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Abstract

The paper proposes a general framework which encompasses the training of neural networks and the

adaptation of filters. We show that neural networks can be considered as general non-linear filters

which can be trained adaptively, i. e. which can undergo continual training with a possibly infinite

number of time-ordered examples. We introduce the canonical form of a neural network. This

canonical form permits a unified presentation of network architectures and of gradient-based training

algorithms for both feedforward networks (transversal filters) and feedback networks (recursive

filters). We show that several algorithms used classically in linear adaptive filtering, and some

algorithms suggested by other authors for training neural networks, are special cases in a general

classification of training algorithms for feedback networks.

INTRODUCTION

The recent development of neural networks has made comparisons between "neural" approaches and

classical ones an absolute necessity, in order to assess unambiguously the potential benefits of using

neural nets to perform specific tasks. These comparisons can be performed either on the basis of

simulations - which are necessarily limited in scope to the systems which are simulated - or on a

conceptual basis - endeavouring to put into perspective the methods and algorithms related to various

approaches.

The present paper belongs to the second category. It proposes a general framework which

encompasses algorithms used for the training of neural networks and algorithms used for the

estimation of the parameters of filters. Specifically, we show that neural networks can be used

adaptively, i.e. can undergo continual training with a possibly infinite number of time-ordered

examples - in contradistinction to the traditional training of neural networks with a finite number of

examples presented in an arbitrary order; therefore, neural networks can be regarded as a class of

non-linear adaptive filters, either transversal or recursive, which are quite general because of the

ability of feedforward nets to approximate non-linear functions. We further show that algorithms

which can be used for the adaptive training of feedback neural networks fall into four broad classes;

these classes include, as special instances, the methods which have been proposed in the recent past

for training neural networks adaptively, as well as algorithms which have been in current use in

linear adaptive filtering. Furthermore, this framework allows us to propose a number of new

algorithms which may be used for non-linear adaptive filtering and for non-linear adaptive control.

The first part of the paper is a short presentation of adaptive filters and neural networks. In the

second part, we define the architectures of neural networks for non-linear filtering, either transversal

or recursive; we introduce the concept of canonical form  of a network. The third part is devoted to

the adaptive training of neural networks; we first consider transversal filters, whose training is

relatively straightforward; we subsequently consider the training of feedback networks for non-linear

recursive adaptive filtering, which is a much richer problem; we introduce undirected, semi-directed,

and directed algorithms, and put them into the perspective of standard approaches in adaptive

filtering (output error and equation error approaches) and adaptive control (parallel and series-

parallel approaches), as well as of algorithms suggested earlier for the training of neural networks.
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1. SCOPES OF ADAPTIVE FILTERS AND OF NEURAL NETWORKS

1.1. ADAPTIVE FILTERS

Adaptive filtering is of central importance in many applications of signal processing, such as the

modelling, estimation and detection of signals. Adaptive filters also play a crucial role in system

modelling and control. These applications are related to communications, radar, sonar, biomedical

electronics, geophysics, etc.

A general discrete-time filter defines a relationship between an input time sequence {u(n), u(n–1),

…} and an output time sequence {y(n), y(n–1), …}, u(n) and y(n) being either uni or

multidimensional signals. In the following, we consider filters having one input and one output. The

generalization to multidimensional signals is straightforward.

There are two types of filters: (i) transversal filters (termed Finite Impulse Response or FIR filters in

linear filtering) whose outputs are functions of the input signals only; and (ii) recursive filters

(termed Infinite Impulse Response or IIR filters in linear filtering) whose outputs are functions both

of the input signals and of a delayed version of the output signals. Hence, a transversal filter is

defined by:

y(n) = Φ [u(n), u(n-1), ..., u(n-M+1)],   (1)

where M is the length of the finite memory of the filter, and a recursive filter is defined by

y(n) = Φ [u(n), u(n-1), ..., u(n-M+1), y(n-1), y(n-2), ...., y(n-N)]   (2)

where N is the order of the filter.

The ability of a filter to perform the desired task is expressed by a criterion; this criterion may be

either quantitative, e.g., maximizing the signal to noise ratio for spatial filtering [see for instance

Applebaum and Chapman 1976], minimizing the bit error rate in data transmission [see for instance

Proakis 1983], or qualitative, e.g. listening for speech prediction [see for instance Jayant and Noll

1984]. In practice, the criterion is usually expressed as a weighted sum of squared differences

between the output of the filter and the desired output (e.g. LS criterion).

An adaptive filter is a system whose parameters are continually updated, without explicit control by

the user. The interest in adaptive filters stems from two facts: (i) tailoring a filter of given

architecture to perform a specific task requires a priori knowledge of the characteristics of the input

signal; since this knowledge may be absent or partial, systems which can learn the characteristics of

the signal are desirable; (ii) filtering nonstationary signals necessitates systems which are capable of

tracking the variations of the characteristics of the signal.

The bulk of adaptive filtering theory is devoted to linear adaptive filters, defined by relations (1) and

(2), where Φ is a linear function. Linear filters have been extensively studied, and are appropriate for

many purposes in signal processing. A family of particularly efficient adaptation algorithms has been

specially designed in the case of transversal linear filtering; they are referred to as the recursive least

square (RLS) algorithms and their fast (FRLS) versions [Bellanger 1987, Haykin 1991].

Linear adaptive filters are widely used for system and signal modelling, due to their simplicity, and

due to the fact that, in many cases (such as the estimation of gaussian signals), they are optimal.

Despite their popularity, they remain inappropriate in many cases, especially for modelling non-

linear systems; investigations along these lines have been performed for adaptive detection [see for

instance Picinbono 1988], prediction and estimation [see for instance McCannon et al. 1982].

Unfortunately, when dealing with non-linear filters, no general adaptation algorithm is available, so

that heuristic approaches are used.

By contrast, general methods for training neural networks are available; furthermore, neural

networks are known to be universal approximants [see for instance Hornik et al. 1989], so that they

can be used to approximate any smooth non-linear function. Since both the adaptation of filters

[Haykin 1991, Widrow and Stearns 1985] and the training of neural networks involve gradient

techniques, we propose to build on this algorithmic similarity a general framework which

encompasses neural networks and filters. We do this in such a way as to clarify how neural networks

can be applied to adaptive filtering problems.

1.2. NEURAL NETWORKS

The reader is assumed to be familiar with the scope and principles of the operation of neural

networks; in order to help clarify the relations between neural nets and filters, the present section

presents a broad classification of neural network architectures and functions, restricted to networks

with supervised training.

1.2.1. -     Functions of neural networks   .

The functions of neural networks depend on the network architectures and on the nature of the input

data:

- network architectures:  neural networks can have either a feedforward structure or a feedback

structure;

- input data:  the succession of input data can be either time-ordered or arbitrarily ordered.
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Feedback networks (also termed recurrent networks) have been used as associative memories, which

store and retrieve either fixed points or trajectories in state space. The present paper stands in a

completely different context: we investigate feedback neural networks which are never left to evolve

under their own dynamics, but which are continually fed with new input data. In this context, the

purpose of using neural networks is not that of storing and retrieving data, but that of capturing the

(possibly non-stationary) characteristics of a signal or of a system.

Feedforward neural networks have been used basically as classifiers for patterns whose sequence of

presentation is not significant and carries no information, although the ordering of components

within an input vector may be significant.

In contrast, the time ordering of the sequence of input data is of fundamental importance for filters:

the input vectors can be, for instance, the sequence of values of a sampled signal. At time n, the

network is presented with a window of the last M values of the sampled signal {u(n), u(n-1), ..., u(n-

M+1)}, and, at time n+1, the input is shifted by one time period {u(n+1), u(n), ..., u(n-M+2)}. In this

context, feedforward networks are used as transversal filters, and feedback networks are used as

recursive filters.

A very large number of examples of feedforward networks for classification can be found in the

literature. Neural network associative memories have also been very widely investigated [Hopfield

1982, Personnaz 1986, Pineda 1987]. Feedforward networks have been used for prediction [Lapedes

and Farber 1988, Pearlmutter 1989, Weigend et al. 1990]. Examples of feedback networks for

filtering can be found in [Robinson and Fallside 1989, Elman 1990, Poddar and Unnikrishnan 1991].

Note that the above classification is not meant to be rigid. For instance, Chen et al. [Chen et al. 1990]

encode a typical filtering problem (channel equalization) into a classification problem. Conversely,

Waibel et al. [Waibel et al. 1989] uses a typical transversal filter structure as a classifier.

1.2.2. -      Non-adaptive and adaptive training    .

At present, in the vast majority of cases, neural networks are not used adaptively: they are first

trained with a finite number of training samples, and subsequently used, e.g. for classification

purposes. Similarly, non-adaptive filters are first trained with a finite number of time-ordered

samples, and subsequently used with fixed coefficients. In contrast, adaptive systems are trained

continually while being used with an infinite number of samples. The instances of neural networks

being trained adaptively are quite few [Williams and Zipser 1989a, Williams and Zipser 1989b,

Williams and Peng 1990, Narendra and Parthasarathy 1990, Narendra and Parthasarathy 1991].

2. STRUCTURE OF NEURAL NETWORKS FOR NON-LINEAR FILTERING

2.1. MODEL OF DISCRETE-TIME NEURON

The behaviour of a discrete-time neuron is defined by relation (3):

zi(n) = fi vi(n)  = fi cij, τ zj(n-τ)∑
τ=0

qij

∑
j∈ Pi

             (3)

where:

fi is the activation function of neuron i,

vi is the potential of neuron i,

zj can be either the output of neuron j or the value of a network input j,

Pi is the set of indices of the afferent neurons and network inputs to neuron i,

cij,τ is the weight of the synapse which transfers information from neuron or network

input j to neuron i with (discrete) delay τ,

qij is the maximal delay between neuron j and neuron i.

It should be clear that several synapses can transfer information from neuron (or network input) j to

neuron i, each synapse having its own delay τ and its own weight cij,τ .
Obviously, one must have cii,0=0 ∀ i for causality to be preserved.

If neuron i is such that: i ∉  Pi and qij=0 ∀ j∈ Pi, neuron i is said to be static.

2.2. STRUCTURE OF NEURAL NETWORKS FOR FILTERING

The architecture of a network, i.e. the topology of the connections and the distribution of delays, may

be fully or partially imposed by the problem that must be solved: the problem defines the sequence

of input signal values and of desired outputs; in addition, a priori knowledge of the problem may

give hints which help designing an efficient architecture (see for instance the design of the

feedforward network described in [Waibel et al.1989]).

In order to clarify the presentation and to make the implementation of the training algorithms easier,

the canonical form of the network is especially convenient. We first introduce the canonical form of

feedback networks; the canonical form of feedforward networks will appear as a special case.



4

2.2.1. -     The canonical form of feedback networks

The dynamics of a discrete-time feedback network can be described by a finite-difference equation

of order N, which can be expressed by a set of N first-order difference equations involving N

variables (termed state variables) in addition to the M input variables. Thus, any feedback network

can be cast into a canonical form which consists of a feedforward (static) network

- whose outputs are the outputs of the neurons which have desired values, and the values of the

state variables,

- whose inputs are the inputs of the network and the values of the state variables, the latter being

delayed by one time unit (Figure 1).

eedforward network

Output at 
time n

External network 
inputs at time n

State variables at 
time n

...

....

.... .......

State variables at 
time n+1

Unit 
delays1

Figure 1:
General canonical form of a feedback neural network.

Note that the choice of the set of state variables is not necessarily unique: therefore, a feedback

network may have several canonical forms. The state of the network  is the set of values of the state

variables.

In the following, all vectors will be denoted by uppercase letters.

The behaviour of a single-input-single-output network is described by the state equation (4) and

output equation (4'):

S(n+1) = ϕ[S(n),U(n)] (4)

y(n) = ψ[S(n),U(n)] (4')

where U(n) is the vector of the M last successive values of the external input u and S(n) is the vector

of the N state variables (state vector). The output of the network may be a state variable.

The transformation of a non-canonical feedback neural network filter to its canonical form requires

the determination of M and of N. In the single-input-single-output case, the computation of the

maximum number of external inputs E (M≤E) is done as follows: construct the network graph whose

nodes are the neurons and the input, and whose edges are the connections between neurons, weighted

by the values of the delays; find the direct path of maximum weight D from input to output; one has

E = D+1. The determination of the order N of the network from the network graph is less

straightforward; it is described in Appendix 1.

If the task to be performed does not suggest or impose any structure for the filter, one may use either

a multi-layer Perceptron, or the most general form of feedforward network in the canonical form, i.e.

a fully connected network; in that case, the number of neurons, of state variables and of delayed

inputs must be found by trial and error.

If we assume that the state variables are delayed values of the output, or if we assume that the state

of the system can be reconstructed from values of the input and output, then all state variables have

desired values. Such is the case for the NARMAX model [Chen and Billings 1989] and for the

systems investigated in [Narendra 1990]. Figure 2 illustrates the most general form of the canonical

form of a network having a single output y(n) and N state variables {y(n-1), ..., y(n-N+1)}. It

features M external inputs, N feedback inputs and one output; it can implement a fairly large class of

functions Φ; the non-recursive part of the network (which implements function Φ) is a fully-

connected feedforward net.

u(n) u(n-M+1) y(n-N+1)y(n-1)

∑
f

∑
f ∑

y(n)

Fully connected

. . 

. . . . 
y(n-N)

Unit
delays

1 1

y(n-2)

. . . . . . 

. . . . . . . 

1

z1= zM+1=zM= zM+2= zM+N-1= zM+N=

zM+N+ν=zM+N+1 zM+N+2

Figure 2:
Canonical form of a network with a fully-connected feedforward net,

whose state variables are delayed values of the output.

More specific architectures are described in the literature, implementing various classes of

functions ϕ and ψ. Some examples of such architectures are presented in Appendix 2.
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2.2.2. -     Special case: the canonical form of feedforward networks

Similarly, any feedforward network with delays, with input signal u, can be cast into the form of a

feedforward network of static neurons, whose inputs are the successive values u(n), u(n-1), ..., u(n-

M+1); this puts the network under the form of a transversal filter obeying relation (1):

y(n) = Φ [u(n), u(n-1), ..., u(n-M+1)] = Φ [U(n)] .

The transformation of a non-canonical feedforward neural network filter to its canonical form

requires the determination of the maximum value M, which is done as explained above in the case of

feedback networks. An example described in Appendix 1 shows that this transformation may

introduce the replication of some weights, known as "shared weights".

3. TRAINING ADAPTIVE NEURAL NETWORKS FOR ADAPTIVE FILTERING

3.1. CRITERION

The task to be performed by a neural network used as a filter is defined by a (possibly infinite)

sequence of inputs u and of corresponding desired outputs d. At each sampling time n, an error e(n)

is defined as the difference between the desired output d(n) and the actual output of the network y(n):

e(n)=d(n)-y(n). For instance, in a modelling process, d(n) is the output of the process to be modelled;

in a predictor, d(n) is the input signal at time n+1.

The training algorithms aim at finding the network coefficients so as to satisfy a given quality

criterion. For example, in the case of non-adaptive training (as defined in Section 1.2.2), the most

popular criterion is the Least Squares (LS) criterion; the cost function to be minimized is

J(C) = 1
K

 e(p)2∑
p=1

K

Thus, the coefficients minimizing J(C) are first computed with a finite number K of samples; the

network is subsequently used with these fixed coefficients.

In the context of adaptive training, taking into account all the errors since the beginning of the

optimization does not make sense; thus, one can implement a forgetting mechanism. In the present

paper, we use a rectangular "sliding window" of length Nc; hence the following cost function:

J(n, C) = 1
2

 e(p)2∑
p=n-Nc+1

n

 .

The choice of the length Nc of the window is task-dependent, and is related to the typical time scale

of the non-stationarity of the signal to be processed.

In the following, the notation J(n) will be used instead of J(n, C). The computation of e(p) will be

discussed in sections 3.3 and 3.4.2.

3.2. ADAPTIVE TRAINING ALGORITHMS

Adaptive algorithms compute, in real time, coefficient modifications based on past information. In

the present paper, we consider only gradient-based algorithms, which require the estimation of the

gradient of the cost function, ∇ J(n), and possibly the estimation of J(n); these computations make use

of data available at time n.

In the simplest and most popular formulation, a single modification of the vector of coefficients

∆C(n)=C(n)-C(n-1) is computed between time n and time n+1; such a method, usual in adaptive

filtering, is termed a purely recursive algorithm.

The modification of the coefficients is often performed by the steepest-descent method, whereby

∆C(n)=-µ∇ J(n). In order to improve upon the steepest-descent method, quasi-Newton methods can

be used [Press et al. 1986], whereby ∆C(n)=+µD(n), where D(n) is a vector obtained by a linear

transformation of the gradient.

Purely recursive algorithms were introduced in order to avoid time-consuming computations

between the reception of two successive samples of the input signal. If the application under

investigation does not have stringent time requirements, then other possibilities can be considered.

For instance, if it is desired to get closer to the minimum of the cost function, several iterations of the

gradient algorithm can be performed between time n and time n+1. In that case, the  coefficient-

modification vector ∆C(n) is computed iteratively as:

∆C(n) = CKn(n) -  C0(n) where Kn is the number of iterations at time n,
 

with Ck(n) = Ck-1(n) + µkDk-1(n)    (k=1 to Kn), where Dk-1(n) is obtained from the coefficients

computed at iteration k-1,

and C0(n) = CKn-1(n-1) .
 

If Kn>1, the tracking capabilities of the system in the non-stationary case, or the speed of

convergence to a minimum in the stationary case, may be improved with respect to the purely

recursive algorithm. The applicability of this method depends specifically on the ratio of the typical

time scale of the non-stationarity to the sampling period.

As a final variant, it may be possible to update the coefficients with a period T>1 if the time scale of

the non-stationarity is large with respect to the sampling period:

C0(n) = CKn-T (n-T) .
 

Whichever algorithm is chosen, the central problem is the estimation of the gradient, ∇ J(n):
∂J(n)
∂cij

 = 
∂

∂cij
 1

2
 e(p)2∑
p=n-Nc+1

n

.

At present, two techniques are available for this computation: the forward computation of  the

gradient and the popular backpropagation of the gradient.

i) The forward computation of the gradient is based on the following relation:
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∂J(n)
∂cij

  =  - e(p) 
∂y(p)
∂cij

∑
p=n-Nc+1

n

 .

The partial derivatives of the output at time n with respect to the coefficients appearing on the right-

hand side are computed recursively in the forward direction, from the partial derivatives of the inputs

to the partial derivatives of the outputs of the network.

ii) In contrast, backpropagation uses a chain derivation rule to compute the gradient of J(n). The

required partial derivatives of the cost function J(n) with respect to the potentials are computed in the

backward direction, from the output to the inputs.

The advantages and disadvantages of these two techniques will be discussed in sections 3.3 and

3.4.2.

In the following, we show how to compute the coefficient modifications for feedforward and

feedback neural networks, and we put into perspective the training algorithms developed recently for

neural networks and the algorithms used classically in adaptive filtering.

3.3. TRAINING FEEDFORWARD NEURAL NETWORKS FOR NON-LINEAR TRANSVERSAL

ADAPTIVE FILTERING.

We consider purely recursive algorithms (i.e. T=1 and Kn=1).The extension to non-purely recursive

algorithms is straightforward.

 As shown in section 2.2.2, any discrete-time feedforward neural network can be cast into a

canonical form in which all neurons are static. The output of such a network is computed from the M

past values of the input, and the output at time n does not depend on the values of the output at

previous times.

Therefore, the cost function

J(n) = 1
2

 e(p)2∑
p=n-Nc+1

n

is a sum of Nc independent terms. Its gradient can be computed, from the Nc+M+1 past input data

and the Nc corresponding desired outputs, as a sum of Nc independent terms: therefore, the

modification of the coefficients, at time n, is the sum of Nc elementary modifications computed from

Nc independent, identical elementary blocks (each of them with coefficients C(n-1)), between time n

and time n+1.

We introduce the following notation, which will be used both for feedforward and for feedback

networks: the blocks are numbered by m; all values computed from block m of the training network

will be denoted with superscript m. For instance, ym(n) is the output value of the network computed

by the m-th block at time n: it is the value that the output of the filter would have taken on, at time n-

Nc+m, if the vector of coefficients of the network at that time had been equal to C(n-1).

With this notation, the cost function taken into account for the modification of the coefficients at

time n becomes:

J(n) = 1
2

 em(n) 2∑
m=1

Nc

    where em(n) = d(n-Nc+m) - ym(n)  is the error for block m
 computed at time n.

As mentioned in section 3.2, two techniques are available for computing the gradient of the cost

function: the forward computation technique (used classically in adaptive filtering) and the

backpropagation technique (used classically for neural networks) [Rumelhart et al. 1986].

Thus, each block, from block m=1 to block m=Nc , computes a partial modification ∆cijm of the

coefficients and the total modification, at time n, is:

∆cij(n) =  ∆cij
m

(n)∑
m=1

Nc

  ,

as illustrated in Figure 3.

d(n-2)

Block 1

C(n-2)

Block 2

C(n-2)

Block 3

C(n-2)

d(n-1)

At time n-1

u(n-3)

u(n-M-2)

u(n-2)

u(n-M-1)

u(n-1)

u(n-M)

d(n)d(n-2)

Block 1

C(n-1)

Block 2

C(n-1)

Block 3

C(n-1)

d(n-1)

At time n

. . . . 

u(n-2)

u(n-M-1)

. . . . 

u(n-1)

u(n-M)

. . . . 

u(n)

u(n-M+1)

d(n-3)

∆cij1(n-1) ∆cij2(n-1) ∆cij3(n-1)

∆c
ij
1(n) ∆c

ij
2(n) ∆c

ij
3(n)

∆cij(n-1) = ∆c
ij
1(n-1) + ∆c

ij
2(n-1) + ∆c

ij
3(n-1)

cij(n-1) = cij(n-2) + ∆cij(n-1)

∆cij(n) = ∆c
ij
1(n) + ∆c

ij
2(n) + ∆c

ij
3(n)

cij(n) = cij(n-1) + ∆cij(n)
. . . . 

. . . . 

. . . . 

U1(n-1) U 2(n-1) U 3(n-1)

U 1(n) U 2(n) U 3(n)

Figure 3:
Computation of two successive coefficient modifications

for a non-linear transversal filter (Nc=3).

It was mentioned above that either the forward computation method or the backpropagation method

can be used for the estimation of the gradient of the cost function. Both techniques lead to exactly the

same numerical results; it has been shown [Pineda 1989] that backpropagation is less

computationally expensive than forward computation. Therefore, for the training of feedforward

networks operating as non-linear transversal filters, backpropagation is the preferred technique for

gradient estimation. However, as we shall see in the following, this is not always the case for the

training of feedback networks.

3.4. TRAINING FEEDBACK NEURAL NETWORKS FOR NON-LINEAR RECURSIVE

ADAPTIVE FILTERING.
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This section is devoted to the adaptive training of feedback networks operating as recursive filters.

This problem is definitely richer, and more difficult, than the training of feedforward networks for

adaptive transversal filtering. We present a wide variety of algorithms, and elucidate their

relationships to adaptation algorithms used in linear adaptive filtering and to neural network training

algorithms.

3.4.1. -      General presentation of the algorithms for training feedback networks  :

Since the state variables and the output of the network at time n depend on the values of the state

variables of the network at time n-1, the computation of the gradient of the cost function requires the

computation of partial derivatives from time n=0 up to the present time n. This is clearly  not

practical, since (i) the amount of computation would grow without bound, and (ii) in the case of non-

stationary signals, taking into account the whole past history does not make sense. Therefore, the

estimation of the gradient of the cost function is performed by truncating the computations to a fixed

number of sampling periods Nt into the past. Thus, one has to use Nt computational blocks (defined

below), numbered from m=1 to m=Nt : the outputs ym(n) are computed through Nt identical

versions of the feedforward part of the canonical form of the network (each of them with coefficients

C(n-1)). Clearly, Nt must be larger than or equal to Nc in order to compute the Nc last errors em(n).

Here again, we first consider the case where T=1 and Kn=1.

Figure 4 shows the m-th computational block for the forward computation technique: the state input

vector is denoted by Sinm(n); the state output vector is denoted by Soutm(n). The canonical

feedforward (FF) net computes the output from the external inputs Um(n) and the state inputs

Sinm(n). The Forward Computation (FC) net computes the partial derivatives required for the

coefficient modification, and the partial derivatives of the state vector which may be used by the next

block. The Nt blocks compute sequentially the Nt outputs {ym} and the partial derivatives

{∂ym/∂cij}, in the forward direction (m=1 to Nt). The Nc errors {em} (computed from the outputs of

the last Nc blocks), and the corresponding partial derivatives are used for the computation of the

coefficient modifications, which is the sum of Nc terms:

∆cij(n) = - µ 
∂J(n)
∂cij

 = µ em∑
m=Nt-Nc+1

Nt

 
∂ym

∂cij
 = ∆cij

m(n)∑
m=Nt-Nc+1

Nt

  .

Details of the computations are to be found in Appendix 3.

+m)External
inputs

d(n-Nt

em

Canonical FF net
(non linear)

+
-

f' i(vi
m)

Training block m at time n

FC net
(linear)

f' i

Products

y m

State
inputs

State
outputs

zi
m

cij
m , f' i(vi

m)

cij
m , fi

Um(n)

Sin
m(n) Sout

 m (n)

∂Sout
 m

∂cij
 (n)∂Sin

 m

∂cij
 (n)

∆cij
m(n) = µ em 

∂ym

∂cij
m

∂ym

∂cij

Figure 4:
Training block m at time n with a desired output value: computation of a partial coefficient

modification using the forward computation of the gradient for a feedback neural network. If the
ouput of block m has no desired value, it has no "products" part and does not contribute directly to
coefficient modifications: it just transmits the state variables and their derivatives to the next block.

In order for the blocks to be able to perform the above computations, the values of the state inputs

Sinm(n) and of their partial derivatives with respect to the weights must be determined. The choice

of these values is of central importance; it gives rise to four families of algorithms.
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3.4.2. -     Choice of the state inputs and of their partial derivatives.

3.4.2.1. -  Choice of the state inputs:

The most "natural "choice of the state inputs of block m is to take the values of the state variables

computed by block m-1: Sinm(n)=Soutm-1(n) with Sin1(n)=Sout1(n-1). Thus, the trajectory of the

network in state space, computed at time n, is independent of the trajectory of the process: the input

of block m is not directly related to the actual values of the state variables of the process to be

modelled by the network, hence the name undirected algorithm. If the coefficients are mismatched,

this choice may lead to large errors and to instabilities. Figure 5a shows pictorially the desired

trajectory of the state of the network and the trajectory which is computed at time n when an

undirected algorithm is used (Nt=3, Nc=2). We show in section 3.4.2.2 that, in that case, one must

use the forward computation technique to compute the coefficient modifications (Figure 5b).

This choice of the state inputs has been known as the output error approach in adaptive filtering and

as the parallel approach in automatic control. It does not require that all state variables have desired

values.

In order to reduce the risks of instabilities, an alternative approach may be used, called a semi-

directed algorithm. In this approach, the state of the network is constrained to be identical to the

desired state for m=1:

Sinm(n)=Soutm-1(n) with Sin1(n) = [d(n-Nt), d(n-Nt-1), ..., d(n-Nt-M+1)]. This is possible only

when the chosen model is such that desired values are available for all state variables; this is the case

for the NARMAX model. Figure 6a shows pictorially the desired trajectory of the state of the

network and the trajectory which is computed at time n when a semi-directed algorithm is used

(Nt=4, Nc=2). We show in section 3.4.2.2 that, in that case, one can use the backpropagation

technique to compute the coefficient modifications (Figure 6b).

The trajectory of the state of the network can be further constrained by choosing the state inputs of

all blocks to be equal to their desired values:

Sinm(n) = [d(n-Nt+m-1), d(n-Nt+m-2), ..., d(n-Nt+m-M)] for all m.

With this choice, the training is under control of the desired values, hence of the process to be

modelled, at each step of the computations necessary for the adaptation (hence the name directed

algorithm); therefore, it can be expected that the influence of the mismatch of the model to the

process is less severe than in the previous cases. Figure 7a shows pictorially the desired trajectory of

the state of the network and the trajectory which is computed at time n when a directed algorithm is

used (Nt= Nc=3). We show in section 3.4.2.2 that, in that case, one can use the backpropagation

technique to compute the coefficient modifications (Figure 7b). In directed algorithms, all blocks are

independent, just as in the case of the training of feedforward networks (section 3.3); therefore, one

has Nt = Nc.

n

n-1

n-2
n-3n-4

C(n-1)
C(n-1)C(n-1)

e

e

3

2

Initialization of the partial derivatives

Computed partial derivatives

Initialization of the feedback inputs

Computed ouput values

Desired outputs

(a)

d(n)

Block 1
C(n-1)

Block 2
C(n-1)

Block 3
C(n-1)

U 1 (n) U 2 (n) U 3 (n)d(n-1)

∆C 2 (n) ∆C 3 (n)

Sin
 1 (n) Sin

 2  (n) Sin
 3 (n)Sout

 1  (n) Sout
 2  (n) Sout

 3  (n)

∂Sin
 1

∂cij
 (n) ∂Sout

 1

∂cij
 (n) ∂Sin

 2

∂cij
 (n) ∂Sout

 2

∂cij
 (n) ∂Sin

 3

∂cij
 (n) ∂Sout

 3

∂cij
 (n)∂Sout

 1

∂cij
 (n-1)

Sout
 1  (n-1)

(b)

Figure 5:
Undirected algorithm (with Nt=3 and Nc=2).

a) Pictorial representation of the desired trajectory, and of the trajectory computed at time n, in
state space; the trajectory at time n is computed by the blocks shown on Figure 5b.

b) Computational system at time n. The detail of each block is shown on Figure 4. Note that the
output of block 1 has no desired value.
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n

n-1

n-2

n-3
n-4

n-5

C(n-1) C(n-1)
C(n-1)

C(n-1)

e4

e3

Output value

Desired output value

(a)

∆ C 1 (n) ∆C 2 (n) ∆ C 3 (n) ∆ C 4 (n)

d(n)d(n-1)

Block 1
C(n-1)

Block 2
C(n-1)

Block 3
C(n-1)

Block 4
C(n-1)

D1 (n)

U1(n) U2 (n) U3 (n) U4(n)

Sin
 1 (n) S out

 1  (n) S in
 3

(n) S out
 3  (n)S in

 2
(n) S out

 2  (n) S in
 4

(n) S out
 4  (n)

∂ Sin
 4

(n)
∂ Sout

 1
(n)

∂J ∂J

∂ Sout
3

(n)
∂J

∂ Sout
 2

(n)
∂J

∂ S in
 3

(n)
∂J

∂ S in
 2

(n)
∂J

(b)

Figure 6:
Semidirected algorithm (with Nt=4 and Nc=2).

a) Pictorial representation of the desired trajectory, and of the trajectory computed at time n, in
state space; the trajectory at time n is computed by the blocks shown on Figure 6b.

b) Computational system at time n. The detail of each block is shown on Figure 8. Note that the
outputs of blocks 1 and 2 have no desired values, but do contribute an additive term to the coefficient

modifications.

This choice of the values of the state inputs has been known as the equation error approach in

adaptive filtering and as the series-parallel  approach in automatic control. It is an extension of the

teacher forcing technique [Jordan 1985] used for neural network training.

If some state inputs do not have desired values, hybrid versions of the above algorithms can be used:

those state inputs for which no desired values are available are taken equal to the corresponding

computed state variables (as in an undirected algorithm), whereas the other state inputs may be taken

equal to their desired values (as in a directed or in a semi-directed algorithm).

n

n-1

n-2

n-3n-4
n-5

C(n-1)
C(n-1)

C(n-1)

e

e

e1

2

3

Output value

Desired output value

(a)

d(n)d(n-2)

Block 1
C(n-1)

Block 2
C(n-1)

Block 3
C(n-1)

D1(n)

U 1 (n) U 2 (n) U 3 (n)d(n-1)

D2(n) D3(n)

∆C 1 (n) ∆C 2 (n) ∆C 3 (n)

Sin
 1  (n) Sin

 2  (n) Sin
 3  (n)

BPnet BPnet BPnet

(b)

Figure 7:
Directed algorithm (with Nt=Nc=3).

a) Pictorial representation of the desired trajectory, and of the trajectory computed at time n, in
state space; the trajectory at time n is computed by the blocks shown on Figure 7b.

b) Computational system at time n. The detail of each block is shown on Figure 8.
Note that, in a directed algorithm, each block is independent from the others and must have a desired

output value.
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3.4.2.2. - Consistent choices of the partial derivatives of the state inputs:

The choices of the state inputs lead to corresponding choices for the initialization of the partial

derivatives, as illustrated in Figures 5a, 6a, 7a.

In the case of the undirected algorithm, one has Sinm(n)=Soutm-1(n); therefore, a consistent choice

of the values of the partial derivatives of the state inputs consists in taking the values of the partial

derivatives of the state outputs computed by the previous block:
∂Sin

m(n)
∂cij

 = 
∂Sout

m-1(n)
∂cij

 ,

except for the first block where one has:
∂Sin

1 (n)
∂cij

 = 
∂Sout

1 (n-1)
∂cij

 .

In the case of the semi-directed algorithm, the state input values of the first block are taken equal to

the corresponding desired values; the latter do not depend on the coefficients; therefore, their partial

derivatives can consistently be taken equal to zero. The values of the partial derivatives of the state

inputs are taken equal to the values of the partial derivatives of the state outputs computed by the

previous block.

In the case of the directed algorithm, one can consistently take the partial derivatives of the state

inputs of all blocks equal to zero.

The parameters T, Kn, Nt, Nc being fixed, the first three algorithms described above are summarized

on the first line of each section of Table 1. The first part of the acronyms refers to the choice of the

state inputs and the second part refers to the choice of the partial derivatives of the state inputs. They

include algorithms which have been used previously by other authors: the "Real-Time Recurrent

Learning Algorithm" [Williams and Zipser 1989a] is an undirected algorithm (using the forward

computation technique) with Nt=Nc=1. This algorithm is known as the Recursive Prediction Error

algorithm, or IIR-LMS algorithm, in linear adaptive filtering [Widrow and Stearns 1985]. The

"Teacher-Forced Real-Time Recurrent Learning Algorithm" [Williams and Zipser 1989a] is a hybrid

algorithm  with Nt=Nc=1.

zero zero

zero

Sin
1 (n) =

Undirected (UD)
Algorithm 

(Output Error)
(Parallel)

Sin
m(n) = ∂Sin

1

∂cij
 (n) = ∂Sin

m

∂cij
 (n)    =

Sout
1 (n-1) S out

m-1(n)
∂Sout

1

∂cij
 (n-1) ∂Sout

m-1

∂cij
 (n)

∂S out
m-1

∂cij

 (n)

Sout
1 (n-1) S out

m-1(n)

Sout
1 (n-1) S out

m-1(n)

UD-D Algorithm

UD-SD Algorithm

Initialization: state input
of the first block

State input of
a current block

Initialization:
partial derivatives
for the first block

Partial derivatives
for a current block

Initialization: state input
of the first block

State input of
a current block

Desired values

Initialization:
partial derivatives
for the first block

Partial derivatives
for a current block

zero zero

zero

Sin
1 (n) =

Semi-Directed (SD)
Algorithm

Sin
m(n) = ∂Sin

1

∂cij
 (n) = ∂Sin

m

∂cij
 (n)    =

Sout
m-1(n)

∂Sout
1

∂cij
 (n-1) ∂Sout

m-1

∂cij
 (n)

∂S out
m-1

∂cij

 (n)

Desired values Sout
m-1(n)

Desired values Sout
m-1(n)

SD-D Algorithm

SD-UD Algorithm

Initialization: state input
of the first block

Desired values

State input of
a current block

Desired values

Initialization: 
partial derivatives
of the first block

Partial derivatives
for a current block

zero zero

zero

Sin
1 (n) =

Directed Algorithm (D)
(Equation Error)
(Teacher Forcing)
(Series Parallel)

S in
m(n) = ∂Sin

1

∂cij

 (n) = ∂Sin
m

∂cij

 (n)    =

∂Sout
1

∂cij
 (n-1)

∂Sout
m-1

∂cij
 (n)

∂S out
m-1

∂cij

 (n)Desired values Desired values

Desired values Desired values

D-SD Algorithm

D-UD Algorithm

Table 1:
Three families of algorithms for the training of feedback neural networks. In each section, the first

line describes the algorithms with consistent choices of the state inputs (sec. 3.4.2.2).
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The above algorithms have been introduced in the framework of the forward computation of the

gradient of the cost function. However, the estimation of the gradient of the cost function by

backpropagation is attractive with respect to computation time, as mentioned in section 3.3.4. If this

technique is used, the computation is performed with Nt blocks, where each coefficient cij is

replicated in each block m as cijm. Therefore, one has:
∂vi

m

∂cij
m = zj

m .

The training block m is shown in Figure 8: after computing the Nc errors using the Nt blocks in the

forward direction, the Nt blocks compute the derivatives of J(n) with respect to the potentials {vim},

in the backward direction. The modification of the coefficients is computed from the Nt blocks as:

∆cij(n) = - µ 
∂J(n)
∂cij

 = µ ∑
m=1

N t ∂J(n)
∂vi

m  zj
m = ∆cij

m(n)∑
m=1

N t

  .

Canonical FF net

(non linear)

BP net

(linear)
Products e m

∂J
∂vi

 m

External
inputs
Um(n)

State
inputs
Sin

m (n) cij
m , fi

d(n-Nt+m)

+-

y m
State

outputs
Sout

 m (n)

∆cij
m(n) = - µ 

∂J
∂vi

m  zj
m

Training block m at time n

∂J
∂Sin

m
∂J

∂Sout
m

zi
m f ' i

cij
m , f 'i (vi

m)

fi'(vi
m)

Figure 8:
Training block m at time n with a desired output value: computation of a partial coefficient

modification using the backpropagation technique for the estimation of the gradient for a feedback
neural network. If block m has no desired value, then em=0, but it does contribute an additive term to
the coefficient modification. It should be noticed that forward propagation through all blocks must be

performed before backpropagation.

It is important to notice that backpropagation assumes implicitly that the partial derivatives of the

state inputs of the first copy are taken equal to zero. Therefore, the backpropagation technique will

lead to the same coefficient modifications as the forward propagation technique if and only if it is

used within algorithms complying with this condition, i.e. within directed or semi-directed

algorithms (Figures 6b and 7b); backpropagation cannot be used consistently within undirected and

hybrid algorithms. When both backpropagation and forward computation techniques can be used,

backpropagation is the best choice because of its lower computational complexity.

An example of the use of a directed algorithm for idenfication and control of non-linear processes

can be found in [Narendra and Parthasarathy 1990].

3.4.2.3. - Other choices of the partial derivatives of the state inputs:

Because adaptive neural networks require real-time operation, tradeoffs between consistency and

computation time may be necessary: setting partial derivatives ∂Sinm/∂cij equal to zero may save

time by making the computation by backpropagation possible even for undirected algorithms (UD-D

or UD-SD algorithms). The full variety of algorithms is shown on Table 1: in each group, the first

line shows the characteristics of the fully consistent algorithm, whereas the other two lines show

other possibilities which are not fully consistent, but which can nevertheless be used with advantage.

The SD-UD, D-SD and D-UD algorithms have been included for completeness: computation time

permitting, the accuracy of the computation may be improved by setting the partial derivatives of the

state inputs to non-zero values in the directed or semi-directed case.

Undirected algorithms have been in use in linear adaptive filtering: the extended LMS algorithm is a

UD-D algorithm (see table 1) with Nt=Nc=1 [Shynk 1989]; the a posteriori error  algorithm is also a

UD-D algorithm with Nt=2, Nc=1 [Shynk 1989].

The truncated backpropagation through time algorithm [Williams and Peng 1990] is a UD-D

algorithm with Nc=1 and Nt>1, with a special feature: in order to save computation time, the

coefficients of the blocks 1 to Nt-1 are the coefficients which were computed at the corresponding

times.
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CONCLUSION

The present paper provides a comprehensive framework for the adaptive training of neural networks,

viewed as non-linear filters, either transversal or recursive. We have introduced the concept of

canonical form of a neural network, which provides a unifying view of network architectures and

allows a general description of training methods based on gradient estimation. We have shown that

backpropagation is always advantageous for training feedforward networks adaptively, but that it is

not necessarily the best method for training feedback networks. In the latter case, four families of

training algorithms have been proposed; some of these algorithms have been in use in classical linear

adaptive filtering or adaptive control, whereas others are original.

The unifying concepts thus introduced are helpful in bridging the gap between neural networks and

adaptive filters. Furthermore, they raise a number of challenging problems, both for basic and for

applied research. From a fundamental point of view, general approaches to the convergence and

stability of these algorithms are still lacking; a preliminary study along these lines has been presented

[Dreyfus et al. 1992]; from the point of view of applications, the real-time operation of non-linear

adaptive systems requires specific silicon implementations, thereby raising the questions of the speed

and accuracy required for the computations.
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APPENDIX 1

We consider a discrete-time neural network with any arbitrary structure, and its associated network

graph as defined in section 2.2.

The set of state variables is the minimal set of variables which must be initialized in order to allow

the computation of the state of all neurons at any time n>0, given the values of the external inputs at

all times from 0 to n. The order of the network is the number of state variables.

Clearly, the only neurons whose state must be initialized are the neurons which are within loops (i.e.

within cycles in the network graph). Therefore, in order to determine the order of the network, the

network graph should be pruned by suppressing all external inputs and all edges which are not within

cycles (this may result in a disconnected graph).

To determine the order, it is convenient to further simplify the network graph as follows: (i) merge

parallel edges into a single edge whose delay is the maximum delay of the parallel edges; (ii) if two

edges of a loop are separated by a neuron which belongs to this loop only, suppress the neuron and

merge the edges into a single edge whose delay is the sum of the delays of the edges.

We now consider the neurons which are still represented by nodes in the simplified network graph.

We denote by N the order of the network.

If, for each node i of the simplified graph, we denote by Ai the delay of the synpase, afferent to

neuron i, which has the largest delay (i.e. the weight of the edge directed towards i which has the

largest weight), then a simple upper bound for N is given by:

N ≤ Σi Ai .

The state xi of a neuron i which has an afferent synapse of delay Ai cannot be computed at times

n<Ai; the computation of the states of the other neurons may require the values of xi at times 0, 1, ...,

Ai-1; thus, the contribution of neuron i to the order of the network is smaller than or equal to Ai.

Let the quantity ωi be defined as:
ωi = Ai - minj∈ Ri

 (Aj-τji)  if Ai - minj∈ Ri
 (Aj-τji) > 0 ,

ωi = 0 otherwise,

where Ri stands for the set of indices of the nodes which are linked to i by an edge directed from i to

j (i.e. the set of neurons to which neuron i projects efferent synapses).

Then the order of the network is given by:

N= Σi ωi   .

The necessity of imposing the state of neuron i at time k (0<k<Ai-1) depends on whether this value

is necessary for the computation of the state of a neuron j to which neuron i sends its state: if k+τji is

smaller than the maximum delay Aj of the synapses afferent to j, it is not necessary to transmit the

state of neuron i at time k to neuron j, since the latter does not have the information required to
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compute its state at time k+τji; the information on the state of neuron i at time k is necessary only if

one has k≥Aj-τji .

Therefore, the minimum number of successive values required for neuron i is equal to:
Ai - minj∈ Ri

 (Aj-τji) if  Ai - minj∈ Ri
 (Aj-τji) > 0 , zero otherwise.

Clearly, this result is in accord with the upper bound given above.

The above results determine the number of state variables related to each neuron. The choice of the

set of state variables is not unique. The presence of parallel edges within a loop, or the presence of

feedforward connections between loops, may require the replication of some neurons and of some

coefficients.

Figure A1.1.a shows a feedback network and Figure A1.1.b shows its canonical form; the order of

the network is 6. The example shows that some weights are replicated.

1 2 3 4 5
u

y

(a)

1
2

1 2

2

1

1 3

3

5

4

1 1

x1(n-2) x 2(n-1) x2 (n-2) x 3(n-1) x 5(n) x 5(n-1)

c11,1

c 11,1 c12,1

c12,1

c 21,0

c 21,2

c32,2

c33,1c 32,2

c54,1

c33,1

c43,1

c 55,2

c 53,0

c 23,1

u(n-2)
z3(n)= z4(n)= z5(n)= z 6(n)= z7(n)=z2(n)= z 8(n)=

x1(n-1) x2(n) x2(n-1) x 3(n) x5(n+1) x 5 (n)
z 3(n+1)= z 4(n+1)= z 5(n+1)= z 6(n+1)= z 7(n+1)= z 8(n+1)=

(b)

Unit
delays

u(n-1)
z1(n)=

c1u,1

c1u,1

0 1

2

1
1

01
1

Figure A1.1:
a) Example of a feedback neural network. Numbers in rectangles are synapse delay values, u is the

external input and y is the output of the network.
b) Canonical form of the network (E=8, M=2, N=6). The cij,τ notation of relation (3) is used.

APPENDIX 2

This appendix describes several architectures of feedback neural networks which have been

proposed in the literature. We present their canonical form, so that they can be easily compared.

The discrete-time mathematical model of a time-invariant dynamical process is of the form

S(n+1) = ϕ [S(n), U(n)]

Y(n) = ψ [S(n), U(n)] ,

where vector U is the input of the dynamical system, vector S denotes the state of the system,  and

vector Y is the output of the system. Since neural networks with hidden neurons are able to

approximate a large class of non-linear functions, they can be used for implementing functions ϕ and

ψ.

The network proposed by Jordan [Jordan 1986] is trained to produce a given sequence y(n) for a

given constant input P ("plan"). Thus it is used as an associative memory.  The network and its

canonical form are shown in Figure A2.1. The representation of the network under its canonical form

shows that the network is of order 2, although the representation used by Jordan exhibits four

connections with unit delays. Note that the state variables are not delayed values of the output. The

presence of hidden neurons allows this network to learn any function y(n)=ψ[S(n), U(n)].

S 1 S2

H1 H2

O1 O2

P

S 1 S 2

H1 H2

O1 O2

P

y1(n) y2(n)

s 2(n)s 1(n )

s2(n+1)s 1(n+1)

1

(a) (b)

1

11

1 1

Figure A2.1:
a) Network architecture proposed by Jordan.

b) Canonical form.

The network suggested by Elman [Elman 1988] is used as a non-linear filter. Its canonical form is

shown on Figure A2.2.
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Figure A2.2:
Canonical form of the network architecture proposed by Elman.

Each state variable is computed as a fixed non-linear function f of a weighted sum of the external

inputs and state inputs. Therefore, the class of functions ϕ which can be implemented is restricted to

the form:

ϕ[S(n),U(n)] = f[AS(n) + BU(n)] where A and B are the synaptic matrices.

Similarly, the output is computed as a fixed non-linear function f of a weighted sum of the state

variables, so that the class of functions ψ that can be implemented is restricted to:

ψ[S(n), U(n)] = f[CS(n)] where C is the synaptic matrix.

The network proposed in [Williams and Zipser 1989a,  Williams and Peng 1990] is used as a non-

linear filter. The state of the network at time n+1 is computed as a weighted sum of the inputs and of

the state values at time n, followed by a fixed non-linearity fi. As a result, the network can only

implement non-linear functions of the form fi(AS(n) + BU(n)).

The network used by Poddar and Unnikrishnan [Poddar and Unnikrishnan 1991] consists of a

"feedforward" network of pairs of neurons; each neuron, except the output neuron, and each external

input, is associated to a "memory neuron". If xi(n) is the value of the output of neuron i and xj(n) the

value of the output of the associated memory neuron j at time n, the output of the memory neuron at

time n+1 is xj(n+1)= αi xi(n) + (1–α i) xj(n),  0<α i ≤1. If α i=0, the memory neurons introduce only

delays, so that the network is a non-linear transversal filter. If αi≠0, the memory neurons are linear

low-pass first order filters, and the network is actually a feedback network. A state output is

associated to each memory neuron.

Figure A2.3a shows an example of such an architecture where neurons 3, 4, 7 and 8 are the memory

neurons associated to the two inputs 1 and 2 and to the two neurons 5 and 6, respectively. The

canonical form is shown in Figure A2.3b where x3, x4, x7, x8 are chosen as state variables.

1
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(a) (b)

x5 x

x7 x
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x  (n)   (n) x  (n)
1

x  (n)
2   (n)3 x  (n)4

x  (n+1)7   (n+1) x  (n+1)3 x  (n+1)4∑

∑ ∑∑ ∑
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∑

f
∑

f
∑

x  (n)5
x  (n)

∑

∑ ∑

f
∑

f
∑

f
∑

1

1

1

Figure A2.3:
a) Network architecture proposed by Poddar and Unnikrishnan.

b) Canonical form.

For process identification and control problems, the most general structure used by Narendra and

Parthasarathy [Narendra and Parthasarathy 1991] is a model of the specific form: y(n) = ψ1[u(n-1),

u(n-2), ...] + ψ2[y(n-1), y(n-2), ...], where ψ1 and ψ2 are implemented by MLP networks with 20

neurons in the first hidden layer and 10 neurons in the second hidden layer.
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APPENDIX 3

For simplicity, we present the training of the fully connected neural net of Figure 2: we denote the

external inputs by z1 to zM , the feedback inputs by zM+1 to zM+N , and the outputs of the neurons by

zM+N+1 to zM+N+ν (where ν is the number of neurons). The neurons are ordered in the following

way: the p-th neuron receives the outputs of neurons indexed q<p (fully connected).

At time n, we have to consider the following cost function:

J(n) = 1
2

 (em) 2∑
m=N t-Nc+1

N t

    where Nt is the number of blocks used to
compute the Nc values em (Nt≥Nc).

 

In this appendix, we present the contribution of block m (1≤m≤Nt) to the gradient estimation. This

contribution is computed from the external input vector, the desired value and the state input vector.

We denote the available values of the coefficients at time n by {cij}.

The canonical FF net of the mth block, with coefficients {cij
m}={cij}, computes the outputs

zi
m=fi(vi

m) of all neurons and the state output vector Sout
m(n) from the external input vector

Um(n) = u(n-Nt+m),u(n-Nt+m-1),…,u(n- Nt+m-M+1)  = z1
m, z2

m, … , zM
m  

 
and the state input vector S in

m (n) = zM+1
m , zM+2

m , … , zM+N
m  as follow:  

 

(i) For i = 1 to M (external inputs):
zi

m = u(n-Nt+m-i+1)  ;  
 

(ii) For i = M+1 to M+Ν (state inputs):
zi

m is given by the chosen algorithm (table 1) ;   
 

(iii) For i = M+N+1 to M+N+ν-1 (hidden neurons):
zi

m = fi vi
m     with vi

m = ∑
j∈ Pi

cij
m zj

m ;

(iv) For i = M+N+ν (linear output neuron):
ym = zM+N+ν

m  = vM+N+ν
m  = cM+N+ν,j

m  zj
m∑

j∈ PM+N+ν

.

Thus, the state output vector is
Sout

m (n) ≡ zM+N+ν
m , zM+N+ν+1

m , … , zM+N+ν+N-1
m  = ym, zM+1

m , … , zM+N-1
m  .  

 
and, if Nt-Nc+1≤m≤Nt , we obtain from the desired value d(n-Nt+m) and the output ym:

em = d(n-Nt+m) - ym.

In the following, we present two methods for the computation of the gradient of J(n): the forward

computation and the backpropagation techniques.

1) Forward computation (Figure 4):

We consider the whole set of Nt blocks as a static network on which we perform the forward

computation technique.

It is based on the following relation:

∂J(n)
∂cij

 = 
∂

∂cij
 1

2
 em  2∑
m=Nt-Nc+1

Nt

 = - em 
∂ym

∂cij
∑

m=Nt-Nc+1

Nt

 .

The linear FC net of the mth block computes, with coefficients {cij
m} and {f'i(vi

m)}, the set of partial

derivatives of the state output (including ym) with respect to all coefficients cij :
∂Sout

m

∂cij
 (n)

For the ν(M+N)+(ν-1)ν/2 coefficients cij (i>j):

(i) For p = 1 to M (external inputs):

 
∂zpm

∂cij
 = 0 ; 

(ii) For p = M+1 to M+Ν (feedback inputs):
∂zpm

∂cij
 is given by the chosen algorithm (table 2) 

(iii) For p = M+N+1 to M+N+ν-1 (hidden neurons):

if p=i then  
∂zi

m

∂cij
 = fi'[ vi

m] zj
m   otherwise  

∂zpm

∂cij
 = fp'[ vpm] cph 

∂zh
m

∂cij
∑

h∈ Pp

 ;

(iv) For p = M+N+ν (linear output neuron):
∂ym

∂cij
 = 

∂zM+N+ν
m

∂cij
 = δM+N+ν,i  zj

m + cM+N+ν,h
m  

∂zh
m

∂cij
∑

h∈ PM+N+ν

  .

Thus the partial derivatives of the state output are given by:
∂Sout

m

∂cij
 (n) ≡ 

∂zM+N+ν
m

∂cij
 ; 

∂zM+N+ν+1
m

∂cij
  ;…; 

∂zM+N+ν+N-1
m

∂cij
 = 

∂ym

∂cij
 ; 

∂zM+1
m

∂cij
  ;…; 

∂zM+N-1
m

∂cij

Once all partial derivatives of the output values ym are computed for the Nt blocks, the gradient of

J(n) is obtained from:

∇ J(n) = 
∂J(n)
∂cij  i>j

  where  
∂J(n)
∂cij

 = - em 
∂ym

∂cij
∑

m=Nt-Nc+1

Nt

  .

If the steepest-descent method is used, the coefficient modifications are given by:

∆cij(n) = - µ 
∂J(n)
∂cij

 = µ em 
∂ym

∂cij
∑

m=Nt-Nc+1

Nt

 = ∆cij
m(n)∑

m=Nt-Nc+1

Nt

.

2) Backpropagation (Figure 8):

Considering the effect of the coefficient cij only, one has:
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dJ(n) = 
∂J(n)
∂cij

m  dcij
m∑

m=1

N t

    with dcij
m = dcij  ∀  m,  thus   

dJ(n)
dcij

 = 
∂J(n)
∂cij

m∑
m=1

N t

 .

Then the gradient of J(n) can be written as:

∂J(n)
∂cij ∀ p,q≠i,j

cpq constant

 = 
∂J(n)
∂cij

m
∀ p,q≠i,j

∀ m'≠m
cpq

m' constant

∑
m=1

Nt

where  
∂J(n)
∂cij

m  = 
∂J(n)
∂vi

m  
∂vi

m

∂cij
m = 

∂J(n)
∂vi

m  zj
m     for i=M+N+1 to M+N+ν

for j=1 to i-1

This means that standard backpropagation can be applied to the whole set of Nt blocks considered as

a static network with replicated coefficients.

The linear BP net of the mth block computes, with coefficients {cij
m} and {f'i(vi

m)}, the set of partial

derivatives of J(n) with respect to the potentials vi
m of all neurons:

We define the following set of variables qi
m:

(i) for i=M+N+ν+N-1 down to M+N+ν+1:
if m=Nt  then  qi

m = 0  otherwise  qi
m = qi-N-ν+1

m+1  ;  
 

(ii) for i=M+N+ν (linear output neuron):

if m=Nt  then  qi
m = em  otherwise  qi

m = em + qM+1
m+1  ;   (note that  qi

m = - 
∂J(n)
∂vi

m  ) ;

(iii) for i = M+N+ν−1 down to M+N+1 (hidden neurons):

qi
m = fi'(vi

m) chi
m∑

h∈ Ri

 qh
m    where Ri is the set of indices of the neurons

to which the i-th neuron transmits its output      ;     ( qi
m = - 

∂J(n)
∂vi

m  ) ;

(iv) for i = M+N (last feedback input):
qi

m = chi
m∑

h∈ Ri

 qh
m ;

(v) for i=M+N-1 down to M+1 (other feedback inputs):
qi

m = chi
m∑

h∈ Ri

 qh
m + qi+N+ν

m  .

Note that computation by backpropagation assumes implicitly that the derivatives of the feedback

inputs of the first block (m=1) with respect to the coefficients are equal to zero; this is in contrast to

the forward computation of the gradient, where these values can be initialized arbitrarily.

Note also that with the forward computation technique, the number of partial derivatives to compute

for each block is  ν[νM+(ν-1)ν/2] whereas with the backpropagation method this number is ν.

Once all partial derivatives of J(n) with respect to the potentials vi
m of all neurons are computed for

the Nt blocks, the gradient of J(n) is obtained from:

∇ J(n) = 
∂J(n)
∂cij  i>j

  where  
∂J(n)
∂cij

 = 
∂J(n)
∂vi

m  zj
m∑

m=1

Nt

  .

If the steepest-descent method is used, the coefficient modifications are given by:

∆cij(n) = - µ 
∂J(n)
∂cij

 =- µ 
∂J(n)
∂vi

m  zj
m∑

m=1

Nt

 = ∆cij
m(n)∑

m=1

Nt

.
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