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We study how certain smoothness constraints, for example, piecewise 
continuity, can be generalized from a discrete set of analog-valued data, 
by modifying the error backpropagation, learning algorithm. Numeri- 
cal simulations demonstrate that by imposing two heuristic objectives 
- (1) reducing the number of hidden units, and (2) minimizing the 
magnitudes of the weights in the network - during the learning pro- 
cess, one obtains a network with a response function that smoothly 
interpolates between the training data. 

1 Introduction 

Extensive numerical simulations have demonstrated the utility of error 
backpropagation (BP) (Rumelhart et al. 1986; Werbos 1974; Sejnowski 
and Rosenberg 1987) for training a multilayer neural network to learn 
a given set of input-output associations. The issue of generalization - 
training a network to respond reasonably to input data not present in 
the training set - is usually addressed by overconstraining the network. 
Recently a lower bound on the number of training samples required for 
generalization by a feedforward network with a fixed number of hidden 
units has been asymptotically estimated using the saturation property of 
Vapnik's and Chervonenkis's growth function (Baum and Haussler 1989; 
Vapnik and Chervonenkis 1968). How to match a network's size and 
architecture to a given training set so that the response generalizes well 
is still, however, an unsolved problem. 

In addition to accurately replicating the training data, the network 
response function - the values of the output units as a function of the 
network inputs - should reflect any constraints that may govern the 
training problem. Obtaining these constraints directly from a finite set of 
data is not possible, because many different rules can produce the given 
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set. Thus, supplementary information is required. This information is 
generally problem dependent and often eludes a concise formulation. 

In this paper, we explore an approach to this problem suitable for 
analogue association problems subject to certain smoothness constraints. 
This includes the important class of pattern association problems that 
originate from a natural setting, and hence are subject to constraints 
resulting from the continuous nature of physical law. These implicit 
smoothness constraints have been successfully exploited in other con- 
texts. For example, to infer the locations and orientations of physical 
surfaces from a set of visual inputs, it is important to assume that these 
surfaces are piecewise continuous (Marr 1981). Smoothness constraints 
are often used to ”regularize” other ill-posed inverse problems that arise 
in early vision (Poggio and Koch 1985) and in other fields (Tikhonov and 
Arsenin 1977). For this broad class of problems, the problem of gener- 
alization reduces to that of finding a network with a response function 
that interpolates smoothly between the training samples. As a simple 
example, we consider a set of points taken from the graph of a contin- 
uous real valued function of one variable and a feedforward network 
with a single input unit, a layer of N hidden sigmoidal units, followed 
by a single linear output unit. If N and the initial magnitudes of the 
network weights are chosen too large, the network obtained under the 
BP algorithm usually has a very irregular response function (cf. Figs. 1 
and 2).  

One way of obtaining a network with a smooth response function is 
to add a measure of smoothness to the standard BP error function as a 
perturbation. For example, one might average an absolute measure of the 
local curvature of the response function over the expected distribution of 
network inputs. As this requires integrating over a fine mesh embedded 
in the input space, more computation may be required than is practi- 
cal. Instead, we will foIlow a more intuitive path. In particular we will 
modify the standard BP learning rule in such a way as to (1) reduce the 
number of hidden units in the network, and (2) minimize the magnitudes 
of the network’s weights. As it tends to overconstrain the network, the 
first objective parallels that of polynomial regression, where one seeks 
the lowest order polynomial that reliably fits a given set of data (Akaike 
1977). Furthermore, this objective will often eliminate spurious local ex- 
trema in the response function. The second objective is designed to avoid 
unnecessarily abrupt transitions in the response function. This follows 
from observing that the gradient of the sigmoidal function f ( ~ ~ x - 0 )  with 
respect to the input vector, x, is proportional to the weight vector, w. 

This intuitive approach was partially inspired by a recent algorithm 
designed to reduce the number of weights in a network during the train- 
ing phase (Rumelhart 1988). Here, one auxiliary term, Cia(wi), was 
added to the standard BP error function, the summation being performed 
over all of the weights and thresholds in the network. The terms of the 
summation, a(w) = w2/(1 + w2), measure the magnitudes of the weights 
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relative to unity. Thus, this summation is a rough measure of the number 
of "significant" weights in the network; adding it to the error function 
biases the algorithm toward architectures that use the least number of 
sigruficant weights. The combined energy function is then minimized 
by steepest descent. After a certain training criterion is reached, weights 
with magnitudes falling below a critical threshold can be removed from 
the network by clamping their values to zero. Although this algorithm 
reduces the number of weights, it does not effectively reduce the number 
of hidden units, as architectures with fewer hidden units, but the same 
number of weights, are not favored. 

In contrast to the above, we add two terms to the BP learning rule. 
The first is designed to remove as many hidden units as possible, while 
maintaining an acceptable level of error in the response function over the 
training data. For this to succeed, the units must be operating near their 
transition regime. The second term is designed to satisfy this requirement 
as well as minimize the magnitudes of the weights. These modifications 
to BP are detailed in Section 2. In Section 3, we present the results of 
several numerical simulations that demonstrate their effectiveness. In 
the first set of simulations we show that a network, beginning with a 
large number of hidden units, can be reduced in size to one having a 
response function that smoothly interpolates between the training data 
points. In the second set, we construct training data from a network with 
an "unknown" number of hidden units, and show that the algorithm can 
be used to infer the architecture of the unknown network with a high 
probability. Finally, we present our conclusions in Section 4. 

2 The Network Reduction Algorithm 

We consider the problem of training a feedforward network having a 
single input unit, one layer of N hidden sigmoidal units, and a single 
linear output unit, to smoothly interpolate between the M ordered pairs, 
{(z", y"): 7r = 1 , .  . . , M } ,  of a given training set. (Here, y" is the desired 
output value when the network input is set to 9.) We assume that the 
number of hidden units has been initially estimated to be larger than 
necessary. Let uz and u1 denote the input and output weights of the ith 
hidden unit, and O,, its threshold value. The response function of the net- 
work then has the form g(z; w, @) = w,f(u,~-O,), where, for notational 
convenience, we let w = ( ~ 1 , .  . . ,up,, q, . . . , up,)', and 6 = (el, . . .  ON)^. The 
sigmoidal function is usually taken to be a modified hyperbolic tangent, 
that is, f(s) = 1/(1 + e-2). Under BP, one attempts to find weight and 
threshold values that minimize the standard error function, 

M 
E,(w, e) = C [g(zz;w, e) - y"]' 

7 F l  

by gradient descent (Rumelhart et al. 1986; Werbos 1974). 
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For the architecture described above, we define a hidden unit to be 
significant if it is coupled to both the input and output units with weights 
of a significantly large magnitude, that is, greater than one. Thus, the 
quantity, 

s, = a(ui)a(wi) 

can be viewed as a measure of the significance of the ith hidden unit, 
where, as before, a(w) = w2/(1 + w2). Following the first objective of the 
previous section, we desire to favor those architectures that require the 
fewest number of significant hidden units. 

If the given training set does not fully constrain the given network 
architecture, then there is, in general, a degenerate set of solutions over 
which E0(w, 6 )  is acceptably small. Following our first objective, we add 
a term proportional to 

i=l j=1 

to the standard error function. This biases the algorithm toward those so- 
lutions that require the fewest number of significant hidden units. From 
its definition, El achieves a minimum value of zero if no more than one 
hidden unit has a nonzero significance, and approaches its upper bound 
of N(N - 1)/2 as the magnitudes of all weights increase without bound. 
After applying the gradient descent algorithm, we obtain the learning 
rule, 

where, and X are learning rate parameters. Note that the last term in 
equation 2.1 couples the dynamics of the weights so that, for example, 
increasing the significance of the kth hidden unit, respectively increases 
the decay rate of every weight associated with the other hidden units. 
Also note that this term is proportional to a'(w,) = 2w,/(l + w:)~, which 
becomes insignificant for large enough Iw,I. This will help stabilize the 
dominant weights, but will also, in part, necessitate the second objective 
stated in the previous section. 

Because of possible conflicts between the two gradients in equation 2.1, 
spurious equilibria may exist. It is thus helpful to include the auxiliary 
term only after the network has learned the training set to a sufficient de- 
gree. Consequently, we let X = X(&O) = Xo exp(-PEo), where P-' defines 
a characteristic standard error: the value of Eo below which the auxiliary 
term comes into play. Note that the resulting learning rule no longer 
follows the direction of steepest descent of the combined error function, 
however, the desired objective is ultimately obtained. 
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We attain our second objective of reducing the weight magnitudes 
by subtracting an amount proportional to tanh(wi) from the right-hand 
side of equation 2.1. Although other choices are possible, this one has 
shown to be effective in practice. Unlike the weight reduction scheme 
(Rumelhart 1988) discussed in the introduction, our method preferentially 
reduces the larger weights in the network. We also apply this term to 
the threshold's update rule, because, in our examples of interest, we are 
interested in the region of input space around the origin. 

We thus obtain the network reduction algorithm, 

(2.4) 

As before, we gate the influence of the new term on how well the network 
is learning the training set. In this case, it appears helpful to reduce 
this term gradually with time. In particular, we let p = po/Eo(w",@") - 

Once an acceptable level of performance is reached, any weight with 
magnitude below a certain level is removed from the network. When a 
hidden unit is connected to the rest of the network with only "removed 
weights, then the unit is discarded. Thus, as is desired, the number of 
hidden units is reduced. 

Finally, we mention that this algorithm can be extended to other archi- 
tectures. For example, for a network having K inputs and L outputs, one 
may let S, = xEl ELl o('u~~)o(w,~), where, 'Uka is the value of the weight 
connecting the kth input to the ith hidden unit, and w,1, is that of the 
weight connecting the ith hidden unit with the Zth output. 

880 
84 

e,"+l = e," - ?-(wn, en) - ptanh(8;) 

&o(wn-l, en-l)1. 

3 Simulation Results 

The first simulation demonstrates that the modified learning rule reduces 
the number of hidden units and results in a smooth response function. 
The training set of the first run consists of 9 equally spaced data points 
taken from the graph of the function, $J(x) = e-(z-1)2 + e-(++1)2, over the 
domain [-2,2]. We begin with the network described in Section 2, with 
N = 20; the 40 weights and 20 thresholds are randomly initialized from 
a uniform distribution over the interval [-25,251. With learning param- 
eters set to q x 5 x lop3, p = 0.1, Xo = 6.5 x lop3, and po = 5 x lop4, 
the network is trained by applying the learning rules in equations 2.3 
and 2.4. After the value of &O falls below the value 0.05 any weight with 
a magnitude less than 0.1 is set to zero. The resulting network uses 
only 5 of the 20 available hidden units. At this point, the nominal in- 
crease in &o resulting from eliminating the weaker weights is corrected 
by training the reduced network with the standard BP algorithm for a 
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Figure 1: The solid curve indicates the output response of the network with 1 
input, 20 hidden units, and 1 output, trained by the network reduction algo- 
rithm on the 9 training points indicated by circular markers. The broken curve 
indicates a response function obtained by training the same network with the 
same data using BP. The dotted curve indicates the graph of q5(x) from which 
the training points were selected. 

few additional iterations. In Figure 1, the response function of the net- 
work obtained by this procedure is compared against one obtained by BP 
(ie., A0 = po = 0) with the same initial conditions. Note that the response 
function obtained by the network reduction algorithm smoothly inter- 
polates between the 9 training points and possesses the same number of 
local extrema as @(XI. This cannot be said for the response function gener- 
ated by BP, which oscillates wildly with minimum and maximum values, 
-17.5 and 10.9, over the input domain I-3,3]. A more quantitative com- 
parison can be made by averaging the root-mean-square (RMS) deviation 
between each response function and @(x) over the interval [-2,21, viz. 

(Note that & ~ s  is a random variable, as the particular determination of 
the response function, g, depends on the initial values of the weights 
and thresholds, which are set at random.) For this instance of the net- 
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work reduction algorithm, we obtain ENS = 1.15 x low2, while for BP, 

If the algorithm does yield a network that generalizes well, then the 
size of the network should not depend critically on the number of training 
samples used. This necessarily assumes that the data in each set faithfully 
represent the significant features of the training problem. Therefore, in 
a second run, the network is trained with the same initial state, but 
with a training set containing 17 equally spaced samples taken from the 
graph of the same function. Again the algorithm reduces the network to 
5 significant hidden units, with Ems = 8.81 x Training the network 
under BP with this data yields a network with E m s  = 4.73 x lo-'. The 
response functions of these two networks are displayed in Figure 2. 

Next, we explore an "inverse network" problem: To what extent can 
one use this algorithm to infer the architecture of a feedforward neural 
network from only a finite sample of its response function? A network 
containing one input, a layer of two hidden units, and a single linear 
output is chosen, and a training set of 17 sample points from its response 
function is generated. Then, an ensemble of 50 new networks, each 

E m s  = 1.71. 

- 3  - 2  -1  0 1 2 3 
Network Input 

Figure 2: Same as in Figure 1, but with 17 training points. At the left end 
of the displayed interval, the network response obtained from BP (the broken 
curve) drops off scale to -5. At the right end, it quickly climbs to 20, and then 
saturates. 



Smoothness Constraints from Discrete Samples 195 

Hidden 
units (n)  

2 
3 
4 
5 
6 
7 

Frequency E(ERMS In) 
(V,) 
22 0.0275 
9 0.0263 
6 0.0405 
6 0.0401 
3 0.0656 
4 0.0700 

Table 1: Simulation Results for the "Inverse Network Problem. Of a total 
of 50 runs, the center column shows the number of times a network with n 
significant hidden units was obtained. The right column equals the average 
E R M ~  - computed over the interval [-2,2] - over the v, runs ending with n 
significant hidden units. 

containing 10 hidden units, is trained on the data set with the network 
reduction algorithm. The results of these 50 simulations are summarized 
in Table 1. Note that 22 times out of 50 the algorithm finds a network 
of minimal size. It is encouraging that the response functions with the 
least average RMS error, measured over the interval I-2,21, come from 
networks having two or three hidden neurons. In Figure 3, we show 
how the response functions of the network regress toward that of the 
"concealed network as the number of hidden units used decreases. For 
comparison, 10 networks trained by BP alone yield an average RMS error 
of 0.461 without any apparent reduction in the number of significant 
hidden units. 

4 Concluding Remarks 

In the above we have shown that by adding suitably chosen terms to 
the BP learning rule, desirable global properties in the network's re- 
sponse function can be obtained. In particular, the BP algorithm was 
tailored to prefer networks having smoother response functions. From 
the simulations it is apparent that this behavior is attained at the cost 
of a slower convergence rate. In the first simulation, where &(x) was 
approximated using a nine point training set, 50,000 iterations were re- 
quired by the network reduction algorithm, but only 300 were required 
by BP. This discrepancy was, however, reduced when the networks were 
trained from the 17 point set: the network reduction algorithm needed 
650,000 iterations, and BP, 150,000. Approximately one-half of the 50 "in- 
verse network simulations required more than 800,000 iterations. This 
is only slightly larger than the 400,000 iterations typically needed to train 
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Figure 3: Response functions obtained for the "inverse network" problem are 
displayed as solid curves, that of the "concealed network as a dotted curve, 
and the training points as circular markers. Graphs (a)+) reflect the median 
outcomes - the networks resulting in the median values of €RMS - for the 
sets of trials resulting in TI = 2, 4, and 7 signhcant hidden units, respectively. 
Graph (d) reflects the median outcome of 10 trials using BP, all of which resulted 
in 10 signhcant hidden units. Values of E m s  were computed over the input 
interval [-2,21; for the response functions displayed in graphs (a)-fd), Ems  
equals 2.87 x lop2, 3.35 x lo-*, 4.49 x lo-', and 0.291, respectively. 

a network with 10 hidden units, with the same 17 samples drawn from 
the "concealed" network, using BP. As BP typically requires a greater 
number of iterations to learn a given training set on a smaller network, 
and, as network reduction attempts to select the smallest component of 
the given network that is just capable of learning the training set, it is not 
surprising that the network reduction algorithm converges at a slower 
rate. By a similar argument, we conjecture that network reduction is 
more effective than training a small network with BP, while gradually 
adding new hidden units until the network has learned the training set. 
For example, BP learned the "inverse network problem within 800,000 
iterations in only one of 10 trials, on a network containing two hidden 
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units, when the weights were initialized randomly from a uniform dis- 
tribution over the interval [-25,251. Note, however, that in this case, 
the convergence rate can be greatly accelerated by chosing initial weight 
values with smaller magnitudes. 
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