
Proceedings o f 1993 International Joint Conference on Neural Networks

Hierarchical mixtures of experts and the EM algorithm

Michael I. Jordan
Department of Brain and Cognitive Sciences

MIT
Cambridge, MA 02139

Abstract

We present a tree-structured architecture
for supervised learning. The statistical
model underlying the architecture is a hi-
erarchical mixture model in which both
the mixture coefficients and the mixture
components are generalized linear models
(GLIM’s). Learning is treated as a max-
imum likelihood problem; in particular,
we present an Expectation-Maximization
(EM) algorithm for adjusting the parame-
ters of the architecture. We also develop an
on-line learning algorithm in which the pa-
rameters are updated incrementally. Com-
parative simulation results are presented in
the robot dynamics domain.

1 INTRODUCTION

In the statistical literature and in the machine learn-
ing literature, divide-and-conquer algorithms have
become increasingly popular. The CART algorithm
[l], the MARS algorithm [5], and the ID3 algorithm
[12] are well-known examples. These algorithms
fit surfaces to data by explicitly dividing the input
space into a nested sequence of regions, and by fit-
ting simple surfaces (e.g., constant functions) within
these regions. The advantages of these algorithms
include the interpretability of their solutions and the
speed of the traiining process.

In this paper wte present a neural network archi-
tecture that is a close cousin to architectures such
as CART and MARS. As in our earlier work [6,7],
we formulate the learning problem for this architec-
ture as a maximum likelihood problem. In the cur-
rent paper we utiilize the Expectation-Maximization
(EM) framework to derive the learning algorithm.

2 HIERARCHICAL MIXTURES
OF EXPIERTS

The algorithms that we discuss in this paper are
supervised learning algorithms. We explicitly ad-
dress the case of regression, in which the input vec-
tors are elements of Sm and the output vectors are
elements of Xn. Our model also handles classifi-

Robert A. Jacobs
Department of Psychology

University of Rochester
Rochester, NY 14627

\

Gatng

X

Expert Expert
Network Network

T T
1 .

I x I x

Figure 1: A two-level hierarchical mixture of ex-
perts.

cation problems and counting problems in which
the outputs are integer-valued. The data are as-
sumed to form a countable set of paired observations
X = {(dt), y‘‘))}. In the case of the batch algorithm
discussed below, this set is assumed to be finite; in
the case of the on-line algorithm, the set may be
infinite.

We propose to solve nonlinear supervised learning
problems by dividing the input space into a nested
set of regions and fitting simple surfaces to the data
that fall in these regions. The regions have “soft”
boundaries, meaning that data points may lie simul-
taneously in multiple regions. The boundaries be-
tween regions are themselves simple parameterized
surfaces that are adjusted by the learning algorithm.

The hierarchical mixture-of-experts (HME) archi-
tecture is shown in Figure l.’ The architecture is
a tree in which the gating networks sit a t the non-
terminals of the tree. These networks receive the
vector x as input and produce scalar outputs that

‘To simplify the presentation, we restrict ourselves to
a two-level hierarchy throughout the paper. All of the
algorithms that we describe, however, generalize readily
to hierarchies of arbitrary depth. See [9] for a recursive
formalism that handles arbitrary trees.

1339

are a partition of unity at each point in the input
spzce. The experi networks sit at the leaves of the
tree. Each expert produces an output vector pij
for each input vector. These output vectors proceed
up the tree, being multiplied by the gating network
outputs and summed at the nonterminals.

-411 of the expert networks in the tree are linear with
a single output nonlinearity. We will refer to such a
network as “generalized linear,” borrowing the ter-
minology from statistics [ll]. Expert network (i, j)
produces its output pij as a generalized linear func-
tion of the input x:

where Uij is a weight matrix and f is a fixed continu-
ous nonlinearity. The vector x is assumed to include
a fixed component of one to allow for an intercept
term.

For regression problems, f(.) is the identity function
(i.e., the experts are linear). For binary classification
problems, f(.) is generally taken to be the logistic
function, in which case the expert outputs are inter-
preted as the log odds of “success” under a Bernoulli
probability model. Other models (e.g., multiway
classification, counting, rate estimation and survival
estimation) are handled readily by making other
choices for f(.). These models are smoothed piece-
wise analogs of the corresponding generalized linear
models (GLIM’s; cf. [ll]).

The gating networks are also generalized linear. At
the top level, define linear predictors & as follows:

where vi is a weight vector. Then the ith output of
the top-level gating network is the “softmax” func-
tion of the [2,11]:

Pij = f(uijx), (1)

(2)
T E‘i = vj x,

(3)

Note that the gi are positive and sum to one for each
x. The gating networks at the lower level are defined
similarly, yielding outputs gjl i that are obtained by
taking the softmax function of linear predictors &j =
V T X

The output vector at each nonterminal of the tree is
the weighted output of the experts below that non-
terminal. That is, the output at the ith nonterminal
in the second layer of the two-level tree is:

$3 .

PI = Cgjlipij

P = C S i P i .

i
and the output at the top level of the tree is:

i

Note that both the g’s and the p ’ s depend on the
input x, thus the total output is a nonlinear function
of the input.

2.1 A PROBABILITY MODEL

The hierarchy can be given a probabilistic interpre-
tation. We suppose that the mechanism by which
data are generated by the environment involves a
nested sequence of decisions that terminates in a re-
gressive process that maps x to y. The decisions
are modeled as multinomial random variables. That
is, for each x, we interpret the values gi(x,vf) as
the multinomial probabilities associated with the
first decision and the gjli(x, vz”) as the (conditional)
multinomial Probabilities associated with the second
decision. We use a statistical model to model these
probabilities; in particular, our choice of parameter-
ization (cf. Eqs. 2 and 3) corresponds to a log-lanear
probability model (see [$]I. A log-linear model is a
special case of a GLIM that is commonly used for
“soft” multiway classification [113. Under the log-
linear model, we interpret the gating networks as
modeling the input-dependent, multinomial proba-
bilities of making particular nested sequences of de-
cisions.

Once a particular sequence of decisions has been
made, output y is assumed to be generated ac-
cording to the following generalized linear statistical
model. First, a linear predictor vV is formed:

722 =
where the superscript refers to the “true” values of
the parameters. The expected value of y is obtained
by passing the linear predictor through the lank func-
taon f:

The output y is then chosen from a probability den-
sity P, with mean py2 and “dispersion” parameter
&. We denote the density of y as:

0

d3 = f(dj) .

P(Y Ix, fe3),
where the parameter vector 0i9i includes the weights
U$ and the dispersion parameter + f J . We assume
the density P to be a member of the exponen-
tial family of densities [l l] . The interpretation of
the dispersion parameter depends on the particular
choice of density. For example, in the case of the n-
dimensional Gaussian, the dispersion parameter is
the covariance matrix .’
Given these assumptions, the total probability of
generating y from x is the mixture of the proba-
bilities of generating y from each of the component
densities, where the mixture components are multi-
nomial probabilities:

i 1

(4)
Not all exponential family densities have a dispersion

parameter; in particular, the Bernoulli density has no
dispersion parameter.

1340

Note that 8’ includes the expert network parame-
ters 8ij0 as well as the gating network parameters vp
and v!’. Note also that we can utilize Eq. 4 without
the superscripts to refer to the probability model de-
fined by a particular HME architecture, irrespective
of any reference to a “true” model.

2.2 POSTERIOR PROBABILITIES

In developing the learning algorithms to be pre-
sented in the remainder of the paper, it will prove
useful to define posterior probabilities associated
with the nodes of the tree. The terms “posterior”
and “prior” have meaning in this context during the
training of the system. We refer to the probabili-
ties g 2 and g j l i as p r i o r probabilities, because they
are computed basad oniy on the input x, without
knowledge of the corresponding target output y . A
p o s t e r i o r probability is defined once both the input
and the target output are known. Using Bayes’ rule,
we define the posterior probabilities a t the nodes of
the tree as follows

and

where we have drolpped the dependence on the input
and the parameters to simplify the notation.

We will also find it useful to define the joint pos-
terior probability hij, the product of hj and hjli.
This quantity is the probability that expert network
(i,j) can be considered to have generated the data,
based on knowledge of both the input and the out-
put. Once again, we emphasize that all of these
quantities are conditional on the input x.

In deeper trees, the posterior probability associated
with an expert network is simply the product of
the conditional posterior probabilities along the path
from the root of the tree to that expert.

2.3 THE L1KE:LIHOOD

We treat the problem of learning in the HME
architecture as a maximum likelihood estimation
problem. The log likelihood of a data set X =
{ (~ (~) , y (~)) } r is clbtained by taking the log of the
product of N densities of the form of Eq. 4, which
yields the following log likelihood:

/ (e ; X I = In g i t) gji iPi j (y(f)) . (7)

We wish to maximize this function with respect to
the parameters 8 .

t i j

2.4 THE EM ALGORITHM

In the following sections we develop a learning al-
gorithm for the HME architecture based on the
Expectation-Maximization (EM) framework [4]. We
derive an EM algorithm for the architecture that
consists of the iterative solution of a coupled set of
iteratively-reweighted least-squares problems.

EM is an iterative approach to maximum likelihood
estimation. Each iteration of an EM algorithm is
composed of two steps: an Estimation (E) step and
a Maximization (M) step. The M step involves the
maximization of a likelihood function that is rede-
fined in each iteration by the E step. An application
of EM generally begins with the observation that
the optimization of the likelihood function /(e; X)
would be simplified if only a set of additional vari-
ables, called “missing” or “hidden” variables, were
known. In this context, we refer to the observ-
able data X as the “incomplete data” and posit a
“complete data” set y that includes the missing
variables 2. We specify a probability model that
links the fictive missing variables to the actual data:
P(y , z lx ,B) . The logarithm of the density P de-
fines the “complete-data likelihood,” lc(f3; y). The
original likelihood, / (e ; X) , is referred to in this con-
text as the “incomplete-data likelihood.” It is the
relationship between these two likelihood functions
that motivates the EM algorithm. Note that the
complete-data likelihood is a random variable, be-
cause the missing variables 2 are in fact unknown.
An EM algorithm first finds the expected value
of the complete-data likelihood, given the observed
data and the current model. This is the E step:

Q(6 f 3 (P)) = E[L(8; Y)IXl,

where dP) is the value of the parameters a t the pth
iteration and the expectation is taken with respect
to dP). This step yields a deterministic function Q .
The M step maximizes this function with respect to
8 to find the new parameter estimates

dP+’) = arg maxQ(8, dP))

The E step is then repeated to yield an improved
estimate of the complete likelihood and the process
iterates.

An iterative step of EM chooses a parameter value
that increases the value of Q, the expectation of the
complete likelihood. What is the effect of such a
step on the incomplete likelihood? Dempster, et al.
proved that an increase in Q implies an increase in
the incomplete likelihood:

8

with equality obtaining only at the stationary points
of I . Thus the likelihood 6 increases monotonically

1341

along the sequence of parameter estimates generated
by an EM algorithm. In practice this implies con-
vergence to a local maximum.

2.5 APPLYING EM TO THE HME
ARCHITECTURE

To develop an EM algorithm for the HME architec-
ture, we must define appropriate "missing data" so
as to simplify the likelihood function. We define in-
dicator variables zi j such that one and only one of
the z;j is one for any given data point. These indi-
cator variables have the interpretation as labels that
specify which expert in the probability model gen-
erated the data point. This choice of missing data
yields the following complete-data likelihood:

L (8 ; X) = ~ ~ ~ z $) l n { g j (t) gjliPij(Y('))}. (2) (8)
t i j

Note the relationship of the complete-data likelihood
in Eq. 8 to the incomplete-data likelihood in Eq. 7.
The use of the indicator variables z i j has allowed the
logarithm to be brought inside the summation signs,
substantially simplifying the maximization problem.
We now define the E step of the EM algorithm by
taking the expectation of the complete-data likeli-
hood:

and

Note that each of these maximization problems
are themselves maximum likelihood problems, given
that Pjj, gj and g j l i are probability densities. More-
over, given our parameterization of these densi-
ties, the log likelihoods that we have obtained are
weighted log likelihoods for generalized linear mod-
els (GLIM's). An efficient algorithm known as iter-
atively reweighted least-squares (IRLS) is available
to solve the maximum likelihood problem for such
models [ll]. (See [8] for a discussion of IRLS.)

In summary, the EM algorithm that we have ob-
tained involves a calculation of posterior probabili-
ties in the outer loop (the E step), and the solution
of a set of weighted IRLS problems in the inner loop
(the M step). We summarize the algorithm as fol-
lows:

HME Algorzthm 1

1. For each data pair (x(~) , y(')), compute the pos-
terior probabilities hi(') and h:;! using the cur-
rent values of the parameters.

2. For each expert (i , j) , solve an IRLS problem
with observations { (~ (~ 1 , y('))}fJ and observa-
tion weights { h!:)}?.

3. For each top-level gating network, solve an
IRLS problem with observations { (~('1 , hf))}? .

The M step requires maximizing Q(0 , d p)) with re-
spect to the expert network parameters and the gat-
ing network parameters. Examining Eq. 9, we see
that the expert network parameters influence the
Q function only through the terms h!t) In P i j (~ (~)) ,
and the gating network parameters influence the
Q function only through the terms hi:) In Si t) and
hi:) In 9;;;. Thus the M step involves the following
separate maximizations:

$?

and observation weights { h t) }? .
5. Iterate using the updated parameter values.

[8] also presents an approximation to this algorithm
in which the gating networks are fit by least-squares
rather than maximum likelihood. In this case, the
IRLS inner loop reduces to a weighted least-squares
problem that can be solved without iteration.

2.5.1 Simulation Results

We tested the algorithm on a nonlinear system iden-
tification problem. The data were obtained from
a simulation of a four-joint robot arm moving in
three-dimensional space. The network must learn
the forward dynamics of the arm; a mapping from
twelve coupled input variables to four output vari-
ables. This mapping is rather smooth and we expect

1342

I Architecture I Relative Error I # Epochs

CART .17 NA
CART (obliqule) .13 NA
MARS .16 NA

Table 1: Average Values of Relative Error and Num-
ber of Epochs Required for Convergence for the
Batch Algorithms.

the error for a global fitting algorithm like backprop-
agation to be small; our main interest is in the train-
ing time.

We generated 15 000 data points for training and
5,000 points for testing. For each epoch (i.e., each
pass through the training set), we computed the rela-
tive error on the best set. Relative error is computed
as a ratio between the mean squared error and the
mean squared error that would be obtained if the
learner were to output the mean value of the out-
puts for all data points.

We compared the performance of a binary hierarchy
to that of the best linear approximation, a back-
propagation network, the CART algorithm and the
MARS algorithm. The hierarchy was a four-level hi-
erarchy with 16 expert networks and 15 gating net-
works. Each expert network had 4 output units and
each gating network had 1 output unit. The back-
propagation network had 60 hidden units, which
yields approximately the same number of parame-
ters in the network as in the hierarchy. The MARS
algorithm was run with a maximum of 16 basis func-
tions, based on the fact that each such function cor-
responds roughly to a single expert in the HME ar-
chitecture.

Table 1 reports the average values of minimum rela-
tive error and the convergence times for all architec-
tures. As can be seen in the Table, the backpropa-
gation algorithm required 5,500 passes through the
data to converge to a relative error of 0.09. The
HME algorithm converged to a similar relative er-
ror in only 35 passes through the data. CART and
MARS required similar CPU time as compared to
the HME algorithm, but produced less accurate fits.
(For further details on the simulation, see [SI).
As shown in Figure 2, the HME architecture lends
it,self well to graphical investigation. This figure dis-
plays the time sequence of the distributions of poste-
rior probabilities across the training set at each node
of the tree. At Elpoch 0, before any learning has
taken place, most of the posterior probabilities at
each node are approximately 0.5 across the training
set. As the training proceeds, the histograms flatten

Epoch 19 Epoch 29

Figure 2: A sequence of histogram trees for the HME
architecture. Each histogram displays the distribu-
tion of posterior probabilities across the training set
at each node in the tree.

out, eventually approaching bimodal distributions in
which the posterior probabilities are either one or
zero for most of the training patterns. This evolu-
tion is indicative of increasingly sharp splits being
fit by the gating networks. Note that there is a ten-
dency for the splits to be formed more rapidly at
higher levels in the tree than at lower levels.

2.6 AN ON-LINE ALGORITHM

Jordan and Jacobs [8] derive an on-line algorithm
for the HME architecture using techniques from re-
cursive estimation theory [lo].

The on-line update rule for the parameters of the
expert networks is given by the following recursive
equation:

U!?+l) a3 = U:;) + h;f)h;;!(y(t) - pj;))X(t)TR;;), (10)

where Rij is the inverse covariance matrix for ex-
pert network (i , j) . This matrix is updated via the
equation:

where X is a decay parameter.

Similar update rules are obtained for the parameters
of the gating networks. See [8] for further details.

2.6.1 Simulation Results

The on-line algorithm was tested on the robot dy-
namics problem described in the previous section.

1343

backprop (on-line)
HME (on-line)

.08 63

.12 2

Table 2: Average values of relative error and number
of epochs required for convergence for the on-line
algorithms.

The performance of the algorithm was compared to
an on-line backpropagation network.

The minimum values of relative error and the con-
vergence times for both architectures are provided
in Table 2.

The on-line algorithm for backpropagation is signifi-
cantly faster than the corresponding batch algorithm
(cf. Table 1). This is also true of the on-line HME
algorithm, which converges in two passes through
the data.

3 CONCLUSIONS

We have presented a novel tree-structured architec-
ture for supervised learning. This architecture is
based on a statistical model, and makes contact with
a number of branches of statistical theory, includ-
ing mixture model estimation and generalized linear
model theory. The learning algorithm for the archi-
tecture is an EM algorithm.

The major advantage of the HME approach over
related decision tree and multivariate spline algo-
rithms such as CART, MARS and ID3 is the use of
a statistical framework. The statistical framework
motivates some of the variance-decreasing features of
the HME approach, such as the use of “soft” bsund-
aries. The statistical approach also provides a uni-
fied framework for handling a variety of data types,
including binary variables, ordered and unordered
categorical variables, and real variables, both at the
input and the output. The use of maximum like-
lihood allows standard tools from statistical theory
to be brought to bear in developing inference pro-
cedures, fitting procedures and measures of uncer-
tainty for the architecture. It also opens the door to
the Bayesian approaches that have been found to be
useful in the context of unsupervised mixture model
estimation [3].

Acknowledgements

This project was supported by grants from the
McDonnell-Pew Foundation, ATR Auditory and
Visual Perception Research Laboratories, Siemens
Corporation, by grant IRI-9013991 from the Na-
tional Science Foundation, and by grant N00014-90-

J-1942 from the Office of Naval Research. Michael
1. Jordan is a NSF Presidential Young Investigator.

References

[l] Breiman, L., Friedman, J. H., Olshen, R. A.,
& Stone, C. J . (1984). Classzfication and Regres-
sion Trees. Belmont, CA: Wadsworth International
Group.

[2] Bridle, J . (1989). Probabilistic interpretation
of feedforward classification network outputs, with
relationships to statistical pattern recognition. In
F. Fogelman-Soulie & J . Hbaul t (Eds.), Neuro-
computing: Algorzthms, Archztectures, and Applica-
tzons. New York: Springer-Verlag.

[3j Cheeseman, P., Kelly, J . , Self, M., Stutz, J . ,
Taylor, W., & Freeman, D. (1988). Autoclass: A
Bayesian classification system. In Proceedzngs of the
Fifth International Conference on Machine Learn-
zng, Ann Arbor, MI.

[4] Dempster, A. P., Laird, N. M., & Rubin, D. B.
(1977). Maximum likelihood from incomplete data
via the EM algorithm. Journal of the Royal Statzs-
tzcal Soczety, B, 39, 1-38.

[5] Friedman, J . H. (1991). Multivariate adaptive
regression splines. The Annals of Statzstzcs, 19, i-
141.

[6] Jacobs, R. A, Jordan, M. I., Nowlan, S. J., &
Hinton, G. E. (1991). Adaptive mixtures of local
experts. Neural Computation, 3, 79-87.

[7] Jordan, M. I. & Jacobs, R. A. (1992). Hierar-
chies of adaptive experts. In J . Moody, S. Hanson,
& R. Lippmann (Eds.), Advances in Neural Informa-
tion Processzng Systems 4. San Mateo, CA: Morgan
Kaufmann.

[8] Jordan, M. I. & Jacobs, R. A. (1993). Hzerarchz-
cal mzxtures of experts and the EM algorzthm. Com-
putational Cognitive Science Tech. Rep. 9301, MIT,
Cambridge, MA.

[9] Jordan, M. I. & Xu, L. (1993). Convergence re-
sults for the EM approach to maxtures-of-experts ar-
chztectures. Computational Cognitive Science Tech.
Rep. 9303, MIT, Cambridge, MA.

[lo] Ljung, L. & Soderstrom, T . (1986). Theory and
practice of recurszve zdentzficatzon. Cambridge: MIT
Press. *

[l l] McCullagh, P. & Nelder, J.A. (1983). General-
zzed Lznear Models. London: Chapman and Hall.

[12] Quinlan, R. (1986). Induction of decision trees.
Machane Learnzng, 1, 81-106.

1344

