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Abstract

■ The dorsal attention network is consistently involved in
verbal and visual working memory (WM) tasks and has been
associated with task-related, top–down control of attention. At
the same time, WM capacity has been shown to depend on the
amount of information that can be encoded in the focus of
attention independently of top–down strategic control. We ex-
amined the role of the dorsal attention network in encoding
load and top–down memory control during WM by manipulat-
ing encoding load and memory control requirements during a
short-term probe recognition task for sequences of auditory
(digits, letters) or visual (lines, unfamiliar faces) stimuli. En-
coding load was manipulated by presenting sequences with
small or large sets of memoranda while maintaining the

amount of sensory stimuli constant. Top–down control was
manipulated by instructing participants to passively maintain
all stimuli or to selectively maintain stimuli from a predefined
category. By using ROI and searchlight multivariate analysis
strategies, we observed that the dorsal attention network en-
coded information for both load and control conditions in ver-
bal and visuospatial modalities. Decoding of load conditions
was in addition observed in modality-specific sensory cortices.
These results highlight the complexity of the role of the dorsal
attention network in WM by showing that this network sup-
ports both quantitative and qualitative aspects of attention
during WM encoding, and this is in a partially modality-specific
manner. ■

INTRODUCTION

An important characteristic of neural networks associated
with working memory (WM) tasks is their sensitivity to
WM load. This WM load sensitivity is more particularly
observed in the dorsal attention network, involving the
intraparietal cortices and the superior frontal gyri. A com-
mon assumption is that the dorsal attention network ex-
erts a role of top–down attentional control during WM
tasks by considering that higher WM load is also associated
with higher attentional control demands (e.g., Majerus
et al., 2012, 2016; Cowan et al., 2011; Postle, 2006; Corbetta
& Shulman, 2002). At the same time, the precise nature of
these attentional processes in WM remains a controversial
question. On the behavioral level, it has been shown that
WM load and attentional control account for variability in
behavior that is partly shared and partly unique to load
or control (Cowan, Fristoe, Elliott, Brunner, & Saults,
2006). The aim of this study was to clarify the role of
dorsal attention network involvement in WM by distin-
guishing nonstrategic, quantitative aspects associated with
encoding load and strategic, qualitative aspects associated
with top–down task-related attentional control.

Dorsal attention network involvement is very consis-
tently observed across WM tasks, and this across different

WM modalities, such as verbal, visuospatial, motor, and
tactile modalities (Konoike et al., 2015; Savini, Brunetti,
Babiloni, & Ferretti, 2012; Cowan et al., 2011; Majerus
et al., 2010; Todd & Marois, 2004). A critical element is
that increased activity in this network is typically ob-
served for high load WM conditions, with no or minimal
activity for low load WM conditions (Majerus et al., 2012;
Ravizza, Delgado, Chein, Becker, & Fiez, 2004; Todd &
Marois, 2004). This load dependency does not appear
to be directly related to the storage of memoranda. Riggall
and Postle (2012) observed that, despite showing load-
related elevated activity, neural patterns in posterior
parietal/intraparietal cortices of the dorsal attention
network could not discriminate the different stimuli that
had to be maintained in a WM task, whereas this discrim-
ination was possible for neural patterns in sensory corti-
ces, which, however, did not show elevated brain activity.
Hence, the dorsal attention network does not appear to
support the representation of memoranda as such. At the
same time, Riggall and Postle showed that frontal and pos-
terior parietal cortex encoded information about trial-
specific instructions, indicating that the dorsal attention
network may exert a more general role of task-related
attentional control. This is also supported by a recent
study investigating neural patterns associated with visual
and verbal WM load. Majerus et al. (2016) observed that
neural patterns in the dorsal attention network, but not
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in sensory cortices, could predict WM load conditions be-
tween verbal and visual modalities. These results suggest
that load effects in the dorsal attention network are
associated with domain general processes.
The nature of these processes remains poorly under-

stood. The dorsal attention network has been asso-
ciated with top–down, task-related attention, which allows
to control task execution as a function of the task instruc-
tions (Shulman et al., 2009; Corbetta, Kincade, Ollinger,
McAvoy, & Shulman, 2000). In WM tasks, it has further
been shown that the dorsal attention network interacts
with the ventral attentional network involving the TPJ
and OFC, both networks showing antagonistic activity pat-
terns (Asplund, Todd, Snyder, & Marois, 2010; Shulman
et al., 2009; Corbetta et al., 2000). The ventral attention
network has been associated with bottom–up, stimulus-
driven attention supporting the attentional capture of un-
expected, distractor information (Cabeza, Ciaramelli, &
Moscovitch, 2012; Shulman et al., 2009). Several studies
documented the same phenomenon in WM tasks by
showing an increase of activity of the dorsal attention net-
work and a decrease of activity of the ventral attention net-
work, as a function of increasing WM load, in both verbal
and visuospatial domains (Majerus et al., 2012; Todd,
Fougnie, & Marois, 2005). Furthermore, when participants
are engaged in high load WM tasks and show increased
activation of the dorsal attention network, their ability to
detect task-irrelevant distractor stimuli is diminished
(Kurth et al., 2016; Majerus et al., 2012; Fougnie & Marois,
2007; Todd et al., 2005). These findings indicate that the
dorsal attention network would be mainly involved in
top–down aspects of attentional control during WM tasks.
However, existing evidence is indirect and relies on

the assumption that high WM conditions require more
top–down attentional control. Despite the similarities of
the neural phenomena observed in WM and attentional
domains, the studies conducted so far did not directly
manipulate attentional control in WM tasks, and hence
the attribution of a top–down attentional control function
to the dorsal attention network during WM tasks remains
a speculation. Critically, behavioral studies have made a
distinction between two different types of attentional in-
vestment in WM tasks. A first type reflects the top–down,
controlled attention aspect we already discussed; it is
supposed to control task execution as a function of task
requirements, including the control of task-related strat-
egies such as stimulus selection, control of encoding and
maintenance strategies, or attentional refreshing of mem-
oranda (Barrouillet, Bernardin, & Camos, 2004; Engle,
Kane, & Tuholski, 1999; Cowan, 1995). A second type
concerns a less strategic aspect of attention, although,
importantly, it is different from the bottom–up, stimulus-
driven type of attention discussed earlier. This aspect
has been termed by Cowan (1995, 2001) as the focus of
attention and reflects, within a stream of auditorily or
visually presented information, the limited amount of
stimuli we can be aware of at one time. This aspect does

not involve the implementation of top–down controlled
strategies on the stimuli but rather reflects the amount of
information that is available to attention. This attentional
load capacity is measured by presenting continuous
memory lists at a very fast pace (i.e., two to three items
per second for verbal lists), preventing participants from
implementing any controlled attentional processes, such
as attentional refreshing, stimulus elaboration and re-
grouping, or articulatory rehearsal processes, until the
moment when the list ends and retrieval is to begin (Gray
et al., 2017; Broadway & Engle, 2010; Cowan et al., 2005;
Hockey, 1973; Pollack, Johnson, & Knaff, 1959). In this
type of tasks, the amount of information participants
can recall/recognize at any time during the task is about
three or four units. This number equals also to the WM
load at which activity in the dorsal attention network
reaches an asymptote in visual array WM tasks (Todd &
Marois, 2004). At the same time, in verbal WM tasks using
standard presentation times and allowing for the imple-
mentation of top–down controlled attentional processes,
intraparietal cortex activity continues to increase up to a
load of six stimuli (Majerus et al., 2016). It follows that
dorsal attention activity in WM tasks could reflect non-
strategic attentional load aspects as theorized by the con-
cept of the focus of attention, or top–down control of
attention, or both.

A further aspect that needs to be considered is the fact
that WM load is frequently confounded with sensory
numerical aspects. When comparing high and low mem-
ory load, studies contrast stimulus sets containing a large
versus small amount of stimuli (e.g., Majerus et al., 2016).
We know from studies in the numerical domain that the
intraparietal sulci are sensitive to numerosity information
for physical objects and their univariate activation levels
change when the amount of physical stimuli presented
on the screen changes, and this even in passive viewing
tasks (Piazza, Pinel, Le Bihan, & Dehaene, 2007; Piazza,
Izard, Pinel, Le Bihan, & Dehaene, 2004). Bulthe, De
Smedt, and Op de Beeck (2015) further showed that
multivariate signals in the parietal cortex are particularly
sensitive to physical differences in numerosity (one dot
vs. five dots), rather than abstract differences of numer-
osity (the number “1” vs. the number “5”). It follows that
the univariate activity differences observed in the intra-
parietal sulcus for WM sets differing in stimulus load
may also reflect the differences in physical numerosity
and not only differences in WM load per se. Cowan
et al. (2011) aimed at controlling for this possible con-
found by presenting the same set of stimuli in high and
low conditions and by subsequently cuing only a subset
of them for further retention, and they still observed
higher left intraparietal sulcus activity for high load audi-
tory and visual WM conditions. However, in that study,
WM load was manipulated via postencoding, top–down
controlled processes preventing the investigation of non-
strategic processes involved in WM encoding load. Emrich,
Riggall, LaRocque, and Postle (2013) controlled perceptual
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load during a visual WM paradigm by presenting a fixed
number of dot patterns while varying the number of dot
patterns that were moving (one, two, or three mowing
patterns); they did not observe a load-related activity in
frontoparietal cortices during WM encoding, but load-
related differences appeared later during maintenance.

This study examined the encoding load versus top–
down memory control processes that define the inter-
vention of the dorsal attention network in WM tasks by
disentangling nonstrategic attentional load from top–
down attentional control during WM encoding while
maintaining the number of physical stimuli constant in
all conditions. The different experimental conditions all
involved the rapid presentation of stimuli, which allowed
us to control the implementation of top–down strategies
by the participants. To determine the domain generality
of the two attentional aspects targeted by this study, the
memory lists were either sequences of auditory–verbal
stimuli (letter names and digits) or sequences of visual
stimuli (lines in different geometric orientations or un-
familiar faces). In the low top–down control condition,
participants simply focused their attention on all the suc-
cessive stimuli, until a probe stimulus appeared for which
the participants had to decide whether it was part of the
memory list. In this condition, the fast presentation en-
sured that participants could not implement strategic
and controlled attentional processes. In the high top–
down control condition, participants had to selectively
focus on a specific item category (e.g., encoding of only
the digit stimuli), imposing top–down attentional control
on the encoding process; this was possible due to the
fact that digit and letter stimuli were presented in alter-
nation, and hence, participants had to orient their atten-
tion to every second unique stimulus of the sequence.
For examining the role of nonstrategic attentional load,
we manipulated the encoding load of the stimulus se-
quence, with low load conditions containing successive
stimulus repetitions reducing the amount of unique stim-
uli entering in the focus of attention by half relative to the
high load condition. This procedure ensured that the nu-
merosity of sensory events presented in high and low
load conditions was the same as the same number of
physical stimuli was presented in both load conditions;
despite the successive stimulus repetitions in the low
load condition, the stimuli remained separated at the
temporal level and hence were encoded as distinct sen-
sory events; at the same time, the successive repetition of
stimuli in the low load condition led to a reduction of en-
coding load as the redundancy of information contained
in two following identical stimuli will automatically lead
to the formation of a chunk (Mathy & Feldman, 2012),
and unique chunks define the limits of focus of attention
capacity (Cowan, 2001).

Both univariate and multivariate analysis strategies
were used. Whole-brain univariate analyses assessed dif-
ferences in regional brain activity levels between the dif-
ferent control and load conditions. If the univariate

activity level differences observed in the dorsal attention
network between high and low WM load conditions in
previous studies reflect differences in physical stimulus
numerosity, then no or strongly reduced univariate differ-
ences between high and low load/control conditions may
be found when physical stimulus numerosity is held con-
stant. Next, we used whole-brain multivariate voxel pat-
tern analyses to determine whether neural activation
patterns nevertheless encode information about the dif-
ferent load and control conditions. Although these anal-
yses are most frequently used to identify neural patterns
associated with specific stimulus categories, they have
also been shown to be informative about the type of cog-
nitive processes that are supported by specific neural
patterns (e.g., Riggall & Postle, 2012; Esterman, Chiu,
Tamber-Rosenau, & Yantis, 2009). This whole-brain multi-
variate voxel pattern analysis was followed up by an ROI
analysis to determine whether informative neural activa-
tion patterns for both the load and control manipulations
were supported by the dorsal attention network. A search-
light analysis strategy further examined whether the load
and control aspects of attention are supported exclusively
by regions that are part of the dorsal attention network or
whether they involve additional brain regions. Finally, the
domain generality of neural patterns distinguishing load
and control aspects of attention was assessed by conduc-
ting between-domain predictions (from auditory–verbal
to visual and from visual to auditory–verbal modalities) of
load and control conditions.

METHODS

Participants

Valid data were obtained for 26 right-handed native
French-speaking young adults (14 men; mean age =
23.12 years, age range 20–33) recruited from the univer-
sity community, with no history of psychological or
neurological disorders. The data of five additional partic-
ipants were discarded due to incomplete data acquisition
(four participants) or sudden head movement resulting
in volume-to-volume displacement exceeding 9 mm
and 15° (one participant). The study was approved by
the ethics committee of the Faculty of Medicine of the
University of Liège and was performed in accordance
with the ethical standards described in the Declaration
of Helsinki (1964). All participants gave their written in-
formed consent before their inclusion in the study.

Task Description

The stimulus material consisted of digits (1–9), names of
consonant letters (B, C, D, F, G, H, J, K, L, N, R, S, T, V),
unfamiliar faces (nine male faces taken from FERET data-
base; Phillips, Wechsler, Huang, and Rauss, 1998), and line
stimuli presented in different orientations (nine different
orientations). The verbal stimuli had been recorded by a
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neutral female voice and transformed to digital .wav mono
sound files (44,100 Hz sampling frequency), with a nor-
malized duration of 300 msec and a mean amplitude ap-
proximating 70 dB. The visual stimuli had a size of 397 ×
529 pixels and a resolution of 96 ppi (see Figure 1). The
stimuli were presented in continuous sequences contain-
ing 12 stimuli each, with an ISI of 50 msec; both auditory–
verbal and visual stimuli had a presentation duration of
300 msec.
For the low load condition, each stimulus was repeated

once immediately after its first presentation to diminish
the amount of different items to be maintained in the
focus of attention while ensuring that the same number
of visual stimuli was presented as in the high load condi-
tion in which every successive item was different; the
temporal separation of 50 msec between two adjacent
items ensured that repeated items were still perceived,
at the sensory level, as two successive auditory stimula-
tions (see Figure 1). For the auditory–verbal sequences,
the presentation of letters and digits was alternated within
the same sequence to allow, for the high top–down con-
trol condition, selective encoding of only one of the two
stimulus categories (see below). The same alternation also
characterized visual sequences, with a regular alternation
between line and face stimuli; again, a 50-msec black
screen separating two successive items ensured that re-
peated items were perceived as two successive sensory
events (see Figure 1).
At the beginning of each sequence, participants were

informed about the type of control (high control: stimu-
lus selection; low control: no stimulus selection) that was
required and the stimulus category they had to focus on
in the high control condition by an instruction screen dis-
played during 1500 msec before the start of the se-
quence. In the high control condition, the different
stimulus categories (letters, digits; faces, lines) were tar-
geted for an equal number of trials. During the entire

task, the background of the screen was black. An instruc-
tion “In the list?” appeared 1000 msec after the last item
of each sequence, and the participants either heard a
probe stimulus (auditory–verbal condition) or saw a
probe stimulus (visual condition), and the participants
had to decide whether the stimulus had been in the list
or not. To ensure that the participants’ responses were
based on active WM representations and not familiarity-
based recognition judgments, participants were in-
structed to respond “yes” only if they were certain about
their response. Participants pressed the response button
under their middle finger for “yes” (i.e., definitely in the
list) and the button under their index finger for “no.”
Nonmatching stimuli were stimuli not presented in the
list but were from the same stimulus category as the
target stimulus category. Also, given that for rapid, con-
tinuous sequence presentation paradigms, information
within the focus of attention is very quickly lost and up-
dated, the number of positive trials largely exceeded the
number of negative trials with a maximum ratio of one
negative trial for four positive trials. This procedure was
motivated by the fact that negative probes would not be
informative about the content of information held in WM;
pilot data had shown that, although recognition accuracy
is up to 90% when items from the two most recently pre-
sented serial positions are probed, performance drops
quickly to chance level for earlier serial positions.

Participants were allowed 3000 msec for giving their re-
sponse; if the participant did not respond with the given
time, a no response was recorded. After the response or
after the 3000-msec response waiting time in case of no
response, there was a fixation intertrial interval of similar
duration as the duration of the trials, ensuring proper
separation of the brain signal associated with each trial
(two successive random Gaussian distributions, a first
one being centered on a mean duration of 3000 ±
1000 msec and a second one being centered on a mean

Figure 1. Description of the
experimental design used for
the verbal and visual modalities
of the WM task. The first two
examples represent verbal
WM trials, and the two last
examples represent visual
WM trials. For each of the
two examples, the first row
represents a low encoding
load trial, and the second row
represents a high encoding
load trial. In the high control
conditions, the participants had
to selectively encode a specific
stimulus category (digits or
letters for the verbal WM trials;
faces or lines for the visual
WM trials), whereas in the
low control condition, the
participants encoded the stimuli
as they appeared.
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duration of 5500 ± 1100 msec, amounting to a total
mean duration of 8500 msec). Finally, baseline trials, con-
trolling for basic sensorimotor and decision processes
involved in the tasks were also presented. They had the
same structure as the experimental trials, except that
they consisted in the continuous repetition of a single
stimulus, and during the response stage, a perceptually
identical or an acoustically reversed/contrast-reversed
stimulus was presented; participants simply had to judge
the perceptual “normality” of the probe stimulus relative
to the standard presentation of the stimuli across the
task.

For each stimulus modality, there were 20 trials for
each of the four cells resulting from the crossing of the
different conditions (low load–low control, low load–
high control, high load–low control, high load–high con-
trol), as well as 20 baseline trials. The auditory–verbal and
visual trials were presented in two different sessions on
the same day, and the order of the sessions was randomly
assigned to participants; the two sessions were separated
by the acquisition of a T1 structural brain scan (see below).
This allowed us to make between-modality predictions of
load and control conditions based on independent data
sets. Furthermore, participants completed a practice ses-
sion for both verbal and visual trials outside the scanner
before the start of the experiment to ensure that par-
ticipants had understood the difference between the
high and low control instructions and complied to task
requirements.

MRI Acquisition

The experiments were carried out on a 3-T whole-body
scanner (Prisma, Siemens Medical Solutions, Erlangen,
Germany) operated with a standard transmit–receive quad-
rature head coil. fMRI data were acquired using a T2*-
weighted gradient-echo EPI sequence with the following
parameters: repetition time (TR) = 1830 msec, echo time
(TE) = 30 msec, field of view (FOV) = 192 × 192 mm2,
64 × 64 matrix, 30 axial slices, voxel size 3 × 3 × 3 mm3,
and 25% interslice gap to cover most of the brain. The
four initial volumes were discarded to avoid T1 satura-
tion effects. Field maps were generated from a double
echo gradient-recalled sequence (TR = 634 msec, TE =
10.00 msec and 12.46 msec, FOV = 192 × 192 mm2,
64 × 64 matrix, 40 transverse slices with 3 mm thickness
and 25% gap, flip angle = 90°, bandwidth = 260 Hz/pixel)
and used to correct echo-planar images for geometric dis-
tortion due to field inhomogeneities. A high-resolution
T1-weighted magnetization-prepared rapid gradient echo
image was acquired for anatomical reference (TR =
1900 msec, TE = 2.19 msec, inversion time = 900 msec,
FOV 256 × 240 mm2, matrix size 256 × 240 × 176, voxel
size 1 × 1 × 1 mm3). For the auditory WM task, between
936 and 1032 functional volumes were obtained, and for
the visual WM task, between 926 and 1006 functional vol-
umes were obtained. Head movement was minimized by

restraining the participant’s head using a vacuum cushion.
Stimuli were displayed on a screen positioned at the rear
of the scanner, which the participant could comfortably
see through a mirror mounted on the head coil.

fMRI Analyses

Image Preprocessing

Data were preprocessed and analyzed using SPM12 soft-
ware (version 12.0; Wellcome Department of Imaging
Neuroscience, www.fil.ion.ucl.ac.uk/spm) implemented
in MATLAB (Mathworks Inc., Natick, MA) for univariate
analyses. EPI time series were corrected for motion and
distortion with “Realign and Unwarp” (Andersson, Hutton,
Ashburner, Turner, & Friston, 2001) using the generated
field map together with the FieldMap toolbox (Hutton
et al., 2002) provided in SPM12. A mean realigned func-
tional image was then calculated by averaging all the rea-
ligned and unwarped functional scans and the structural
T1-image was coregistered to this mean functional image
(rigid body transformation optimized to maximize the nor-
malized mutual information between the two images).
The mapping from subject to Montreal Neurological In-
stitute space was estimated from the structural image
with the “unified segmentation” approach (Ashburner
& Friston, 2005). The warping parameters were then sep-
arately applied to the functional and structural images to
produce normalized images of resolution 2 × 2 × 2 mm3

and 1 × 1 × 1 mm3, respectively. Finally the warped func-
tional images were spatially smoothed with a Gaussian
kernel of 4 mm FWHM to improve signal-to-noise ratio
while preserving the underlying spatial distribution
(Schrouff, Kussé, Wehenkel, Maquet, & Phillips, 2012);
this smoothing also diminishes the impact residual head
motion can have on MVPA performance, even after head
motion correction (Gardumi et al., 2012).

Univariate Analyses

Univariate analyses first assessed brain activity levels asso-
ciated with attentional control and load manipulations in
the verbal and visual WM tasks. For each participant,
brain responses were estimated at each voxel, using a gen-
eral linear model with event-related and epoch-related
regressors. For each WM task (session), the design matrix
contained four regressors modeling the encoding phase
with two regressors for the control conditions (high, low)
and two regressors for the load conditions (high, low); an
additional regressor modeled the response phase. The
sensory and motor control trials were modeled implicitly.
The regressors resulted from the convolution of the
onset and duration parameters for each event of interest
with a canonical hemodynamic response function. The
design matrixes for each session also included the
session-specific realignment parameters to account for
any residual movement-related effect. A high-pass filter
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was implemented using a cutoff period of 128 sec to re-
move the low-frequency drifts from the time series. Serial
autocorrelations were estimated with a restricted maximum
likelihood algorithm with an autoregressive model of order
1 (+white noise). For each design matrix, linear contrasts
were defined for the two attentional control conditions and
the two attentional load conditions. For each task, the re-
sulting contrast images, after additional smoothing by 6 mm
FHWM, were entered in a second-level, random effect
ANOVA analysis to assess control and load responsive brain
areas at the group level. The additional smoothing was
implemented to reduce noise due to intersubject differ-
ences in anatomical variability and to reach a more con-
ventional filter level for group-based univariate analyses
(

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
42 þ 62
� �q

¼ 7:21mm; Mikl et al., 2008).

Multivariate Analyses

Multivariate analyses were conducted using PRoNTo, a
pattern recognition toolbox for neuroimaging (www.
mlnl.cs.ucl.ac.uk/pronto; Schrouff et al., 2013). They
were used to determine the voxel patterns discriminating
between the different control and load trials at an individual
subject level. We trained classifiers to distinguish whole-
brain voxel activation patterns associated with high versus
low control and with high versus low load in the pre-
processed and 4-mm smoothed functional images for
the verbal and visual WM encoding events separately,
using a binary support vector machine (Burges, 1998).
For within WM modality classifications of control and
load conditions, a leave-one-block-out cross-validation
procedure was used. For cross WM modality predictions
of load and control conditions, a leave-one-run-out cross-
validation procedure was used, resulting in training the
classifier on one modality and testing the classifier on
the other modality. At the individual level, classifier perfor-
mance was assessed by running permutation tests on indi-
vidual balanced classification accuracies (Npermutation =
1000, p < .05). At the group level, classifier performance
was tested by comparing the group-level distribution of
classification accuracies to a chance-level distribution using
Bayesian one sample t tests; Bayesian statistics were used
given their robustness in case of small-to-moderate sample
sizes and nonnormal distributions (Moore, Reise, Depaoli,
& Haviland, 2015) and because, with these analyses, the
bias toward accepting or rejecting the null hypothesis does
not change with sample size. Furthermore, Bayesian statis-
tics assess evidence for a model under investigation in the
light of the data, whereas group-level classical t tests make
population-level inferences; population-level inferences
using a classical t test have been shown to be problematic
when comparing classification accuracies against chance-
level (Allefeld, Gorgen, & Haynes, 2016). A Bayesian factor
(BF10) greater than 3 was considered as providing moder-
ate evidence in favor of above-level classification accuracy,
a BF10 greater than 10 as providing strong evidence, a BF10
greater than 30 as providing very strong evidence, and

BF10 greater than 100 as providing decisive evidence
(Lee & Wagenmakers, 2013). A BF10 smaller than the re-
ciprocal of each number (<1/3, <1/10, <1/30, and <1/
100) serves as commensurate evidence favoring the null,
a conclusion that could not be drawn using null hypothe-
sis statistical testing. Note that a Bayesian analysis ap-
proach was also used to assess group-level behavioral
performance by using Bayesian ANOVA. A standard mask
removing voxels outside the brain was applied to all images,
and all models included timing parameters for hemody-
namic response function delay (5 sec) and hemodynamic
response function overlap (5 sec), ensuring that stimuli
from different categories falling within the same 5 sec
were excluded (Schrouff et al., 2013). The whole-brain
multivariate analyses were followed up by ROI analyses
to determine the role of the frontoparietal cortices of
the dorsal attention network in the discrimination of the
different load and control conditions (see the Results
section for more details).

Finally, in addition to the ROI analyses, a searchlight
decoding approach was used to determine the local spatial
distribution of the voxels that discriminate between the
different conditions (Kriegeskorte, Goebel, & Bandettini,
2006). A searchlight sphere of 10 mm was applied on
the whole-brain multivariate feature map, and the classifi-
cation accuracy of each voxel cluster was determined,
using ad hoc code built for the Pronto toolbox and avail-
able at https://github.com/CyclotronResearchCentre/
PRoNTo_SearchLight. Significance of searchlight classifica-
tions were also assessed at both individual and group
levels, given that analyses of group-level classification accu-
racies can indicate small above-chance level classifications
as being significant while at an individual level, only few (if
any) participants may show significant classification accura-
cies. It is therefore important to also consider the preva-
lence of the effect across participants and not only the
mean classification rate of the group (Allefeld et al.,
2016). To obtain significance values for individual-level
classification accuracies, we used binomial tests indicat-
ing the classification accuracy threshold at which voxels
are significant at p < .05 according to a binomial distri-
bution (Noirhomme et al., 2014). For displaying search-
light results, a prevalence image was built on individual
searchlight classification maps summarizing the number
of individual participants for which a given voxel showed
a classification accuracy higher than the binomial signifi-
cance threshold. This led to a prevalence image indicat-
ing the proportion of participants showing significant
classification accuracies for a given voxel.

RESULTS

Behavioral Analyses

A first group-level within-subject Bayesian ANOVA assessed
the effects of Load (high, low) and Control (high, low) ma-
nipulations as well as Task modality (auditory–verbal, visual)
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on recognition accuracy (for positive trials). Specific effect
analysis showed that there was decisive evidence for the
inclusion of Load (BFInclusion = 1.57e+15) and Control
(BFInclusion = 3.22e+15) effects, whereas evidence for
the inclusion of Modality (BFInclusion = 0.85) or any of
the interactions was very low (all BFInclusion < 1.50). As
shown in Figure 2A and B, recognition accuracy was, as
expected, higher for the low versus high load condition
and for the high versus low control condition in the
auditory–verbal and visual WM tasks, respectively. The
fact that recognition accuracy was higher for the high ver-
sus low control condition confirms that participants were
able to selectively focus on target stimuli only, reducing
the overall amount of stimuli to be maintained. A further
analysis assessed response bias by calculating d 0 and C
scores (Brophy, 1986) by collapsing conditions within
each modality to obtain reliable estimates of the rejec-
tion rates for the rarely occurring negative trials (see
Methods). A Bayesian paired t test on d 0 scores in the
auditory–verbal and visual modalities showed very low
evidence for an effect of Modality, BF10 = 0.22, with d 0

values showing reliable discrimination of positive and
negative trials in both the auditory–verbal (mean =
1.80 ± 0.59) and visual (mean = 1.73 ± 0.50) modali-
ties. A Bayesian paired t test on C scores also showed

very low evidence for an effect of Modality, BF10 =
0.30, with C scores indicating an overall conservative re-
sponse criterion in the auditory–verbal (mean = 0.14 ±
0.24) and visual (mean = 0.22 ± 0.38) modalities, con-
firming that participants complied to the task instruc-
tion to accept targets only if they were certain about
their response.
An analysis of RTs for positive trials showed again very

strong evidence for the effects of Load (BFInclusion =
1508.26) and Control (BFInclusion = 3343.69), whereas all
interactions were associated with very low evidence (all
BFInclusion < 0.65); this analysis, however, also revealed
very strong evidence for a Modality effect (BFInclusion =
+∞). As shown in Figure 2C and D, RTs were faster for
the low versus high load conditions and for the high ver-
sus low control conditions, but they were also faster for
the visual versus auditory–verbal modality. The results
confirm that participants were able to implement a selec-
tive encoding strategy in the high control condition,
which led to faster access to items selectively held in
the focus of attention. The general faster RTs in the visu-
al modality are likely to reflect the temporal nature of
auditory–verbal stimuli, which can only be identified after
a sufficient portion of the acoustic signal, which unfolds
over time, has been presented: The mean difference in

Figure 2. Accuracy and RTs for performance on auditory–verbal (A, C) and visual (B, D) WM tasks. Error bars represent standard errors.
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poststimulus onset RTs (315 ± 193 msec) is indeed equiv-
alent to the duration of the acoustic signal of the auditory
probe stimulus (300 msec).

Neuroimaging—Univariate Analyses

A first set of neuroimaging analyses assessed the effects
of load and control on univariate neural activity changes
in the verbal and visual WM tasks. As expected, when
contrasting the different load and control conditions, uni-
variate analyses yielded few significant differential activity
foci in the frontoparietal, dorsal attention network of in-
terest, as shown in Table 1. The only contrast that yielded
significant between-condition activity differences was the
high versus low control contrast in the verbal WM task:
the left intraparietal sulcus, covering the horizontal seg-
ment from anterior to posterior portions (see Figure 3
and Table 1), and the left dorsolateral pFC showed in-
creased activity at pFWE_corrected < .05 (with a cluster-
forming threshold of puncorrected < .001 at the voxel level;
Eklund, Nichols, & Knutsson, 2016) for the high control
condition, in line with an involvement of the dorsal atten-
tion network in top–down attentional control. This was
paralleled by increased activity for the low control con-
dition in the bilateral fronto-orbital cortex and, at uncor-
rected levels, in the bilateral TPJ; these regions are part
of the ventral attention network involved in stimulus-
driven attention and which has been shown to be acti-
vated (or less deactivated) when task-related top–down
control is low (Majerus et al., 2012; Todd et al., 2005;
Corbetta & Shulman 2002). Finally, as shown by a conser-
vative conjunction null analysis (Friston, Penny, & Glaser,
2005) over all conditions in the verbal and visual WM
tasks (see Table 1), frontoparietal cortices defining the
dorsal attention network were strongly activated above
baseline, with activity in the intraparietal sulcus covering
the entire horizontal segment, from anterior to posterior
portions, in both hemispheres. Next, we used multivari-
ate analyses to determine to what extent neural activity
patterns allow to distinguish between the different load
and control conditions.

Neuroimaging—Whole-brain and
ROI Multivariate Analyses

A first set of multivariate analyses assessed whole-brain
within-task prediction of control and load effects for
auditory–verbal and visual WM tasks separately. We ob-
served reliable within-task prediction for both control
and load manipulations, and this for both types of WM
tasks. As shown in Figure 4 (left and middle columns),
for the verbal WM task, significant multivariate discrimina-
tion of neural patterns was observed for control conditions
in 77% of participants (mean classification accuracy = .77 ±
.10) and for load in 50% of participants (mean classification
accuracy = .70 ± .09). Similar results were observed for the

visual WM task, with significant multivariate discrimination
for control conditions in 81% of participants (mean classifi-
cation accuracy = .69 ± .08) and for load conditions in 92%
of participants (mean classification accuracy = .71 ± .07).
When performing a Bayesian t test on group-level classifica-
tion accuracies against a chance-level classification distri-
bution, decisive evidence in favor of above-chance level
classification was observed for control and load condi-
tions in both modalities (auditory–verbal WM, control:
BF10 = 3.78e+10, load: BF10 = 1.72e+8; visual WM, con-
trol: BF10 = 7.76, load = BF10 = 9.01e+10).

The whole-brain analyses were followed up by ROI
analyses, focusing on the intraparietal sulci and the supe-
rior frontal gyri that define the dorsal attention network,
as well as the dorsolateral pFC, which has also been asso-
ciated with WM load in previous studies; to increase the pre-
cision of these analyses, the intraparietal sulcus ROIs were
further segmented in anterior, middle, and posterior por-
tions (Gillebert, Mantini, Peeters, Dupont, & Vandenberghe,
2013; Gillebert et al., 2012). The ROIs were defined as
spheres with a radius of 10 mm selected from previously
published studies with the following coordinates: x =
±43, y = −40, z = 43, x = ±34, y = −49, z = 45, and
x=±26, y=−60, z= 41, for the left/right anterior, mid-
dle, and posterior intraparietal sulci, respectively; x =
−20/+26, y=−1/−2, z= 50/47 for the left/right superior
frontal gyrus; and x = −40, y = 13, z = 28 for the left
dorsolateral pFC (Majerus et al., 2012, 2016; Gillebert
et al., 2012, 2013; Asplund et al., 2010). The ROI analyses
proceeded as for the whole-brain multivariate analyses
but by limiting the feature selection to the target ROIs.
Using Bayesian one-sample t tests on classification accura-
cies for the attention control conditions in the auditory–
verbal modality, very strong evidence for group-level
above-chance discrimination was observed in the anterior
intraparietal sulcus (left: mean classification accuracy =
.64 ± .07, BF10 = 6.55e+7; right: mean classification
accuracy = .60± .07, BF10 = 78,079.40), in themiddle intra-
parietal sulcus (left: mean classification accuracy = .66 ±
.08, BF10 = 2.47e+7; right: mean classification accuracy =
.62 ± .08, BF10 = 77,084.22), in the posterior intraparietal
sulcus (left: mean classification accuracy = .58 ± .09, BF10 =
348.20; right: mean classification accuracy = .60± .09, BF10 =
3199.10), in the superior frontal gyrus (left: mean classifica-
tion accuracy = .61 ± .07, BF10 = 315,932.99; right: mean
classification accuracy = .59 ± .07, BF10 = 97,078.90), and
in the dorsolateral pFC (mean classification accuracy =
.65 ± .08, BF10 = 1.79e+7). Very similar results were ob-
served when conducting the same ROI analysis on the dis-
crimination of load conditions in the auditory–verbal
modality, with very strong evidence for group-level above-
chance discriminations in the anterior intraparietal sulcus
(left: mean classification accuracy = .57 ± .07; BF10 =
4784.00; right: mean classification accuracy = .58 ± .06,
BF10 = 10213.00), in the middle intraparietal sulcus (left:
mean classification accuracy = .56 ± .06, BF10 = 692.70;
right: mean classification accuracy = .57 ± .08, BF10 =
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Table 1. Univariate Activity Foci, as a Function of Control and Load Contrasts, as well as a Conjunction Analysis over
All Conditions

Anatomical Region Brodmann Area No. Voxels Left/Right x y z SPM {Z}-value

High > low control (auditory)

Inferior frontal gyrus 9/44 637 L −40 12 28 4.83

Intraparietal sulcus (posterior) 7 385 L −26 −60 42 4.46*

Low > high control (auditory)

OFC 10 371 B −4 60 12 4.35*

High vs. low load (auditory)

No voxel survived threshold

High vs. low control (visual)

No voxel survived threshold

High vs. low load (visual)

No voxel survived threshold

Conjunction null analysis (auditory and visual; all conditions)

Anterior cingulate 6/32 1753 B −6 14 46 >7.76

Superior frontal gyrus 6 L −28 −2 52 >7.76

6 742 R 46 0 56 7.76

R 36 0 58 7.25

Middle frontal gyrus 9 L −38 28 30 5.59

9 223 R 38 40 26 7.05

Inferior frontal gyrus/insula 47 423 L −30 26 2 >7.76

47 529 R 34 24 4 >7.76

Inferior frontal gyrus 44 L −38 18 26 5.37

44 202 R 42 12 22 >7.76

Intraparietal sulcus 7/40 4053 L −40 −40 42 7.56

L −34 −50 42 >7.76

L −28 −58 42 >7.76

7/40 766 R 50 −34 52 >7.76

R 38 −42 42 5.92

R 32 −62 42 6.00

Superior temporal gyrus 20 19 L −48 −46 12 5.32

20 222 R 56 −46 12 6.98

Caudate (head) 8 L −12 16 2 5.03

41 R 14 14 2 5.64

Cerebellum 135 L −28 −62 −28 >7.76

75 R 34 −60 −28 6.35

All regions are significant at p < .05, with voxel-level and/or cluster-level family-wise error (FWE) corrections for whole-brain volume.

*p < .05 for cluster-level FWE corrections only, with a cluster-forming threshold of puncorrected < .001 at the voxel level.
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293.96), in the posterior intraparietal sulcus (left: mean
classification accuracy = .57 ± .06, BF10 = 4549.50; right:
mean classification accuracy = .57 ± .05, BF10 =
124,050.40), in the superior frontal gyrus (left: mean
classification accuracy = .55 ± .04, BF10 = 31498.57;
right: mean classification accuracy = .55 ± .06, BF10 =
137.36), and in the dorsolateral pFC (mean classification
accuracy = .58 ± .06, BF10 = 73,285).
When applying the same ROI analyses to the visual mo-

dality, robust evidence for above-chance discrimination
of both control and load conditions was also observed
in regions of the dorsal attention network. For the con-
trol conditions, strong to very strong evidence for group-
level above-chance discrimination was observed in the
anterior intraparietal sulcus (left: mean classification ac-
curacy = .55 + .05, BF10 = 597.90; right: mean classifica-
tion accuracy = .54 ± .05, BF10 = 103.90), in the middle
intraparietal sulcus (left: mean classification accuracy =
.58 ± .06, BF10 = 87,388.90; right: mean classification ac-
curacy = .55 ± .07, BF10 = 28.61), in the posterior intra-
parietal sulcus (left: mean classification accuracy = .57 ±
.07, BF10 = 371.80; right: mean classification accuracy =
.56 ± .06, BF10 = 956.30), in the superior frontal gyrus
(left: mean classification accuracy = .56 ± .05, BF10 =
11,862.12; right: mean classification accuracy = .55 ±
.08, BF10 = 24.79), and in the dorsolateral pFC (mean
classification accuracy = .57 ± .07, BF10 = 1490.00). For
the load conditions, very strong evidence for above-chance
discriminations was observed in the left anterior intra-
parietal sulcus (left: mean classification accuracy = .56 ±
.05; BF10 = 51198.00; right: mean classification accuracy =
.56 ± .06, BF10 = 865.00), in the middle intraparietal sul-
cus (left: mean classification accuracy = .58 ± .08, BF10 =

1828.00; right: mean classification accuracy = .57 ± .07,
BF10 = 981.83), in the posterior intraparietal sulcus (left:
mean classification accuracy = .56 ± .06, BF10 = 2928.50;
right: mean classification accuracy = .57 ± .06, BF10 =
2122.40), and in the dorsolateral pFC (mean classification
accuracy = .56 ± .05, BF10 = 2277.00). Only evidence for
above-chance discrimination in the superior frontal
gyrus was inconclusive (left: mean classification accu-
racy = .52 ± .06, BF10 = 1.47; right: mean classifica-
tion accuracy = .53 ± .07, BF10 = 0.831).

Neuroimaging—Searchlight Analyses

To determine whether neural patterns in additional brain
regions outside the dorsal attention network ROIs also
contribute to differentiate the control and load condi-
tions in the auditory–verbal and visual WM modality, a
multivariate searchlight analysis was conducted. This
analysis revealed that, in addition to the intraparietal
sulci and the superior frontal gyri target areas part of
the dorsal attention network, the attentional control
conditions could also be reliably distinguished (as indi-
cated by a binomial test; see Methods for further details)
in the dorsolateral and ventrolateral pFC in up to 89% of
participants for the auditory–verbal modality and up to
77% participants for the visual modality (see Figure 5A).
When running the same analyses for the neural differen-
tiation of attentional load conditions, modality-specific
neural patterns in sensory processing areas were iden-
tified in the majority of participants (see Figure 5B).
In the auditory–verbal modality, most participants
showed discriminatory neural patterns (up to 77%) in the
superior temporal gyrus close to the auditory cortex,

Figure 3. Univariate results for
the high versus low attentional
control contrasts in the verbal
WM task, rendered on a
standard 3-D brain template
(display threshold: p < .001
uncorrected).
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reflecting the differences in auditory encoding load of the
high and low conditions. In the visual modality, most par-
ticipants (up to 77%) showed discriminatory patterns in-
volving voxels in the bilateral fusiform gyri, reflecting the

differences in visual encoding load of the high and low
load conditions. At the same time, it is important to note
that, for both modalities, neural patterns in the target
areas of the dorsal attention network still discriminated

Figure 4. Individual classification accuracies for the discrimination of attentional control conditions (first row) and for the discrimination of
attentional load conditions (second row), within verbal WM (left column) and visual WM (middle column) tasks, and across WM modalities (right
columns). The horizontal axis corresponds to subjects index. Each circle represents the balanced classification accuracy observed for a given
participant; black circles represent classification accuracies significant at p < .05 using permutation tests on individual classification accuracies. The
black continuous line indicates chance-level classifier performance.

Figure 5. Searchlight regions discriminating between high and low control conditions (A) and between high and low load conditions (B) in the
verbal (top) and visual (bottom) WM tasks. The colors indicate the prevalence of participants showing individual-level significant classification
accuracies for a searchlight region around a given voxel.
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between high and low load conditions in up to 65% (audi-
tory modality) and 70% (visual modality) of participants, in
line with the ROI analyses.

Neuroimaging—Cross-modality Predictions

Finally, we determined to what extent the neural patterns
that discriminate attentional control and attentional load
are similar in the auditory–verbal and visual WM modalities.
We conducted between-WM task whole-brain multi-
variate predictions by training classifiers to discriminate
control or load conditions in one WM modality (e.g.,
auditory–verbal) and by testing the classifiers on the data
from the other WM modality (e.g., visual). As shown in
Figure 4 (right column), individual-level cross-modality pre-
dictions were reduced relative to the equivalent within-
modality predictions and were significant in only 27%
of participants for the predictions of control conditions
(mean classification accuracy = .53 ± .05) and in 19%
of participants for the prediction of load conditions
(mean classification accuracy = .52 ± .04). Yet, Bayesian
t tests on group-level classifications indicated moderate-
to-strong evidence in favor of above-chance level discrim-
ination of control and load conditions (control: BF10 =
36.68, load: BF10 = 4.59). Given that the searchlight anal-
yses had shown that patterns in the intraparietal cortices
were sensitive to load and control conditions in both
modalities but that there were also additional modality-
specific neural patterns, we assessed whether these addi-
tional patterns could have diminished the reliability of
cross-modality predictions of load and control condi-
tions. We therefore ran an additional cross-modality
prediction analysis that was restricted to voxels in fron-
toparietal cortices of the dorsal attention network that
had been shown, in the searchlight analyses, to discrim-
inate between the different control and load conditions
in both the auditory–verbal and visual modalities. As
shown in Figure 6, these constrained between-modality
predictions led to similar results as the whole-brain
between-modality predictions, with significant cross-

modality predictions of control conditions in 38% of par-
ticipants (mean classification accuracy = .53 ± .05) and of
load conditions in 19% of participants (mean classification
accuracy = .52 ± .05). This was confirmed by group-level
analysis, showing only anecdotal-to-moderate levels of evi-
dence for above-chance level cross-modality predictions of
control and load conditions (Bayesian t tests for control,
BF10 = 4.63 and load, BF10 = 0.73).

DISCUSSION

This study examined the role of the dorsal attention net-
work in verbal and visual WM tasks by examining to what
extent this network supports attentional aspects involved
in memory load versus memory control during WM en-
coding. We observed that multivariate neural patterns
in the dorsal attention network were able to discriminate
both between the different control conditions and be-
tween the different encoding load conditions, within ver-
bal and visual WM modalities. Modality-specific neural
patterns were further observed. In the verbal modality,
neural patterns in frontotemporal cortices discriminated
between high and low control conditions, and neural pat-
terns in superior temporal cortices discriminated be-
tween high and low encoding load conditions. In the
visual modality, neural patterns in bilateral fusiform gyri
discriminated between high and low encoding load con-
ditions. Between-modality predictions of neural patterns
associated with top–down control or encoding load condi-
tions were not reliable. Finally, univariate analyses did not
show differential levels of activity in the dorsal attention net-
work as a function of load conditions, which, unlike in most
previous studies, were matched for differences in physical
stimulus numerosity.

First, the results of this study show that, although uni-
variate activity in the dorsal attention network may be at-
tributable to confounds between encoding load and the
physical numerosity of memory stimuli, multivariate activ-
ity patterns are still able to decode encoding load when

Figure 6. Individual
classification accuracies for
constrained between-modality
predictions of attentional
control conditions and for
constrained between-modality
predictions of attentional load
conditions. The horizontal axis
corresponds to subjects index.
Each circle represents the
balanced classification accuracy
observed for a given participant;
black circles represent
classification accuracies
significant at p < .05 using
permutation tests on individual
classification accuracies. The
black continuous line indicates
chance-level classifier performance.
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physical numerosity is held constant. Intraparietal cortex is
known to react to differences in numerosity, particularly
for physical differences (e.g., different visual quantities)
as opposed to abstract differences (e.g., digits symbolizing
different numerical quantities; Bulthe et al., 2015; Piazza
et al., 2004, 2007). In this study, the sensory events were
matched in high and low load conditions as the number of
temporally/visually separated physical stimuli was the
same in both conditions. Our findings partially mirror
the results of a study by Emrich et al. (2013), in which
the numerosity of visual stimuli was also held constant
(three dot patterns) while varying memory load (one,
two, or three dot patterns with movements): Univariate
load effects in the frontoparietal cortices did not appear
during the encoding WM phase. However, these effects ap-
peared later during the maintenance delay period; the na-
ture of these univariate effects still needs to be clarified, as
theymay reflect load effects in nonstrategic maintenance of
information in the focus of attention and/or top–down con-
trol processes involved in structuring and reviewing vari-
able amounts of memoranda during the delay period.
Moreover, it could be argued that the fast and continuous
presentation of stimuli used in this study may have led to
saturation effects in the hemodynamic signal, occulting
possible univariate load effects during encoding; however,
in that case, no univariate differences should have been ob-
served for any contrast, which is contradicted by the obser-
vation of univariate differences for the control conditions
at least in the auditory–verbal modality. In summary, our
results indicate that, although differences in perceptual
numerosity may be a confound for univariate load effects
observed in previous studies at least during encoding, en-
coding load is still represented by multivariate activity pat-
terns within the dorsal attention network after control of
perceptual numerosity.

The second finding of this study is that two different
aspects of attention are represented by activity patterns
in the dorsal attention network during WM encoding.
We showed that the dorsal attention network, known
to be sensitive to WM load, does not only reflect top–
down attentional control. Rather, our study shows that
the dorsal attention network represents both the amount
of items in the focus of attention (as reflected by encod-
ing load) and task-related top–down attentional control (as
reflected by the type of items that needs to be selected for
retention), in line with WM accounts in which attentional
control coexists with attention used for WM storage (e.g.,
D’Esposito & Postle, 2015; Cowan et al., 2006; Cowan,
1988). This is a critical finding, as previous studies have
attributed the intervention of the dorsal attention network
during WM tasks implicitly or explicitly to top–down, task-
related attentional control mechanisms (Majerus et al.,
2012; Riggall & Postle, 2012; Todd et al., 2005; Todd &
Marois, 2004).

It is important to note here that the neural classifiers of
encoding load and top–down control conditions were in-
dependent of each other while involving the same sets of

images: Classifiers discriminating top–down control con-
ditions were trained and tested on both high and low en-
coding load trials for each control condition and hence
could not reflect encoding load-related neural differences
as these differences were matched within the high and
low control conditions. The same was the case for the
classifiers discriminating encoding load, which were
trained and tested on both high and low top–down con-
trol conditions for each load condition. Furthermore, in
the verbal modality, univariate analyses revealed an in-
crease of activation for the high control condition, despite
that this condition led to lower WM load as a consequence
of the top–down, selective encoding strategy requiring the
subject to focus on only a subset of stimuli. If the atten-
tional control factor merely reflected a load factor, then
univariate analyses should have shown diminished activity
for the high control condition, given that low load is typ-
ically associated with decreased posterior parietal cortex
activity (Majerus et al., 2012, 2016; Cowan et al., 2011;
Ravizza et al., 2004; Todd & Marois, 2004).
A further important observation of this study is that,

although the control and load manipulations led to sim-
ilar behavioral and neural effects, there were important
modality-specific findings, indicating that the two atten-
tional processes identified here may be less domain-
general than previously suggested (Majerus et al., 2016;
Cowan et al., 2011). First, the manipulation of control
was associated, specifically in the verbal modality, with
neural patterns in a wide-spread, left-hemisphere domi-
nant frontotemporal network, involving the inferior
pFC, the supramarginal gyrus, and the temporo-occipital
cortices. The regions of this network are known to sup-
port controlled phonological and orthographic segmen-
tation and comparison processes (Deng, Chou, Ding,
Peng, & Booth, 2011; Booth, Mehdiratta, Burman, &
Bitan, 2008); these processes may have allowed partici-
pants, in the auditory–verbal high control condition, to
segment the incoming speech stream and explicitly
compare the segmented stimuli to the target stimulus
category defined by both phonological and orthographic
characteristics. This may also have included attempts at
rehearsing the target stimuli in the high control condi-
tion (as each target stimulus is followed by a nontarget
stimulus, which can be actively ignored, leaving some
small room for verbal rehearsal); in the low control con-
ditions, this strategy is indeed very unlikely as verbal re-
hearsal in standard running span conditions, which come
closest to the low control trials used in this study, is
known to be very difficult to implement and even
worsens performance (Bhatarah, Ward, Smith, & Hayes,
2009; Hockey, 1973). Further modality-specific results
were observed for the load conditions. Modality-specific
sensory cortices in superior temporal cortices encoded
information about auditory–verbal encoding load, in line
with differences in the richness of acoustic, phonetic, and
phonological features between the two auditory–verbal
load conditions. The posterior superior temporal cortex is
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known to support phonetic and phonological aspects of
input, bottom–up speech processing (Skeide & Friederici,
2016; Rauschecker & Scott, 2009). Similarly, for visual
encoding load conditions, a broad set of voxels in bilateral
fusiform gyri discriminated between high and low visual en-
coding load, reflecting the differences in the visual richness
of the sequences to be encoded. Bilateral fusiform cortices
are known to be sensitive to sensory features associated
with faces, and posterior occipitotemporal cortex has been
shown to be sensitive to line orientation (Guntupalli,
Wheeler, & Gobbini, 2017; Sneve, Sreenivasan, Alnaes,
Endestad, & Magnussen, 2015; Sneve, Alnaes, Endestad,
Greenlee, & Magnussen, 2012; Rossion et al., 2003).
Moreover, even when restricting between-modality pre-
dictions of top–down control conditions to regions of
the dorsal attention network that had been shown to
be informative about control conditions in both verbal
and visual conditions, no reliable between-modality pre-
diction of attentional conditions was observed. These re-
sults suggest that, despite a common involvement of
neural patterns in the dorsal attention network, the way
attentional control and load are processed in this net-
work differs between auditory–verbal and visual modali-
ties. For the control manipulations, it could be argued
that verbal stimulus categories (such as digits and letters)
aremore difficult to distinguish than visual stimulus catego-
ries (such as faces versus lines), requiring more attentional
control for distinguishing the two stimulus categories,
which could also explain the univariate differences we ob-
served for high versus low top–down control conditions in
the auditory–verbal but not the visual modality. At the
same time, in this study, this did not have any conse-
quences on overall task performance, as there was no evi-
dence for modality effects or any modality-by-condition
interaction on performance accuracy levels.
At first hand, these results appear to contradict those

of previous studies claiming domain-general recruitment
of the dorsal attention network as a function of WM load
(Majerus et al., 2016; Cowan et al., 2011; Ravizza et al.,
2004). Majerus et al. (2016) observed cross-modality de-
coding within the dorsal attention network of WM load
for verbal (letters) and visual (colored squares) stimulus
sets increasing from two to six stimuli, whereas in this
study neither encoding load or top–down control led
to reliable between-modality predictions. These contra-
dictory results could however be reconciled if we exam-
ine the concept of saliency or priority maps that has been
recently proposed. Intraparietal cortices have been con-
sidered to establish and maintain saliency or priority
maps, resulting from bottom–up and top–down prioriti-
zation processes. Saliency or priority maps encode infor-
mation about the type of stimuli that are salient as a
function of a given (task) context (Chelazzi et al., 2014;
Gillebert et al., 2013; Bisley & Goldberg, 2010; Gottlieb,
2007). If we analyze the attentional manipulations in this
study in terms of these saliency maps, no cross-domain
decoding of the different attentional conditions would

be expected, given that information that is becoming pri-
oritized in the different control and load conditions is
clearly different for auditory and visual tasks. By contrast,
in studies manipulating WM load across verbal and visual
modalities by simply varying the number of stimuli pre-
sented in a given load condition, the number of stimuli
within each load condition may become an important,
common salient information in both modalities; hence,
reliable cross-modality decoding of WM load, as ob-
served by Majerus et al. (2016), could be expected in
this specific case, particularly when both verbal and
visual stimuli are presented visually.

To conclude, this study shows that multivariate neural
activity patterns in the dorsal attention network during
WM do not only represent top–down attentional control
aspects but also nonstrategic attentional aspects involved
in memory encoding. Nonstrategic aspects of attention
reflect the quantity of information in the focus of atten-
tion. Top–down controlled attention determines the
quality of WM representations and directs the focus of
attention to target information in a strategic, task-related
manner. These attentional functions are supported by
the dorsal attention network in both verbal and visual
modalities, but their implementation further requires
modality-specific neural processes. This study highlights
the complexity of the attentional processes that charac-
terize the recruitment of the dorsal attention network
in WM tasks. Given that this study focused on WM encod-
ing, further studies need to determine the extent to
which the different aspects of attention identified in this
study also characterize the intervention of the dorsal
attention network during WM maintenance and retrieval
stages.
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