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Abstract

The human brain constantly anticipates the future based on memories of the past. Encountering a 

familiar situation reactivates memory of previous encounters which can trigger a prediction of 

what comes next to facilitate responsiveness. However, a prediction error can lead to pruning of 

the offending memory, a process that weakens its representation in the brain and leads to 

forgetting. Our goal in this study was to evaluate whether memories are spared from such pruning 

in situations that allow for accurate predictions at the categorical level despite prediction errors at 

the item level. Participants viewed a sequence of objects, some of which reappeared multiple times 

(“cues”), followed always by novel items. Half of the cues were followed by new items from 

different (unpredictable) categories, while others were followed by new items from a single 

(predictable) category. Pattern classification of fMRI data was used to identify category-specific 

predictions after each cue. Pruning was observed only in unpredictable contexts, while encoding of 

new items was less robust in predictable contexts. These findings demonstrate that how associative 

memories are updated is influenced by the reliability of abstract-level predictions in familiar 

contexts.

Introduction

What is past is prologue: similar to the function of autocomplete software on a smartphone, 

the brain learns from statistical patterns across time to generate expectations that guide 

future behavior. This process is essential for most of our fundamental abilities including 

language, perception, action, and memory. It is accomplished in part by domain-general 

implicit learning mechanisms – alternatively referred to as ‘statistical learning’ (Perruchet & 

Pacton, 2006; Turk-Browne, Jungé, & Scholl, 2005; Turk-Browne & Scholl, 2009) – that 

allow us to acquire long-term knowledge about the statistical structure of the world (Kóbor, 

Janacsek, Takács, & Nemeth, 2017; Romano, Howard Jr, & Howard, 2010). Studies of 

visual statistical learning have shown that observers can implicitly learn subtle statistical 

relationships between visual stimuli in both time (Fiser & Aslin, 2002; Fiser, Scholl, & 

Aslin, 2007; Schapiro, Kustner, & Turk-Browne, 2012) and space (Chun & Jiang, 1998; 
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Fiser & Aslin, 2001; Preston & Gabrieli, 2008; Turk-Browne & Scholl, 2009). Knowledge 

of these statistics can build up expectations that trigger predictions about upcoming 

perceptual events (Turk-Browne, Scholl, Johnson, & Chun, 2010). In some situations, these 

predictions may be stimulus-specific (Conway & Christiansen, 2006), and in others they 

may be more abstract, for example, operating at a categorical level that relies on existing 

conceptual knowledge (Brady & Oliva, 2008).

An advantage of predicting upcoming events is to support fast and adaptive responding to 

the environment when those predictions are accurate. However, prediction errors (Pagnoni, 

Zink, Montague, & Berns, 2002; Schultz & Dickinson, 2000) also serve an adaptive role by 

“pruning” the memories that produced those errors, thereby reducing the likelihood of 

similar errors in the future. Memory pruning is an error-driven learning process in which 

memories that trigger mispredictions are weakened via competitive neural dynamics (Kim, 

Lewis-Peacock, Norman, & Turk-Browne, 2014; Kim, Norman, & Turk-Browne, 2017). 

Prediction error may not always lead to pruning, however. For example, the fidelity of 

reactivated predictions is graded, and pruning is most likely for items that are moderately, 

but not strongly reactivated (Kim et al., 2014). When reactivated predictions don’t get 

pruned, they may instead become integrated with the new event (Morton, Sherrill, & 

Preston, 2017; Preston & Eichenbaum, 2013; Schlichting & Frankland, 2017; Schlichting, 

Mumford, & Preston, 2015; Schlichting & Preston, 2015; Zeithamova, Dominick, & 

Preston, 2012; Zeithamova, Schlichting, & Preston, 2012). Importantly, it is unclear why 

certain memories are pruned and others are integrated. Therefore, a central goal of this study 

was to evaluate how the predictability of events influences memory updating.

To date, memory pruning has been studied only in unpredictable situations that consistently 

generate prediction errors. It is unknown how pruning operates in more predictable 

situations. Our experiences often contain hidden statistical structure that can be learned and 

generalized to new events. For example, existing semantic knowledge of the world can be 

used to link conceptually related episodic events across time to form situation-specific 

“schemas” to guide future behavior (Ghosh & Gilboa, 2014; Preston, Molitor, Pudhiyidath, 

& Schlichting, 2017; Tse et al., 2007; van Kesteren, Rijpkema, Ruiter, & Fernández, 2010; 

van Kesteren, Ruiter, Fernández, & Henson, 2012). If every time you walk to your 

neighborhood park you encounter a new dog, you may come to form a schema that parks are 

associated with the presence of dogs. Such a schema would allow for future predictions at an 

abstract level, but not for item-specific details (e.g., “I expect to see some dog at this park” 

but not “I expect to see that fluffy poodle named Ruby at this park”). More generally, if 

certain items in a sequence of events are always followed by the same category of item, this 

should allow for more abstract, categorical-based statistical learning and prediction (Brady 

& Oliva, 2008). Over time the brain will adapt to the predictability of these category 

exemplars and as a result build expectations about a category rather than any specific item 

(Brown & Braver, 2005; den Ouden, Friston, Daw, McIntosh, & Stephan, 2009).

In this study, we manipulated the predictability of images in different temporal contexts and 

evaluated the impact on subsequent recognition memory for those images. A context where 

it is difficult to predict which items will appear next should produce item-level prediction 

errors. This context should lead to pruning of the mispredicted items, and it could also be 
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associated with strong encoding of new items because their predictive relationship with the 

environment is still being learned (Dayan, Kakade, & Montague, 2000). Alternatively, a 

context that allows for accurate categorical predictions should lead to less pruning of item-

specific representations. As predictions shift to the category level, the specific items would 

no longer be predicted and therefore their neural representations would not be susceptible to 

the pruning process. However, the predictability of this context may come at the expense of 

detailed stimulus processing, thus leading to weaker encoding of new items (see Rommers & 

Federmeier, 2018).

To test these ideas, we presented participants with a continuous sequence of visual object 

presentations. In this incidental encoding task, observers made subcategory judgments about 

each object in the sequence, and memory for these items was tested later with a surprise 

item-recognition memory test. As a hidden rule, certain items (“cues”) appeared four times 

across the experiment, and all other items appeared only once. To manipulate the reliability 

of predictions generated by the cues, half of the cues were followed by items from different 
categories across repetitions (unpredictable context), and the other half of cues were 

followed by items from the same category (predictable context). Functional MRI (fMRI) 

data was collected during this encoding task, and in a separate functional localizer task, and 

we used multivoxel pattern analysis (MVPA; Haxby et al., 2014; Haynes & Rees, 2006; 

Lewis-Peacock & Norman, 2014a; Norman et al., 2006) to quantify the perception of each 

stimulus, and to covertly measure the automatic prediction of items following the 

reappearance of the cues. These trial-by-trial neural measures were then linked to item-

recognition performance on the subsequent memory test. Memory pruning was evaluated at 

each cue repetition by assessing the relationship between neural evidence of prediction of 

previous items and their subsequent memory strength, whereas encoding strength was 

evaluated by assessing the relationship between neural evidence of perception of new items 

and their subsequent memory strength.

METHODS

Participants.

Thirty healthy young adults (13 male; age, M = 22 yr, SD = 3.48, all right-handed) were 

recruited from the student body and campus community of the University of Texas at Austin 

to participate in the neuroimaging experiment. Five participants were excluded due to low 

classifier accuracy in the localizer task (5 SEM below the mean), which was an a priori 

criterion for applying the classifiers to the encoding data. Three more participants were 

excluded due to low recognition accuracy (10 SEM below the mean), resulting in final 

sample size of n = 22. Twenty-four additional participants (13 male; age, M = 23.29y, SD = 

4.81, left-handed = 1) were recruited for a behavior-only version of the experiment. All 

participants had normal or corrected-to-normal vision. The study was approved by the 

University of Texas at Austin Institutional Review Board and informed consent was obtained 

from all participants.
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Stimuli.

Colored pictures of common objects were used for this experiment. They were selected from 

six categories (with two subcategories each): famous faces (female/male), famous scenes 

(manmade/natural), animals (land/non-land), food (cooked/uncooked), tools (power/non-

power), and vehicles (land/non-land). Object images were obtained from various resources 

(Morton, Zippi, & Preston, in prep.) including Bank of standardized stimuli (Brodeur, 

Guérard, & Bouras, 2014), and Google Images.

Procedure.

The experiment proceeded in three tasks: incidental encoding, functional localizer, and 

subsequent recognition memory test. FMRI brain data was acquired for the encoding task (6 

runs, 335s/run) and the localizer task (2 runs, 513s/run) (N = 22, Figure 1A). Participants 

performed the subsequent recognition memory test either after the localizer (outside the 

scanner, n = 14) or before the localizer (in the scanner, n = 8). For behavior-only participants 

(N = 24), encoding and recognition phases were conducted sequentially.

Incidental encoding task: Participants were shown a steady stream of images, one at a 

time, for the purpose of incidental encoding for a surprise subsequent memory task at the 

end of the experiment. There were three types of trials – cue, item, and non-paired item – 

across two conditions (congruent/incongruent) and four positions (1st/2nd/3rd/4th for each 

pair). In the stream, a cue was associated with an item as a cue-item pair in hidden 

sequences. Each cue was associated with four different items, which made four cue-item 

pairs as one set. For half of the cues, all items were selected from a single category 

(congruent condition). For the other half of the cues, the items were selected from a new 

category each time (incongruent condition). There were 24 sets (96 total cue-item pairs) for 

each condition, and 96 non-paired items that were not part of a set and never directly 

followed a cue. The pairs from a given set were not adjacent but appeared intermingled with 

other sets and non-paired items (mean lag between pairs = 8 trials) within a single run. All 

cues appeared four times, and all other items appeared only once. In each run (80 trials), 

there were four sets for both conditions and 16 non-paired items. Across all six runs (480 

trials total), the categories (e.g., animal, food, etc.) and subcategories (e.g., land/non-land, 

cooked/uncooked, etc.) of items and non-paired items were counter-balanced.

As a cover task, participants were asked to make a subcategory judgment for each image 

using one of two buttons on a 4-button box (in the scanner) or on a keyboard (outside the 

scanner). The category and subcategory of the stimulus were randomized across trials, and 

therefore participants were required to constantly update their response mappings. To 

facilitate performance, we provided the two subcategory options for each stimulus (e.g., 

female/male for faces), which required different responses for the same category. On a trial, 

the stimulus displayed for 1 s on a white background box (visual angle: 21.8° × 21.8°), with 

empty feedback circles and text underneath the image displaying the subcategory choices, 

during which participants had to make a response. When the stimulus disappeared, a blank 

white box remained with feedback circles underneath, in which one of the circles was 

colored for 1 s based on performance (green: correct, red: incorrect, yellow: missed). The 

inter-trial interval (ITI) was pseudo-randomly jittered at 2, 3, or 4 s, and there was no 
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systematic bias of ITI distributions across conditions and positions for both cues and items 

(two-way ANOVA, Fs(3, 63) < 1.33, Ps > .272). Moreover, there was no significant effect of 

jittered ITI on subsequent memory (one-way ANOVA, F(2, 42) = 0.73, P = 0.490).

Either faces or scenes, but not both, were used as cue stimuli for each participant (N = 13/22 

fMRI, and N = 12/24 behavioral participants had face cues). The non-selected category was 

not used for the encoding task for that participant. We isolated these two categories as cues 

based on their superior classification accuracy in ventral temporal cortex (face, scene; M = 

0.82, SE = 0.09), and selected the other four categories with similar decodability as items (M 
= 0.57, SEM = 0.10), based on a separate pilot sample (N = 3) on the localizer task (see 

Figure 1B). It was necessary to use unbiased visual categories for items in terms of 

decodability because the decoding strength of items across conditions was our main 

measurement. We chose famous people and famous places to facilitate recognition of the 

cues, which in turn should facilitate the generation of context-based predictions when the 

cues repeated. The other four categories (animals, food, tools, vehicles) were used for the 

stimuli that appeared (only once) as items following a cue or as non-paired items. 

Participants practiced the task before scanning with a separate set of images until they 

reached a criterion of 80% accuracy for the subcategory judgment task. Categorization 

performance was calculated with accuracy and RT of the responses, and a simple linear 

regression was applied to track the performance changes across repetitions for trial type and 

condition.

Subsequent recognition memory test: In this phase, the participants were given a 

surprise memory test for the objects that they saw in the encoding task. All objects used for 

items and non-paired items (288 old; 96 items for each incongruent, congruent, and non-

paired condition) and 96 novel lures were tested in a random order. Participants made a 

recognition judgment using a 4-point scale: 1 = sure new, 2 = unsure new, 3 = unsure old, 

and 4 = sure old. Only “sure old” responses were treated as hits (Kim et al., 2014; Lewis-

Peacock & Norman, 2014a), and we calculated memory sensitivity using A-prime (A’; 

Stanislaw & Todorov, 1999). A subset of participants (N = 8/22) took the memory test right 

after the encoding task in the scanner prior to the localizer phase to minimize any possible 

memory interference from stimuli in the localizer. However, there was no observed impact 

of task order on memory performance (F(1, 20) = 1.137, P = .299). We assessed statistical 

reliability of the subsequent memory results for the fMRI (n = 22) and behavioral group (n = 

24) separately, and also for the combined data from both groups (N = 46 total).

Functional localizer: Participants performed a one-back task with six categories of 

images: face, scene, animal, food, tool, vehicle. These stimuli were unique to the localizer 

and were never shown again. Each image was presented for 1.5 s on a white background box 

followed by an inter-trial interval for 0.5 s in which only the white background box 

remained on the screen. Stimulus display parameters were similar to the encoding task. 

However, rather than making a subcategory judgment, participants responded “same” if the 

object matched the previous object or “different” otherwise (on average, there was 1 repeat 

every 5 trials). Responses were to be made within 1 s, and visual feedback was given using 

the color of the frame of the background box (green: correct, red: incorrect) immediately 
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after the response, or after stimulus offset if no response was made. Stimuli were blocked by 

category with 10 trials per mini-block, lasting 20 s, and 6 mini-blocks (6 categories × 

alternate subcategory across blocks) per block, followed by 6 s of blank inter-block interval. 

There were two fMRI runs of the localizer task, each with 4 blocks (24 mini-blocks) 

presented in randomized order. Fifteen seconds were added to the end of each run to account 

for hemodynamic delay on the last trial. To verify the accuracy of the classifier, the one-

sample t test was conducted for each category.

Data acquisition.

The Psychophysics Toolbox (http://psychtoolbox.org) was used to run experiments. 

Neuroimaging data were acquired on a 3.0-T Siemems Skyra MRI (Siemens, Erlangen, 

Germany) with a 64-channel head coil. High-resolution anatomical images were collected 

for registration from a T1-weighted 3-D MPRAGE volume (256 × 256 × 192 matrix, 1 mm3 

voxels). A gradient-echo echo planar imaging sequence was applied for functional images 

with following parameters: TR = 1 s, multiband factor = 4, TE = 30 ms, 63° flip, 96 × 96 × 

64 matrix, 2.4 mm3 voxels, 56 slices, no gap.

Preprocessing.

FSL (http://fsl.fmrib.ox.ac.uk) was used to preprocess the fMRI data. Functional volumes 

were corrected for motion, aligned to the mean volume of the middle run, detrended and 

temporal high-pass filtered (128s). Timepoints with excessive motion were removed 

(framewise displacement, threshold = 0.9 mm (Power et al., 2014); M = 6.7 TRs removed, 

SD = 14.5).

Region-of-interest.

We were interested in bilateral ventral temporal cortex (VTC; Grill-Spector & Weiner, 2014; 

Haxby et al., 2001) in which high-level visual categories are predominantly represented. 

This region of interest (ROI) was anatomically delineated in standard space by combining 

bilateral temporal occipital fusiform cortex and posterior parahippocampal gyrus from the 

Harvard–Oxford cortical atlas. This was converted to native space and resampled to 

functional resolution for each subject using the transformation matrix derived from 

registration of that subject’s data to standard space. This size of this ROI across subjects was 

M = 4,266 voxels, SD = 283.

We focused on VTC rather than default mode network (DMN) or hippocampus (Kim et al., 

2017; Long, Lee, & Kuhl, 2016; Schapiro et al., 2012), which were examined when 

association learning was stronger with explicit association learning or multiple repetitions of 

implicit learning procedures. We applied the same ROI from the previous study that also 

used one-time incidental learning (Kim et al., 2014). In separate analyses with DMN and 

hippocampus ROIs, we found that only face and scene categories were successfully decoded 

from the localizer data (DMN: M = .52, SEM = .03, hippocampus: M = 0.47, SEM = 0.33), 

which were used as predicted items in these prior studies. However, there was poor 

classification accuracy (less than half as good) for the other four item categories in these 

ROIs (DMN: M = .23, SEM = .01, hippocampus: M = 0.22, SEM = 0.01), and therefore 

these regions were not interrogated further.
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Classification Analyses.

The Princeton Multi-Voxel Pattern Analysis Toolbox (www.pni.princeton.edu/mvpa) was 

used for multivoxel pattern classification using L2-regularized, non-multinomial (one-vs-

others, for each category) logistic regression. Classifiers were trained separately for each 

participant using localizer data in bilateral ventral temporal cortex. Regressors for all seven 

categories (face, scene, animal, food, tool, vehicle, rest) were shifted by 4 s to adjust for 

hemodynamic lag. To validate classifier performance, cross-validation was performed across 

the two runs of localizer data. This was done 22 times with different penalties (from 0 to 

1000) to find the optimal penalty for each participant (M = 156, SD = 244). Prior to 

classification, feature selection was performed for each training set using a voxel-wise 

ANOVA across all categories and timepoints (threshold: P = 0.0001) with the regressor 

modeled with a mini-block boxcar and shifted forward 4 s to account for hemodynamic lag. 

The selected voxels were used to train and test the classifier (19.2% of the original voxels; 

M = 820 voxels, SD = 237). Across subjects, classifier performance was reliably above 

chance for each category (M = 0.58, SEM = 0.02, chance level = 0.14, Figure 1B). Data 

from both localizer runs were then used to re-train the classifiers which were then applied to 

data from the encoding task. This produced classifier evidence scores (from 0 to 1) for each 

category at every timepoint in the encoding task. These scores reflect the likelihood that a 

test sample of brain activity contains a representation of a given category. The same 

individualized penalty derived from the cross-validation of the localizer data was used, and a 

new feature-selected mask was computed (26.6% of the original voxels; M = 1136, SD = 

264). The perception strength of each object during the encoding task was defined as the 

average classifier evidence for the object’s category from its onset until the onset of the next 

stimulus (i.e., 1 s of display plus 2, 3, or 4 s of ITI, depending on jitter, shifted forward 4 s to 

account for hemodynamic lag; prediction window, Figure 3A). On cue repetitions, the 

prediction strength for the item that previously followed the cue was defined as the average 

classifier evidence for that item’s category during the perception time window for the cue 

(perception window, Figure 3A). Note that to minimize influence from the onset of the next 

item, but to keep the window size equal to the perception window, the prediction window 

began 1 s prior to cue onset, which was adopted from the previous study (Kim et al., 2014), 

and then shifted 4 s forward to account for hemodynamic lag. In a separate analysis, we 

applied fixed 3 s windows for perception and prediction from the onset of each trial and 

found no significant deviations in the main findings (see Results).

Before the main analyses, which linked the classifier evidence strength to memory, we 

compared both prediction and perception evidence distributions from category classifier 

across conditions and positions. Classifier evidence was averaged for each process × 

condition × position within subject. Across all positions (i.e., 2nd – 4th for prediction, 1st – 

4th for perception), repeated-measure two-way ANOVAs were conducted for condition × 

position within each process, and then three-way ANOVAs were applied for process × 

condition × position for the final three positions (Figure 3A). Finally, the classifier evidence 

scores for the target category (e.g., the perceived or predicted category) were compared to 

the mean of the three non-target categories with a three-way ANOVA for condition × 

position × target (target/non-target).

Kim et al. Page 7

J Cogn Neurosci. Author manuscript; available in PMC 2020 February 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://www.pni.princeton.edu/mvpa


Trial-level modeling.

In an attempt to improve decoding sensitivity for predictions in this fast event-related design, 

we modeled category-level beta estimates for the perception of each stimulus in the 

encoding task (General Linear Model, GLM, utilizing a hemodynamic response function) to 

remove the evoked activity from cue presentations. Then we modeled trial-specific beta 

estimates for the predictions from the residuals of this analysis (GLM including a regressor 

for that trial + another regressor for other trials; Mumford, Turner, Ashby, & Poldrack, 

2012). We applied the same classifiers trained on the localizer data with shifted regressors to 

decode the “prediction betas” from the encoding task. The results obtained from this 

analysis were qualitatively similar to the results obtained using the unmodeled, shifted 

regressors, which we chose to report here.

Linking neural data to behavior.

Binary logistic regression analysis was used to examine the impact on subsequent memory 

from prediction strength and perception strength during the encoding task. The result of each 

of these analyses is a coefficient estimate (β) of the relationship between the given neural 

evidence and the memory outcomes. To increase our ability to detect trial-specific effects 

with our small sample size, we pooled data from all subjects and then performed bootstrap 

resampling to evaluate the population reliability of the result (Efron, 1979; Fisher & Hall, 

1991). On each bootstrap iteration (of 1,000 total), we sampled randomly (with replacement) 

a collection of participants’ data to match the size of our experimental sample (N = 22). 

There were eight regressions conducted for perception strength and subsequent memory 

(incongruent/congruent × 1st/2nd/3rd/4th positions), and six regressions conducted for 

prediction strength and subsequent memory (incongruent/congruent × 2nd/3rd/4th positions). 

Statistical significance was calculated with a non-parametric test across bootstrap iterations, 

evaluating the stability of an effect of interest by calculating the proportion of iterations in 

which the effect was found. Lastly, to verify that the effects were not arising from variance 

across participants but from within-subject variance, we repeated the main analyses using 

standardized (z-scored) classifier evidence for each participant to remove subject-specific 

effects (Kim et al., 2014). Results from the main analyses were qualitatively similar and 

confirmed. Across repetitions, linear regression analyses were conducted on the binary 

logistic regression results (β) across positions for each condition and process, and 

bootstrapped for the statistical significance test. Then, a repeated-measure two-way ANOVA 

for condition × process was conducted on the coefficient of linear regressions (βlin) across 

positions, and the statistically reliability was assessed via bootstrapping.

Pruning effect searchlight.

We examined the whole brain to exhibit pruning effect with searchlight analysis. First, we 

first limited the voxels (i.e., center of sphere, radius = 2mm) in which the classification 

accuracy for item-categories with localizer data was higher than chance level, 0.14. Then, 

we narrowed down the voxels that had a negative relationship (β) between prediction 

evidence and memory strength (the signature of memory pruning) and had more negative 

relationship for the incongruent than the congruent condition. The β-values from the 

selected voxels were then resampled (6 × 6 × 6 mm3), normalized into MNI space. For 
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group-level analysis, only the voxels that selected for more than twenty participants and 

whose β-values had a significant effect across participants were collected (voxel-wise one-

sample t test, α = .01, FDR correction for multiple comparisons). The final voxels were 

cluster corrected (extent voxels = 10) and smoothed (12mm FWHM) as a binary mask 

(Figure 6).

RESULTS

Note that for all behavioral results, we report combined results (N = 46). For the subsequent 

memory, we also report results separately for fMRI participants (n = 22) and behavior-only 

participants (n = 24) who performed the same task outside the scanner (see Methods).

Encoding task performance.

Participants were shown a continuous stream of images, one at a time, for the purpose of 

incidental encoding for a surprise subsequent memory task at the end of the experiment 

(Figure 1). As a cover task, participants were asked to make a subcategory judgment for 

each image. The subcategory of the stimulus was pseudo-randomly assigned that made the 

task not predictable across trials, and therefore, participants were required to maintain their 

attention and constantly update their response mappings every trial. Subcategory judgments 

were fast (M = 0.67 s, SEM = 0.01) and accurate (M = 0.87, SEM = 0.01, Figure 2A). 

Performance differed across conditions (incongruent, congruent), positions (1st, 2nd, 3rd, 

4th), and non-paired items for both trial types (cue, item) in both accuracy and RT (one-way 

ANOVA, omnibus Fs > 35.90, Ps < .001). In a pair, a cue and an item were sequentially 

associated, and non-paired items were randomly distributed between cue-item pairs without 

associations. Responses for cues were faster (0.62 s) and more accurate (0.94) than for items 

(0.70 s, 0.83) and non-paired items (0.70 s, 0.82; pairwise t test, all Ps < .001, significant 

after Bonferroni correction for 3 comparisons), suggesting that repeated encoding enhanced 

subcategorization performance. Across repetitions, a simple linear regression (coefficient 

estimate: βlin) shows that the accuracy to cues increased (all βlin > 0.01, Ps < .01) and the 

RTs decreased (all βlin < −0.01, Ps < .001), with no difference between conditions (condition 

× position two-way ANOVA for cues, Fs < 0.97, Ps > .41). Categorization performance on 

the items did not change significantly across repetitions in both conditions (Ps > .05).

There was a significant interaction of condition × trial type (cue/item) on both RT and 

accuracy (both Ps < .001), with no difference for cues, but with both faster and more 

accurate responses for items in the incongruent condition (0.71 s vs. 0.70 s, 0.81 vs. 0.85; 

both Ps < .001). There was no three-way interaction of condition × position × trial type (cue/

item) on either RT or accuracy. Overall the behavioral metrics on the encoding task indicate 

that participants were properly engaged in the task, and performance differences between the 

incongruent/congruent conditions demonstrate that they were sensitive to this manipulation.

Subsequent recognition memory.

Memory for all items was tested in a surprise recognition test at the end of the experiment 

(Figure 2B; Table 1). In the incongruent condition, there was worse memory for the 1st items 

(M = 0.81, SEM = 0.01) compared to the other items (2nd/3rd/4th, Ms > 0.83, SEMs < 0.01; 
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pairwise t tests, all Ps < .040). In the congruent condition, there was worse memory for the 

4th items (M = 0.81, SEM = 0.01) compared to the 3rd items (M = 0.83, SEM = 0.01; t45 = 

2.35, P = .023). There were no significant interactions between conditions or compared to 

baseline (non-paired) items. Note that our main analyses focused on how neural signals 

related to memory consequences on a trial-by-trial basis, rather than the overall memory 

performance itself.

fMRI pattern classification.

The encoding task data were analyzed by fMRI pattern classifiers trained, separately for 

each individual, on category-specific data from an independent localizer task (Figure 1A, see 

Methods). The stimuli used in the localizer task were representatives of the same categories 

but were separate exemplars from those used in the encoding task. The localizer consisted of 

a one-back working memory task with six categories of images (face, scene, animal, food, 

tool, and vehicle). Within the localizer data, we verified that brain activity patterns 

associated with processing each stimulus category were reliably differentiated in ventral 

temporal cortex (M = 0.58, SEM = 0.02, chance = 0.14 for 6 stimulus categories + rest; one-

sample t test, Ps < .001, Figure 1B), using independent training and testing sets with cross-

validation analysis. Decoding accuracy for the cue categories (face and scene) was reliably 

higher than for the other four categories (animal, food, tool, and vehicle; paired t test, t21 = 

−15.33, P < .001), which is unsurprising given the ubiquitous use of faces and scenes in the 

literature (see Grill-Spector & Weiner, 2014). Pattern classifiers were then re-trained on all 

data (2 runs) from the localizer task and applied to the encoding task to decode every 

timepoint in the experiment.

As a sanity check, we verified that the category of all items presented in the encoding task 

was being accurately classified (M = 0.32, SEM = 0.01, chance = 0.14, Ps < .001, Figure 

1B). However, for cues (which appeared four times each), the classification accuracy was 

lower than for items (which appeared only once; paired t test, t21 = 3.24, P = .004). This was 

true in both the incongruent condition (t21 = 2.75, P = .012) and congruent condition (t21= 

2.95, P = .008). This relationship is a reversal from the results in the localizer data described 

above where the cue categories (faces and scenes) were classified with greater accuracy than 

the other four categories. This reduction in decoding accuracy for the cues in the encoding 

task likely reflects the co-mingling of cue processing and automatic predictions of items 

from other categories triggered by the reappearance of the cue. This possibility will be 

addressed further in the Discussion.

To quantify both the perception of viewed items and the prediction of subsequent items in 

the encoding task, we defined two neural metrics using the fMRI pattern classifiers. The 

“perception strength” for each item was defined as the amount of classifier evidence for that 

item during its presentation (Figure 3A). There were no differences in mean perception 

strength for items across the four sequence positions (1st, 2nd, 3rd, 4th) and two conditions 

(congruent, incongruent; repeated measure two-way ANOVA, condition (main effect): F(1, 

63) = 0.04, P = .835, position: F(3, 63) = 1.73, P = .171, interaction: F(3, 63) = 0.32, P = .

811). The “prediction strength” for an item was defined as the amount of classifier evidence 

for that item when its cue reappeared later in the sequence. For example, in the example 
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sequence in Figure 3A (“Liam Hemsworth, ram, …, Liam Hemsworth, sandwich”), the 

prediction strength for “ram” would be the amount of animal-category classifier evidence 

detected when “Liam Hemsworth” appeared the next time (prior to the appearance of 

“sandwich”). There were no differences in mean prediction strength across the three 

repetitions of the cue (2nd, 3rd, 4th positions) and two conditions (congruent, incongruent; 

condition: F(1, 42) = 0.01, P = .942, position: F(2, 42) = 0.05, P = 0.955, condition × 

position: F(2, 42) = 1.05, P = .360). The distributions of scores, which were concatenated 

across 2nd to 4th positions, for both perception strength and prediction strength are shown 

separately for each condition in Figure 3A. Perception strength for new items was reliably 

higher than the prediction strength for the expected items in both conditions and all positions 

(M = 0.70 vs. M = 0.52; three-way ANOVA, process: F(1, 42) = 244.41, P < .001, with no 

other significant effects). To assess the specificity of these neural measures, the classifier 

evidence values for the category of target items were compared with those of non-target 

categories. The perception evidence was significantly higher for target categories than non-

targets categories across conditions and positions (three-way ANOVA, target: F(1, 63) = 

272.88, P < .001), while no such differences were found for prediction evidence (all Ps > .

164). Note that other signals from presented stimuli might have been also represented while 

prediction was generated, which could weaken the prediction selectivity. In a separate 

analysis with the prediction beta data in which the signals for the presented stimuli were 

modeled out (see Methods), the decoding accuracy for the prediction was significantly 

higher than chance level, 0.25 (t21 = 3.67, p = 0.0014). The classifier evidence for the target 

predictions were also significantly higher than non-targets (t21 = 4.82, p < 0.001) when 

excluding the following items from the non-targets (i.e., in the incongruent only) to 

minimize any influence of following items. Also note that there were no differences in 

correlation between presented cue signals, which we modeled out, and prediction signals 

across conditions and positions (2-way ANOVA, F(2, 42) = 0.17, P = .845), verifying that 

removing the perception-related signals didn’t introduce any systematic bias into the 

prediction measurements. Importantly, our main interests were if prediction evidence for the 

target was selectively linked to subsequent memory, compared to that for non-targets, which 

reflects a prediction-based pruning effect. We report this selectivity in the section for control 

analyses later.

Our next step was to link these neural measurements of prediction and perception with 

subsequent memory outcomes. Note that for all items that appeared in the 1st, 2nd, or 3rd 

positions of a cue sequence, we will be assessing two contributions to each item’s 

subsequent memory outcome: its perception strength in position N, and its prediction 

strength in position N+1. Memory for items in the 4th position had a contribution only from 

perception strength, because the cue did not repeat a 5th time. We will first address these two 

contributions separately, and then together.

Prediction and subsequent memory.

To evaluate our main hypothesis that the reliability of context-based predictions impacts 

pruning of associative memories, we used logistic regression to link our neural measures of 

prediction with subsequent recognition memory from the end of the experiment. Evidence of 

pruning exists when stronger predictions are associated with worse memory for the 
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mispredicted items (see Kim et al., 2014). Figure 3B shows evidence consistent with pruning 

in the incongruent condition, such that stronger predictions were indeed associated with 

worse memory for the mispredicted items (β = −0.79, P < .001). This relationship was found 

in each repetition of the cue (2nd/3rd/4th positions, Ps < .045), with no change across the 

positions (βlin = 0.12, P = .323, Figure 4A). Consistent with our hypothesis, however, no 

evidence of pruning was found in the congruent condition (β = −0.38, P = .119, Figure 2B), 

where prediction strength was unrelated to subsequent memory for the mispredicted items. 

This relationship was absent for each repetition of the congruent cues (Figure 4B). Across 

all positions, there was no significant difference in the prediction-memory relationship 

between conditions (βinc = −0.79 vs. βcon = −0.38, P = .161, Figure 3B). However, there was 

a statistical trend that it was stronger in the last position for the incongruent condition (βinc = 

−0.74 vs. βcon = 0.23, P = .082, Figure 4). Although prediction strength in the congruent 

condition was unrelated to subsequent memory for the mispredicted item, it was, however, 

related to subsequent memory for the new item. Stronger predictions from a congruent cue 

were associated with worse subsequent memory for the next item that appeared (β = −0.64, 

P = .008). This was not true for incongruent cues (β = 0.01, P = .470; P = .063 vs. congruent 

cues). This result suggests that congruent cues, which afforded categorical predictions, 

biased attention toward category-general features, and away from item-specific features 

during encoding of the next items in the sequence. This idea will be developed further in 

later sections.

To examine when prediction information emerged during a cue presentation, we linked 

subsequent memory with prediction strength measured separately from three time periods of 

each cue: baseline (3 s before the cue), cue (3–5 s during the cue), and item (3–5 s after the 

cue when the new item appeared, Figure 5A). As expected, there was no relationship 

between prediction strength and subsequent memory in either condition during the baseline 

period, a time at which there would be no basis for a prediction. As expected, no relationship 

emerged during the cue period or item period in the congruent condition (Ps > .270). 

However, in the incongruent condition, the negative relationship between prediction strength 

and subsequent memory emerged during the cue period and persisted through the item 

period (Ps < .024, Figure 5A).

Perception and subsequent memory.

To evaluate our hypothesis that increased predictability of items in a familiar context will 

decrease perceptual encoding of novel stimuli (or specific items), we again used logistic 

regression to link our neural measures of perception strength with subsequent recognition 

memory. In the incongruent condition, when new items were unpredictable, we found that 

on average stronger perception strength for an item was associated with better memory for 

that item (β = 0.79, P = .005, Figure 3B). This relationship strengthened across repetitions 

(βlin = 0.46, P = .002) and was strongest by the final (4th) repetition (β = 1.24, P = .004, 

Figure 4A). This indicates that new items in this condition were being actively encoded 

because their neural index of perception strength was directed related to their subsequent 

memory. The influence of perception strength on memory for earlier items could have been 

diminished by the contribution from the (mis)prediction of those items during the next cue 
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repetition (we will address this more in the next section). This could not be the case for the 

final items.

For the congruent condition, we found a similar result that, on average, stronger perception 

was associated with better subsequent memory (β = 0.95, P = .001, Figure 3B). However, 

this relationship weakened significantly across repetitions (βlin = −0.71, P = .006) and 

disappeared altogether by the final (4th) position (β = 0.39, P = .215, Figure 4B). There was 

a significant interaction of condition (incongruent, congruent) on the perception-memory 

relationship. For earlier items, the influence of perception on memory was stronger for 

congruent items compared to incongruent items (1st and 2nd, Ps < .027), but this relationship 

was reversed for the final items (4th, P = .046). Across the three repetitions, the shift in 

perception-memory relationship differed significantly between the two conditions (linear: 

βinc = 0.46 vs. βcon = −0.71, P = .001). Our primary analyses focus on items in the final 

three repetitions, but these interaction results for perception and memory hold when 

including 1st position items as well (linear: βinc = 0.30 vs. βcon = −0.51, P = .002). Finally, 

there was a significant interaction of condition × process (prediction/perception) on the shift 

in brain-behavior relationships across repetitions (F(1, 1999) = 9053.83, P < .001) indicating 

that the anticipation and processing of new items impacted memory differently across time 

in predictable vs. unpredictable contexts.

Together, these results indicate that new items in the congruent condition, whose category 

could be predicted from prior statistics, were encoded less well after multiple repetitions of 

their context than the items in the incongruent condition. This is consistent with the idea that 

statistical learning at the categorical level was gradually stabilized across multiple 

repetitions of the context, which led to new items being also encoded at the categorical level 

at the expense of item details. This does not imply that these items were being ignored, 

however, as they could be processed sufficiently to provide successful recognition 

performance even without a link between perception strength and memory. We will now 

discuss various control analyses that rule out possible confounds and alternative 

explanations of our results.

Controlling for potential confounding factors.

Control analyses confirmed that the negative relationships of prediction strength and 

memory in the incongruent condition (i.e., memory pruning) were specific to classifier 

evidence for the category of the predicted “target” item. We used partial correlation to 

control for the mean evidence of the three non-target categories for each prediction (for 

similar approaches see Detre et al., 2013; Kim et al., 2014), and the pruning relationship 

between target evidence and subsequent memory held for the predicted items (Figure 5B). 

To rule out the possibility that memory for the mispredicted items was worse due to poor 

initial encoding of those items, we controlled for the perception strength of each item during 

encoding and found that the relationship between prediction strength and subsequent 

memory remained negative in the incongruent condition and absent in the congruent 

condition (Figure 5C). Finally, we ran an analysis to evaluate the specificity of the 

relationship between perception strength and subsequent memory. We used partial 

correlation to control for the amount of non-target category evidence during perception and 
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confirmed that these relationships were specific to the evidence for the target category 

(Figure 5D).

These main analyses were also replicated with modified regressors to rule out possible 

confounds from varying ITIs and different times windows for prediction and perception. 

Fixed 3 s time windows from the onset of a trial were applied and then shifted 4 s forward to 

account for hemodynamic lag for both prediction and perception. Consistent with our 

original results, we found evidence of memory pruning only in the incongruent condition (β 
= −0.64, P = .004) and not in the congruent condition (β = −0.43, P = .087). The linear 

patterns of change in the perception-memory relationship also replicated, such that the 

relationship strengthened for the incongruent condition (βlin = 0.51, P < .001) and weakened 

for the congruent condition (βlin = −0.45, P = .089) as a function of repetitions (linear: βinc = 

0.51 vs. βcon = −0.45, P = .007).

Mismatch signals in hippocampus.

Linear regression analyses were applied to link mismatch signals in the hippocampus (Long 

et al., 2016) and prediction strength decoded from the ventral temporal cortex. The 

mismatch signal was defined as the average intensity of the signal during the perception 
window, and prediction strength was defined as the average classifier evidence during the 

prediction window. There was no reliable relationship between mismatch signals and 

prediction strength for either incongruent or congruent conditions (Ps > .05).

DISCUSSION

When we reencounter a familiar situation, our brain anticipates what might come next based 

on previous encounters. This study demonstrates that the predictability of our experiences 

influences whether we prune memories of past events and also how we form memories of 

new ones. Our results show that when the temporal statistics across repeated experiences 

allow for the learning of abstract, conceptual relationships between events, this has two main 

consequences: (1) memory for past events is no longer impacted by prediction errors for new 

events, and (2) memory for new events declines because encoding becomes less focused on 

item-specific details.

We used fMRI pattern classifiers to track the explicit encoding and the covert prediction of 

visual stimuli during a continuous sequence of image presentations. The sequence was 

configured such that some of the stimuli (“cues”) repeated multiple times across the 

experiment. Cue stimuli were followed either by new items that belonged to different 

categories (incongruent condition) or new items that belonged to the same category 

(congruent condition). For cues in the incongruent condition, which afforded participants no 

reliable predictive information across repetitions, stronger neural evidence for a (incorrect) 

prediction – that the previous item to follow when the cue reappeared – were associated with 

worse subsequent memory for that mispredicted item. This replicates the memory pruning 

effect observed previously (Kim et al., 2014) that describes a form of error-driven statistical 

learning in which the memory trace for a mispredicted event is weakened, which leads to 

subsequent forgetting of that event. A key result of this study is that for cues in the 

congruent condition, which afforded participants the ability to learn across repetitions the 
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category of item to expect, no memory pruning was observed. Furthermore, encoding of new 

items after the final appearance of congruent cues was impaired relative to incongruent cues: 

subsequent memory on average was worse for these congruent items, and the memory 

strength of individual items was unrelated to neural measures of their perception strength.

Context-based predictions of items.

Our neural analyses of automatic predictions relied on pattern classifier estimates for a 

“target” category following the repetition of a cue stimulus (e.g., classifier evidence for the 

target category of “animal” following the repetition of cue in the sequence “cue, badger, …, 
cue, …”). On average, the amount of classifier evidence following a cue repetition for the 

target category was not greater than for non-target categories (in this example: food, tools, 

vehicles). This was true for both incongruent cues and congruent cues, and by itself is 

inconsistent with the idea that cues triggered predictions of items from the previous 

repetition (see Results for the target selectivity from prediction beta). However, the results 

found from linking these neural measures of “prediction” on a trial-by-trial basis to 

subsequent memory outcomes suggests otherwise. For incongruent cues, stronger classifier 

evidence for the (predicted) target category was associated with weaker subsequent memory 

for those items (Figure 4A). This relationship held even after controlling for the amount of 

classifier evidence for the non-target categories at the time of prediction and for the initial 

perception strength of those target items from the previous repetition (Figure 5B and C). 

This robust link to item-specific behavioral outcomes is consistent with the interpretation 

that incongruent cues triggered specific predictions of previous items that were consequently 

pruned from memory after the prediction error.

Additional evidence for context-based predictions comes from the observation of reduced 
classifier decoding accuracy for the perception of the repeated cues compared to the single-

exposure items (Figure 1B). Notably, this is the opposite relationship of classifier 

performance from within the localizer data alone, where the cue categories (face, scene) 

were decoded better than the other categories (animal, food, tool, and vehicle, Figure 1B). 

The elimination of the decoding advantage for the repeated cues could have arisen from two 

sources: first, from reduced processing of the now-familiar cues across repeated 

presentations (i.e., repetition suppression), and second, from the co-mingling of cue 

processing with an automatically triggered prediction for an item (or items) from another 

category, which would dilute the measurement of cue-specific neural activation. Repetition 

suppression has been linked to increased, not decreased, classifier evidence, which is 

believed to reflect a sharpening of the neural representation for repeated stimuli (Kim et al., 

2014; Kok, Jehee, & de Lange, 2012). However, reduced variability in activity across voxels, 

which can occur due to repetition suppression, has also been associated with decreased 

classifier performance (Davis et al., 2014). Regardless of the cause, the reduction in cue 

decoding across repetitions cannot account for the key results linking prediction evidence for 

items and their subsequent memory.

The argument for item-specific predictions is further supported by the observation of a 

strong relationship between perception strength and memory for the final items in the 

incongruent condition. These items were remembered well, and their perception strength 
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was directly related to their memory strength. This direct link between perception strength 

and memory suggests that individual item details were being encoded, which should in turn 

facilitate predictions of these items upon the next appearance of the cue. Note that it is likely 

that the encoding and subsequent prediction for these items would decrease if and when it 

was learned that these predictions were always violated, but this did not seem to occur in this 

study after only four repetitions.

Context-based predictions of categories.

On the other hand, in the congruent condition, cues were always followed by new items 

from a single category (e.g., a cue was always followed by an animal: “cue, badger, …, cue, 

tiger, …, cue, cow, …, cue, peacock”). It is possible that participants could learn this 

relationship for each cue and make explicit predictions at the category level. However, post-

experiment questionnaires confirmed that, aside from participants noticing repeated 

presentation of the cues, they did not detect any structure in the order of stimulus 

presentations. Any differences in prediction between the experimental conditions would 

therefore be due to implicit learning of the transition probabilities associated with 

incongruent cues vs. congruent cues. It could be possible that stimulus-task associations 

were learned in the congruent condition (e.g., Anne Hathaway followed by a cooked/

uncooked subcategorization task), rather than stimulus-stimulus association (e.g., Anne 

Hathaway followed by a food item). If the task itself were predicted from a given cue, it 

would have led to faster and more accurate performance for the congruent items. However, 

the encoding performance showed the opposite results in which the subcategory judgment 

for the congruent items was slower and less accurate than for the incongruent items (Figure 

2A, main effect for item). These results suggest that there was no priming effect at the 

decision level for the task.

Similar to the results for incongruent cues, there was no direct neural evidence of prediction 

(target classifier evidence was not greater than non-target evidence) for congruent cues. 

Unlike incongruent cues, however, there was no relationship between the neural evidence for 

the “predicted” item (i.e., the item that followed the cue on its prior appearance) and that 

item’s subsequent memory (Figure 4B). These data do not support an inference that 

participants were making item-specific predictions for congruent cues. Rather, they suggest 

that congruent cues either (1) triggered no predictions at all, or (2) triggered predictions at 

the category level rather than at the item level (e.g., “expect some animal” instead of “expect 

that badger”). Two additional results provide converging evidence for the latter 

interpretation. First, if predictions were categorical, this should focus attention on 

categorical information, rather than item-specific details, during the encoding of new items, 

which in turn should lead to worse subsequent memory for these items. Indeed, we found 

that stronger prediction evidence after a congruent cue was associated with worse 

subsequent memory for the next item, which by design was a new exemplar of that category 

(β = −0.64, P = .008). This relationship between prediction strength and memory for new 

items was not true for incongruent cues (β = 0.01, P = .47). Second, as reported in Figure 

4B, the perception strength for new items following congruent cues became decoupled from 

their subsequent memory after the second appearance of the cues.
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Together, we believe these results are most consistent with the idea that congruent cues 

triggered categorical predictions rather than no predictions at all. The congruent condition 

results reflect the consequences of statistical learning focused not on item-specific details, 

but rather on abstract conceptual information (Brady & Oliva, 2008). Across multiple 

experiences, overlapping features (i.e., the semantic category) of individual events were 

extracted to form more generalized knowledge about these specific situations, similar to the 

formation of memory schemas (O’Reilly & Norman, 2002; Tse et al., 2007; Marlieke T. R. 

van Kesteren, Brown, & Wagner, 2016; Marlieke T R van Kesteren et al., 2012). Once this 

general inference was developed, this focused future encoding on category-level information 

and the specific episodic details of new items were forgotten (Marlieke T. R. van Kesteren et 

al., 2016; Marlieke T R van Kesteren et al., 2012).

Our analyses relied on category-specific fMRI pattern classifiers to covertly measure 

implicit predictions of previous items from repeated contexts. Category classifiers can 

produce more robust decoding than sub-category classifiers or item-level classifiers, but of 

course they lack item specificity. We decided against proceeding with an item-level decoding 

approach due to insufficient classifier sensitivity in early pilot data. Instead we relied on 

category information and therefore could not distinguish predictions for individual 

exemplars of a category from generic category predictions. Instead, we leveraged the 

relationship (or lack thereof) between these category-specific neural estimates and the item-

specific behavioral measures for each stimulus to speculate on the nature of these 

predictions. Future work should use neural analyses sensitive to item-level representations 

(e.g., representational similarity analysis; Kriegeskorte, Mur, & Bandettini, 2008) to more 

directly test this idea.

Memory pruning.

Results for the incongruent condition in the present study, with cues followed by novel items 

from novel categories, were consistent with previous findings on memory pruning (Kim et 

al., 2014) which found a negative relationship between neural prediction strength for 

mispredicted items in a temporal sequence and subsequent memory for those items. Memory 

pruning is a form of error-driven learning that is consistent with predictions of the non-

monotonic plasticity hypothesis (NMPH) (Detre et al., 2013; Lewis-Peacock & Norman, 

2014a; Newman & Norman, 2010) which claims that moderately activated memories can 

lead to weakening and subsequent forgetting of those memories. Here, moderately active 

memories were created by the automatic context-based predictions that occurred following 

cue repetitions in the incidental encoding task. In Figure 3A, the prediction strength for the 

predicted items following a repeated cue is contrasted with the perception strength for the 

items that actually appeared. As would be expected, the distributions of classifier evidence 

values show that perception strength (M = 0.70) was reliably higher than prediction strength 

in both conditions (M = 0.52, Ps < .001, Figure 3A). Taking classifier evidence as an index 

of the strength of “memory activation”, we see that prediction leads to more moderately 

active representations (compared to perception), and the NMPH predicts that these memory 

representations would be more vulnerable to weakening and long-term forgetting. In a 

separate whole-brain searchlight analysis (Figure 6), we found that the prediction-based 

pruning effect for the incongruent condition was largely clustered in the VTC (10.1 % of all 
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identified voxels). The identified voxels in the VTC were 31.4% of all voxels in this region, 

which is a substantial concentration given that we used M = 26.6% voxels for classification 

through feature selection in the main analysis. It is apparent from this analysis that the 

memory pruning results found in VTC were also found in a distributed network of voxels in 

parietal and frontal cortex. Whether these regions operate in parallel or in some other 

coordinated fashion to support memory pruning is an interesting topic for further research.

According to this framework, predictions of a specific event are realized by anticipatory 

activation of its memory representation, resulting in relatively weak activation of its memory 

trace (compared to activation during the initial perception of the event). If this prediction is 

confirmed, its neural activation will increase, as will the strength of its representation in 

long-term memory, due to additional processing of the event. If the prediction is violated, its 

reactivated memory representation will not be enhanced beyond this moderately activated 

state which, according to the hypothesis, can lead to weakening and forgetting of the item. In 

temporal contexts that allow for more abstract statistical learning (e.g., our congruent 

condition), the predictions may not contain representations of specific events from the past 

(e.g., “some animal” might be expected but not “that badger”). The confirmation of 

categorical predictions in the congruent condition should not then invoke NMPH-based 

memory weakening processes for those predictions. The lack of specificity in these 

predictions may have the effect of shielding the memories of those specific events from 

modification.

Memory pruning vs. memory integration.

It could be argued that cues in the incongruent condition should trigger memory integration 

(Greve, Abdulrahman, & Henson, 2018; Morton et al., 2017; Preston & Eichenbaum, 2013; 

Schlichting & Frankland, 2017; Schlichting et al., 2015; Schlichting & Preston, 2015; 

Zeithamova, Dominick, et al., 2012; Zeithamova, Schlichting, et al., 2012) rather than 

memory pruning, such that all items maintain their associations to the repeated context, 

similar to inferential learning (Morton et al., 2017; Preston & Eichenbaum, 2013; 

Schlichting & Frankland, 2017; Schlichting et al., 2015; Schlichting & Preston, 2015; 

Zeithamova, Dominick, et al., 2012; Zeithamova, Schlichting, et al., 2012). Recent evidence 

suggested that prediction error weakens overlapping representation between the 

mispredicted item and its context on the predicted item, leading to differentiation of their 

neural patterns in the hippocampus (Kim et al., 2017). However, the same neural 

consequences have also be observed for memory integration (Zeithamova, Dominick, et al., 

2012). The hippocampus has a critical role, not only for memory integration (Eichenbaum, 

2000; Marlieke T. R. van Kesteren et al., 2016) but also in mismatch detection (Kumaran & 

Maguire, 2007; Long et al., 2016) for prediction errors. In a recent study by Long and 

colleagues (Long et al., 2016), the activation of the hippocampus was found to be positively 

correlated with prediction errors, and even more so if the mispredicted item was 

semantically related to the actual item. (This is similar to the congruent condition in the 

present study.) The hippocampus was not recruited when predictions were correct or 

unrelated semantically to the novel events. This suggests that mismatch signals are key for 

triggering updating of existing memories (Kumaran & Maguire, 2007; Long et al., 2016; 

Schlichting & Preston, 2015). In our data, however, we were unable to find any relationship 
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between prediction strength and hippocampal activation, or any evidence of hippocampal 

involvement when mismatched predictions were semantically related to the new events (i.e., 

in the congruent condition). Unlike Long and colleagues’ study or inferential learning 

studies (Schlichting et al., 2015; Zeithamova, Schlichting, et al., 2012) in which the 

participants explicitly learned word-picture or picture-picture associations in the pre-training 

phase, the cue-item associations were implicitly learned in our study. Explicit predictions 

based on over-learned associations might be too strong to trigger pruning of existing 

memories, but rather may promote integration of the new semantically related items (Morton 

et al., 2017; Schlichting & Preston, 2015).

We couldn’t find hippocampus involvement, such that the prediction signals would be 

reflected through “pattern completion” after cue re-appearance (Kim et al., 2017), 

suggesting that the hippocampal signals would be only detectible when association learning 

is more stable (e.g., via explicit association or multiple exposures of implicit association).

Less robust memory for items that occur in predictable contexts.

In our study, the congruent condition involved repeated visual cues that were consistently 

followed by items from a single category. Results suggest that participants implicitly learned 

these relationships, as both behavioral evidence and neural evidence in this condition 

diverged from the incongruent condition in which the cues were always followed by a new 

item from a new category. Specifically, memory for the final item in the congruent contexts 

was worse than previous items in those same contexts (Figure 2B), and there was no 

relationship between neural evidence of perception for these items and their subsequent 

memory strength (Figure 4B). Together these results suggest that in temporal contexts with 

greater predictability (e.g., when the category of the next item can be anticipated), encoding 

of new items may be reduced (but see Friedman, 1979; Gronau & Shachar, 2015; van 

Kesteren et al., 2010; Zwaan & Radvansky, 1998). Consistent with this idea, Rommers and 

Federmeier (2018) recently demonstrated evidence that predictable information is processed 

more weakly than unpredictable information. When words reappeared in predictable 

contexts, the neural responses measured using electroencephalography (EEG) indicated that 

the words were processed less than repeated words in unpredictable contexts. Specifically, 

the repetition priming effects were diminished in the N400 and LPC components of the EEG 

signal. From these results, the authors suggested that predictability allows the brain to 

operate in a top-down “verification mode” at the expense of detailed stimulus processing. 

Our data are consistent with these findings in language processing, and they extend the idea 

that predictability of perceptual events (here, in sequences of visual objects) leads to reduced 

encoding of new stimuli.

Conclusions.

The learning processes observed in this study are examples of adaptive forgetting that allow 

for the efficient use of the brain’s memory systems (Kim et al., 2014, 2017; Lewis-Peacock 

& Norman, 2014a; Wylie, Foxe, & Taylor, 2008). Being able to anticipate the demands 

required of us in familiar situations can help us to respond more effectively and proactively. 

Pruning unreliable memories via statistical learning mechanisms supports this behavior by 

reducing interference during context-based retrieval of relevant memories (Kumaran & 
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Maguire, 2007). Here, we demonstrated that the stability of associative memories is 

evaluated over multiple exposures to the context in which those memories were acquired. 

When a context afforded no accurate predictions, previous experiences were nonetheless 

anticipated, perhaps reflecting a persistent, but futile, effort to learn the statistics of the 

environment. Memory for these experiences was pruned when their predictions were 

violated. When a context afforded general information (but not specific details) about what 

to expect, the previously encountered events were no longer predicted, and their memories 

were shielded from pruning. However, new learning was also diminished in these more 

predictable contexts. These findings deepen our understanding of how associative memories 

are formed and updated by demonstrating that our ability to predict the future influences 

how we remember the past.
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Figure 1. 
Behavioral performance. (A) Incidental encoding task with categorization accuracy and RT. 

Subcategory judgments for each picture in a sequence (CUE: items that were presented four 

total times; 1st/2nd/3rd/4th ITEM: unique items that followed a cue in the specified order; NP: 

non-paired items that did not follow cues). The category for the cues was either face or 

scene, and there were four categories (animal, food, tool, and vehicle) for items and NP 

items. For main effects, Bonferroni adjusted alpha levels (α=.05/3) were applied per test. (B) 

Subsequent recognition task and recognition accuracy (A’) for all items, not cues, studied 

previously. Four options with old/new and sure/unsure were given for the response. Error 

bars represent SEM.
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Figure 2. 
Experimental procedures and fMRI pattern classifier accuracy. (A) Experimental procedures. 

Pattern classifiers were trained on fMRI data from the localizer task to identify category-

specific patterns of brain activity in ventral temporal cortex mask. These classifiers were 

then applied to the encoding task, and the neural results were linked to subsequent memory 

scores in the surprise recognition test. (B) Classifier accuracy. Pattern classification was 

successful for all categories in the localizer task (chance = 0.14). These classifiers, trained 

on all localizer data, successfully identified the category of each item presented in the 

encoding task.
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Figure 3. 
Predicting subsequent memory from brain activity during encoding. (A) Classifier evidence 

of prediction (item N-1) and perception (item N) in the N position (B) linking to memory 

performance of those items. (A) The distributions of classifier evidence for prediction (light 

gray) and perception (dark gray) combined across positions are shown in both conditions. 

(B) Logistic regression results (coefficient estimate: β) linking classifier evidence and 

recognition accuracy are shown separately predicted items and for perceived items combined 

across positions. Statistics are based on bootstrap analyses with 1,000 iterations.
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Figure 4. 
Changes across time in the links between perception, prediction, and subsequent memory in 

the (A) incongruent and (B) congruent condition. Hypothesized mental representations for 

prediction and perception across given trials (top). Logistic regression results (coefficient 

estimate: β) linking classifier evidence and recognition accuracy are shown separately for 

prediction (middle) and perception (bottom) for each position and across positions in both 

the incongruent and congruent conditions. Statistics are based on bootstrap analyses with 

1,000 iterations. Error bars represent 95% CI.

Kim et al. Page 27

J Cogn Neurosci. Author manuscript; available in PMC 2020 February 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 5. 
Control analyses for the specificity of the target category in the relationship between 

prediction/perception strength and subsequent memory across positions. (A) The 

relationship between prediction strength and subsequent memory is shown for different time 

windows within a cue presentation (baseline, cue, item), and averaged across the final three 

repetitions of each cue. (B) Controlling for the prediction evidence for non-target categories. 

(C) Controlling for the perception strength of the predicted item when it was encoded on its 

previous position following cue. (D) Controlling for the perception evidence for non-target 

categories. Statistics are based on bootstrap analysis with 1,000 iterations. Error bars 

represent 95% CI.
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Figure 6. 
Pruning effect searchlight. Selecting voxels that showed pruning effect: a negative 

relationship (β) between prediction evidence and memory strength and more negative 

relationship for the incongruent than the congruent condition. The blue line indicates VTC 

ROI in 6 × 6 × 6 mm3 space.
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Table 1.

Subsequent recognition performance. (A) Recognition accuracy. Mean for each position and condition with 

95% CI in the next parenthesis. (B) Pairwise t test. All significant comparisons (P < .05) within each condition 

were included across data sets and white cells indicate non-significant comparisons.

A. Subsequent recognition accuracy: mean (95% confidence interval: CI)

incongruent congruent

Study 1st 2nd 3rd 4th 1st 2nd 3rd 4th NP Total

Combined (N 
= 46)

.811 (.
021)

.831 (.
016)

.832 (.
018)

.827 (.
020)

.818 (.
019)

.812 (.
026)

.829 (.
019)

.811 (.
021)

.821 (.
017)

.848 (.
017)

Behavior (N = 
24)

.837 (.
021)

.851 (.
016)

.865 (.
018)

.862 (.
020)

.838 (.
019)

.845 (.
026)

.855 (.
019)

.833 (.
021)

.846 (.
017)

.821 (.
017)

fMRI (N = 24) .783 (.
026)

.809 (.
020)

.795 (.
025)

.789 (.
027)

.796 (.
028)

.776 (.
041)

.080 (.
027)

.787 (.
032)

.793 (.
023)

.792 (.
023)

B. Pairwise comparison within condition (t test, uncorrected multiple comparison)

incongruent congruent

Study 1st vs. 2nd 1st vs. 3rd 1st vs. 4th 3rd vs. 4th

Combined (N = 46) t45 = −2.84, P = .007 t45 = −2.89, P = .006 t45 = −2.12, P = .040 t45 = 2.35, P = .023

Behavior (N = 24) t45 = −1.44, P = .164 t45 = −2.56, P = .018 t45 = −2.36, P = .027 t45 = 2.83, P = .010

fMRI (N = 24) t45 = −2.60, P = .017 t45 = −1.41, P = .172 t45 = −0.60, P = .554 t45 = 0.96, P = .346
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