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The clinical course of Alzheimer’s disease (AD) is generally character 
ized by progressive gradual deterioration, although large clinical vari- 
ability exists. Motivated by the recent quantitative reports of synaptic 
changes in AD, we use a neural network model to investigate how 
the interplay between synaptic deletion and compensation determines 
the pattern of memory deterioration, a clinical hallmark of AD. Within 
the model we show that the deterioration of memory retrieval due to 
synaptic deletion can be much delayed by multiplying all the remain- 
ing synaptic weights by a common factor, which keeps the average 
input to each neuron at the same level. This parallels the experimen- 
tal observation that the total synaptic area per unit volume (TSA) is 
initially preserved when synaptic deletion occurs. By using different 
dependencies of the compensatory factor on the amount of synaptic 
deletion one can define various compensation strategies, which can ac- 
count for the observed variation in the severity and progression rate 
of AD. 

1 Introduction 

Alzheimer’s disease (AD) is the major degenerative disease of the brain, 
responsible for a progressive deterioration of the patient’s cognitive and 
motor function, with a grave prognosis (Adams and Victor 1989). Its 
clinical course is usually characterized by gradual decay, although both 
slow and rapidly progressive forms have been reported, exhibiting a large 
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variation in the rate of AD progression (Drachman et al. 1990). While re- 
markable progress has been gained in the investigation of neurochemical 
processes accompanying AD, their role in neural degeneration, the main 
pathological feature of AD, is yet unclear (Selkoe 1987; Kosik 1991). This 
work is motivated by recent investigations studying in detail the neu- 
rodegenerative changes accompanying AD, on a neuroanatomical level. 
Following the paradigm that cognitive processes can be accounted for 
on the neural level, we examine the effect of these neurodegenerative 
changes within the context of a neural network model. This allows us to 
obtain a schematic understanding of the clinical course of AD. 

Neuroanatomical investigations in AD patients demonstrate a con- 
siderable decrease in the synapse to neuron ratio, due to synaptic deletion 
(Davies et al. 1987; Bertoni-Freddari et al. 1990). Synaptic compensation, 
manifested by an increase of the synaptic size, was found to take place 
concomitantly, reflecting a functional compensatory increase of synap- 
tic efficacy at the initial stages of the disease (Bertoni-Freddari et al. 
1988, 1990; DeKosky and Scheff 1990). The combined outcome of these 
counteracting synaptic degenerative and compensatory processes can be 
evaluated by measuring the total synaptic area per unit volume (TSA), 
which was shown to correlate with the cognitive function of AD patients 
(DeKosky and Scheff 1990). 

Our model, presented in Section 2, serves as a framework for exam- 
ining the interplay of synaptic deletion and compensation. This attractor 
neural network (ANN) is not supposed to represent any specific neu- 
ronal tissue, yet we believe that our results are relevant to a large class 
of neural systems. Deletion is carried out stochastically by removing the 
fraction d of all synaptic weights. Compensation is modeled by multiply- 
ing all remaining synaptic weights by a common factor c. The TSA value 
is proportional to c(1 - d ) .  Varying c as a function of d specifies a com- 
pensation strategy. We assume that the network’s failure rate, measured 
by the fraction of memories erroneously retrieved, represents the degree 
of “cognitive deficit” in clinical observations. Reviewing the pertaining 
pathological and clinical data, we show in Section 3 how our model can 
account for the variability observed in the clinical course of AD. Our 
results are further discussed in Section 4. 

2 The Model 

Concentrating on memory degradation, a clinical hallmark of AD (Adams 
and Victor 19891, we use as our theoretical framework a neural network 
model of associative memory. Our model is based on the biologically 
motivated variant of Hopfield’s model (1982), proposed by Tsodyks and 
Feigelman (1988). In an ANN, the stored memories are attractors of the 
network’s dynamics, such that when memory retrieval is modeled then, 
starting from an initial condition sufficiently similar to one of the memory 
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patterns, the network flows to a stable state identical with that memory. 
The appeal of attractors, as corresponding to our intuitive notion of the 
persistence of cognitive concepts along some temporal span, has been 
fortified by numerous studies testifying to the applicability of ANNs 
as models of the human memory [for a review see Amit (1989)1, and is 
also supported by biological findings of delayed, poststimulus, sustained 
activity (Fuster and Jervey 1982; Miyashita and Chang 1988). 

All N neurons in the network have a uniform positive threshold T. 
Each neuron is described by a binary variable S = (1 ,O)  denoting an 
active (firing) or passive (quiescent) state, respectively. M = aN dis- 
tributed memory patterns [ p  are stored in the network. The elements of 
each memory pattern are chosen to be 1 (0) with probability p (1 - p )  
respectively, with p << 1. The weights of the synaptic connections are 

w.. - C([Fi - p ) ( [ g  - p )  
” - N,=, 

The updating rule for neuron i at time t is given by 

(2.1) 

(2.2) 

where 8 is the step function. The performance of the network is mea- 
sured by the activities of the memories, as defined by the overlaps mp, 

N 

As shown in the Appendix, there exists an optimal value of the threshold 
T = p(1 -p)(l-2~)/2,  which ensures the best performance of the network. 

Starting with such a memory model we introduce synaptic deletion 
by randomly deleting some of the incoming synapses of every neuron, 
leaving each neuron with 1 = (1 - d)N input connections, where d < 1 is 
the deletion facfor. Synaptic compensation is modeled by multiplying the 
weights of the remaining synaptic connections by a uniform compensation 
factor c > 1. This changes the dynamics of the system to 

where Di denotes a random set of indices corresponding to neurons to 
which the ith neuron is connected, and IDil/N = 1 - d 5 1. T remains 
the same value as before. 

In the network’s “premorbid state, the memories have maximal sta- 
bility, achieved by choosing the optimal threshold T that maximizes the 
increase of the overlap (say ml), as shown in the Appendix. When the 
network is initialized with an input pattern that is a corrupted version 
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Figure 1: The distribution of the postsynaptic potential ( p  = 0.1,a = 0.05). 
Solid curve: Initial state: two gaussian distributions peaked at -$(1 - p )  and 
p(1 - P ) ~ .  The optimal threshold T = p(1 - p ) ( i  - p )  lies in the middle between the 
two gaussian mean values. Dashed curve: After deletion (d = 0.25), the new 
peaks of the postsynaptic potential are no longer equidistant from the threshold 
T. Dot-dashed curve: The O K  strategy restores the initial mean values of the 
postsynaptic potential (d = 0.75). 

of one of the stored memory patterns (e.g., ['I, it will flow dynamically 
into the attractor given by this memory. 

To obtain an intuitive notion of the network's behavior when synap- 
tic deletion and compensation are incorporated consider Figure 1. The 
neurons that stand for firing neurons in the stored memory, and the 
neurons that stand for quiescent neurons in the stored memory, have 
distinct postsynaptic potential distributions (the solid curves in Fig. 1). 
When synaptic deletion takes place, the mean values of the neurons' 
postsynaptic potential change, and the threshold is no longer optimal 
(see dashed curves in Fig. 1). Multiplying the weights of the remaining 
synaptic connections by an optimal performance Compensation factor ( O K )  
c = 1/(1 - d), restores the original mean values of postsynaptic poten- 
tial and the optimality of the threshold (dot-dashed curves in Fig. 1). 
The accom an in increase in the variance of the postsynaptic potential, 
which is Je times larger than the original one, leads, however, to 
performance deterioration. This is further elucidated in the Appendix. 
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Figure 2: Performance of a network with fixed k compensation. Starting 
h m  an initial state that is a corrupted version [m'(O) = 0.81 of a stored 
memory pattern, we define performance as the percentage of cases in which 
the network converged to the correct memory. The simulation parameters 
are N = 800 neurons, a = 0.05, and p = 0.1. The curves represent (from 
left to right) the performance of fixed strategies with increasing k values, for 
k = 0,0.25,0.375,0.5,0.625,0.75,1. The horizontal dotted lines represent perfor- 
mance levels of 25 and 75%. 

We can interpolate between the case of deletion without compensation 
and the OPC within a class of compensatory strategies, defined by 

(2.5) 

with the parameter 0 5 k 5 1. All the fixed k strategies, examined via 
simulations measuring the performance of the network at various dele- 
tion and compensation levels, display a similar sharp transition from 
the memory-retrieval phase to a nonretrieval phase, as shown in Fig- 
ure 2. Varying the compensation magnitude k merely shifts the location 
of the transition region. This sharp transition is similar to that reported 
previously in cases of deletion without compensation in other models 
(Canning and Gardner 1988; Koscielny-Bunde 1990). 
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Figure 3 The critical transition range in the (k,d) plane. The solid curves 
represent performance levels of 75 and 25%, derived from Figure 2. The straight 
lines describe the variations employed in two variable compensations presented 
in Figure 4. 

Figure 3 describes the transition region as a map in the (k,d) plane. 
The performance levels read off Figure 2 delineate the domain over which 
deterioration occurs. Staying close to the upper boundary of this domain 
defines a compensation strategy that enables the system to maintain its 
performance, with a much smaller amount of synaptic strengthening 
than that required by the OPC strategy. In the face of restricted com- 
pensatory resources, such an optimal resource Compensation strategy (ORC) 
could be of vital importance. The essence of such ORC strategy is that k 
is varied as synaptic deletion progresses, in order to retain maximal per- 
formance with minimal resource allocation. In Figure 4, we present the 
performance of two variable k compensation strategies, which we propose 
to view as expressions of (albeit unsuccessful) attempts of maintaining 
an ORC. These examples, indicated in Figure 3, include a “gradually 
decreasing” strategy defined by the variation k = 0.3 + O.M, and the 
“plateau” strategy defined by the variation k = d. The analogs of these 
strategies can be found in clinical observations, as shown in the next sec- 
tion where we review the biological and clinical evidence relevant to our 
model. 
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Figure 4: Performance of a network with gradually decreasing (dotted curve) 
and plateau (dashed curve) compensation strategies. 

3 Clinical Motivation and Implications 

As mentioned in the introduction, while synaptic degeneration occurs, 
the TSA stays constant in some cortical layers at the initial stages of AD. 
Qualitatively similar synaptic changes have been observed during nor- 
mal physiological aging, but with significantly lower deletion (Bertoni- 
Freddari et al. 1988, 1990). Hence a plausible general scenario seems to 
involve some initial period of OPC. As AD progresses, synaptic compen- 
sation no longer succeeds in maintaining the TSA (Bertoni-Freddari et al. 
1990; DeKosky and Scheff 1990). In advanced AD cases, severe compen- 
satory dysfunction has been observed (Buell and Coleman 1979; Flood 
and Coleman 1986; DeKosky and Scheff 1990). 

Young AD patients are likely to have high compensation capacities, 
and therefore can maintain an OPC strategy (k = 1, in Fig. 2) throughout 
the course of their disease. This will then lead to a rapid deterioration 
when the reserve of synaptic connections has been depleted. Indeed, 
young AD patients have been reported to have a rapid clinical progres- 
sion (Heston et al. 1981; Heyman et al. 1983), accompanied by severe 
neuronal and synaptic loss (Hansen et al. 1988). A similar clinical pat- 
tern of rapid memory decline, already manifested with less severe neu- 
roanatomical pathology, was found in very old patients (Huff et al. 1987). 
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We propose that in these old patients, the rapid clinical decline results 
from the lack of compensatory capacities (k = 0, in Fig. 2), possibly of 
the kind observed by Buell and Coleman (1979) and Flood and Coleman 
(1 986). 

Rapid cognitive decline characterizes a minority of AD patients. Most 
patients show a continuous gradual pattern of cognitive decline (Adams 
and Victor 1989; Katzman 1986; Katzman et al.  1988), taking place along 
a broad spun of synaptic deletion (DeKosky and Scheff 1990). As shown 
in Figure 2, this performance decline cannot be accounted for by any 
network employing fixed k compensation. Variable compensation, such 
as that defined by the gradually decreasing strategy, is needed to explain 
the memory decline observed in the majority of AD patients, as shown 
in Figure 4. The clinical state of some AD patients remains stable at 
mild to moderate levels for several years before finally rapidly decreasing 
(Cummings and Benson 1983; Katzman 1985; Botwinick et al. 1986). This 
can be accounted for by a "plateau" strategy whose performance, shown 
in Figure 4, stays at an approximately constant level over a large domain 
of deletion. 

Synaptic deletion and compensatory mechanisms play a major role 
also in the pathogenesis of Parkinson disease (Zigmond ef al. 1990; Calne 
and Zigmond 1991). The significant incidence of AD patients having 
accompanying extrapyramidal parkinsonian signs (Mayeux ef al. 1985; 
Stem et al. 1990) naturally raises the possibility that such patients may 
have a decreased synaptic compensatory potential in general (Horn and 
Ruppin 1992). The cognitive deterioration of these AD patients is faster 
than that of AD patients without extrapyramidal signs. This fits well with 
our proposal that severely deteriorated synaptic compensation capacity 
leads to an accelerated rate of cognitive decline in AD patients. This issue 
is still inconclusive because the I'D-AD combination may be a specific 
syndrome on its own. 

4 Discussion 

In accordance with the findings that neuronal loss in AD is less than 10% 
even at advanced stages (Katzman 19861, and that the synapse to neuron 
ratio is significantly decreased (Davies et al. 1987; Bertoni-Freddari et al. 
1990), we have concentrated on studying the role of the synaptic changes. 
Simulations we have performed incorporating neuronal loss have shown 
similar results to those presented above. We conclude therefore that the 
important factors are indeed the number of synapses retained and the 
compensation strategy employed, whose interplay may lead to various 
patterns of performance decline. 

As any current neural model of human cognitive phenomena, our 
model necessarily involves many simplifications. The TF formal neurons 
are obviously a very gross simplification of biological neurons. As in 
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most Hopfield-like ANNs, the network has no spatially specified archi- 
tecture. For clarity of exposition of our main ideas, we have assumed 
that all compensation strategies are applied uniformly to all retained 
synapses. Our analysis also holds for nonuniform compensation, that is, 
when each remaining synaptic weight is multiplied by a random vari- 
able with mean value c and variance 02, since the same averages of the 
postsynaptic potentials are obtained (see Fig. 1 and the Appendix). Ob- 
viously, if the variance is too large, then no compensation strategy can be 
conceived of any more. Motivated by the biological evidence testifying 
to the sparsity of neural firing (Abeles et al. 19901, we have assumed a 
relatively small fraction p of firing neurons. Simulations performed with 
higher p values (e.g., 0.2) indicate that the results remain qualitatively 
the same. However, it should be noted that as p is increased the approx- 
imation of the network's overlap dynamics presented in the Appendix 
becomes less and less accurate. 

The variable compensation strategies that we have discussed rely on 
the fact that there is some span in the (k, d )  plane over which deteriora- 
tion takes place, as shown in Figure 3. As N is increased, the width of 
the domain over which deterioration occurs keeps getting narrower, thus 
limiting the possibilities of maneuvering between deletion and compen- 
sation. Hence, one may claim that our conclusions, which are based on 
simulations of small scale networks, do not hold for the brain. 

One possible answer to this problem is that there may exist important 
modules in the brain whose function depends on the correct performance 
of just some thousands of neurons (Eccles 1981). For large cortical mod- 
ules, this objection may be resolved by considering the effect of noise 
present in the brain. To account for the latter, any realistic paradigm of 
memory recall should entail the recognition of a spectrum of noisy inputs 
presented to the network. Figure 5 displays the performance of the net- 
work in the (k, d )  plane obtained via simulations with two distinct initial 
overlap values [rn'(O) = 0.8 and m'(0) = 0.951, together with the theoret- 
ical results for the infinite N limit. These results show that even in this 
limit, the corresponding performance curve always retains a finite width 
as long as the network processes input patterns with a broad range of 
initial overlaps. Consequently, the realization of variable compensatory 
strategies may indeed be feasible in the brain. 

The decline in the network's performance resulting from synaptic 
deletion is coupled with a decrease in the network's overall activity. 
This observation gives rise to the possibility that although being defined 
"globally" as "strategies," synaptic compensation may take place via local 
feedback mechanisms. Accordingly, the decreased firing rate of a neuron 
being gradually deprived of its synaptic inputs may enhance the activity 
of cellular processes strengthening its remaining synapses. This scenario 
seems to lead to fixed OPC compensation in a rather straightforward 
manner, but as synaptic deletion may be nonhomogeneous the effects of 
the resulting spatially nonuniform compensatory changes should be fur- 
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Figure 5: The critical transition range in the ( k , d )  plane. The solid curves 
represent performance levels of 75 and 25%, with initial overlap m(0) = 0.8 
(identical to Fig. 2). The dash-dotted curves represent performance levels of 
75 and 25%, for initial overlap n ( 0 )  = 0.95. The dotted curves represent the 
theoretical results that follow from the analysis presented in the Appendix, 
delineating the estimates of when the corresponding basins of attraction cease 
to exist in the infinite N limit. These curves lie close to the 25% lines of the 
simulations. 

ther investigated. The nonvanishing width of the (k, d )  plane transition 
range shown above is essential for the feasibility of an ORC strategy, 
so that local mechanisms can “trace” the decreasing performance and 
“counteract” it before the performance collapses entirely. 

Finally let us comment on possible examinations and applications of 
our model. An ideal experiment would involve a series of consecutive 
measurements of synaptic strength and cognitive abilities. In light of ob- 
vious difficulties concerning such tests, we may have to resort to compar- 
ing biopsies and autopsies, as in DeKosky and Scheff (1990), preferably 
on the same patients. Our model demonstrates the importance of main- 
taining the TSA for the preservation of memory capacity and, therefore, 
mental ability of AD patients. This may suggest that future therapeu- 
tic efforts in AD should include an attempt to mobilize compensatory 
mechanisms facilitating the regeneration of synaptic connectivity. 
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Appendix 

Qualitative features of our model can be derived from a simple analysis 
of the first iteration step. Starting with a state that is close to [' with 
overlap m'(0) we wish to find whether the network flows into the correct 
memory. Using the dynamics defined in the text we find for t = 1 

= 8 [ ~ ( l  - d)([! - p)p(l - p)m'(O) + N - T ]  (A.1) 

where we have separated the signal from the noise term. The latter has 
zero average, (N) = 0, and variance of (N2) = c2(1 - d)p2(1 - ~ ) ~ a s ( O ) ,  
where s(0) = P[S,(O) = 11 = l-p-m1(0)+2pm'(0). In view of the gaussian 
noise term we write the probability in terms of an error-function, 

This results in the following expression for the first iteration: 

1 
m'(1) = ~ ((1 - p)P([!  = l)P[Si(l) = 1"; = I] 

P ( 1  - P )  
- pP([; = O)P[Sj(l) = lI&! = 01) 

= P[Sj(I) = 11[; = 11 - P[Si(I) = 11~; = 01 

1 
1 

(1 - p)m'(O)p(l - p)C(l - d) - T 
ac2(1 - d)s(O)p2(1 - p ) 2  

( -p)m'(O)p(l  - p ) d l  - d) - T 

[ J  
= erf 

- erf [ 
Jac2(1 - d)s(O)p2(1 - p ) 2  

(A.3) 

In the limit m'(0) -+ 1 one finds the maximal value of equation A.3 

(A.4) 

For c = 1 and d = 0 this coincides with the choice we have made. More- 
over, as long as 

to be obtained for the following choice of the optimal threshold: 

T' = ~ ( l  - d)p(l - p)( l  - 2p)/2 

1 
I - d  

c = -  (A.5) 

which was defined as the OPC strategy, T remains optimal. This fact was 
expressed graphically in Figure 1. The two gaussian distributions in this 
figure correspond to the two terms in equation A.3. 
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In the simulations we have looked for the cases in which the system 
converged onto the correct fixed points. This involves iterating the equa- 
tions of motion, which is in general different from iterating expressions 
like equation A.3 because of possible correlations between the different 
time steps. Nonetheless we may think of the iteration of equation A.3 
(replacing the labeling 0 and 1 by n - 1 and n )  as a rough estimate for the 
strongly diluted infinite system (Evans 1989). Starting out with differ- 
ent values for m’(0) we find the dotted curves in Figure 5, which show 
the borderlines between convergence and nonconvergence to the correct 
memory. 

An alternative to this derivation is to use the replica symmetry as- 
sumption. We have carried out such an analysis (Herrmann et al. 1992). 
The results are similar, though not identical, to the ones reported above. 
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