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If different causes can interact on any occasion to generate a set of 
patterns, then systems modeling the generation have to model the in- 
teraction too. We discuss a way of combining multiple causes that is 
based on the Integrated Segmentation and Recognition architecture of 
Keeler et  al. (1991). It is more cooperative than the scheme embodied 
in the mixture of experts architecture, which insists that just one cause 
generate each output, and more competitive than the noisy-or com- 
bination function, which was recently suggested by Saund (1994a,b). 
Simulations confirm its efficacy. 

1 Introduction 

Many learning techniques are derived from a generative view. In this, 
inputs are seen as random samples drawn from some particular distri- 
bution, which it is then the goal of learning to unearth. One popular 
class of distributions has a hierarchical structure-one random process 
chooses which of a set of high-level causes will be responsible for gener- 
ating some particular sample, and then another random process, whose 
nature depends on this choice (and which itself could involve further 
hierarchical steps), is used to generate the actual sample. Self-supervised 
learning methods attempt to invert this process to extract the parameters 
governing generation-a popular choice has the high-level causes as mul- 
tivariate gaussian distributions, and the random choice between them to 
be a pick from a multinomial distribution. Individual input samples are 
attributed more or less strongly to the estimated high-level gaussians, 
and the parameters of those gaussians are iteratively adjusted to reflect 
the inputs for which they are held responsible. In the supervised case, a 
method such as the mixture of experts (Jacobs et al. 1991b) has "expert" 
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modules as the high-level causes and divides responsibility for the input 
examples among them. 

In these methods, the high-level generators typically compete so that 
a single winner accounts for each input example (one gaussian or one 
expert). In many cases, however, it is desirable for more than one cause 
or expert to account for a single example. For instance, an input scene 
composed of several objects might be more efficiently described using a 
different generator for each object rather than just one generator for the 
whole input, if different objects occur somewhat independently of each 
other. An added advantage of such multiple cause models is that a few 
causes may be applied combinatorially to generate a large set of possible 
examples. 

The goal in a multiple cause learning model is, therefore, to discover 
a vocabulary of independent causes or generators such that each input 
can be completely accounted for by the cooperative action of a few of 
these possible generators (which are typically represented in connection- 
ist networks by the activation of hidden units). This is closely related 
to the sparse distributed form of representation advocated by Barlow 
(1961), who suggested representing an input as a combination of nonre- 
dundant binary features, each of which is a collection of highly correlated 
properties. For the autoencoder networks that we treat here, in which the 
network is trained to reconstruct the input on its output units, the goal of 
learning the underlying distribution can be viewed in terms of learning 
a set of priors and conditional priors to minimize the description length 
of a set of examples drawn from that distribution (Zemel 1993; Hinton 
and Zemel 1994). 

Learning multiple causes is challenging, since cooperation (the use 
of several causes per input) has to be balanced against competition (the 
separation of the independent components in the input). Standard net- 
works tend to err on the side of cooperation, with widely distributed 
patterns of activity. One approach that has been tried to counter this is 
to add terms to the objective function encouraging the hidden units to 
be independent and binary [ e g ,  Barlow et al. (1989) and Schmidhuber 
(199211. Another approach is to encourage sparsity in the activities of the 
hidden units [e.g., Foldidk (1990) and Zemel (1993)l. 

Saund (1994a,b) advocated a third approach. He considered a form 
of autoencoder network in which the hidden units signal features and 
the hidden-output weights describe the way in which features generate 
predictions of the inputs. He suggested replacing the conventional sig- 
moid at the output layer with a noisy-or activation function (e.g., Pearl 
19SS), which allows multiple causes to cooperate in a probabilistically 
justified manner to activate the output units and hence reconstruct the 
input. While the noisy-or function allows multiple causes to account 
for a given example, it does not particularly encourage these causes to 
account for different parts of the input. 

In this paper, we use the probabilistic theory that underlies Keeler 
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Figure 1: Four sample bar patterns-two horizontal and two vertical-on a 
5 x 5 pixel grid taken from the set used for training. The input values for the 
dots are 0 and those for the white boxes are 1. 

et d ’ s  (1991) integrated segmentation and recognition architecture to sug- 
gest a way for multiple causes to interact that is more competitive than 
the noisy-or and more cooperative than the unsupervised and supervised 
schemes, such as the mixture of experts, which assumes that each exam- 
ple is generated by just a single cause. We propose an activation function 
that handles the common situation in which several causes combine to 
generate an input, but the value along a single output dimension (such 
as a single pixel in an image) can always be specified as coming from 
just one cause (even if there are many active causes that codd have spec- 
ified it). This discourages two causes from sharing partial responsibility 
for the same facet of an output rather than taking full credit or blame. 
Sharing hinders the extraction of the independent elements in the input. 
We demonstrate that this new approach can learn appropriate represen- 
tations. 

2 The Bars 

A simple example that motivated the model and the need for competi- 
tion is one of extracting a number of independent horizontal and vertical 
bars on an input pixel grid (Foldiak 1990; Saund 1995; Zemel 1993). Four 
examples of patterns are shown in Figure 1 for a 5 x 5 grid. They were 
generated in a three stage process. First the direction, horizontal or verti- 
cal, was chosen (in our case, each being equiprobable). Then each of the 
five bars in that direction was independently chosen with some proba- 
bility ( p  = 0.2). Finally the pixels corresponding to the chosen bars were 
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turned from off (black; shown with lines) to on (white) deterministically. 
In general noise could be introduced at this stage too (Saund 1995). Pre- 
vious uses of the bars omitted the first stage and allowed both horizontal 
and vertical bars in the same image. 

We trained an autoencoder network with a single hidden layer to 
capture the structure in 500 of these patterns (including repeats) using 
the sigmoid and the noisy-or activation functions at the output layer 
and employing a cross-entropy error to judge the reconstructions. Zemel 
(1993) described how such autoencoder networks can be seen as gener- 
alizations of almost all existing self-supervised learning algorithms and 
architectures, provided that probabilistic priors over the activations of the 
hidden units are appropriately set and the deviations of these activations 
from their priors are penalized along with the errors in reconstruction. 

This amounts to using an error measure that is the description length 
of the set of inputs using as a code the activation of the hidden units. 
Minimizing this error measure amounts to the use of an (approximate) 
minimum description length (MDL) strategy. We employed such an er- 
ror measure, in this case setting the priors on the hidden unit activations 
commensurate with the actual generative model we used, assuming that 
the hidden units would come to code for the independent bars. These 
priors do not force this as a solution, however, as is evident in the sub- 
optimal weights in Figure 2.’ 

Figure 2 shows the weights learned using the sigmoid and noisy- 
or output activation schemes, which clearly reveal the generative model 
they embody. Only 10 hidden units were allowed, which is the minimum 
number possible in this case. The sigmoidal scheme fails to capture the 
separate generators, and indeed reconstructs the inputs quite poorly (it 
never succeeded in extracting the generators, i.e., the bars, in 100 trials 
from different random starting weights). The noisy-or does much better, 
pulling out all the bars. However, 73% of the time (73 trials out of 
100) it gets stuck at a local minimum in which one or more bars do not 
have individual generators (the figure shows one example). These local 
minima are significantly suboptimal in terms of the coding cost. On the 
same problem, the more competitive rule described in the next section 
gets caught in a local minimum 31% of the time (31 trials out of 100). 
Figure 3 shows an example of the weights that this rule produced, and 
the individual generators are evident. 

Although it might seem like a toy problem, the 5 x 5 bar task with 
only 10 hidden units turns out to be quite hard for all the algorithms 
we discuss. The coding cost of making an error in one bar goes up 

2Zemel (1993) judiciously set the value for this prior probability as a means of en- 
couraging sparsity, i.e., discouraging the system from finding solutions in which single 
hidden units each generates more than one bar. Here the prior is appropriate to the 
generative scheme (modulo a lower order effect from the incapacity of the architecture 
to capture the correlations between the hidden units that generate bars in the same 
direction). 
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Figure 2: Bar weights. The input-hidden, hidden-output, and hidden unit and 
output bias weights based on learning from 250 horizontal and 250 vertical bar 
patterns, with each bar coming on with probability 0.2 in patterns of its direc- 
tion. The top two rows show the case for sigmoidal output activation-only a 
few of the underlying generators are visible in the hidden-output weights and 
reconstruction is poor. Only the sigmoid activation function employs biases for 
the output units. The bottom two rows show the improvement using the noisy- 
or (note that hidden-output weights for the noisy-or should be probabilities and 
the ones shown are passed through a sigmoid before being used). However, 
when the conjugate gradient minimization procedure gave up, one of the hid- 
den units took responsibility for more than one bar, and the magnitude of the 
weights made recalcitrant this suboptimal solution. Black weights are negative, 
white positive, and the scale for each group (indicated by the number in each 
figure) is the magnitude of the largest weight. 



570 Peter Dayan and Richard S. Zemel 

Input-Hidden 

Competitive : 20.3 

Hidden-Output 

Comsetitive : 22.2 

Figure 3: Bar weights using the competitive activation function described in 
Section 3 (in this case hidden-output weights for this scheme represent odds, 
and the values shown are passed through the exponential function before being 
used). These weights exactly capture the generative scheme underlying patterns 
as there are individual generators for each bar. 

linearly with the size of the grid, so at least one aspect of the problem 
gets easier with large grids. The competitive scheme also worked better 
than the noisy-or when horizontal and vertical bars were mixed in the 
same input example, although it does fail slightly more often than in 
the earlier case.3 With appropriate weights, the imaging model can be 
correct for all the three schemes, and it is hard to extract from suboptimal 
learning behavior why different tasks have different failure rates. Both 
the noisy-or and the competitive activation rules worked well when more 
than 10 hidden units were used, but the sigmoid rule consistently failed. 

Saund (1994, 1995) did not use a set of input-hidden weights to gen- 
erate the activities of the hidden units. Instead, he used an iterative inner 
optimization loop, which might be expected to be more powerful for both 
the noisy-or and the competitive rule. We did not use such an inner loop 
because we are interested in hierarchical unsupervised learning (Dayan 
ef al. 1994). The error surface for the activations of units in multiple layers 
has multiple modes, and these are computationally expensive to explore. 

'The noisy-or activation rule failed to extract the bars on 75 out of 100 random trials, 
the competitive activation rule failed in 39 of 100 trials. 
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3 A Competitive Activation Function 

For simplicity, we describe the model for the self-supervised learning 
case, but it applies more generally. The noisy-or activation function 
comes from a particular form of stochastic generative model. Our com- 
petitive activation function comes from a different model, which we now 
describe. The starting point for both models is the same-a set of binary 
representation units s, whose activations are independent choices from 
binomials, with P[s, = 11 = p I  (pattern indices are omitted for clarity). 
An overall pattern is generated by picking a set of these to be active (like 
picking a set of bars in the example above) and then using this set to 
generate the probability that the activity y! of binary output unit j is 1. 
Since the output units are binary, a cross-entropy error measure is used. 

The bars example (Fig. 1) naturally fits a write-white model in which 
a pixel j is generally black (y/ = 0) unless one of the causes seeks to turn 
it white. Given binary activities sf, Saund (1994, 1995) recommended the 
use of the noisy-or (NO) combination function to calculate the probability 
that outputs should be white. If cf, is the probability that y, = 1 given 
the presence of cause sI ,  then 

since just one of the causes has to turn the pixel on for it to be white. A 
trouble with this is that if c , , ~  < 1 for some potential cause il, then the 
other causes that are active are encouraged, using the noisy-or, to have 
c, > 0 to increase the overall value of py. In the same way that Nowlan 
(1990) and Jacobs et al. (1991b) showed that learning for the mixtures of 
experts is much more straightforward using their competitive rule than 
it was for the more cooperative rule used in Jacobs et al. (1991a), we 
might expect that having the system infer the independent causes would 
require a measure of competition. 

Our generative model uses a more competitive procedure (C) for gen- 
erating a pixel that forces at most one cause to take responsibility on any 
occasion. Define c,, < 1 to be the probability that cause sz seeks to turn 
pixel j white. The easiest way to describe the model involves a set of 
responsibility flags f l l ,  which are chosen to be 0 or 1 according to 

If f, = 0 for all i, then we set y, = 0; if fi, = 1 for exactly one i, we set 
yl = 1; and otherwise we pick a new set off, from the distribution above 
and look again. It is clear that just one cause will take responsibility for 
generating pixel j on any occasion-this is the required competition. The 
fil do not appear explicitly in the calculations below, however, they are 
responsible for the resulting conditionaI probabilities. 
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This makes the overall probability that yj = 1 

= P[y, = 1 and at most one cause turns j white] 

P[y; = 1 and at most one cause turns j white] 
P[at most one cause turns j white] 

P[a single cause turns j white] 
P[no cause turns j white] + P[a single cause turns j white] 

7 P[no cause turns j white] + xk Pionly cause k turns j white] 

- - 

(3.2) 

(3.3) 

More quantitatively, the probability that only cause i turns j white is 

- - 

- P[only cause i turns j white] 
- 

(3.4) 

the likelihood that no cause turns j white is the complement of the noisy- 
or, 

(3.5) 

(3.6) 

(3.7) 

using the facts that the ratio of equations 3.4 and 3.5 is just the odds 
s,c,/l - c,, that cause i generates j ,  and si is either 0 or 1. The sum of the 
odds in the denominator of equation 3.7 plays an equivalent role in the 
integrated segmentation and recognition (ISR) system. We return to this 
point below. 

An alternative way of looking at this conditional probability is that 
whereas for noisy-or 

PNO[y, = 11 = 1 - P[no cause turns j white] 

here 
P[no cause turns j white] 

P[at most one cause turns j white] 
PCb, = I] = 1 - 

Both of these schemes are monotonic: if a single model increases its prob- 
ability of turning a pixel white, then the probability that that pixel is white 
also increases. The competitive scheme, however, has a different behav- 
ior from the noisy-or for a fixed probability P[no cause turns j white], in 
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Figure 4: Noisy-or versus competitive scheme. The probability p ,  that pixel 
j is white is plotted as a function of c2,, the responsibility that cause 2 takes 
for turning pixel j white. The plot on the left shows that the noisy-or and 
competitive activation functions have similar behavior when the other cause is 
unlikely to take responsibility for pixel j (clj = 0.1). The plot on the right shows 
that when this cause is likely to turn j white (cl, = 0.91, the noisy-or can still 
increase p ,  by increasing c2,, whereas the competitive scheme largely ignores c2, 

until c2, N cl, since the first cause will already largely take responsibility for j .  
Note the difference in the scale of pj.  

that distributing the probability that a cause turns j white among vari- 
ous causes decreases the probability that j will be white. Consider the 
difference between having one cause whose cl1 = 0.75 and two causes 
whose c ,~  = 0.5 each. P[no cause turns j white] = 0.25 in both cases. For 
the noisy-or, PNo[Yl = 11 = 0.75 in both cases, while in the competitive 
scheme, Pc[Yl = 11 = 0.75 for the first case but only 0.67 in the second 
case. 

An alternative way of comparing these two functions is shown in 
Figure 4. When the first of two causes (sl = $2 = 1) is not keen to turn 
pixel j white (cI1 = 0.11, the probability that pixel j is white depends 
directly on the value of c2, for both the noisy-or and the competitive 
functions. However, when the first cause is keen to take responsibility 
for j (c,, = 0.9), then the two functions have different behavior: to increase 
pi, the noisy-or attempts to increase ql, while for the competitive scheme, 
pi is largely independent of c2/, at least until c2, - cx1. 

Equation 3.7 is exactly the generative version of the forward model 
Keeler et al. (1991) used for their ISR architecture. They wanted to train 
networks to perform the segmentation and recognition necessary to ex- 
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tract the five digits in a zip-code. During training, they specified only 
whether or not a digit was present in a particular image, and the network 
had to work out how to assign credit at the different spatial positions in 
an input to recognizers for the different digits. Weights were shared for 
the recognizers for each digit between all locations. They regarded the 
output of the digit recognizers as being the equivalent of c4, the proba- 
bility that digit j is at position i, and, using a constraint that each digit 
should appear either no times or just once in any image, calculated the 
overall outputs of the network as the sums of the odds over all posi- 
tions in the image (so sI = 1, W, just as in equation 3.7. Of course, c,, 
in the competitive scheme (equation 3.7) are learned weights rather than 
activities. 

There is also an interesting relationship between this activation func- 
tion and that in the mixture of experts architecture (Jacobs et al. 1991b). 
In the mixture of experts, the output of each expert module is gated by 
its responsibility for the input example. The competitive scheme com- 
putes a similar quantity. For this simple write-white example, we take 
the output of each cause, or expert module, to be 1 for pixel j, and also 
use a null cause with output 0 to account for the case that no cause takes 
responsibility for j .  Equation 3.7 sums across the active causes, where 
the responsibility that cause i bears for the input is normalized across 
the other causes k and the null cause. 

This competitive scheme therefore introduces an unorthodox form of 
competition. Here the units are not competing for activity, but instead 
are competing over responsibility for the individual output units. 

4 Error Function and Mean-Field Approximation 

It is convenient to use the odds bij = c;,/(l - cij) as the underlying adap- 
tive parameter. Then, given a set of binary sir the function in equation 3.7 
resembles the positive part of a tanh activation function. 

We use a cross-entropy error measure for pixel j: 

-El' = tl logp,C + (1 - t,) log(1 - pi') 

where t, is the true probability that pixel j is on (which is usually 0 or 11, 
we have 

Were gradient descent to be used, this would be just a modification of the 
delta rule (itself exactly what the sigmoid activation function would give), 
only weight changes are magnified if p,' < 0.5 and shrunk if $ > 0.5. 



Competition and Multiple Cause Models 575 

The equivalent for the noisy-or has 

which lacks the reduction in the gradient as pNo -+ 1. 
In the case that the s, are themselves stochastic choices from under- 

lying independent binomials, we need an estimate of the expected cost 
under the cross-entropy error measure, namely 

4 { 5 J F , I  = f{s,)[f,logP,C + (1 - f,) log(1 -$)I 

f , log$+(l -f1)l0g(l -$)  

One way to do this would be to collect samples of the { s J } .  Another way, 
which is a rather crude approximation, but which has worked, is to use 

where 

(4.1) 

The term on the left is just a mean field inspired approximation to the 
activation function from equation 3.7 (using pi in place of s,). The extra 
term on the right takes partial account of the possibility that none of the 
s, is on-this is underestimated in the term CJp,bIJ, which is insensitive 
to the generative priority of the p J  in that the s, are first generated from 
the p ,  before the f,] are picked. For this, we employ just the noisy-or, 
written in terms of the odds bJl.  We used this mean field approximation 
to generate the results in Figure 3. 

Figure 5 shows how both the approximation in equation 4.1 and the 
simpler approximation p; = 1 - 1/(1+ C, pJb, , )  compare to the true value 
of p; in a case like the one before of two causes, where p1 = 1, c1/ = 0.5, 
and across different values of p2 and c2/. An anonymous referee pointed 
out the substantial difference between the true p: = 0.67 and p: = 0.5 for 
p2 = 1 and czl = 0.5. From our experiments, the important case seems to 
be as c2/ --f 1, and we can see that p is better than p in this limit. 

5 Discussion 

We have addressed the problem of how multiple causes can jointly spec- 
ify an image, in the somewhat special case in which they interact at most 
weakly-different causes describe different parts of the same image. We 
used this last constraint in the form of a generative model in which the 
probability distribution of the value of each pixel is specified on any 
occasion by just one cause (or a null or bias cause). This is the gener- 
ative form of Keeler, Rumelhart, and Leow's summing forward model 
in their ISR architecture. The model is more competitive than previous 
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Figure 5: Mean-field approximations to p;. The graphs show the ratios of p? 
and p: to p; for the case of two causes, where p1 = 1 and cll = 0.5. The behavior 
of p: at c2, = 1 and small p2 exhibits the insensitivity mentioned in the text. 
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schemes, such as the noisy-or, linear combination, or combination using 
a sigmoid activation function, and provides a principled way of learning 
sparse distributed representations. It has applications outside the self- 
supervised autoencoding examples that have motivated our work. For 
instance, one could use a function based on this for the supervised learn- 
ing in Nowlan and Sejnowski's (1993) model of motion segmentation, in 
which each local region in an image is assumed to support at most one 
image velocity. 

There is a natural theoretical extension of this model to the case of gen- 
erating gray values for pixels rather than black or white ones. This uses 
the same notion of competition as above-at most one cause is respon- 
sible for generating the value of a pixel-but allows different causes to 
maintain different probabilities t;,k of setting yj = k, where k corresponds 
to a real-valued activation of the pixel. The bi, odds again determine the 
amount of responsibility generator i takes for setting the value j, and the 
t y k  would determine what i would do with the pixel if it is given the op- 
portunity. This scheme also requires a bias t+ which is the probability 
that y, = k if none of the causes wins in the f ,  competition. 

This makes 

for the case of binary s,. Note that equation 3.7 is a simple case of 
equation 5.1 where till = 1 for each cause and the bias is zero. 

Once again, we can sample from the distribution generating the s, to 
calculate the expected cost of coding y, using this as the prior. We have 
considered the case where k can be black (0) or white (1) as a way of 
formalizing a write white-and-black imaging model (Saund 1995). Unfor- 
tunately a mean field version of equation 5.1 which combines p; and 
p; in a manner analogous to equation 4.1 yields a poor approximation. 
Causes with b ,  very large, p ,  moderate, and t,,o = 1 can outweigh causes 
with b ,  moderate, pI  = 1, and t , l  = 1. Saund (1995) used a technique that 
separates out the contributions from causes that try to turn the pixel black 
from those that try to turn it white before recombining them. This can be 
seen as a different mean field approximation to equation 5.1. However it 
did not perform well in the examples we tried, suggesting that it might 
rely for its success on Saund's more powerful activation scheme, which 
has an inner optimization loop. 

The weak interaction that the competitive schemes use is rather par- 
ticular-in general there may be causes that are separable on different 
dimensions but that interact strongly in producing an output (e.g., base 
pitch and timbre for a musical note, or illumination and object location for 
an image). The same competitive scheme as here could be used within 
a dimension (e.g., notes at different gross pitches might have roughly 
separable spectrograms like the horizontal bars in the figure) but learn- 
ing how they combine is more complicated, introducing such issues as 
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the binding problem. Yet it has applications to many interesting and dif- 
ficult problems, such as image segmentation, where complex occlusion 
instances can be described based on the fact that each local image region 
can be accounted for by a single opaque object (Zemel and Sejnowski, 
1995). 
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