate response in the decoding ROI (i.e., PPA) to 

positively relate to the search load effect on decoding accuracy. While univariate activity in 

the PPA was descriptively greater during harder search difficulty, the univariate search load 

effect was in fact uncorrelated with the search-related difference in decoding accuracy (from 

the same ROI) at all search time-points (all r < .1, all p > .7). To further corroborate this null 

effect, we also conducted Bayesian correlations between the univariate and multivariate 

search load effects at each search time point, which revealed moderate Bayes factors ranging 

from 3.9 to 5.5 in favor of the null hypothesis. Thus, it is unlikely that the univariate 

response to search difficulty can explain the observed sensitivity of WM category decoding 

to the difficulty of the intervening visual task.

In the FFA, WM category classification followed a similar u-shaped pattern to that in the 

PPA, but decoding remained at chance levels, for both easy and hard search conditions, at all 

visual search time-points, for all conditions (all p > .2). That is, while stimulus category 

pattern classification was accurate during perception of the stimuli (i.e., during sample and 

probe periods), we were unable to classify the WM category from the FFA during the 

intervening visual task, in either attentional load condition. The functionally-defined FFA 

was substantially smaller than the PPA. Moreover, several prior studies that have used face 

and house WM stimuli have focused on the PPA (over the FFA) and have found better 

pattern classification, or more sensitive and behaviorally meaningful activations associated 

with “place” processing in general (Derrfuss, Ekman, Hanke, Tittgemeyer, & Fiebach, 2017; 

Gazzaley, Cooney, Rissman, & D’Esposito, 2005; G. Kim, Lewis-Peacock, Norman, & 

Turk-Browne, 2014; Lewis-Peacock & Norman, 2014; Yi, Woodman, Widders, Marois, & 

Chun, 2004). While WM recognition performance was comparable for face (87%) and house 

(85%) memory, our findings and others suggest that WM-related activity in the FFA may be 

less diagnostic than that in the PPA, at least under the kind of dual task conditions imposed 

during the visual search period in our experiment.

Searchlight MVPA Results—We also applied a searchlight procedure to identify regions 

that convey locally distributed patterns of WM category information, across the duration of 

the search sequence. Indeed, large clusters of searchlights covering the ventral 

occiptotemporal cortex classified the WM category significantly above chance (Figure 4d; 

whole-brain FDR-corrected, p < .05), even in the face of persistent visual input and 

additional attention demands. Individual searchlights were scattered across the rest of the 

brain (including frontal and parietal regions), but searchlights that classified the WM 

category above chance were overwhelmingly located in the ventral visual regions that 

typically respond to perception of stimuli from those categories (see whole-brain classifier 

accuracy map at http://neurovault.org/collections/AZELKTWQ/). We also ran two additional 
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searchlight analyses, split by the difficulty of the intervening visual search. These analyses 

halved the number of beta inputs into each classifier, and neither analysis revealed 

searchlights that passed whole-brain FDR-correction (but the spatial distribution of classifier 

performance for easy and hard visual search conditions can be examined at http://

neurovault.org/collections/AZELKTWQ/).

Discussion

Here, we tested the hypothesis that demands on visual attention should impact neural 

representations of visual WM content, based on the idea that WM maintenance occurs via 

attention-dependent recruitment of sensory cortices. We manipulated levels of both WM and 

visual search load in a dual-task paradigm, and found converging behavioral and 

neuroimaging evidence that these “internal” and “external” attentional demands impact one 

another. For one, performance on the visual search portion of the task related to recognition 

accuracy at the WM probe—both on average across participants, and on a trial-by-trial basis 

within participants—suggesting that visual search and WM maintenance are mutually reliant 

on attention. Secondly, an interaction in the univariate fMRI response in fronto-parietal 

regions indicated that the neural response to load in one domain (i.e., WM) was strongly 

influenced by the load in the other domain (i.e., visual search). Finally, the discriminability 

of multivariate patterns of WM category activity in extrastriate visual cortex (specifically 

PPA) was reduced under higher visual attentional demands, and related to the speed of 

performance of the search task, suggesting that the quality of the sensory cortical WM 

representation may be influenced by the amount of available attention during the WM 

maintenance period.

While the univariate interaction effect emerged in frontal and parietal regions that have often 

been implicated in WM and attentional processes (Constantinidis & Klingberg, 2016; Curtis 

& D’Esposito, 2003; Eriksson, Vogel, Lansner, Bergström, & Nyberg, 2015), the pattern of 

activation observed here was novel, and is consistent with the possibility that different 

combinations of attentional load demands may provoke distinct task strategies (cf. Derrfuss 

et al., 2017). That is, rather than a quantitative increase in “neural effort” (i.e., linear 

activation increases) with each increasing level of task demand, the heightened response to 

WM load during the harder visual search was reversed during easier search (Figure 3b). If 

each increasing level of load engaged fronto-parietal regions more strongly, we would have 

expected a greater response to high WM load, even when the search was easy. Instead, high 

WM load related to less activity (vs. low load) when the search was easy. Combined with the 

correlation between search RT and WM accuracy—whose direction also flips between easy 

and hard search conditions (Figure 2e)—these data suggest that a harder visual attention task 

might invoke a qualitatively different WM maintenance or cognitive control strategy than the 

one used when the secondary task is easier. This is further suggested by the 

(counterintuitively) faster WM probe recognition after harder search series, and faster visual 

search performance when two items were maintained in WM (as opposed to one). These 

findings may reflect reduced processing of distracting stimuli (and hence better 

performance) when attentional demands were high (de Fockert et al., 2001; Kim et al., 2005; 

Lavie, Hirst, de Fockert, & Viding, 2004), or may suggest that higher demands provoked 

greater engagement of cognitive control and therefore benefitted ongoing performance (Jha 
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& Kiyonaga, 2010; Waskom et al., 2014). Thus, load demands in one domain clearly impact 

performance in the other domain, and strategies for managing dual-task demands may differ 

under different load conditions.

Critically, event-related pattern classification within the PPA demonstrated the sensitivity of 

neural WM category information to visual attentional demand levels (Figure 4). Regardless 

of the difficulty condition of the visual search, WM decoding accuracy sharply declined 

during the WM delay. Most importantly, however, this reduction in decoding accuracy 

during the search sequence was more profound when the search was more time-consuming, 

even though the amount of perceptual input was matched in the easy and hard search 

conditions. The more that attention was required to complete the delay-spanning visual 

search, the more the detection of neural WM category representations in ventral visual 

cortex suffered. WM category classification was also predicted by behavioral performance 

(i.e., search RTs), suggesting that a longer time spent on the visual search task detracted 

attention from WM maintenance for longer, and WM pattern classification therefore suffered 

more. Finally, search RT also related to WM accuracy, suggesting that the amount of time 

spent on the delay-spanning task determines both the discriminability of category-diagnostic 

patterns in PPA as well as WM accuracy.

While visual attentional demands impacted the classification of the WM category 

representation, the reduction in WM category discriminability under attentional load did not 

lead to an overall deterioration in behavioral WM recognition performance. This is 

consistent with a recent finding that WM orientation decoding in visual cortex is disrupted 

by irrelevant perceptual distraction, without an impairment to task performance (Bettencourt 

& Xu, 2015). Taken together with the univariate interaction results, the data suggest that a 

visual WM representation strategy may be more feasible when attentional demands are 

lenient, but that WM content must be maintained by some other strategy when visual 

attention is concurrently taxed (Derrfuss et al., 2017; Olivers et al., 2011). These results are 

consistent with earlier indications that WM representations can be transferred into a different 

activation status to prioritize the immediately relevant task, and then restored into the focus 

of attention when they are needed to guide behavior (Kiyonaga et al., 2012; LaRocque et al., 

2012, 2016; Lewis-Peacock et al., 2012; Sprague et al., 2016), suggesting that different 

attentional states may promote distinct means of WM retention. Indeed, interest has grown 

recently in characterizing a hidden or “silent” WM coding scheme (Stokes, 2015). For 

instance, neural evidence for previously irrelevant (i.e., silent) WM items can be restored by 

external stimulation (Rose et al., 2016; Wolff et al., 2015; Wolff, Jochim, Akyürek, & 

Stokes, 2017), suggesting that this representational state may be implemented via patterned 

short-term changes in network synaptic weights (Erickson, Maramara, & Lisman, 2009; 

LaRocque et al., 2014; Stokes et al., 2013). It remains unclear, however, why and when an 

activity silent maintenance strategy is used (as opposed to persistent activity). Our findings 

raise the intriguing possibility that such a representational format—that is undetectable with 

the fMRI methods used here—might be relied upon specifically when WM information must 

be maintained in the absence of sustained attention toward the WM content.

A broad searchlight classifier also decoded the WM category during a delay-spanning series 

of visual searches, in the local patterns conveyed by clusters of voxels around the ventral 
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visual regions that typically respond to perception of the WM categories (i.e., fusiform and 

parahippocampal gyri). This result supports the notion that WM maintenance is achieved 

through activation of sensory representations and marks an informative advance in the limits 

of WM decoding. That is, prior studies have successfully decoded WM content from visual 

cortices over an unfilled delay interval (i.e., no other perceptual input; Emrich et al., 2013; 

Ester et al., 2013; Harrison & Tong, 2009; Riggall & Postle, 2012; Serences et al., 2009), 

and from superior parietal cortex over an interval that included task-irrelevant perceptual 

input (Bettencourt & Xu, 2015), leaving open the question of what happens to (sensory) 

WM representations in the face of (complex) incoming sensory signals that require attention. 

Of course, the information must be represented somehow, because it is retrieved after 

completion of the search task, but these data suggest that a visual representational format 

can still be employed, even during a concurrent visual search task.

Multivariate decoding of the WM category was consistent with expectations, but these 

results bear several further considerations. For one, WM classification in the present study 

was performed at the category level, rather than the finer-grained level of specific exemplars. 

Our decoding analysis could therefore be interpreted to reflect a more abstract representation 

of the current task, rather than the particular WM sample, per se. Recent studies, however, 

support the notion that classifier evidence in sensory and category-responsive regions does 

indeed convey item-specific information (LaRocque et al., 2016; Rose et al., 2016). A task 

with more abstract stimulus representation demands, might be expected to influence activity 

patterns in more dorsal and anterior brain regions, as opposed to visual regions (Christophel, 

Klink, Spitzer, Roelfsema, & Haynes, 2017). Moreover, the present study used all novel 

WM stimuli, whereas WM capacity and representational format may be dramatically 

impacted by stimulus familiarity and real-world relevance (Brady, Störmer, & Alvarez, 

2016; Endress & Potter, 2014). Regardless, the fact that category decoding is influenced by 

visual search difficulty serves as evidence that information about WM representation 

(whether it be abstract or specific) is affected by simultaneous attentional load. Future 

investigations should probe the specificity of distributed WM representations, and how they 

are influenced by factors like stimulus abstraction and novelty.

While many prior studies of WM decoding have used a retro-cue procedure to differentiate 

perceptual from maintenance activity, here the contributions of residual perceptual activity 

are primarily abated by decoding WM category information during a secondary perceptual 

task. That is, any perceptual activity related to the WM sample is unlikely to persist across 

exposure to a series of additional perceptual stimuli (and a delay of 12.5–15 s), supporting 

our interpretation that the decoded category information is related to WM maintenance. 

Several previous studies have already established that WM category maintenance activity for 

faces and scenes can be decoded from extrastriate visual regions (Lorenc, Lee, Chen, & 

D’Esposito, 2015; Sreenivasan, Vytlacil, et al., 2014). Our goal was instead to examine 

whether such activity patterns are sensitive to visual attentional task demands, whereby any 

potential confounds due to perceptual bleed-over would affect all task conditions equally, 

because secondary perceptual input was equated in all trial-types. An important question for 

future research will be to determine how representations of WM content are influenced by 

other demands, such as distraction from perceptually similar stimuli (cf. Gayet et al., 2017; 
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Jha, Fabian, & Aguirre, 2004; Postle, 2005; Soto, Humphreys, & Rotshtein, 2007; Yoon, 

Curtis, & D’Esposito, 2006).

A critical function of WM is to maintain information in the face of competing demands, yet 

surprisingly little is known about how such attentional demands interact with WM storage. 

The present findings suggest that attention is necessary to maintain detectable visual WM 

category representations in sensory areas, but those distributed activity patterns must not 

correspond to the sole functional substrate of WM maintenance (Bettencourt & Xu, 2015; 

Derrfuss et al., 2017; Ester et al., 2015; Lee & Baker, 2016), since the material can still be 

remembered when WM decoding falls to chance. Thus, although the quality of sensory 

multivariate evidence for a WM item has recently been taken to reflect the precision of the 

WM representation (Emrich et al., 2013; Ester et al., 2013), we must explore additional 

maintenance formats to fully understand how we are best able to juggle our internal goals 

with persistent concurrent demands for our attention.
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Figure 1. 
Behavioral task design. a) During the delay interval of a match-to-sample working memory 

(WM) task, participants completed a series of four visual searches. b) WM load conditions: 

Participants maintained either 1 or 2 face or house stimuli in WM. c) Visual search load 

conditions: Participants searched for the vertical body or tool target amongst horizontal 

(easy) or tilted (hard) distractors.
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Figure 2. 
Behavioral results. a) Mean visual search response time (RT) was faster for easy searches 

compared to hard searches, and slightly faster when 2 items were maintained in WM. b) 

Visual search accuracy was also greater for easy searches compared to hard searches. c) WM 

probe response times were faster when 1 item was maintained in WM, and faster after harder 

visual search series. d) WM probe recognition accuracy was greater for 1 item compared to 

2 item WM. e) The magnitude of the visual search RT load effect (Hard search RT – Easy 

search RT) correlated with WM probe recognition accuracy (x-axis) across participants. 

Here, individual normalized RTs are plotted separately for Easy (filled circles) and Hard 

(empty squares) search conditions (y-axis).
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Figure 3. 
Univariate fMRI results. All maps are whole-brain FDR-corrected, p < .05. a) A large 

bilateral network of frontal, parietal, occipital, and subcortical regions showed elevated 

activation for hard versus easy visual searches. b) Lateral prefrontal, parietal, and posterior 

temporal clusters were sensitive to the interaction between WM and search load levels. Beta 

values are displayed for each trial condition from ROIs surrounding local maxima of the 

interaction effect in left and right middle frontal gyrus (MFG) and superior parietal lobule 

(SPL) clusters.
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Figure 4. 
Multivariate fMRI results. A) WM category classification in parahippocampal place area 

(PPA; independently and functionally defined), at 2 s time-points across the trial. WM 

decoding accuracy for easy (grey) visual searches was better than for hard (orange) visual 

searches (grey boxes indicate time-points where the conditions significantly differ). Ribbons 

represent ± 1 SEM. C = WM cue; D = delay; S = search; P = probe. b) Open circles display 

WM category classification accuracies for each individual participant, for low (grey) and 

high (orange) attentional load, at the second visual search trial in the series. Filled black 

circles mark the mean classifier accuracy for each condition. c) WM category classification 

in PPA—same as (a)—median split by behavioral WM probe accuracy performance. d) 

Clusters of searchlights across the ventral occipitotemporal cortex classified WM category 

significantly above chance, FDR-corrected, p < .05, during the 8 s visual search sequence.
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