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Abstract 

We present a tree-structured architecture 
for supervised learning. The statistical 
model underlying the architecture is a hi- 
erarchical mixture model in which both 
the mixture coefficients and the mixture 
components are generalized linear models 
(GLIM’s). Learning is treated as a max- 
imum likelihood problem; in particular, 
we present an Expectation-Maximization 
(EM) algorithm for adjusting the parame- 
ters of the architecture. We also develop an 
on-line learning algorithm in which the pa- 
rameters are updated incrementally. Com- 
parative simulation results are presented in 
the robot dynamics domain. 

1 INTRODUCTION 

In the statistical literature and in the machine learn- 
ing literature, divide-and-conquer algorithms have 
become increasingly popular. The CART algorithm 
[l], the MARS algorithm [5], and the ID3 algorithm 
[12] are well-known examples. These algorithms 
fit surfaces to data by explicitly dividing the input 
space into a nested sequence of regions, and by fit- 
ting simple surfaces (e.g., constant functions) within 
these regions. The advantages of these algorithms 
include the interpretability of their solutions and the 
speed of the traiining process. 

In this paper wte present a neural network archi- 
tecture that is a close cousin to  architectures such 
as CART and MARS. As in our earlier work [6,7], 
we formulate the learning problem for this architec- 
ture as a maximum likelihood problem. In the cur- 
rent paper we utiilize the Expectation-Maximization 
(EM) framework to  derive the learning algorithm. 

2 HIERARCHICAL MIXTURES 
OF EXPIERTS 

The algorithms that we discuss in this paper are 
supervised learning algorithms. We explicitly ad- 
dress the case of regression, in which the input vec- 
tors are elements of Sm and the output vectors are 
elements of Xn. Our model also handles classifi- 
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Figure 1: A two-level hierarchical mixture of ex- 
perts. 

cation problems and counting problems in which 
the outputs are integer-valued. The data are as- 
sumed to form a countable set of paired observations 
X = {(dt), y‘‘))}. In the case of the batch algorithm 
discussed below, this set is assumed to  be finite; in 
the case of the on-line algorithm, the set may be 
infinite. 

We propose to  solve nonlinear supervised learning 
problems by dividing the input space into a nested 
set of regions and fitting simple surfaces to the data 
that fall in these regions. The regions have “soft” 
boundaries, meaning that data points may lie simul- 
taneously in multiple regions. The boundaries be- 
tween regions are themselves simple parameterized 
surfaces that are adjusted by the learning algorithm. 

The hierarchical mixture-of-experts (HME) archi- 
tecture is shown in Figure l.’ The architecture is 
a tree in which the gating networks sit a t  the non- 
terminals of the tree. These networks receive the 
vector x as input and produce scalar outputs that 

‘To simplify the presentation, we restrict ourselves to 
a two-level hierarchy throughout the paper. All of the 
algorithms that we describe, however, generalize readily 
to hierarchies of arbitrary depth. See [9] for a recursive 
formalism that handles arbitrary trees. 
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are a partition of unity at each point in the input 
spzce. The experi networks sit at the leaves of the 
tree. Each expert produces an output vector pij 
for each input vector. These output vectors proceed 
up the tree, being multiplied by the gating network 
outputs and summed at the nonterminals. 

-411 of the expert networks in the tree are linear with 
a single output nonlinearity. We will refer to such a 
network as “generalized linear,” borrowing the ter- 
minology from statistics [ll]. Expert network (i, j )  
produces its output pij as a generalized linear func- 
tion of the input x: 

where Uij is a weight matrix and f is a fixed continu- 
ous nonlinearity. The vector x is assumed to include 
a fixed component of one to allow for an intercept 
term. 

For regression problems, f(.) is the identity function 
(i.e., the experts are linear). For binary classification 
problems, f(.) is generally taken to be the logistic 
function, in which case the expert outputs are inter- 
preted as the log odds of “success” under a Bernoulli 
probability model. Other models (e.g., multiway 
classification, counting, rate estimation and survival 
estimation) are handled readily by making other 
choices for f(.). These models are smoothed piece- 
wise analogs of the corresponding generalized linear 
models (GLIM’s; cf. [ll]). 

The gating networks are also generalized linear. At 
the top level, define linear predictors & as follows: 

where vi is a weight vector. Then the ith output of 
the top-level gating network is the “softmax” func- 
tion of the [2,11]: 

Pij = f(uijx), (1) 

(2) 
T E‘i = vj x, 

(3) 

Note that the gi are positive and sum to one for each 
x. The gating networks at the lower level are defined 
similarly, yielding outputs gjl i  that are obtained by 
taking the softmax function of linear predictors &j  = 
V T X  

The output vector at each nonterminal of the tree is 
the weighted output of the experts below that non- 
terminal. That is, the output at the ith nonterminal 
in the second layer of the two-level tree is: 

$3 . 

PI = Cgjlipij 

P = C S i P i .  

i 
and the output at the top level of the tree is: 

i 

Note that both the g’s and the p ’ s  depend on the 
input x, thus the total output is a nonlinear function 
of the input. 

2.1 A PROBABILITY MODEL 

The hierarchy can be given a probabilistic interpre- 
tation. We suppose that the mechanism by which 
data are generated by the environment involves a 
nested sequence of decisions that terminates in a re- 
gressive process that maps x to y.  The decisions 
are modeled as multinomial random variables. That 
is, for each x, we interpret the values gi(x,vf) as 
the multinomial probabilities associated with the 
first decision and the gjli(x, vz”) as the (conditional) 
multinomial Probabilities associated with the second 
decision. We use a statistical model to model these 
probabilities; in particular, our choice of parameter- 
ization (cf. Eqs. 2 and 3) corresponds to  a log-lanear 
probability model (see [$]I. A log-linear model is a 
special case of a GLIM that is commonly used for 
“soft” multiway classification [ 113. Under the log- 
linear model, we interpret the gating networks as 
modeling the input-dependent, multinomial proba- 
bilities of making particular nested sequences of de- 
cisions. 

Once a particular sequence of decisions has been 
made, output y is assumed to be generated ac- 
cording to the following generalized linear statistical 
model. First, a linear predictor vV is formed: 

722 = 
where the superscript refers to the “true” values of 
the parameters. The expected value of y is obtained 
by passing the linear predictor through the lank func- 
taon f: 

The output y is then chosen from a probability den- 
sity P, with mean py2 and “dispersion” parameter 
&. We denote the density of y as: 

0 

d3 = f(dj) .  

P(Y Ix, fe3 ), 
where the parameter vector 0i9i includes the weights 
U$ and the dispersion parameter + f J .  We assume 
the density P to be a member of the exponen- 
tial family of densities [ l l ] .  The interpretation of 
the dispersion parameter depends on the particular 
choice of density. For example, in the case of the n- 
dimensional Gaussian, the dispersion parameter is 
the covariance matrix .’ 
Given these assumptions, the total probability of 
generating y from x is the mixture of the proba- 
bilities of generating y from each of the component 
densities, where the mixture components are multi- 
nomial probabilities: 

i 1 

(4) 
Not all exponential family densities have a dispersion 

parameter; in particular, the Bernoulli density has no 
dispersion parameter. 
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Note that 8’ includes the expert network parame- 
ters 8ij0 as well as the gating network parameters vp 
and v!’. Note also that we can utilize Eq. 4 without 
the superscripts to  refer to  the probability model de- 
fined by a particular HME architecture, irrespective 
of any reference to a “true” model. 

2.2 POSTERIOR PROBABILITIES 

In developing the learning algorithms to  be pre- 
sented in the remainder of the paper, it will prove 
useful to  define posterior probabilities associated 
with the nodes of the tree. The terms “posterior” 
and “prior” have meaning in this context during the 
training of the system. We refer to  the probabili- 
ties g 2  and g j l i  as p r i o r  probabilities, because they 
are computed basad oniy on the input x, without 
knowledge of the corresponding target output y .  A 
p o s t e r i o r  probability is defined once both the input 
and the target output are known. Using Bayes’ rule, 
we define the posterior probabilities a t  the nodes of 
the tree as follows 

and 

where we have drolpped the dependence on the input 
and the parameters to  simplify the notation. 

We will also find it useful to  define the joint pos- 
terior probability hij, the product of hj and hjli. 
This quantity is the probability that expert network 
(i,j) can be considered to  have generated the data, 
based on knowledge of both the input and the out- 
put. Once again, we emphasize that all of these 
quantities are conditional on the input x. 

In deeper trees, the posterior probability associated 
with an expert network is simply the product of 
the conditional posterior probabilities along the path 
from the root of the tree to  that expert. 

2.3 THE L1KE:LIHOOD 

We treat the problem of learning in the HME 
architecture as a maximum likelihood estimation 
problem. The log likelihood of a data set X = 
{ ( ~ ( ~ ) , y ( ~ ) ) } r  is clbtained by taking the log of the 
product of N densities of the form of Eq. 4, which 
yields the following log likelihood: 

/ (e ;  X I  = In g i t )  gji iPi j (y(f)) .  (7) 

We wish to  maximize this function with respect to  
the parameters 8 .  

t i  j 

2.4 THE EM ALGORITHM 

In the following sections we develop a learning al- 
gorithm for the HME architecture based on the 
Expectation-Maximization (EM) framework [4]. We 
derive an EM algorithm for the architecture that 
consists of the iterative solution of a coupled set of 
iteratively-reweighted least-squares problems. 

EM is an iterative approach to  maximum likelihood 
estimation. Each iteration of an EM algorithm is 
composed of two steps: an Estimation (E) step and 
a Maximization (M) step. The M step involves the 
maximization of a likelihood function that is rede- 
fined in each iteration by the E step. An application 
of EM generally begins with the observation that 
the optimization of the likelihood function /(e; X )  
would be simplified if only a set of additional vari- 
ables, called “missing” or “hidden” variables, were 
known. In this context, we refer to  the observ- 
able data X as the “incomplete data” and posit a 
“complete data” set y that includes the missing 
variables 2. We specify a probability model that 
links the fictive missing variables to the actual data: 
P(y , z lx ,B) .  The logarithm of the density P de- 
fines the “complete-data likelihood,” lc(f3; y). The 
original likelihood, / ( e ;  X ) ,  is referred to  in this con- 
text as the “incomplete-data likelihood.” It is the 
relationship between these two likelihood functions 
that motivates the EM algorithm. Note that the 
complete-data likelihood is a random variable, be- 
cause the missing variables 2 are in fact unknown. 
An EM algorithm first finds the expected value 
of the complete-data likelihood, given the observed 
data and the current model. This is the E step: 

Q(6 f 3 ( P ) )  = E[L(8;  Y)IXl, 

where dP) is the value of the parameters a t  the pth 
iteration and the expectation is taken with respect 
to dP). This step yields a deterministic function Q .  
The M step maximizes this function with respect to 
8 to  find the new parameter estimates 

dP+’) = arg maxQ(8, dP)) 

The E step is then repeated to yield an improved 
estimate of the complete likelihood and the process 
iterates. 

An iterative step of EM chooses a parameter value 
that increases the value of Q, the expectation of the 
complete likelihood. What is the effect of such a 
step on the incomplete likelihood? Dempster, et al. 
proved that an increase in Q implies an increase in 
the incomplete likelihood: 

8 

with equality obtaining only at  the stationary points 
of I .  Thus the likelihood 6 increases monotonically 
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along the sequence of parameter estimates generated 
by an EM algorithm. In practice this implies con- 
vergence to  a local maximum. 

2.5 APPLYING EM TO THE HME 
ARCHITECTURE 

To develop an EM algorithm for the HME architec- 
ture, we must define appropriate "missing data" so 
as to simplify the likelihood function. We define in- 
dicator variables zi j  such that one and only one of 
the z;j is one for any given data point. These indi- 
cator variables have the interpretation as labels that 
specify which expert in the probability model gen- 
erated the data point. This choice of missing data 
yields the following complete-data likelihood: 

L ( 8 ; X )  = ~ ~ ~ z $ ) l n { g j  ( t )  gjliPij(Y('))}. ( 2 )  (8) 
t i j  

Note the relationship of the complete-data likelihood 
in Eq. 8 to  the incomplete-data likelihood in Eq. 7. 
The use of the indicator variables z i j  has allowed the 
logarithm to be brought inside the summation signs, 
substantially simplifying the maximization problem. 
We now define the E step of the EM algorithm by 
taking the expectation of the complete-data likeli- 
hood: 

and 

Note that each of these maximization problems 
are themselves maximum likelihood problems, given 
that Pjj, gj and g j l i  are probability densities. More- 
over, given our parameterization of these densi- 
ties, the log likelihoods that we have obtained are 
weighted log likelihoods for generalized linear mod- 
els (GLIM's). An efficient algorithm known as iter- 
atively reweighted least-squares (IRLS) is available 
to solve the maximum likelihood problem for such 
models [ll]. (See [8] for a discussion of IRLS.) 

In summary, the EM algorithm that we have ob- 
tained involves a calculation of posterior probabili- 
ties in the outer loop (the E step), and the solution 
of a set of weighted IRLS problems in the inner loop 
(the M step). We summarize the algorithm as fol- 
lows: 

HME Algorzthm 1 

1. For each data pair (x(~) ,  y(')), compute the pos- 
terior probabilities hi(') and h:;! using the cur- 
rent values of the parameters. 

2. For each expert ( i , j ) ,  solve an IRLS problem 
with observations { ( ~ ( ~ 1 ,  y('))}fJ and observa- 
tion weights { h!:)}?. 

3. For each top-level gating network, solve an 
IRLS problem with observations { (~( '1 ,  hf ) )}? .  

The M step requires maximizing Q(0 ,  d p ) )  with re- 
spect to the expert network parameters and the gat- 
ing network parameters. Examining Eq. 9, we see 
that the expert network parameters influence the 
Q function only through the terms h!t) In P i j ( ~ ( ~ ) ) ,  
and the gating network parameters influence the 
Q function only through the terms hi:) In Si t )  and 
hi:) In 9;;;. Thus the M step involves the following 
separate maximizations: 

$? 

and observation weights { h t ) }? .  
5. Iterate using the updated parameter values. 

[8] also presents an approximation to  this algorithm 
in which the gating networks are fit by least-squares 
rather than maximum likelihood. In this case, the 
IRLS inner loop reduces to  a weighted least-squares 
problem that can be solved without iteration. 

2.5.1 Simulation Results 

We tested the algorithm on a nonlinear system iden- 
tification problem. The data were obtained from 
a simulation of a four-joint robot arm moving in 
three-dimensional space. The network must learn 
the forward dynamics of the arm; a mapping from 
twelve coupled input variables to  four output vari- 
ables. This mapping is rather smooth and we expect 
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I Architecture I Relative Error I # Epochs 

CART .17 NA 
CART (obliqule) .13 NA 
MARS .16 NA 

Table 1: Average Values of Relative Error and Num- 
ber of Epochs Required for Convergence for the 
Batch Algorithms. 

the error for a global fitting algorithm like backprop- 
agation to be small; our main interest is in the train- 
ing time. 

We generated 15 000 data points for training and 
5,000 points for testing. For each epoch (i.e., each 
pass through the training set), we computed the rela- 
tive error on the best set. Relative error is computed 
as a ratio between the mean squared error and the 
mean squared error that would be obtained if the 
learner were to output the mean value of the out- 
puts for all data points. 

We compared the performance of a binary hierarchy 
to that of the best linear approximation, a back- 
propagation network, the CART algorithm and the 
MARS algorithm. The hierarchy was a four-level hi- 
erarchy with 16 expert networks and 15 gating net- 
works. Each expert network had 4 output units and 
each gating network had 1 output unit. The back- 
propagation network had 60 hidden units, which 
yields approximately the same number of parame- 
ters in the network as in the hierarchy. The MARS 
algorithm was run with a maximum of 16 basis func- 
tions, based on the fact that each such function cor- 
responds roughly to a single expert in the HME ar- 
chitecture. 

Table 1 reports the average values of minimum rela- 
tive error and the convergence times for all architec- 
tures. As can be seen in the Table, the backpropa- 
gation algorithm required 5,500 passes through the 
data to converge to a relative error of 0.09. The 
HME algorithm converged to a similar relative er- 
ror in only 35 passes through the data. CART and 
MARS required similar CPU time as compared to 
the HME algorithm, but produced less accurate fits. 
(For further details on the simulation, see [SI). 
As shown in Figure 2, the HME architecture lends 
it,self well to graphical investigation. This figure dis- 
plays the time sequence of the distributions of poste- 
rior probabilities across the training set at each node 
of the tree. At Elpoch 0, before any learning has 
taken place, most of the posterior probabilities at 
each node are approximately 0.5 across the training 
set. As the training proceeds, the histograms flatten 

Epoch 19 Epoch 29 

Figure 2: A sequence of histogram trees for the HME 
architecture. Each histogram displays the distribu- 
tion of posterior probabilities across the training set 
at each node in the tree. 

out, eventually approaching bimodal distributions in 
which the posterior probabilities are either one or 
zero for most of the training patterns. This evolu- 
tion is indicative of increasingly sharp splits being 
fit by the gating networks. Note that there is a ten- 
dency for the splits to be formed more rapidly at 
higher levels in the tree than at lower levels. 

2.6 AN ON-LINE ALGORITHM 

Jordan and Jacobs [8] derive an on-line algorithm 
for the HME architecture using techniques from re- 
cursive estimation theory [lo]. 

The on-line update rule for the parameters of the 
expert networks is given by the following recursive 
equation: 

U!?+l) a3 = U:;) + h;f)h;;!(y(t) - pj;))X(t)TR;;), (10) 

where Rij is the inverse covariance matrix for ex- 
pert network ( i , j ) .  This matrix is updated via the 
equation: 

where X is a decay parameter. 

Similar update rules are obtained for the parameters 
of the gating networks. See [8] for further details. 

2.6.1 Simulation Results 

The on-line algorithm was tested on the robot dy- 
namics problem described in the previous section. 
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backprop (on-line) 
HME (on-line) 

.08 63 

.12 2 

Table 2: Average values of relative error and number 
of epochs required for convergence for the on-line 
algorithms. 

The performance of the algorithm was compared to  
an on-line backpropagation network. 

The minimum values of relative error and the con- 
vergence times for both architectures are provided 
in Table 2. 

The on-line algorithm for backpropagation is signifi- 
cantly faster than the corresponding batch algorithm 
(cf. Table 1). This is also true of the on-line HME 
algorithm, which converges in two passes through 
the data. 

3 CONCLUSIONS 

We have presented a novel tree-structured architec- 
ture for supervised learning. This architecture is 
based on a statistical model, and makes contact with 
a number of branches of statistical theory, includ- 
ing mixture model estimation and generalized linear 
model theory. The learning algorithm for the archi- 
tecture is an EM algorithm. 

The major advantage of the HME approach over 
related decision tree and multivariate spline algo- 
rithms such as CART, MARS and ID3 is the use of 
a statistical framework. The statistical framework 
motivates some of the variance-decreasing features of 
the HME approach, such as the use of “soft” bsund- 
aries. The statistical approach also provides a uni- 
fied framework for handling a variety of data types, 
including binary variables, ordered and unordered 
categorical variables, and real variables, both at  the 
input and the output. The use of maximum like- 
lihood allows standard tools from statistical theory 
to  be brought to bear in developing inference pro- 
cedures, fitting procedures and measures of uncer- 
tainty for the architecture. It also opens the door to 
the Bayesian approaches that have been found to  be 
useful in the context of unsupervised mixture model 
estimation [3]. 
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