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ABSTRACT 

In the past few years a wide variety of applications of neural networks to pattern recognition 
in experimental high energy physics has appeared. The neural network salulions are in 
general of high quality, and. in a number of cases, are superior to those obtained using 
‘uaditionar methods. But neural networks are of particular interest in high energy physics 
for another rason as well: much of the pattern recognition must be performed online, i.e., 
in a few microseconds or less. The inherent parallelism of neural network algorithms. and 
the ability to implement them as very fast hardware devices, may make them an ideal 
technology for this application. 

1. Introduction 

High energy physics (HEP) is the field which studies the basic constituents of matter and 
the fundamental forces through which they interact. Recently, high energy physicists 
have become interested in neural networks as HEP data analysis tools. It has been only a 
few years since the first investigations of neural networks for HEP were undertaken 
[Denby 1988, Peterson 19891, and much of today’s work is still exploratory; however, 
the growth in applications to HEP is quite striking. At the Second International AIHEP 
Workshop [AIHEP 19921 at La Londe-les-Maures, France, in January, 1992, 25 
applications of neural networks in high energy physics were presented. For comparison, 
at the first workshop in this series, in Lyon, France in March, 1990, there were only two 
such presentations. 

In applications to date, neural networks have proven themselves to be more efficient 
classifiers than the simple cuts normally used in HEP, have allowed certain measurements 
to be made with smaller uncertainties due to their superior ability at function 
approximation, and have permitted analyses to be made even from heavily overlapping 
distributions due to their good approximation to Bayes probabilities. There have been 
some extremely interesting results using hardware neural networks: it appears possible to 
make rather sophisticated pattern analyses directly in the readout hardware of HEP 
experiments rather than in the standard, time consuming oRline analysis. 

1.1 HEP Accelerators 

HEP data is produced in experiments at the large accelerator centers worldwide as detailed 
in table I. Each site features a ‘ring’ in which opposing beams of particles are made to 
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collide at one or more ‘interaction regions’ (figure l).t In the collisions, daughter 
particles of many kinds are produced, and these are detected in arrays of particle detectors 
surrounding the interaction region (see figure 2). The data from these detectors constitute 
the HEP data sets from which physics results must be extracted. 

1 Accel. 1 Lab 1 Location IBeams] Energy ‘PeriodlStartupl Maior Experiments I 

Table I. Names and locations of the major world accelerator centers wilh the type and energy of beam 
used, time between collisions of particle bunches, first date of operation, and the names of the major 
experiments at the site. e- stands for electron. e+ for positron. p for proton. andpfor antiproton. 
These particles are discussed in more detail in the following section. The unit of energy is the giga- or 
tern- electron volt (GeV or TeV). and time is measured in microseconds (ps) or nanoseconds (ns). The 
LHC and SSC are two large new machines scheduled to turn on before the end of the decade, 

c ___--- 
--- accelerator ring 

__*--- 
diameter 

Figure 1. An accelerator with 6 interaction regions. Particles in bunches circulate in opposite 
directions. being brought together for collisions within the interaction regions. Normally only one 
or two particles within the bunches will actually collide during the nossing of two bunches. The 
Femtilab Tevahon has a diameter of about 1 mile. The SSC to be built in Texas will be about 7 times 
larger. 

As more powerful particle accelerators are built, the accompanying experiments grow 
tremendously, both in physical size and in the demands they place upon their data readout 
systems. Figure 2, detailing the CDF (Collider Detector at Fermilab [CDF 19881) 
experiment at Fermilab, gives an idea of the scale and complexity of the detectors used in 
a current experiment. Detectors at LHC and SSC will be larger again by a factor of two 

lThere are also experiments in which the extracted beam is directed onto a fixed target; for simplicity we 
shall not discuss these here. 
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or so. The volume of data produced in these detectors and the rate at which it must be 
analyzed are daunting. A typical experiment may record hundreds of thousands of 
individual detector channels, corresponding to about 1 million bits of information, for 
each collision, or ‘event’, as they are usually called, and it is not uncommon to record 
many millions of events during a data taking run. The particles within a beam are stored 
in ‘bunches’. The rate of collisions varies considerably from machine to machine, and is 
determined by the spacing between the bunches stored in the machine, since typically 
only one or two particles will actually collide in each bunch crossing. In all cases, the 
rates are rather challenging from the standpoint of realtime processing: at the Tevatron, 
bunch crossings currently occur every 4 microseconds; at the SSC and LHC, they will 
occur about every 16 nanoseconds. The growth in data set size and complexity, and the 
unprecedented data rates at today’s and future colliders have been the major motivating 
factors in the search for more powerful data analysis tools for HEP. 



Figure 2. Elevation view of the CDF experiient at the FermilabTevatron. Only half of the apparatus is shown; 
it is symmetric about the point marked ‘interaction point’. In the text. applications of neural networks to track 

reconsmtction in a cenoal tracking chambn; vertex finding in a vertex chamber; electron finding in an endplug 
calorimeter, and muon identification in a muon chamber are presented. 

P 
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In the discussion of HEP neural network application which will follow, it will be 
necessary to have some familiarity with the terminology associated with high energy 
particle collisions and the detectors that record them. Sections 1.2 and 1.3 provide an 
introduction. 

1.2 Areas of HEP Research - the Standard Model 

Much of current research in HEP is involved with the completion and verification of the 
so-called ‘Standard Model’ of particle physics. In this model, the basic constituents of 
matter are quurk.s and leptons as described in Table II. The constituents interact with 
each other by ‘exchanging’2 particles called ‘bosons’, as described in Table III. Particle 
interactions are described in more detail in the Appendix. Both quarks and leptons can 
interact via the elecrroweak force, carried by the W, Z and y bosons. This force 
combines the elecuic force, responsible for such phenomena as electricity and magnetism, 
with the weak force which is responsible for radioactivity. Quarks can also interact 
through the srrong force, which is carried by bosons called gluons, usually represented 
as g. Individual quarks and gluons are not observable. The naturally occurring particles 
are either single leptons, or a ‘composite’ of two or more quarks as in table IV. A 
proton, for example, is composed of two ‘u’ quarks and a ‘d’ quark which are bound 
together by exchanging gluons. Composites containing quarks are also referred to as 
‘hadrons’. Leptons and hadrons interact differently in matter, as described in section 1.3. 

I I tYPe symbol name charge mass oomments 

linht u,u UP +2/3,-2/3 -100 MeV ordinaw matter comwsed o I I 
1 -IK.+~ -100 MeV UD and down quarks 

! IqUarkS I ..-” ..-I I 
S,T strange 1 -l/3,+1/31 -500 Mevlstrange matter exists in Stars 

not visible in detectors. 
except as ‘missing’ energy. 

Table II. Quarks and leptons and their properties. including maw and electric charge. The equivalence 
of matter and energy allows us to write masses in energy units of eV. 

2The word, ‘exchanging’ is used figuratively. me true interaction is a quantum process which defies classical 
explanation. The exchange of a panicle is represented by a line in a Feynman diagram as discussed in the 
Appendix. 
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force symbol name charge mass comments 

E 
weak W’W W+w- +1,-l 81 GeV discovered at CERN in 1983 

2 weak Z Z 0 
2 

91 GeV carders of weak force 

elect Y photon 0 0 light is composed of photons 
strong g gluon 0 0 binds quarks in composites 

Table III. The force carrying bosom and their properties. The first column tells the type of 
interaction the boson mediates: weak. electromagnetic. 01 strong. 

A collision between particles is, in the Standard Model theory, an interaction between two 
of the elementary constituents which they contain. For example, in a collision between a 
proton and an antiproton, the ‘true’ collision may be between a quark and an antiquark, 
between a quark or antiquark and a gluon, or between two gluons. When physicists 
examine the debris of such a collision, they are seeking information on the constituents 
and force carriers which are produced in the collision. 

Quarks and gluons emerging from a collision are not directly observable in the detector; 
they are said to ‘fragment’ into ‘jets’ containing many particles as they emerge from a 
collision. This process is discussed in more detail in the Appendix. Jets from quarks and 
from gluons are slightly different in their properties, as will be discussed in section 4.2. 

I I type lsymboll quark content I charge I mass I comments I 
Z proton p .z 
x neutron n 
E 
8 pion z 

kaon K 

uud 

udd 

ud, uu + dd 

us. ds 

+l 939 MeV atomic nuclei made of 

0 940 MeV protons and neutrons 

+1,-l ,o -135 MeV most commonly produced 

+l.-1,o -son M~V composites 

Table IV. The composites most commonly encountered in HEP detector systems. 

The most ‘fashionable’ areas of research in HEP today are: the study of the production 
and decay properties of the ‘heavy’ (i.e., massive) quarks, c and b; the search for the 
heaviest quark, called ‘top’, or simply, ‘t’, which is postulated but as yet undiscovered; 
studies of the bosons W and Z, the search for the Higgs particle (Table V), an essential 
but as yet unobserved element of the Standard Model believed to be the origin of the 
masses of all particles; and the study of the characteristics of jets. 

I symbol 
it%:,. 

name charge mass comments 
.m 
L HO Higgs 0 ? essential 10 theory. not yet 

seen. oives mass lo oarticles. 

Table V. The Higgs particle 

1.3 HEP Measurement Tools 

Although there are quite a number of different types of measurement tools used in high 
energy physics, most can be classified as one of two main types, trucking chambers and 
calorimefers. Figure 3 shows a generic HEP detector system with a central tracking 
chamber and a vertex tracking chamber, calorimeter with sections called ‘electromagnetic’ 
and ‘hadronic’, muon shielding iron, followed by another set of tracking chambers called 



muon chambers. The figure illustrates the behaviour of the detectors for the four most 
commonly encountered types of particles and for a jet. 

shielding 

hadronic 7 I 
and electromagneticm 

calorimeters 

central tracking chamber 

vertex tracking chamber- 
4 

beam pipe 

Figure 3. Behaviour of a muon, electron, pion, neutrino, and jet in a HEP detector system. The beam 
pipe is perpendicular to the plane of the page. The muon passes completely through the calorimeters. 
depositing only a small amount of energy in each section. and through the shielding iron. to be 
finally detected in the muon tracking chambers. The electron deposits all of its energy in a localized 
region of the electromagnetic calorimeter. The pion deposits its energy over a region of both 
electromagnetic and hadronic calorimeters. The jet is composed of many particles of different types. 
mostly pions. and deposits energy both in electromagnetic and hadronic sections of the calorimeter 
over a broad region. The neutrino does not interact at all and passes undetected through the apparatus. 

Tracking chambers are used to detect the trajectories of electrically charged particles 
emerging from a collision. Usually the tracking chamber volume is within a magnetic 
field. This causes the path of the charged particle to curve, enabling a measurement of the 
momentum3 of the particle. A knowledge of the momenta of all charged particles allows 
a complete study of the underlying dynamics of the collision to be made. When a charged 
particle passes through the chamber, gas molecules along its trajectory are ionized (there 
are also tracking chambers which do not use gas as an active medium, but we shall not 
discuss them here). High voltage wires spaced regularly throughout the tracking volume 
collect this ionization in the form of electrical pulses, which can then be passed on to the 
data acquisition system for analysis and reconstruction of the tracks. Position resolution 
finer than the wire spacing is obtained by using an electronic device to measure the time it 

3The momentum P of a particle is defined as P = Ev/c* where E is its energy. v is its v&city. and c is the 

speed of light. For nonrelativistic particles E s mc*, where m is the mass, giving p 3 mv. 
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takes for the ionization to drift to the wire. This is referred to as the ‘drift time’. In figure 
3 only wires closest to the trajectories, called ‘hit’ wires, are shown. 

There are many different types of calorimeters but all have the same basic principle of 
operation. Calorimeters are normally built from many layers of metal interleaved with 
layers of a plastic or gas active medium. Quite the opposite of the tracking chambers, 
through which the particles pass uninterrupted, a calorimeter is designed to cause most 
particles incident upon it to interact and deposit all of their energy within its volume. The 
energy may be in the form of ionization or of light, but will ultimately be converted into 
an electrical impulse with a size proportional to the energy of the particle. Most 
calorimeters have two sections, called ‘electromagnetic’ and ‘hadronic’ of different 
composition. The electromagnetic section is designed to absorb almost all of the energy 
of the electromagnetically interacting particles, i.e., electrons and photons, while hadrons 
will deposit the largest fraction of their energy in the hadronic section. Calorimeters are 
usually highly segmented in order to give information on the spatial extent of the energy 
deposit from the particle, as shown in figure 3, where the energy in each cell is 
represented by the height of the tower drawn at each cell. Note that the segmentation in 
the electromagnetic section is twice as fine as in the hadronic section. 

Calorimeters are particularly useful for identification of electrons. An electron will 
deposit almost all of its energy in a highly localized region of the electromagnetic 
calorimeter. By looking for a charged track which points at this localized region: and 
matching the calorimeter energy to the track momentum, an electron can be rehably 
identified. 

Muons are charged particles which are capable of penetrating through great thicknesses of 
material with only minimal energy loss. For this reason, special muon tracking chambers 
are placed outside the calorimeter and a thickness of uninstrumented shielding iron in 
order to detect possible tracks from muons produced in a collision. The energy of other 
types of particles will be completely absorbed in the calorimeters and the shielding iron. 
The muon can be identified by measuring its momentum in the central tracking chamber 
and seeing if its projection through the calorimeter and iron matches well with a track 
‘stub’ found in the muon chambers. 

The detectors’ response to pions, neutrinos, and jets is described in the caption of fig. 3. 

1.4 Pattern Recognition in HEP - Standard Methods 
1.4.1 Introduction 

The only particles which are directly observable are those which have a natural lifetime 
long enough to allow them to be detected in the apparatus, i.e., photons, muons, 
electrons, and some of the low mass composites such as pions and kaons. Neutrinos 
normally leave no trace in the apparatus and are detectable only by their ‘missing’ energy. 
Most of the constituents produced in a collision quickly decay into these observable 
particles, or, in the case of quarks and gluons, fragment into jets containing many 
particles. The properties of the constituents must therefore be inferred from patterns in 
the ‘visible’ particles into which they decay or fragment. 

Reconstructing an event involves two types of pattern recognition. The first, which we 
shall call low level pattern recognition consists of such things as finding tracks in the 
tracking chambers or identifying a candidate electron in the calorimeter (figure 3). The 
second type, which we shall call physics process determination, uses more sophisticated 
features, for example the angular distribution of the jets in the event, to try to identify the 



9 

underlying physics of the interaction which took place. Note that this nomenclature is not 
the same as typically found in classical pattern recognition, since classification, normally 
considered ‘high-level’, can occur both in our low-level and high-level pattern 
recognition4 . In HEP, the distinction between high-level and low-level pattern 
recognition is based upon the complexity of the features used to perform the 
classification. Examples of the two types will be given in the sections to follow. We 
shall see that neural networks have found application to both. 

In HEP it is also necessary to distinguish whether the pattern recognition is to be 
performed ‘on-line’, i.e., in real time, or ‘off-line’. On-line pattern recognition is 
performed on the data before it is logged, in a part of the experiment referred to as the 
‘trigger’. Off-line pattern recognition is done with conventional computers operating on 
the data after it has been logged to permanent storage media. These two areas will be 
discussed in more detail below. 

1.4.2 Triggering 

New HEP experiments study increasingly rare physical processes. The implications of 
this for data acquisition systems are best illustrated by an example. One of the main 
motivations for the construction of LHC and SSC is the search for the Higgs particle. 
The probability of producing a Higgs particle when two protons cross paths is so small 
that this would have to occur 1034 times per seconds in order to produce a reasonable 
sample of detectable Higgs particles, say 1000, during a one-year run. The probability 
for other processes however, not involving the Higgs, is higher by a factor of about 
10IS. This implies that, during this one-year run, events containing background 
processes will be continuously produced at a rate of about 1 billion per second. It is 
neither desirable, nor feasible, to log all of these events to permanent storage media such 
as magnetic tape. On-line pattern recognition, called ‘triggering’, is required to reject 
background events and retain the rare interesting events. Although LHC and SSC 
represent an extreme case in high-rate HEP data acquisition, the problems are common to 
all HEP experiments. 

4 Segmentation of the data inlo events is performed trivially using timing information which correlates a 
block of data with the time of a particular bunch crossing. 
5The 1O34 per second is technically the accelerator ‘luminosity’ required to produce the 1000 Higgs particles. 
Luminosity is defined as the the square of the number of pwicles per bunch, times the number of bunches per 
beam, times the revolution frequency of the bunches within tbe ring, divided by the cross sectional area of the 
beams. 
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Figure 4. Generic HEP multilevel wigger system, 

Figure 4 shows a typical multilevel HEP trigger system. The data from the detectors 
passes into the trigger as a stream of events, each containing all the detector data produced 
in a single collision. Each level of trigger rejects most of the events it receives and passes 
the remainder on to the higher level triggers. Levels 1 and 2 are typically implemented as 
fast specialized analog or digital hardware, while level-3 is a ‘farm’ of conventional 
processors. The processing times and event rates shown at each level are generic, but 
typical of those encountered at current proton-antiproton collider experiments such as the 
CDF experiment at Fermilab [CDF 19881; rates will be one to two orders of magnitude 
higher at LHC and SSC. 

In level-l, simple tests on global event information are performed, for example: (1) 
comparing to a threshold the summed transverse energy, Et = Ci Ei sin@, where Ei is the 
energy in calorimeter cell i and Bi is the angle with respect to the beam axis of a line from 
the collision point to the calorimeter cell; (2) looking for the presence of a charged track 
with transverse momentum, Pt = P sine, where P is the track momentum, above a 
threshold; (3) looking for the presence of one or more track segments in the muon 
chambers. The first and second cuts eliminate ‘soft’ interactions. Most interesting 
physics processes involve ‘hard’ scatters of two constituents in the beam particles, which 
produce particles at large angles to the beam direction and thus deposit in the calorimeter 
substantial energy transverse to the beam direction. ‘Soft’, glancing collisions of beam 
particles are much more copiously produced than hard scatters, and most must be 
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rejected. The third cut is useful since high Pt muons are produced in many of the 
interesting processes currently under study, but are produced only with low probability in 
background processes. Level-l triggers have a typical processing time of about 1 
microsecond and reduce the rate due to backgrounds by about two orders of magnitude. 

In the level-2 trigger, somewhat more sophisticated tests can be done, for example: (1) 
looking for a match between a high-Pt track and an energy cluster in the electromagnetic 
calorimeter, indicating the presence of a candidate electron, or between a high-Pt track 
and a track segment in the muon counters, indicating a candidate muon; (2) looking for 
the presence of localized clusters of energy in the calorimeter, which will correspond to 
jets, with Et above some threshold. Validating the presence of leptons and jets as in (1) 
and (2) above ensures that the event is more likely to have come from an interesting 
physics process. Ten to twenty microseconds are available for level-2 decisions. 

Level-3 triggers are executed using algorithms written in standard high level computer 
codes running on a ‘farm’ of conventional processors which operate in parallel on 
separate events. As each event comes into level-3, it is immediately sent to an available 
processor. The processing done by level-3 can be quite sophisticated, in some cases 
being identical to the code used in offline analyses. 
performed in level 3 are: 

Some of the typical analyses 
1) reconstruction of charged tracks; 2) accurate calculation of 

the position of the collision point in order to reject events too far from the detector center, 
to allow more accurate calculation of Et of calorimeter cells, and to detect multiple 
vertices; 3) high quality electron and muon identification using accurate Pt measurements 
of the tracks; 4) imposition of isolation cuts, i.e., requiring that an electron or muon have 
very little energy surrounding it in the calorimeter; 5) formation of composite triggers, 
e.g. electron plus missing transverse energy plus one or more jets would be a good 
trigger for top quark production. Such calculations as these are too complicated to be 
performed in level-2. The time to process a single event in level-3 may be of the order of 
a second, however as there are many processors operating in parallel, the effective 
processing time is a few milliseconds per event. 

1.4.3 Offline Reconstruction 

Offline reconstruction is the final event reconstruction in which all available information is 
processed using whatever data analysis techniques may be available. Normally all the 
data from a run will be processed in a single reconstruction pass in which data sets of 
special interest are created, e.g., one for the physics of b and c quarks; one for the search 
for the top quark one for W and 2 physics, etc. These are often analyzed many times 
over with ever more refined sets of selection cuts. Analysis usually proceeds with the 
definition of several feature variables upon which one dimensional cuts are placed. The 
use of likelihood techniques is also common. 

The offline analysis does not have the same real time constraint as online reconstruction; 
however, the codes used to process high energy physics data are normally tens of 
thousands of lines long and require substantial computing resources in order to complete 
the processing in a reasonable amount of time. It is not uncommon for a complete offline 
reconstruction of a particular physics process to take one or two years. 

2. The Need for Neural Nelworks 

In high energy physics, neural networks have been used both in real-time and offline 
applications. Most applications to date have used MLP’s trained with backpropagation, 
although a few instances of the use of learning vector quantization (LVQ) and feature 
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maps have also appeared. Recurrent networks have been applied to the problem of 
charged track reconstruction as discussed in section 5.1. 

For the offline applications, the advantage to HEP is the same as that for other fields: 
near optimal classification with a minimum of computational overhead. In the real-time 
applications, neural networks present an advantage because of their parallel architecture 
which allows for faster processing. We now discuss these two areas in more detail. 

2.1 Neural Networks for Triggering 

It is interesting to note that some of the functions performed by standard level-l and 2 
triggers as discussed above, i.e., thresholding performed upon a linear combination of 
inputs, already resemble those performed by an artificial neuron. High energy physicists 
building fast trigger electronics have for decades been making use of electronic devices 
called ‘discriminators’ for performing this function. The idea of applying true neural 
network technology in HEP triggering, however, is quite new [Denby 1988, Denby 
19901, and it is far from being accepted as a standard tool. 

Neural networks are a natural choice for incorporation into triggering systems due to their 
speed of execution, made possible by their parallel architecture and the ability to 
implement this architecture in silicon. This processing speed can be extremely valuable in 
very high rate data acquisition systems. At present most projects to use neural networks 
in triggering foresee an application at level-2, since the processing times of existing neural 
network chips are of the order of a few microseconds and are thus too slow for level-l. 
As faster hardware becomes available, level-l applications can also be envisioned. 

Although trigger systems using conventional electronics can probably be made to handle 
the rates to be found at SSC and LHC, neural networks can make the triggers far more 
efficient and less costly by moving to level-2 the complex pattern recognition normally 
done in level-3. In section 3 we shall show some specific examples of this: accurate 
muon Pt measurement in a few microseconds; application of an isolation cut at level-2; a 
possible scheme for determining the position of the collision point online, etc. This will 
reduce the requirements placed on the level-3 processor farm and significantly reduce the 
amount of data which must be recorded on tape for later analysis. 

Another attractive feature of neural nets for triggering is their programmability. In the 
past, many level-2 triggers have been built as hard-wired special purpose electronic 
devices. To change the algorithm in such a device implies rebuilding it or re-wiring it. In 
a neural network, the algorithm can be changed simply by downloading a different set of 
weights, which will make neural network triggers much more flexible than their 
predecessors. 

2.2 Offline Applications 

Historically, high energy physicists have eschewed ‘complicated data analyses in favor 
of simple one dimensional cuts. In HEP, such problems as incomplete understanding of 
detector response, and heavy dependence upon Monte Carlo models render the extraction 
of a final physics result from the experimental data an extremely difficult and time 
consuming task, sometimes requiring hundreds of man years of effort. There was a 
strong tendency to try to keep the analyses as simple as possible. However, over the 
years in HEP, considerable experience in detector construction techniques and in software 
generation has been gained, and detector simulation packages which model instrumental 
effects have become extremely sophisticated. Too, with the growth of collaboration size, 
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particular groups of researchers within an experiment have been able to devote themselves 
exclusively to data analysis problems. 

The key to the value of neural networks in offline HEP analyses is in creating efficient 
cuts to retain events from rare physics processes while rejecting as many as possible of 
the background events. A further advantage is that neural networks may make possible 
certain analyses which previously were considered hopeless precisely because simple one 
dimensional cuts were known to be ineffective discriminators. An example of this is the 
classification of quark and gluon jets, which we shall discuss in section 4. 

It has been argued that although a series of one dimensional cuts is less efficient than a 
multidimensional cut, this can be compensated for by taking more data. As the interesting 
physics processes to study become more rare, however, this reliance on increased 
statistics becomes impossible: it becomes necessary to extract as much information as 
possible from the data at hand. 

2.3 The Problem of Training Data 

One of the major goals of HEP is to identify and characterise the properties of as yet 
unseen constituents in the standard model. This however presents a problem for 
classification schemes involving supervised learning since there is no existing real data 
containing these particles. It follows that Monte Carlo data must be generated according 
to some model. In some cases, there are a number of rather different models to choose 
from. Any classification based upon these models will therefore be biased towards the 
model chosen. This is of course a problem for any type of classifier, however a number 
of high energy physicists are concerned that it will be more difficult to understand model 
dependence using neural networks than using a simpler type of classifier. This is used as 
an argument against using neural networks in HEP analyses. Although it is true that 
model dependence in a nonlinear classifier is somewhat more difficult to characterize than 
in a linear classifier, the superior performance of nonlinear classifiers has led some 
researchers to expend the additional effort necessary to characterise the model 
dependence. This will be seen in some of the applications described in section 4. 

This effect is particularly important in triggering. Events rejected by a trigger will not be 
recorded, and so can never be used to check what the trigger was doing. For this reason, 
there has been a tendency in the past to keep trigger cuts as simple as possible to facilitate 
understanding of the trigger efficiency. This this ‘validation’ problem is not important for 
triggers based upon low level pattern recognition such as track segment finding or 
electron identification since modem detector simulations can quite reliably simulate such 
simple entities as tracks and electrons. However, because of possible biases from model 
dependence, there is still work to be done in HEP to show convincingly that unbiased 
information can be extracted from data taken with triggers which select specific physics 
process, whether they use neural networks or more conventional technology. 

3. Applications to Low Level Pattern Recognition 

These applications, as well as those in later sections, are summarized in Table VI. 
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3.1 Trigger Applications 

We will treat in this section only those trigger applications which have already been 
realized or have been seriously proposed. Some of the other low level pattern recognition 
applications which follow are also intended for triggering but are still just studies. 

3.1.1 First Real-time Application: Muon Trigger 

The first real-time application of a neural network in HEP was accomplished recently at 
Fermilab [Lindsey 19921. 

3.1.1.1 Conventional Method 

Identification of a muon with a transverse momentum Pt above a threshold is a useful 
trigger for detecting decays of W’s, Z’s, and b quarks since each will decay about 10 
percent of the time to a muon. The cut on Pt is necessary since background processes 
produce many low Pt muons. A measurement of the Pt of a muon in the trigger requires a 
knowledge of the angle of the muon track at the muon chamber. Although, offline, the 
wire drift times can be used to calculate the track angle quite accurately, in the trigger, 
only the information on which wires were hit is available, resulting in an inaccurate 
measurement of Pt in the trigger. It is therefore necessary to set the Pt trigger threshold 
quite low in order to avoid discarding high Pt events which have been poorly measured. 
This introduces a large amount of background. 

3.1.1.2 Test Beam Results 

In a simple test beam experiment at the Fermilab Tevatron, slopes and intercepts of muon 
tracks traversing a small prototype drift chamber were calculated accurately, in real-time, 
using a commercial VLSI neural network chip incorporated into the standard drift 
chamber data acquisition system. This was a test experiment carried out in an auxiliary 
particle beam; in a full scale collider experiment, the drift chamber would be duplicated 
many times over to cover an area of many square meters surrounding the other measuring 
devices, as in figure 3. The drift chamber sense wires signals appeared on Time to 
Voltage Converters (TX’s) which convert the drift time of the ionization to the wire into 
a voltage. The setup is shown in figure 5. The beam dump in the figure simulates the 
shielding iron of figure 3. The small circles in the drift chamber volume represent the 
wires and the small horizontal lines above and below represent the TVC values interpreted 
as a drift distance. Note that there is an ambiguity as to on which side of the wire the 
particle passed. The neural net must resolve this ambiguity. 

The wires in figure 5 are paired vertically. For each of the three pairs, two signals are 
produced: a drift time and a latch indicating whether the lower or upper member of the 
pair was hit. The drift time signals had to be duplicated 4 times in order to achieve 
sufficient fanout for the analog neural net chip. These 12 signals were coupled with the 
three latch signals to form the 15 inputs to the neural network chip, configured as a MLP. 
Sixty four hidden units in a single layer were used. The output layer consisted of sixty 
four units divided in a group of 32 to encode slope and a group of 32 for intercept (this 
type of readout has been used in several previous studies of tracking with neural 
networks [Denby 1990, Lindsey 1991, Lindsey2 19911). Each output unit covers ,625 
centimeters in intercept or .05 radians in slope. The network was trained on loo00 tracks 
generated with a simple Monte Carlo, using gradient backpropagation. Target patterns 
consisted of gaussian histograms with means equal to the target slope and intercept and 
r.m.s. width of one bin. Architectures with fewer hidden units were also tried, but these 
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resulted in degraded performance. (In an analog hardware network such as this, extra 
hidden units may be needed simply to increase fanout.) The weights obtained were 
downloaded into an Intel Electronically Trainable Analog Neural Nework chip (ETANN) 
after performing emulation and chip-in-the-loop training using the Intel ETANN 
Development System [Intel 19911. 

The intercept position resolution available using the conventional trigger technique, which 
does not make use of the drift times, is 5 centimeters. The neural network trigger was 
found to have a position resolution of 1.2 millimeters. This resolution is only about a 
factor of two worse than the best obtainable offline using the complete reconstruction 
algorithm, but is available in about 8 microseconds. The neural network result, as shown 
in figure 5, can be passed back to the readout motherboard for readout with the rest of the 
event information, without introducing dead time in the data acquisition system. 

trigger counters 

readout * 
motherboard ETANN output board 

computer 
+ TVC’s, ADC’s 4 _ for digitisation 

Figure 5. Setup for the drift chamber neural net trigger test. 

3.1.1.3 Future Plans 

The drift chamber used in the above tests was a prototype of chambers which are 
currently installed in the DO experiment at Fermilab [DO 19831. A group on the DO 
experiment is currently installing an ETANN chip on one of their chambers to take test 
data during the 1992 run [Haggerty 19921. They also plan to incorporate the ETANN 
readout into the trigger of the upgraded DO detector in the 1994 mn of that experiment 
[Former 19921. This will allow a more accurate determination of the muon Pt , which 
will allow the threshold to be lowered and significantly reduce the amount of background 
data recorded. 

3.1.2 Test Case: the CDF Experiment 

Neural network trigger hardware is being installed for the 1992 run of the CDF 
experiment. We describe below the conventional CDF calorimeter uigger and the neural 
network improvements to it. 

3.1.2.1 Conventional Techniques 
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The trigger for the CDF experiment at Fermilab has been in operation since the first 
experimental run in 1987 [CDF 19881. In this trigger, signals from the calorimeter cells 
appear as analog levels (i.e., voltages) at the ends of special 200 foot cables, where they 
are received by the trigger receiver boards. From this point on, the trigger can be thought 
of as operating on an array of voltages of size 24 (azimuthal angle) by 42 
(pseudorapidity, related to polar angle) by 2 (electromagnetic/hadronic compartment), 
which represent the energies in the calorimeter. Analog processing is used in level-l and 
level-2 for the cluster analysis, in which the total ET of the cluster, the number of towers 
in the cluster and the cluster width are computed. Once the cluster analysis is finished, 
additional digital processing is performed, operating upon the cluster quantities using the 
level-2 processors and special function modules; e.g., calculation of the ratio of the 
cluster’s energies in the electromagnetic and hadronic calorimeters. 

3.1.2.2 CDF Neural Network Triggers 

The existing CDF calorimeter trigger is very powerful, but is based upon the philosophy 
that clusters can be adequately described by their position, their width, the number of 
towers they contain, and the ratio of hadronic to electromagnetic energy they contain. 
Indeed, this information is adequate for a great many triggers. However, there are 
instances when a more sophisticated cluster analysis would be fruitful. A neural network 
trigger is currently being installed at the CDF experiment [Wu 19901. For every cluster 
found by the cluster tinder, the new trigger selects 5 by 5 trigger tower region of interest 
(in hadronic and in electromagnetic compartments) centered on the cluster and passes the 
50 analog signals to analog neural network chips [Intel 19911. The chips are 
programmed to execute three different cluster algorithms: (1) determine if the cluster 
could be an isolated photon in the central calorimeter; (2) determine if the cluster could be 
an isolated electron in the endpluge calorimeter; (3) determine if the cluster could have 
come from the semileptonic decay of a b quark 7. None of these analyses would be 
possible using the existing calorimeter trigger without extensive hardware modifications. 

We choose the isolated endplug electron trigger [Denby 19911 as simple illustrative 
example. There is a very high rate of clusters in the endplug which pass the conventional 
electron trigger but are in fact due not to electrons but to background processes. In the 
past, a high energy threshold was used in the endplug in order to reduce the rate from 
these false electrons. This, however, is undesirable since it rejects a significant number 
of real electrons along with the background. Electrons from the decay of a W are 
normally isolated in the calorimeter; i.e., have very little energy surrounding them. In 
1992, an isolation requirement, implemented by a neural network, will be tried in the 
level 2 trigger to allow the same trigger rate but with a lower energy threshold. Normally 
such a cut would have been made in the level-3 trigger. The conventional level-2 trigger 
cannot implement this cut since it no longer has access to the individual tower energies 
after cluster finding. 

&The endplug is a name given to calorimeters or other detectors which fit in@ Ihe end openings of the 
cyIindrkal central detectors (figure 2). 
‘A semileptonic decay is one in which a quark decays to a lepton plus other particles. 
decay, the quark decays to a charged lepton and a neuhino. 

In a purely leptonic 
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Figure 6. Isolation templates for plug electron trigger. 

The neural net endplug isolation trigger operates upon 5 by 5 tower regions of the 
electromagnetic and hadronic calorimeters as shown in figure 6 (only the electromagnetic 
part is shown in the figure). The dark central region is meant to contain the electron, 
which normally produces a narrow cluster in one or two towers. Four templates are 
necessary since some of the electron’s energy may spill over into 2 to 4 towers and since 
the center of the tower as found by the cluster finder may not perfectly center it in the 5 by 
5 array in all cases. Each template will be represented as a hidden unit in the neural 
network, and each tower has a weight connecting it to one of these hidden units. Cells in 
the central region have a weight of F, and cells in the outer region have a weight of -1. 
Thus, the quantity presented to the hidden units, which are used as comparators, is 

F * Einner - Eouter 

If this quantity is negative, the hidden unit will not ‘fire’: the energy outside the central 
region was greater than some fxed fraction of the central region energy and the cluster is 
thus not isolated. If the quantity is positive, the neuron fires, indicating an isolated 
cluster. If any of the templates fires, the cluster is isolated; i.e., the output unit simply 
sums up the outputs of the hidden units. 

The value F = .16 was found to be optimum in the present application. (Since the 
network is very simple, and essentially ‘hand wired’, it was not necessary to train the 
network using, e.g., backgpropagation.) Using this value, in a simulation of the trigger 
operating on real data from a previous CDF run, it was possible to lower the energy 
threshold for endplug electrons from 23 GeV to 15 GeV, while reducing background by a 
factor of 4 and retaining 95% of electrons from the decay of W bosons. This will allow 
access to electrons of energies lower than were previously obtainable, which will be 
valuable for studying certain decay properties of W bosons. 

The isolated central photon trigger operates in an analagous way, except that it operates in 
the central region of the calorimeter rather than the endplug, and in this case has only one 
template with a single tower in the central region of the 5 by 5 grid. This trigger will 
provide access to a class of physics events containing so called ‘direct’ photons, which 
tend to be isolated in the calorimeter. Without the isolation cut, the high rate of 
background limits the amount of good data which may be taken. 

In the case of the semileptonic b-trigger [Wu 19901, a Monte Carlo program was used to 
generate events containing the semileptonic b jets and background events not containing b 
jets. The semileptonic b jets will contain an electron as well as other particles, while the 
background jets will not contain electrons. A full detector simulation was used in order to 
model as closely as possible any instrumental effects. A training set was made from 5 by 
5 regions centered on the b jets extracted from the signal and background events. This 
was used to train a feed forward neural network with 50 inputs, one hidden layer of 10 
units and a single output unit to discriminate between b jets and non-b jets. This is the 
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only one of the three CDF neural network triggers which uses a network trained with 
backpropagation. The other two are ‘hand wired nets. A simulation of the trigger 
showed a reduction of background of a factor of about 100 while retaining 30 percent 
efficiency for b’s. The weights found in the simulation will be loaded into the neural 
network chip in order to allow online identification of the b-jets. It would be impossible 
to carry out a discrimination such as this using conventional computer hardware within 
the time limits of the level-2 trigger, i.e., about 20 microseconds. 

The hardware for these triggers is being installed and should begin taking data soon. All 
three of the triggers will be implemented with identical hardware. It is remarkable that 
such different algorithms can be implemented with the same hardware simply by 
downloading different weights. Future modifications to any of the algorithms will also 
be easy because of the programmability of the neural net. 

3.1.3 Other Trigger Applications 
3.1.3.1 The HI Experiment 

The Hera accelerator, which collides electmns upon protons, is just coming on line at the 
time of writing. The experiments Hl and Zeus there will study the momentum 
distribution of constitutents within the proton and measure the coupling strength of the 
gluon to the different quarks. At Hera, the rate of produced events due to background 
processes such as interaction of a beam particle with a residual gas molecule in the 
vacuum system is some 105 larger than the rate due to physics processes of interest. In 
the Hl experiment, a 4 level trigger system is envisioned in order to reduce this high rate 
to a manageable level of about 100 Hz. Level 1 is a digital pipeline which reduces the rate 
by about a factor of 100. An additional reduction of a factor of 10 is required in level 2 in 
order to provide an acceptable rate into levels 3 and 4, which are implemented in software 
on conventional computers. The level 2 trigger must complete its processing within 20 
microseconds. A hardware neural network has been proposed as a solution to this 
s;it.rn [Ribarics 1991, Ribarics 1992, Ribarics2 19921. We describe the approach 

In level 1, 16 simple trigger quantities, such as total summed energy, total summed 
transverse energy, total energy in the central region of the calorimeter, etc., are compared 
to thresholds. Level 1 however ignores correlations among the input variables. More 
sophisticated cuts will be made in level 2 by augmenting the level 1 quantities with 
additional information which becomes available after the level 1 decision time and feeding 
the resulting list of variables to a feed forward neural network. At present 19 input 
variables, including energy sums in subsets of the calorimeter, information on the vertex 
position, number of charged tracks, etc. are used. The neural network will use these 19 
variables to determine whether the energy patterns in the event have come from an 
electron proton collision or from a beam-gas collision or other background. 

The detailed architecture of the neural network is still under development, however typical 
results using Monte Carlo data with a MLP show retention of 98 percent of events from 
interesting physics processes and rejection of 90 percent of background events; i.e., the 
reduction factor of 10 is achieved while maintaining excellent efficiency. The algorithm is 
planned to be executed by a Siemens MA16 neural network chip [Siemens 19921, which 
should be able to finish processing in 10 microseconds, well within the allocated time. 
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3.1.3.2 Trigger R&D at CERN 

Some of the research and development projects at CERN are investigating neural 
networks for triggering applications for the LHC accelerator. In one project, a type of 
detector called a ‘transition radiation detector’, TRD, was designed to tell electrons from 
pions in an online trigger mansen 19921. The TRD will have 192 input wires, embedded 
in a special substrate, which sense the passage of the electron. The analog values from 
these wires will be fed into a MLP with 96 hidden units, and one output unit which 
signals whether or not an electron was present. In a simulation, the TRD rejected 92% of 
pions, and accepted 90% of electrons. These results were better than the 89% rejection, 
90% percent acceptance obtained with a more traditional analysis. Ultimately the neural 
network will be implemented in silicon with fixed weights. A prototype chip has already 
been built which has 32 input units and 32 hidden units. The propagation time through 
the chip is 15 nanoseconds: thus, the processing is sufficiently fast for incorporation into 
a first level trigger for LHC or SSC. 

A group at the Dutch lab NIKHEF is investigating a calorimetry based neural network 
trigger for the LHC accelerator as part of a research collaboration at CERN [Vermeulen 
19921. The approach is similar to the CDF trigger in that it will perform simple pattern 
matching upon energy patterns in local regions of the calorimeter. This is a two year pilot 
project which will compare the neural net solution to other techniques. The exact 
hardware implementation is still under development but will probably use a fast digital 
signal processor to implement the neural network algorithm. 

3.2 Other Low Level Pattern Recognition Applications 
3.2.1 Track Segment and Vertex Finding 

This discussion is from [Lindsey 19911 in which data from a proton antiproton collider 
experiment were fed to a MLP trained to find the primary vertex of the event, based upon 
drift times in the z-chamber, a drift chamber with three layers of wires placed near the 
beam pipe. The primary vertex* is the point from which the tracks in the event emanate, 
and marks the location of the collision. Figure 7 shows the hits in the chamber for a 
typical event; hem, only the hit wires are shown, not the drift times. 
emerge from a point on or near the beam line. 

The hits appear to 

The vertex position in collider experiments is normally not available online. This would, 
however, be very useful since it could be used to improve trigger calculations which 
assume a nominal vertex position at the center of the apparatus, and to flag or reject 
events which contain multiple interactions (i.e., more than one primary vertex). Vertex 
calculations are normally not performed until the offline analysis. A cross check of the 
offline analysis is provided by the time-of-flight (TOF) system, which crudely measures 
the vertex position using timing information. 

81Xs vertex is related to but not technically the same as the vertices discussed in the Appendix in connection 
with Feynman diagrams. The discussion here is of vertices which are physically discernible in the apparatus. 
The vertices in a Feynman diagram are mathematical entities. 
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Figure 9. a) difference between Zvenex as measured by the neural net and by the standard offline 
program. in centimeters. b) difference between Zvertex as measured by TOF counters and standard 
offline program. The neural net resolution is much better. 

The 288 sense wires of the chamber were broken up into 18 wire subsections (3 layers of 
6 wires each) for processing by the network. The sets of 18 drift times became inputs to 
identical MLP’s each with a single hidden layer of 128 units. Each output layer had 62 
units, 60 representing 1.0 centimeter bins from -30 cm to 30 cm. and 2 ‘overflow’ units. 
The 18 input subnetworks were trained to represent the vertex position by a Gaussian 
histogram in the output units, which gives good vertex position resolution with relatively 
few output units. Training was done using real data recorded in a previous run of the 
E73.5 experiment at Fermilab [E735 19911. Targets were obtained using the 2 position of 
the vertex calculated using the standard offline algorithm. The 18 wire subsections were 
chosen so as to overlap in order not to miss tracks which may span subsections. The 
outputs of the subnets are then simply added. This is illustrated in figure 8. 

Figure 9 compares the distribution of Zoffhne-ZNN to that of Zoffline-ZTOF, where Z is 
the position along the direction of the beam particles. The neural network Z resolution is 
about 3 times better than TOF, and its performance can probably be even further 
improved by using additional wire layers in the chamber. TOF is currently analyzed 
offline. It might be possible to implement it online, but its resolution can probably not be 
improved because it is a technology which has already been pushed to its limits. Also, 
the TOF technique cannot handle cases of multiple vertices. The neural net treats these in 
a natural way: each vertex appears as a bump in the summed net output. 

3.2.2 Kink Recognition 

A high energy pion or kaon will sometimes decay in a tracking chamber volume into a 
muon and a neutrino. The neutrino is neutral and is not seen in the tracking chamber. 
The muon is charged and is seen, however has a different momentum from the original 
particle. The result is a sack which appears to have a ‘kink’ in it (figure 10). 
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In this work [Stimpfl 1991, Stimpfl 19921 , simulated pion tracks of 3, 5, and 10 GeV 
momentum were generated and transported through a chamber modelled upon that of the 
Aleph experiment at CERN. A detailed detector simulation was used to model noise hits 
and other instrumental effects. Two approaches were tried. In the first, helical track 
segments are tit to the hit positions in an inner region, 1, and an outer region, 2 (figure 
10). The 5 helix parameters9 in the two regions are then used as input to a MLP which 
tells whether or not this track is due to a decay. In the second approach, a single fit is 
done to the track across both regions, and the residuals of the fit are used as input to the 
neural network. There will be 42 residuals, one for each measurement along the 
trajectory. As a variant to this second approach, groups of three residuals were averaged 
to give 14 residuals as input to the network. 

kink 

Figure 10. A pion decays to a muon and a neuuino to produce what appears as a track with a ‘kink. 
The kink is recognized by comparing found vack parameters in region 1 and region 2 

The results, are summarized in table VII, which also shows the network architectures 
tried. Also given in the table is the result obtained with the standard method for kink 
identification, called the analytical x2 method, in which again the track is tit in two 
regions and a x2 is calculated from the helix parameters in the two regions to determine 
the probability of the non-kink hypothesis. Both of the neural net methods are found to 
have higher efficiency than the standard chi-squared method. The neural network 
residual method is about 20 times faster to calculate than the analytical x2 method, 
assuming that the residuals are already available from the standard track fit. 

9 The helix pat’an~eters are the z position of the vertex, tbe polar and azimuthal angles of the axis of the helix, 
the radius, and the pitch. 
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I!!b!sd 3-.Gsx ilLid! l.u& 

5 -5-l@ar) 78.9 67.0 53.5 
5 - 10 - 1 (par) 79.1 67.2 53.6 

14-7- 1 (res) 79.9 65.5 51.5 
14 - 14 - 1 (res) 80.5 65.7 53.9 
42-6- l(res) 80.3 67.7 54.5 

analytical ~2 76.0 62.0 40.2 

Table VII. Efficiencies (in percent) for conectly identifying kinks (defined in text) in pion lracks of 
3. 5. and 10 GeV momentum. Two MLP architectures were tried for the cake of track paramerers BS net 
inputs. and three for the case of fit residuals as net inputs. The results for the standard method. 
analytical x2. are also given. 

3.2.3 Other Applications 

A variety of other applications of neural networks to low level pattern recognition in high 
energy physics have appeared, which we mention only briefly. The interested reader may 
consult the references. In an application to a Cherenkovtu detector, h&P’s were used to 
find a set of dots forming a ring pattern in a noisy image [Althen 1992, deGroot 19921. 
In another hardware application [Haggerty 19921, a discrete component hardware MLP 
was used to measure, in real time, the position of a muon track in a sacking chamber 
using charges induced on electrodes placed below the sense wire. MLP’s have been used 
to perform electrotipion discrimination in a calorimeter [Garlatti Costa 1992, Teykal 
19921 and identification of heavy quarks using the presence of multiple vertices in a 
vertex tracking chamber [Gupta 1991, Denby 19921. Applications to charged track 
reconstruction will be discussed in section 5. 

4. Physics Process Determination 
4.1 B Tagging 

Numerous groups have used neural networks for identifying reactions containing b 
quarks. This is usually referred to as ‘b tagging’. Typically this has been done at the four 
experiments at the LEP electron positron colliders [Proriol 1991, Proriol 1992, Bortolotto 
1991, deGroot2 1991, Gottschalk 1991, Bellantoni 1991, Seidel 1992, Branchini 1992, 
Brand1 19921, although some work with simulated jets at proton antiproton colliders has 
also been reported [Denby 19901. B tagging is of considerable interest since the 
properties of many particles containing b quarks have to date not been well studied. In 
the LEP work, the approach is typically to choose an ensemble of feature variables which 
describe the spatial distribution of energy within each jet and of the event as a whole. 
Additional information such as that from vertex tracking chambers may also be included. 
We choose as an example of this type of study the analysis performed by members of the 
Delphi experiment which extends the analysis to charm quarks and undifferentiated light 

10~ Cherenkov detector measures the mass of certain types of particles using the light the panicle produces in 
passing through a transparent medium. 



25 

quarks in order to extract the decay probabilities into these quarks of the Z boson. This 
analysis is described in the next section. 

4.2 Decay Probabilities of the Z 

The neutral boson Z can decay into any constituent plus its anti-constituent, e.g., electron 
plus positron, u quark plus u quark, etc. The standard model dictates the types of 
interactions which the constituents can undergo, but the relative strengths of the various 
interactions must be verified experimentally. A group from the DELPHI collaboration 
(one of the 4 major experiments at the LEP accelerator at CERN) has recently used a feed 
forward neural network to classify decays of the Z into three classes: cc pairs; bb pairs; 
or light quark (u,d, or s) antiquark pairs [Cosmo 1992, De Angelis 1992, Eerola 1992, 
see also Bortolotto 19911. This classification has permitted a measurement of the 
probabilities of the Z to decay into these particles to be made with higher precision than 
was previously possible. 

The probability of the Z to decay into the leptons electron, muon, and tau has been well 
established. That measurement is ‘easy’ to make since these particles are relatively easy 
to identify in the apparatus. The case of the decay of the Z into quarks is considerabley 
more dtfticult since the final state quarks fragment immediately into jets. The problem 
then becomes deducing the type of quark involved in the decay from the properties of the 
jets themselves and from their distribution within the apparatus. 

The standard technique for distinguishing heavy quarks from light quarks is through 
their so-called semileptonic decays, in which a particle containing a heavy quark decays to 
a lepton plus other particles. This technique has two disadvantages: 1) semileptonic 
decays account for only 20 percent of heavy quark decays; therefore with this technique 
tt will be more difficult to obtain a sample large enough to assure small statistical errors; 
2) in a semileptonic decay a neutrino is also emitted; these escape detection, making it 
impossible to completely reconstruct the event, leading to uncertainty in quark species in 
some cases. A technique which allows the use of all types of heavy quark decays is thus 
desirable. 

In the DELPHI work, 19 jet and event-shape variables were created as inputs to an MLP. 
The variables describe the spatial distribution of energy in the jets and in the event as a 
whole, various kinematical combinations of the momenta of the particles in the jets, as 
well as infotmation about the presence of leptons in the event. An exact description of the 
19 variables is not very illuminating to the non-specialist; the interested reader is referred 
to the original works. The network architecture chosen had 25 hidden units and 3 output 
units to encode the three classes. 

The training data for the network was generated with a standard physics Monte Carlo 
program and a program which simulates the response of the DELPHI apparatus to particle 
collisions. A total of 6000 training events were used. An independent set of 200,000 
events was used for testing the network. 

The trained network was then used to determine the relative fractions of b, c, and light 
quark decays in a sample of 123,475 real events from the DELPHI experiment. To do 
this, a 2-dimensional representation of the network output was devised as follows. The 
values of the 3 output nodes were normalized to sum to 1. Each event can then be 
represented as a point within an equilateral triangle where the perpendicular distances of 
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the point to the sides of the triangle represent the values of the output nodes. This type of 
representation is referred to as a Dalitz plot. Figure 11 shows the distribution within this 
plane of Monte Carlo events for b, c, and light quark decays, as well as for the real data. 
The fractions were obtained by fitting the real data distribution to a linear combination of 
the Monte Carlo distributions for the three classes: 

R(u,v) = (1 - FC - Fb) al(u,v) + Fca2(u,v) + Fba3(u,v) 

where u,v are the variables defining the plane, R is the distribution of the real data, Fc 
and Fb are the fractions of decays containing c and b quarks, respectively, and al, a2, 
and a3 are the distributions of the Monte Carlo data. The results of the tit are: 

Fc = .158 f- .m7stat +- .03Oparam +- .008model 

Fb = .212 +- .004stat +- .005param +- .Ollmodel 

where the first error is due to statistics, the second to an incomplete knowledge of certain 
parameters in the Monte Carlos, and the third to the dependence of the result upon which 
Monte Carlo model is used. Note that explicit reference is made to a model dependence 
of the result, a problem peculiar to high energy physics as discussed in section 2.3. For 
comparison, the best result to date for Fb [Abreu 19921 using semileptonic decays is 

Fb = ,215 +- .017stat+systematic 

where the systematic error contains effects due to parameter and model dependence. For 
the charm quarks, the best result to date [Abreu 19901 is obtained by identifying a 
characteristic low energy pion from the decay of a particle containing a charm quark. The 
result is 

Fc = .162 +- .030stat +- .050syst. 

The result using the neural network has a smaller uncertainty in both cases. 
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Figure 11 Daliv plots used LO measure the relative lracdons of b. c, and light (uds) quarks in the decays 
of the Z”. The acIivali”n of ihe nerwork output node conesponding 1” each class is represented as the 
perpendicular distance from !he side of the uiangle opposite the comer labelled with that class. The 
outputs of the three nodes always sum 1” 1. a). b). and c) show the distribution of network “utpurs for 
Momc Carlo (uds). c. end b quarks respectively. d) shows Ihe distribution for real data from Delphi. To 
extract the fractions of b.c. and (uds). the distriburion in d) is fit as a linear combinarion of the 
distributions of a). b). and c). where !he coefficients in the linear combination are the desired fractions. 

4.3 QuarklGluon Separation 

The ability to distinguish quark jets from gluon jets is clearly very desirable. The W and 
Z decay 80 percent of the time to two quarks, but normally these decays are unusable 
since it is not possible to distinguish these jets from the more copiously produced gluon 
jets. Furthermore, the most probable decay mode of the much sought top quark is into 
three quark jets, but this channel has long been considered unusable due to high 
backgrounds from multi-gluon final states. The ability to verify three quark jets would 
dramatically reduce the background. Distinguishing quark jets from gluon jets has been 
thought by many high energy physicists to be impossible due to the high degree of 
similarity between the two types of jets. 

Separation of quark and gluon jets using neural networks has been treated in a number of 
references [Lonnblad 1990, Lonnblad 1991, Bhat 1990, Csabai 1991, Baer 1991, 
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Barbagli 19921. These results have been almost exclusively based upon data generated 
by Monte Carlo. Recently a new result from the Fermilab Tevatron collider has appeared 
[Bianchin 1992, Bianchin2 19921 which for the first time appears to give evidence of 
quark and gluon components in real jets produced in proton antiproton collisions. In the 
Fermilab result, jets identified in the apparatus are represented by a set of 8 feature 
variables which describe the spatial distribution of energy within the jets, e.g., the 
amount of energy contained within each of three concentric cones centered on the centroid 
of the jet, the r.m.s. width of the jet, etc. A backpropagation neural network with these 8 
variables as inputs was trained to separate quark jets from gluon jets based upon 
examples generated by Monte Carlo. It is necessary to use Monte Carlo since pure 
samples of quarks and gluons do not exist. The real data will always contain a mixture 
of quark and gluon jets, and in fact the relative ratio of quarks and gluons in various 
kinematical regions is one of the sought after results. For this reason, this problem too 
will suffer from the fact that the results will depend upon which model of quark and 
gluon fragmentation has been used. 

There is considerable overlap of the two classes in all of the feature variables, and none is 
adequate to provide a useful classification of the jets. Figures 12 a) and b) shows the 
output of the trained neural network on independent test samples of Monte Carlo quarks 
and gluons. The quark and gluon distributions overlap substantially: quark and gluon 
jets are indeed very similar! However the separation achieved is useful because quark or 
gluon enriched samples can now be produced by placing cuts on the output of the neural 
network. 
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Figure 12. Output of 8-6-l MLP for a) Monle Carlo (the Pylhia Monte Carla was used in these studies) 
quarks: b) Monte Carlo gluons; c) Real data from rhe CDF experiment (labelled ‘Jet 40’). All the jew 
are required to have Et grca~ lhan 60 GeV. The real data appears IO be predominantly gluon like with 
B small admixture ol quarks. as expected from theory. 

A study was made of the efficiency of the network, defined as the fraction of quark jets 
with network output above 0.5, as a function of the number of nodes in the hidden layer. 
Performance did not improve beyond the results with two hidden units, and in fact a 
simple perceptron (no hidden units) was only a few percentage points worse using this 
measure. However, the network output distributions for the zero and two hidden unit 
cases was much more gaussian in shape and did not include any regions in which the 
quark to gluon ratio was high. Such regions may prove valuable for placing cuts which 
enrich quark to gluon ratio at the price of reduced quark efficiency. For this reason, the 
results from the 6 hidden unit network were retained for the final analysis. The maximum 
efficiency achieved on the Monte Carlo data was 70 percent. 
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Figure 12~) shows the result of applying the trained net to a sample of real data from the 
CDF experiment. The real data distribution appears to be predominantly gluon-like with a 
non-zero admixture of quarks, which is consistent with the result expected on theoretical 
grounds for events in the kinematical regime in which the data was taken. A tit to the real 
data as a linear combination of the Monte Carlo quark and gluon distributions gives a 
good x2, but because of model dependence and some subtleties in the Monte Carlo 
programs, it has not yet been possible to extract the exact quark fraction from this 
distibution in an unambiguous way. However, the results are encouraging and work is 
continuing. 

More recently, another analysis was performed [Bianchin2 19921 in which a feature map 
was trained on a sample of mixed Monte Carlo quarks and gluons and then used to 
identify quarks and gluons in an independent sample. A somewhat higher efficiency, 
about 72 percent was obtained. The feature map trained on Monte Carlo is also being 
appljed to the real data, and, conversely, a feature map trained on real data is being 
?pph$ to labelled Monte Carlo data. Training using only real data is very attractive since 
It avcuds the problem of model dependence, although it may be necessary to use the 
Monte Carlo data to label the nodes in the topological map. These analyses are still in 
progress. 

4.4 Additional Physics Process Applications 

The use of learning vector quantization and topological maps is relatively new in HEP. 
An interesting application of topological maps appears in [Lonnblad3 19911 in which a 
map is used to discover the b,c, and light quark classes in a sample of mixed Monte Carlo 
data. A similar application is being attempted for data at the Tevatron [Bianchin2 19921. 
LVQ has been used for b tagging [Proriol 1991, Proriol 19921 and discrimination of i 
events from background [Odorico 19911. Other MLP offline applications include: 
resonance searches’ 1 [Alexopoulos 19911; calculation of the total mass of the particles in 
an event [Lonnblad2 19911; determination of the charge of the initial quark which 
produced a jet [Varela 19911; and identification of jet cascades with muons [Los 19921. 

5. Neural Nets and Charged Track Reconstruction 
5.1 Tracking with Recurrent Nets 

Recurrent networks have been used in HEP for track reconstruction, using an algorithm 
developed by Denby and independently by Peterson [Denby 1988, Peterson 1989, 
Stimpfl 1990, Denby 1990, Barbagli 19921. In this application a neuron is defined to be 
a directed link between two hits in a tracking detector. The approach resembles 
qualitatively the encoding used by Hopfield [Hopfield 19861 for solving the Traveling 
Salesman Problem with a recurrent net. The weight connecting two neurons i and j is 
determined by the angle 9ij between them, (figure 13): 

Wij = A c&Wij/lilj 

where li and lj arc the lengths of the neurons (i.e., distance between hits), if i and j do not 
both point into or out of the same point, and wij = -B if i and j are head to head or tail to 

tl~ resonance is a bound state of two or more particles and appears as a peak in a mass distribution. 
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tail. An energy function is defined, E = -l/2 x wij oi oj, where oi is the output of 
neuron i. The energy function will be smallest when the angles between close together 
neurons sharing points are small. This favors neurons lying along smooth trajectories 
such as those of particles moving in a magnetic field. The constraint term -B ensures a 
unique direction to the tracks to avoid a degeneracy which prevents settling of the 
network. The evolution of the system is obtained by iteratively solving the update 
equations: 

z dui/dt = 9 wij oi - ui ; oi = sigmoid(ui). 

On each iteration, dt is kept much smaller than r, the time constant of the system. 

Figure 13. Neuron links in the Denby-Peterson Net 

This method has been used on real data at the ALEPH experiment at LEP [Stimpfl 19901. 
Figure 14 shows r-phi (i.e., looking down the beam line) and r-z (side) views of an 
event in which a Z boson decays to hadrons, with all links defined before network 
evolution (left side of figure), and the event after settling of the network, with tracks 
found (right side). The efficiency is as good as the conventional track reconstruction 
program but the neural net algorithm is somewhat faster. In this work, a study was 
made of execution time for the neural net and conventional algorithms as a function of 
track multiplicity (number of charged tracks in the event). The advantage of the neural 
algorithm is shown to increase with multiplicity. Although this type of algorithm has not 
yet been accepted as a standard track recognition algorithm, it may prove to be important 
in the future when track multiplicities will be larger. 
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Figure 14. Chuged track reconstruction an real data in the Aleph central tracking chamber. using a 
rccurrcn~ neural nwwork algorithm. In the rap figures the beam pipe is perpendicular LO the plane of 
lhc page. in Ihc bo[tam figures. horizontal. The left hand frames show the neuron links before 
cvoluUon; at right are Ihe found uacks a~ Ihe end of evoludon. 

There is not a straightforward way to implement this algorithm in the fast hardware that 
would be needed to make it applicable at the trigger level, since the number of neurons 
and weights is high, and the weights must be recalculated for each event. In addition, the 
algorithm does not take advantage of all the available information, such as that tracks in a 
uniform magnetic field are known to be nearly perfect helices. This makes the algorithm 
more susceptible to noise since it will be less able to reject noise hits which happen to lie 
near the tracks. 

5.2 Elastic Tracking 

Improvement to the neural tracking are the so-called elastic tracking [Gyulassy 19911 or 
deformable templates [Ohlsson 19911 approaches. In these approaches, a track is a 
helical object which settles into a shape which best tits the hits. The helix can be thought 
of as electrically charged and attracted to the hits which have opposite charge. Although 
these algorithms map the tracking problem onto dynamical systems, and are at least in 
principle parallelizable, they have lost some of the ‘neural’ flavor of the original Denby- 
Peterson net. Nonetheless, the efficiency and robustness to noise of the elastic methods 
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are excellent. One interesting study [Gyulassy 19911 compared the robusmess to noise 
of the standard method, the Denby-Peterson net, and the elastic tracking method. The 
standard method of track reconstruction is called the ‘roadfinder’ since it starts with two 
nearby hits and then searches for additional hits on a ‘road’ in the direction of the segment 
joining them. Figure 15 from this study shows the efficacy of each method as a function 
of number of tracks. All data have 20 percent noise and 3 percent error on position 
measurement. The roadfinder breaks down between 5-10 tracks, the Denby-Peterson net 
at lo-15 tracks, but the elastic sacking always finds the correct answer in this study. 
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6. Conclusion 

Five years ago there was no explicit mention of neural network techniques in HEP 
literature. A current bibliography of applications in HEP includes almost a hundred 
papers and reports. Much of the work is still exploratory and uses only the simplest 
techniques such as the MLP trained with backpropagation, although some interesting 
results using learning vector quantization and feature maps have also appeared. 

In HEP, historically, data analysis has been done using simple one dimensional cuts; 
consequently the HEP community at large has yet to fully accept neural network 
techniques as standard tools. Nevertheless the neural network methods arc beginning to 
show their worth. The decay probabilities of the Z boson into b,c and light quarks has 
been measured with higher precision than ever before using a technique based upon a 
MLP. A neural network technique has given higher kink finding efficiency and faster 
execution speed than the standard method. Results consistent with identification of quark 
and gluon components in jets produced at a proton antiproton collider have appeared for 
the first time using a feed forward neural network. Recurrent networks have provided a 
faster way of performing charged track reconstruction. 

One of the most exciting promises of neural network technology is in the realm of 
triggering for HEP. One test has already been completed: a VLSI neural network used in 
the data acquistion system of a drift chamber has provided, in only a few microseconds, 
track intercept resolution 50 times more accurate than that previously obtainable online. 
Neural network triggers for three large collider experiments are either currently being 
installed or have been proposed for future installation. The neural network triggers will 
permit experiments to reject more background events earlier in the data stream, resulting 
in more efficient and cost effective data acquisition systems and enormously reducing data 
storage requirements. 

It is intellectually quite stimulating to witness a marriage between such seemingly 
disparate domains as high energy physics and neural networks. Given the growth of 
applications and their success to date, HEP may turn out to be one of the driving forces in 
the integration of neural networks into science as data analysis tools. 
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7. Appendix: Particle Interactions 

The constituents are arranged into doublets consisting of a lepton and its neutrino or of a 
quark and its conjugate quark (quark-conjugate pairs have a unit net charge) as in table 
VIII. 
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Interactions of the members of the doublets are represented by three legged ‘vertices’. 
Different symbols are used for the legs depending on the type of particle represented by 
the leg. Only certain vertices are allowed. In allowed vertices the legs must be: 

1) a quark or lepton and its antiparticle plus a neutral boson, 

2) the two members of a quark or lepton doublet plus a charged boson, or 

3) three gluons 

as shown in figure 16. Additional legal vertices may be generated by changing a leg from 
incoming to outgoing and replacing the particle the leg represents by its antiparticle. 
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Figure 16. Allowed interaction vertices 
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The elementary vertices can be ‘hooked together’ to represent various physical processes 
such as collisions of constituents and decays. Some examples are given in figure 17. 
These so-called Feynman diagrams are drawn with strict rules, which we shall not 
discuss here, which allow the direct transcription of formulae which can be used to 
calculate the probability of the process represented in the diagram. The left hand side of 
such a diagram is called the ‘inital state’ and the right hand side the ‘final state’ since time 
progress f;om left to right. 
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Figure 17. Processes shorn are: A) quark production of weak bosom decaying to leptons; B) quark 
and glum production of% via a glum: C) quark quark scattering; D) glum glum scattering; E) quark 
gluon scattering: F) weak boson production of Higgs decaying to weak bisons. 

The diagrams shown are processes which occur at the level of the constituents. The final 
state may be considerably modified before any of the particles reach the detectors. This is 
because quarks and gluons are not visible as free particles. Rather, many additional 
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vertices will attach themselves to the final state particles with high probability. These 
outgoing quarks and gluons will bind into composites, resulting in a multiparticle jet of 
outgoing particles. This is illustrated in figure 18. 

Figure 18. Example of how the final state quarks or gluons can evolve into multiparticle jets by the 
spontaneous attachment of additional vertices. 

8. References 

Abreu 1990: P. Abreu et al., Phys. Left., 252B (1990) 140. 

Abreu 1992: P. Abreu et al., “Measurement of the Partial Width of the Zo into bb Final 
States using their Semileptonic Decays”, CERN - PPE/92-89, submitted to .&-it. Phys. C. 

AIHEP 1992: Proceedings of the Second International Workshop on Software 
Engineering, Artificial Intelligence, and Expert Systems for Nuclear and High Energy 
Physics, La Blonde les Maures, France, January 1992, World Scientific. 

Alexopoulos 1991. T. Alexopoulos, 
Technique”, 

“Resonance Searches using a Neural Network 
talk at DPF 91, Vancouver, Canada, August 1991, submitted to 

proceedings, also T. Alexopoulos, Ph.D. Thesis, University of Wisconsin, unpublished. 

Altherr 1992: T. Altherr et al., “Cerenkov Ring Recognition using Adaptable and non- 
Adaptable Networks”, to appear in the Proceedings of the Second International 
Workshop on Software Engineering, Artificial Intelligence, and Expert Systems for 
Nuclear and High Energy Physics, La Londe les Maures, France, January 1992, World 
Scientific. 

Baer 1991: H. Baer, D. Karatas, G. Giudice, “Snagging the Top Quark with a Neural 
Network”, FSU HEP 911130, Florida State University, Tallahassee, Nov. 1991. 

Barbagli 1991: G. Barbagli, G. D’Agostini, D. Monaldi, “Quark/Gluon Separation in the 
Photoproduction Region with a Neural Network Algorithm”, Universita di Roma ‘La 
Sapienza’, Internal note N.992, Feb. 1992. 



38 

Bellantoni 1991: L. Bellantoni, J.S. Conway, J.E. Jacobsen, Y.B. Pan, Sau Lan Wu, 
“Using Neural Networks with Jet Shapes to Identify b Jets in e+e- Interactions”, CERN- 
PPE/91-80,24 May 1991, submitted to Nucl. Inst. & Meth. 

Bhat 1990: P. Bhat, L. Lonnblad, K. Meier, K. Sugano, “Using Neural Networks to 
Identify Jets in Hadron Hadron Collisions”, Proc. of the 1990 Summer Study on High 
Energy Physics - Research Directions for the Decade, Snowmass, Colorado, June 25 - 
July 13, 1990. 

Bianchin 1992: S. Bianchin, M. Denardi, B. Denby, M. Dickson, G. Pauletta, L. Santi, 
and N. Wainer, “Classification of Jets from PPbar Collisions at Tevatron Energies”, to 
appear in the Proceedings of the Second International Workshop on Software 
Engineering, Artificial Intelligence, and Expert Systems for Nuclear and High Energy 
Physics, La Londe les Maures, France, January 1992, World Scientific,, and CDF 
Internal Note 1706. 

Bianchin:! 1992: S. Bianchin, M. Dall’Agata, M. De Nardi, G. Pauletta, L. Sand, B. 
Denby, N. Wainer, M. Dickson, “Jet Classification at CDF”, Proceedings of the Second 
Workshop, Neural Networks: from Biology to High Energy Physics, Elba International 
Physics Center, Isola d’Elba, Italy, 18-26 June, 1992, to appear in International Journal 
of Neural Systems, World Scientific. 

Bortolotto 1991: C. Bortolotto et al., 
the ~0 Using Neural Networks”, 

“A Measurement of the Partial Hadronic Widths of 
in Proc. of the workshop Neural Networks: From 

Biology to High Energy Physics, Elba International Physics Center, Isola d’Elba, Italy, 
June 5-14, 1991, ETS Edit&e, Pisa. 

Branchini 1992: P. Branchini, M. Ciuchini, and P. Del Giudice, “B Tagging with Neural 
Networks: An Alternative use of Single Particle Information for Discriminating Jet 
Events”, to appear in the Proceedings of the Second International Workshop on Software 
Engineering, Artificial Intelligence, and Expert Systems for Nuclear and High Energy 
Physics, La Londe les Maures, France, January 1992, World Scientific, and INFN-ISS 
92/l. 

Brand1 1992: B. Brand1 et al., “Tagging of Z Decays into Heavy Quarks in the Aleph 
Detector using Multivariate Analysis Methods: Neural Networks, Discriminant Analysis, 
Clustering”, to appear in the Proceedings of the Second International Workshop on 
Software Engineering, Artificial Intelligence, and Expert Systems for Nuclear and High 
Energy Physics, La Londe les Maures, France, January 1992, World Scientific. 

CDF 1988: The Collider Detector at Fermilab, a compilation of articles reprinted from 
Nucl. Inst. Meth.- A, North Holland, Amsterdam, 1988. 

Cosmo 1992: G. Cosmo, A. De Angelis, N. De Groot, P. Del Giudice, P. Eerola, J. 
Kalkkinen, L. Lyons, M. Los, E. Torassa, E. Vallazza, Delphi Collaboration, 
“Classification of the Hadronic Decays of the Zo into b and c Quark Pairs using a Neural 
Network”, submitted to the XXVI International Conference on High Energy Physics, 
Dallas, TX, U.S.A., August 5-12, 1992. 

Csabai 1991: I. Csabai, F. Czako, Z. Fodor, “Combined Neural Network-QCD 
Classifier for Quark and Gluon Jet Separation”, CERN Preprint CERN-TH.6038/91 and 
Eotvos University (Budapest) Institute for Theoretical Physics preprint ITP-Rep. 
Budapest 483, March, 1991. 



39 

De Angelis 1992: A. De Angelis, “Heavy Flavour Identification in Delphi”, Proceedings 
of the Second Workshop, Neural Networks: from Biology to High Energy Physics, Elba 
International Physics Center, Isola d’Elba, Italy, 18-26 June, 1992, to appear in 
International Journal of Neural Systems, World Scientific. 

deGroot 1991: N. De Groot and M. Los, “B-Tagging in Delphi with a Feed-Forward 
Neural Network”, in Proc. of the workshop Neural Networks: From Biology to High 
Energy Physics, Elba International Physics Center, Isola d’Elba, Italy, June 5-14, 1991, 
ETS Editrice, Pisa. 

Denby 1988: B. Denby, Computer Physics Communications, 49 (1988) 429. Also, B. 
Denby “Neural Network and Cellular Automota Algorithms”, Florida State University 
preprint FSU-SCRI-88-141, June, 1988. Tallahassee, Florida. 

Denby 1990: B. Denby et al., IEEE Trans. Nucl. Sci. 37 No. 2 (1990) 248. 

Denby 1990: B. Denby, E. Lessner, and C.S. Lindsey, Proc. I990 Conf. on 
Computing in High Energy Physics, Santa Fe, NM, (1990) AIP Conf. Proc. 209 211. 

F;;.by3 1990: B. Denby and S. Linn, Computer Physics Communications 56 (1990) 

Denby 1991: Denby et al., CDF Internal Note 1538, “Proposal for a Level-2 Isolated 
Plug Electron Trigger for the 1991/1992 Run”, CDF Collaboration, Fermi National 
Accelerator Laboratory, Batavia, Illinois. 

Denby 1992: B. Denby, “Quark Flavor Sensitivity of the Mammalian Cortex: 
Theoretical Foundations”, Proceedings of the Second Workshop, Neural Networks: 
from Biology to High Energy Physics, Elba International Physics Center, Isola d’Elba, 
Italy, 18-26 June, 1992, to appear in International Journal of Neural Systems, World 
Scientific. 

DO 1983: DO Design Report, Fermilab, Dec. 1983, and DO Upgrade, Fermilab P-823, 
April 1991. 

E735 1991: F. Turkot et al., Nucl. Phys. A525 (1991) 165170. 

Eerola 1992: P. Eerola, “Classification of the Hadronic Decays of the Zo into b and c 
Quark Pairs using a Neural Network”, Proceedings of the Second Workshop, Neural 
Networks: from Biology to High Energy Physics, Elba International Physics Center, 
Isola d’Elba, Italy, 18-26 June, 1992, to appear in International Journal of Neural 
Systems, World Scientitic. 

Former 1992: M. Former, “Analog Neural Networks in an Upgraded Muon Trigger for 
the DO Detector”, to appear in the Proceedings of the Second International Workshop on 
Software Engineering, Artificial Intelligence, and Expert Systems for Nuclear and High 
Energy Physics, La Londe les Maures, France, January 1992, World Scientific. 

Garlatti Costa 1992: P. Garlatti Costa, A. De Angelis, L. Lanceri, L. Santi, C. 
Vignaduzzo, E. Zoppolato, “A Neural Network for e/p Classification in a Calorimeter”, 
INFN Sezione di Trieste, Italy, technical note INFN/AE-92/14, 27 April 1992. 



40 

Gottschalk 1991: T. D. Gottschalk and R. Nolty, “Identification of Physics Processes 
Using Neural Network Classifiers”, Caltech Report CALT-68-1680, 1991. 

Gupta 1991: L. Gupta, A. Upadhye, B. Denby, and S.R. Amendolia, Parrern 
Recognirion. 25 (1992) 413. 

Gyulassy 1991: M. Gyulassy and M. Harlander, Computer Physics Commmunications 
66 (1991) 31. 

Haggerty 1992: Herman Haggerty, Fermilab, private communication. 

Hansen 1992: J.R. Hansen, “The Need for Neural Networks at LHC and SSC”, to 
appear in the Proceedings of the Second International Workshop on Software 
Engineering, Artificial Intelligence, and Expert Systems for Nuclear and High Energy 
Physics, La Londe les Maures, France, January 1992, World Scientific. 

Hopfield 1986: J. Hopfield and D.W. Tank, Science 233 (1986) 625. 

Intel 1991: Intel 80170NX Electrically Trainable Analog Neural Network, Intel 
Corporation, Santa Clara, California. 

Lindsey 1991: C.S. Lindsey and B. Denby, Nucl. Inst. & Meth. A302 (1991) 217. 

Lindsey2 1991: C. S. Lindsey, “Tracking and Vertex Finding in Drift Chambers with 
Neural Networks”, in Proc. of the workshop Neural Networks: From Biology to High 
Energy Physics, Elba International Physics Center, Isola d’Elba, Italy, June 5-14, 1991, 
ETS Editrice, Pisa. 

Lindsey 1992: C.S. Lindsey, B. Denby, H. Haggerty, K. Johns, Nucl. Inst. & Meth. 
A317 (1992) 346-356. 

Lindsey2 1992: C.S. Lindsey, “Drift Chamber Tracking with a VLSI Neural Network”, 
Proceedings of the Second Workshop, Neural Networks: from Biology to High Energy 
Physics, Elba International Physics Center, Isola d’Elba, Italy, 18-26 June, 1992, to 
appear in International Journal ofNeural Systems, World Scientific. 

Lonnblad 1990: L. Lonnblad, C. Peterson, and T. Rognvaldsson, Phys. Rev. Letters 
65 (1990) 1321. 

Lonnblad 1991: L. Lonnblad, C. Peterson, and T. Rognvaldsson, Nucl. Physics B349 
(1991) 675. 

Lonnblad2 1991: L. Lonnblad, C. Peterson, and T. Rognvaldsson, “Mass 
Reconstruction with a Neural Network”, Lund University preprint LU TP 91-25, October 
1991, submitted to Physics Letters B. 

Lonnblad3 1991: L. Lonnblad, C. Peterson, H. Pi, and T. Rognvaldsson, “Self 
Organizing Networks for Extracting Jet Features”, Lund University preprint LU TP 91- 
4, March 1991, submitted to Computer Physics Communications. 

Los 1992: M. Los, “Using a Neural Network for Classifying Jet Cascades with a 
Muon”, Proceedings of the Second Workshop, Neural Networks: from Biology to High 



41 

Energy Physics, Elba International Physics Center, Isola d’Elba, Italy, 18-26 June, 
1992, to appear in International Journal of Neural Systems, World Scientific. 

Odorico 1991: A. Cherubini and R. Odorico, “Identification by Neural Networks and 
Statistical Discrimination of New Physics Events at High Energy Colliders”, in Proc. of 
the workshop Neural Networks: From Biology to High Energy Physics, Elba 
International Physics Center, Isola d’Elba, Italy, June 5-14, 1991, ETS Editice, Pisa. 

Ohlsson 1991: M. Ohlsson, C. Peterson, and A. Yuille, “Track Finding with 
Deformable Templates - The Elastic Arms Approach”, Lund University Preprint LU TP 
91-27, November 1991, Lund, Sweden, submitted to Computer Physics 
Communications. 

Peterson 1989: C. Peterson, Nucl. Insr. & Merh., A279 (1989) 537. 

Proriol 1991: J. Proriol et al., “Tagging B Quark Events in Aleph with Neural 
Networks”, in Proc. of the workshop Neural Networks: From Biology to High Energy 
Physics, Elba International Physics Center, Isola d’Elba, Italy, June 5-14, 1991, ETS 
Editrice, Pisa. 

Proriol 1992: J. Proriol, “Tagging B Quark Events in e+e- Colliders with Neural 
Networks. Comparisons of Different Sets of Variables and Different Methods”, 
Proceedings of rhe Second Workshop, Neural Networks: from Biology lo High Energy 
Physics, Elba International Physics Center, Isola d’Elba, Italy, 18-26 June, 1992, to 
appear in Inrernational Journal of Neural Systems, World Scientific. 

Ribarics 1991: P. Ribarics et al., “Neural Network Trigger in the Hl Experiment”, in 
Proc. of the workshop Neural Nerworks: From Biology to High Energy Physics, Elba 
International Physics Center, Isola d’Elba, Italy, June 5-14, 1991, ETS Editrice, Pisa. 

Ribarics 1992: “Neural Network Level 2 Trigger in the HI Experiment”,to appear in the 
Proceedings of the Second Inrernational Workshop on Sofhvare Engineering, Artificial 
Intelligence, and Expert Systems for Nuclear and High Energy Physics, La Londe les 
Maures, France, January 1992, World Scientific. 

Ribarics2 1992: “Neural Network Trigger in the HI Experiment”,Proceedings of rhe 
Second Workshop, Neural Networks: from Biology to High Energy Physics, Elba 
International Physics Center, Isola d’Elba, Italy, 18-26 June, 1992, to appear in 
Inrernational Journal of Neural Systems, World Scientific. 

Seidel 1992: F. Seidel et al., “Extensive Studies on a Neural Networks for b Tagging 
and comparisons with a Classical Method”, to appear in the Proceedings of the Second 
Inrernational Workshop on Software Engineering, Artificial Intelligence, and Expert 
Systems for Nuclear and High Energy Physics, La Londe les Maures, France, January 
1992, World Scientific. 

Siemens 1991: U. Ramacher et al., ” Design of a First Generation Neurocomputer”, in 
VLSI Design of Neural Networks, eds. U. Ramacher and U. Riickert, Kluwer Academic 
Publishers, 1991. 

Stimpfl 1990: G. Stimpfl-Abele and L. Garrido “Fast Track Finding with Neural Nets”, 
UAB-LFAE 90-66, submitted to Computer Physics Communicarions, 1990. 



42 

Stimpfl 1991: G. Stimpfl-Abele and Lluis Garrido, “Recognition of Decays of Charged 
Tracks with Neural Network Techniques”, Universite Blaise Pascal preprint, Clermont- 
Ferrand, France, submitted to Computer Physics Communications, May 1991. 

Stimpfl 1992: “Neural Nets for Kink Finding”, Proceedings of the Second Workshop, 
Neural Networks: from Biology to High Energy Physics, Elba International Physics 
Center, Isola d’Elba, Italy, 18-26 June, 1992, to appear in International Journal of Neural 
System, World Scientific. 

Teykal 1992: H. Teykal, “Using Neural Networks for the Identification of Electrons and 
Pions in a Calorimeter for High Energy Physics”, Proceedings of the Second Workshop, 
Neural Networks: from Biology to High Energy Physics, Elba International Physics 
Center, Isola d’Elba, Italy, 18-26 June, 1992, to appear in International Journal of Neural 
Systems, World Scientific. 

Varela 1991: P. Silva and J. Varela, “Identification of the Quark Jet Charge Using 
Neural Networks”, in Proc. of the workshop Neural Networks: From Biology to High 
Energy Physics, Elba International Physics Center, Isola d’Elba, Italy, June 5-14, 199 1, 
ETS Editrice, Pisa. 

Vermeulen 1992: J. Vermeulen, “A Study of the Feasibility of Using Neural Networks 
for Second Level Triggering at LHC”, to appear in the Proceedings of the Second 
International Workshop on Software Engineering, Artificial Intelligence, and Expert 
Systems for Nuclear and High Energy Physics, La Londe les Maures, France, January 
1992, World Scientific. 

Wu 1990: D. Wu et al., CDF Internal Note 1310, “A Pattern Recognition Level-2 B 
Trigger at CDF in 1991”, CDF Collaboration, Fermi National Accelerator Laboratory, 
Batavia, Illinois; and private communication. 


