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Exploiting local stability, we show what neuronal characteristics are 
essential to ensure that coherent oscillations are asymptotically stable 
in a spatially homogeneous network of spiking neurons. Under stan- 
dard conditions, a necessary and, in the limit of a large number of 
interacting neighbors, also sufficient condition is that the postsynaptic 
potential is increasing in time as the neurons fire. If the postsynaptic 
potential is decreasing, oscillations are bound to be unstable. This is a 
kind of locking theorem and boils down to a subtle interplay of axonal 
delays, postsynaptic potentials, and refractory behavior. The theorem 
also allows for mixtures of excitatory and inhibitory interactions. On 
the basis of the locking theorem, we present a simple geometric method 
to verify the existence and local stability of a coherent oscillation. 

1 introduction 

Coherence may be defined as being “united in relationship” for most 
vertebrate neurons, meaning a temporal relationship in that they fire in 
unison. As such, it is another way of saying that neurons get locked. 
Once the proposal appeared that coherent oscillations may exist in bio- 
logical neural systems (Eckhorn et al. 1988; Gray and Singer 1989; Gray et 
al. 1989; Engel et al. 1991a, 1991b; Eckhorn et al. 1993; Gray 1994), locking 
phenomena attracted a considerable amount of interest and spurred quite 
a few people to explain or disprove the very existence of coherent oscil- 
latory activity. Different authors have used differing models, which vary 
in several aspects, as do the assumptions and the results. Some models 
show perfect locking, others partial locking or no locking at all. Some 
use excitatory interactions, some exploit inhibitory ones, and others use 
a mixture. In this paper, we present a unifying framework that allows 
one to derive exact conditions for the existence and stability of coherent 
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solutions in a network of spiking neurons and to isolate the neuronal 
characteristics that are essential to them. The result is surprisingly sim- 
ple: Perfect locking is possible only if firing occurs while the contribution 
evoked by incoming pulses (i.e., the postsynaptic potentials) is increasing 
in time. A more precise formulation is given in the next section, where 
we show how a subtle interplay of axonal delays, postsynaptic poten- 
tials, and refractory behavior can lead to coherence. This result can be 
applied to excitatory or inhibitory couplings or homogeneous mixtures 
thereof and solves the often-posed question of whether excitation or inhi- 
bition is ”more suitable” to support collective oscillations (van Vreeswijk 
et a/. 1994; Lytton and Sejnowski 1991). In fact, for spiking neurons, this 
kind of collective behavior seems to be generic. Furthermore, we present 
a purely geometric method to verify whether a coherent oscillation can 
exist and, if so, whether it is stable. In view of the truly extensive and 
diverse literature, we think a unifying framework meets an urgent need. 

In this paper, we concentrate on analytic results for model networks of 
spiking neurons (Mirollo and Strogatz 1990; Kuramoto 1991; Gerstner and 
van Hemmen 1992, 1993; Gerstner rt al. 1993; Abbott and van Vreeswijk 
1993; Bauer and Pawelzik 1993; Tsodyks et al. 1993; Treves 1993; Usher 
t>t al. 1993; van Vreeswijk et 01. 1994; Gerstner 1995; Ernst ct al. 1995; 
Hansel et al. 1995). We mostly focus on large networks, although our 
technique can also be applied to small sets of neurons such as central 
pattern generators (cf. Skinner et al. 1994). We neither consider phase 
models (Abbott 1990; Schuster and Wagner 1990a; Sompolinsky et al. 
1990; Niebur et RI. 1991; Golomb et al. 1992) nor analyze simulation studies 
(Buhmann 1989; Bush and Douglas 1991; Lytton and Sejnowski 1991; 
Schuster and Wagner 1990b; Konig and Schillen 1991; Schillen and Konig 
1991; yon der Malsburg and Buhmann 1992; Engel e f  al. 1992; Deppisch 
ct 01. 1993; Nischwitz and Gliinder 1995; Ritz et a / .  1994). Furthermore, 
we do not comment on the debate concerning the interpretation and 
potential relevance of coherent states since there are already many papers 
arguing the issue (Eckhorn ef nl. 1988; Gray e t a / .  1989; Engel et al. 1991a; 
Schuster and Wagner 1990b; Konig and Schillen 1991; von der Malsburg 
and Buhmann 1992; Ritz rt  nl.  1994. Cf. in particular von der Malsburg 
1994; von der Malsburg and Schneider 1986; Singer 1994). 

In order to prove our locking result, we will use the framework of the 
spike response model (Gerstner 1991; Gerstner and van Hemmen 1992, 
1993; Gerstner 1991, 1995; Kistler et al. 1996). In this model, the effects 
of spike emission and spike reception are described by two response 
kernels: / I ,  to represent a spike and the resulting refractory behavior, and 
:, to take into account the response of a neuron once a spike has arrived 
at a synapse on its dendritic tree. If a presynaptic neuron j fires at a 
time t i ,  a response will be evoked at the soma of a postsynaptic neuron 
i, which we describe by I,,  :( t  ~ t : ) .  The synaptic weight I,, is a measure 
of the amplitude o f  the response. Similarly, if the neuron i fires at a 
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time t i ,  the repolarization after the pulse usually causes a sharp drop 
of the membrane potential. This effect is summarized by an additive 

of E and q can be found in Figures l a  and lb, whereas a more elaborate 
structure is shown in Figures lc and Id. A neuron model is said to have 
a standard dynamics if drllds 2 0 for all s > 0. This includes integrate-and- 
fire, fast spiking, and adaptive neurons but excludes intrinsic bursters (cf. 
Connors and Gutnick 1990 for a classification of neuronal firing patterns). 
A neuron model with 7/(s) = E ( S )  = 0 for s 2 2T will be called a model 
with short-term memory. Here T is the period of a network oscillation, 
to be studied below. 

For the sake of simplicity we will assume throughout this paper that 
the delay A, between neuron j and neuron i depends on neither i nor j .  
Hence A, = A and the delay can be incorporated in the function E .  The 
total membrane potential at the soma of neuron i can then be written 

contribution 7/(t - t, f ) 5 0 to the membrane potential. Typical examples 

f I f  

Due to causality, we have r / ( s )  = 0 for s < 0 and E ( S )  = 0 for s < A 
(cf. Fig. la-c). A neuron fires once its membrane potential k(t) reaches a 
threshold 6 from below. This condition defines the firing times tf and is 
at the basis of our formalism. For the moment we do not include noise 
so as to simplify the ensuing arguments even further. 

Before turning to the proof of our locking theorem in Section 4, we 
illustrate its potentialities by presenting a purely geometric method to 
construct and verify the stability of a coherent oscillation in Section 2. We 
indicate the relation between the present setup and the usual integrate- 
and-fire models in Section 3. With respect to locking, it hardly makes 
any difference whether one uses excitatory or inhibitory couplings. As 
we will show in Section 2, the geometric method makes such a state- 
ment obvious. In Section 5 we return to this fact, which at first sight is 
surprising, and summarize our findings. 

2 Geometric Method 

In Section 4 we will prove a locking theorem, which is instrumental to 
understanding neuronal coherence. In this section we take it as the start- 
ing point of a purely geometric method that allows one to construct and 
directly verify the stability of a coherent oscillation. Here is a theorem 
that relates neuronal characteristics to asymptotic stability, that is, when 
perturbations of a limit state decay to zero. Most of the time we will 
simply say that something is stable, meaning that it is asymptotically 
stable. Precise conditions and extensions will be spelled out in the next 
section. 
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Figure 1: Typical response kernels. (a) Refractory kernel I/. The spike generated 
at time t i  is indicated by the arrow. After the spike, there is a period of hy- 
perpolarization that decays over 20 ms. (b) Response kernel 5 .  The graph with 
s = t -- f /  exhibits the typical time course of an excitatory postsynaptic potential 
that is evoked with a delay A = 2 ms after a presynaptic spike of neuron j 
at time t = t ,  (arrow). The response has been taken at neuron i .  For s > A, 
we have plotted the function E(S) = exp[-(s - A)/rl l l ]{ l - exp[-(s - A ) / T , ~ ~ ] }  
representing a postsynaptic potential for excitatory synaptic input with synap- 
tic time constant r,,,, = 4 ms and membrane time constant 7,,, = 10 ms. (c) A 
more elaborate refractory kernel (with four different time constants referring to 
four different ion channels) gives rise to intrinsic bursting (d), which is a direct 
consequence of the subsequent hyperpolarization and depolarization exhibited 
by r / .  In (d), a neuron with threshold i I  = 0.1 receives a constant input current. 
The membrane voltage has been gi\ren in arbitrary units. 

f 
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T t 

Figure 2: Geometric method: Excitatory couplings. All active neurons have 
fired at t = 0. The next spike occurs if J " E ( t )  (solid line) crosses the decreasing 
threshold .Iy ~ q ( t )  (dashed). We have sketched two situations: short (A,) and 
long delay (A, > Al). The coherent oscillation is stable for excitatory couplings 
with relatively long delays but not for short delays; stable and unstable have 
been denoted by (s) and (u), respectively. 

Locking theorem. In a spatially homogeneous network of spiking neurons with 
standard dynamics, a necessary and, in the limit of a large number n of presy- 
naptic neurons ( n  + co), also suflcienf condition for a coherent oscillation to be 
asymptotically stable is fhatfiring occurs when the postsynaptic potential arising 
from all previous spikes is increasing in time. 

Let us now turn to Figure 2. The horizontal axis is the time axis, and 
the vertical axis displays the response of a "typical" neuron. The network 
under consideration has excitatory interactions only. Each neuron has 
short-term memory and receives input from n >> 1 other neurons through 
synaptic weights Jo/n; the normalization by l / n  is just convenient. We 
suppose that all neurons fire at time t = 0. Each neuron then feels its 
refractory field 7.  The action potentials have disappeared into the axons, 
but after a delay of A ms they reappear at the dendritic trees and induce 
a response at the soma, which is described by the function E .  If the 
postsynaptic potential at the soma reaches the threshold 7!l of the neuron, 
so that (Jo/n) n x E ( S )  + ~ ( s )  = 19 or, equivalently, Jo E ( S )  = 1y - T ~ ( S ) ,  then 
all the neurons will fire again. This leads to a simple graphic solution 
for T. As is evident from the plot, in firing again, a neuron still feels its 
refractory field. If the delay A is too short, the point of intersection of 
E ( S )  and 19 - ~ ( s )  is in the descending part of E ,  and no stable oscillation 
can arise. If, however, A is a bit longer, then the point of intersection of 
the two curves is in the ascending part of E, and a coherent oscillation 
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is stable. Once we know the locking theorem, existence and stability can 
indeed be verified geometrically. 

The inhibitory case of Figure 3 does not provide any additional diffi- 
culty. It is plain that, to get a response from this purely inhibitory system, 
we need a stimulus I,, > 0. Again we suppose that all (possibly selected) 
neurons fire at time t = 0. Of course, each neuron feels its refractory field 
11. The action potentials disappear into the axons, but after a delay of _1 
ms they reappear at the dendritic trees and induce a response at the soma 
via the function :In", which is now negative. The neurons will fire again, 
provided J,l:"'h(s) + lo = rl - r l ( 5 ) .  For small A's or short-lived inhibitory 
potentials, the neuron still notices its refractory past and the point of in- 
tersection is in the ascending part of ?lh (Fig. 3a). If the delay lasts long 
enough, then r /  plays no role any more (Fig. 3b), and we are left with the 
condition I,1 + lo :Inh(s) = 11 and, hence, stability. In the presence of mere 
inhibition, the oscillation is stable for a wide range of delays 1-in con- 
trast to the excitatory case, where the stability depends critically on A. 
Systems with both excitatory and inhibitory interactions are in general 
more interesting from a neurobiological point of view and will be treated 
in Section 5. Though it is a simple matter to play around with delays and 
parameters, we will not pursue this issue here and turn instead to the 
mathematics of our locking argument. Before delving into the details of 
the proof, whose geometric essence can be found in Figure 4, we quickly 
indicate the relation between the usual integrate-and-fire models and the 
spike response model as i t  is employed in this paper. 

3 Relation to Integrate-and-Fire Models 

In integrate-and-fire models, firing leads to an immediate reset of the 
membrane potential. We denote the membrane potential of an integrate- 
and-fire neuron by & ( t )  and its threshold by r j .  Firing occurs if h ( t )  = 3. 
This defines a firing time t,' and the reset requirement is 

- f  limh(t, + t \ )  = 0. 
+-fl 

Between two firings, the change of the membrane potential is given by 
the equation of a simple RC circuit charged by a current lo + [,it), 

1,) is a constant external current that is identical for all neurons. The 
time-dependent contribution is due to the input from other neurons, 

As before, 11, is the synaptic weight representing the input amplitude. 
The function o ( s )  is the typical input current caused by a presynaptic 
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Figure 3: Geometric method: Weak (a) and strong (b) inhibitory couplings. All 
neurons have fired at t = 0. The next spike occurs if 10 + Joc( t )  (solid line) 
crosses the decreasing effective threshold IY - a ( t )  (dashed line). In the case of 
strong and long-lasting inhibition, refractoriness has disappeared and, thus, ti 

already vanishes before the next spike is generated. The coherent oscillation is 
stable in both (a) and (b). 

spike. Choices of the function N include ~ ( s )  = h(s),  where h is the Dirac 
6 function; Q(S) = 6(s - A), where A is a delay; ~ ( s )  = s ; lB(s )O(so  - s), for 
a short square pulse where B ( s )  is the Heaviside unit step function; or 
n ( s )  = ( s / T * )  exp( - s / T ) ,  for a more realistic description of the synaptic 
input current that also obeys the pleasant normalization Jo"o(s)ds = 1. 
We note that the reset condition is equivalent to a current pulse -8 6(s) 
in equation 3.2. Since equation 3.2 is a linear differential equation, it can 
be integrated and yields 

h;(t) = C7](t - 
f 

I' 

exp [ - 
I f  
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with (a prime always denoting a derivative) 

and 

The last term in equation 3.4 was adjusted 5 0  that the initial value of 
h, is f i , ( O )  = 0. We note that for t >= T the initial condition does not 
play any role, and the last term approaches the constant value 1". If we 
define h , ( t )  = Iz,( t)  - 1,) and rl = I )  - lo, we are back at equation 1.1. We 
would like to emphasize that the spike response model (equation 1.1) is 
more general than the integrate-and-fire model (equation 3.2) in that we 
can use arbitrary response kernels c and r / .  A typical example of these 
response kernels has been presented in Figure 1. 

4 Locking ~ ~ ~ _ _  

In the following subsections, we study a coherent state of a spatially ho- 
mogeneous network of N neurons labeled by 1 5 i 5 N and construct 
this network state self-consistently in such a way that the period T fol- 
lows directly. We first handle the existence and then turn to the stability 
of a coherent oscillation. The word cdzerenf should be constantly borne 
in mind because it plays a key role in both the existence and the stability 
proof. Once a homogeneous system of spiking neurons with short-term 
memory behaves coherently, it cannot but oscillate. As such, oscillations 
are not a deep network property but simply a consequence of the con- 
nectivity and the spike dynamics of neurons. In the present context, 
spatial homogeneity means that all neurons are of the same type; they 
have identical c and rl kernels, and have the same "gross" synaptic input: 
x,],i == for all 1 5 i 5 N. 

4.1 Existence of Coherent Solutions. In a coherent state, all neurons 
of the network fire synchronously and with the same period T. For the 
sake of convenience we adjust the origin t = 0 so that regular firing occurs 
at  i T  with integer 1. Let us assume that neurons have fired regularly in 
the past t 5 0. More precisely, we assume that synchronous firing has 
occurred at t = /T with i = 0. -1. -2.. . . . For 0 < t < T the membrane 
potential of neuron i is then given by 

i -[I , i = o  
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The next coherent firing should occur at time t = T. This means that hi( t )  
reaches the threshold 6 at time t = T and, hence, yields a self-consistency 
requirement for T, 

More precisely, T = inf{t > Olh,(t) = IY}. Since we have h,(t)  < 6 for t < T, 
the membrane potential h,(t)  reaches ,Iy from below, and thus h:(T) > 0. 
Usually the term P = 1 dominates the sum in equation 4.2, and we end 
up with the simple equation 

(4.3) 

which allows a straightforward graphic interpretation (cf. Figs. 2 and 3). 
Note that a delay A has been incorporated in E .  An oscillatory solution 
exists if the two functions J ~ E ( S )  and 19 - ~ ( s )  cross at some point s’. 
If there are several crossing points, the first one (smallest s’) gives the 
oscillation period T = s’. 

For neurons with short-term memory, that is, with 7/(s) = E ( S )  = 0 for 
s 2 2T, equation 4.3 is exact. For a general neuron model with adap- 
tation, however, memory lasts longer and we have to use equation 4.2 
instead of 4.3. 

4.2 Asymptotic Stability of Coherent Solutions. So far we have con- 
centrated on the existence of coherent solutions. In the following we 
check whether the solutions are stable with respect to small perturbations; 
that is, we perform a linear stability analysis. To be specific, we consider a 
perturbation of the neuronal firing pattern as it occurred in the past t 5 0. 
In the unperturbed situation, all neurons would have fired synchronously 
up to t = 0, but now they do at times {PT + h l ( P ) ; e  = 0, -1. -2 . .  . and 
1 5 i 5 N}. We assume IS,(8)1 << T since we perform a linear stabil- 
ity analysis. For t > 0, the membrane potential is no longer given by 
equation 4.1 but by 

r 1 
(4.4) 

At time t = T the actual firing is, in general, either slightly earlier or 
later, and neuron i fires at T + h , ( l )  instead of T .  The time shift h , ( l )  can 
be found from the threshold condition h,(T + h , ( l ) )  = IY, given the past. 
We use equation 4.4, linearize with respect to all the 6,(8) in sight, and 
take advantage of the unperturbed threshold condition (equation 4.2). In 
order to simplify the ensuing notation, we introduce the abbreviations 

(4.5) 
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After a bit of algebra we then find 

Here F is a linear map from the past 6 onto the present, that is, { b , ( l ) ;  1 5 
i 5 N} = b(1). Doing linear perturbation theory, we simply iterate IF. 
Proving asymptotic stability of a coherent oscillation means showing that 
IimkAx ~ ~ ( 6 )  = 0 for an arbitrary but fixed 6. We will verify below 
whether 6 can be truly arbitrary. 

Equation 4.6 is a key result of our stability analysis. Before proceeding 
we consider a special solution: b , (  -!) == (r for all i and i. It is an easy task 
to Lrerify that h,( 1) = (r as well. That is, a uniform shift in time cannot 
be corrected. This is not too surprising since a system of integrate-and- 
fire or Hodgkin-Huxley neurons or anything else that is described by a 
system of ordinary differential equations is unable to correct a uniform 
shift in time either. Mathematically, our perturbations 6 therefore have 
to exclude a uniform time shift. Physically, the class of perturbations 
induced by internal "noise" or some additional stochastic input is much 
more restricted. Time shifts seem to be random. More precisely, we ex- 
pect them to be independent, identically distributed random variables 
with mean zero and finite variance. If ti with I I  >> 1 denotes the number 
of neighbors j of neuron i, then i i r ' X , h , ( - / )  = 0, whatever 2 0 and 
whatever the neuron i and its surroundings, which we consider. In pass- 
ing, we note that iz is typically of the order of a thousand or more in a 
vertebrate brain. Random perturbations occur all the time, but the ones 
stemming from the past should not blow up in the future; rather they 
should decay. That is why we have to iterate for a fixed argument 6 
and show that the result approaches zero. 

should have 
all its eigenvalues in the open unit disc {A; 1x1 < 1).  The above eigenvec- 
tor (1.1. . . . . 1 ) with eigenvalue 1 contradicts this condition. We therefore 
have to require that it be the only one; that is, 1 is nondegenerate (simple), 
its eigenvector is to be excluded, and all the other eigenvalues of IF are 
less than 1 in absolute value. In passing we note that, in mathematical 
terms, plain instead of asymptotic stability, that is, when perturbations 
do not blow up but need not decay, is much cheaper. We only have to 
require that / A /  5 1 and need not worry about any further condition. 

In order to interpret equation 4.6, we assume a network where each 
neuron receives input from I I  neighbors' ( n  >> 1) through homogeneous 
couplings Ji, = Ji i  - j )  where i and j are vectors on a two-dimensional 
lattice and J C i )  is absolutely summable, that is, 1, iJ(i)I < x. There is no 

The condition FA - 0 as k 4 x means that the matrix 

'One can, but need not, think o f  the set o f  "neighbors" as a local ensemble. In the 
present context, i t  simply means the collection of presynaptic neurons. 
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harm in assuming cjJq = 10, whatever i. Equation 4.6 is now rewritten 

where h’, the denominator of equation 4.6, is the derivative of h in equa- 
tion 4.1 taken at time T. It is bound to be positive as the membrane 
potential approaches the threshold from below. Furthermore, we have 
introduced the mean shift J o ( h ( - P ) )  = &J,/S,(-P) with j ranging through 
the set of n neighbors of i. 

Let us assume that the mean shift ( h ( - ! ) )  vanishes for all 0 2 0. If 
the number of neighbors n is large and perturbations are random, then 
( S ( - B ) )  z 0 is a quite natural assumption. It is a simple consequence of 
the strong law of large numbers (Lamperti 1966; Breimann 1968). Given 
that (h(-P))  vanishes for all B, (h(1)) vanishes as well, a direct mathemat- 
ical consequence of equation 4.7. Vanishing mean time shifts characterize 
a class of perturbations and thus lead to a necessary condition for a coher- 
ent oscillation to be stable. If the above argument applies, which seems 
fair, then this condition is also sufficient. 

For the moment we simply set (6(-B))  = 0 and obtain from equa- 
tion 4.7 

This becomes truly simple for models with short-term memory where 
E ( S )  = ~ ( s )  = 0 for s 2 2T so that the contributions E; and 7 4  can be 
neglected for ! beyond 1 and equation 4.8 reduces to 

(4.9) 

This is what we have used to obtain the geometric construction of Sec- 
tion 2. Equation 4.9 tells us two things. First, if 10 E;  > 0, then the fraction 
on the right is less than one, and a perturbation is bound to decrease after 
each spike. On the other hand, once lo.; < 0 is not too large in abso- 
lute value, a perturbation has to increase in time and the oscillation is 
unstable. The denominator in equation 4.9 is h‘, that is, the derivative of 
equation 4.1 evaluated at time T.  Since T as given by equation 4.2 deter- 
mines the firing time and, on firing, the membrane potential approaches 
the threshold 19 from below, h’ is always positive. We end up with a 
dichotomy: the oscillation is stable if JO E;  > 0 and unstable for Jo E: < 0. 
Three final remarks concerning equation 4.9 are in order. 

First, lo E; > 0 means that firing occurs while the postsynaptic poten- 
tial is increasing. Second, if the neuron has forgotten its past before the 
next firing so that vl vanishes, then it is bound to reappear ”in phase,” 
and the oscillation is asymptotically stable. Finally, a simple geometric 
illustration of the stability proof can be found in Figure 4. 
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Figure 4: Geometric illustration of the locking argument. All neurons have 
fired at t = 0 except for a single neuron, which is late by an amount h" > 0. 
It fires again if 10 + lo:( t i (solid line) crosses the decreasing effective threshold 
ii ~- t i [  t ~- 6')) (dashed). The n e u r ~ n  is now late by an amount 6' < IlO as long 
as the dashed lines cross the rising part of s. One "sees'' this explicitly by 
comparing the projection ('1, indicated by an arrow, with if); both appear in the 
lower left-hand corner. If the dashed lines have intersections with the falling 
part of the response function s, then f i l  > I l o  and the coherent oscillation is 
bound t o  be unstable. 

What happens if we relax the condition of short-term memory? Neu- 
rons with a standard dynamics such as integrate-and-fire units have 
r/(s)' 2 0 for all s (cf. Fig. la). As shown in the Appendix, stability 
then leads to the requirement 

(4.10) 

In other words, also in the general case asymptotic stability of the locked 
state requires that the total synaptic input be increasing at the moment 
when the neurons fire. This proves the necessary condition mentioned 
in the locking theorem. In general, one or several terms in the sum 
(equation 4.10) may be negative as long as the sum of all terms is positive. 
In fact, under the side condition of vanishing mean time shift ( n  3 m), 
the condition (equation 4.10) is also sufficient to guarantee asymptotic 
stability. 

The reader may wonder whether one can do without the side condi- 
tion of vanishing mean shifts completely. The answer is yes, if we impose 
an additional constraint. We assume a standard dynamics and, in addi- 
tion, require I,, F : ~ ,  2 0 for all I 2 1. In other words, we have a network 
of inhibitory neurons whose postsynaptic potentials decay monotonically 
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or excitatory neurons whose potentials increase monotonically. Then the 
general stability matrix F as described by equation A.2 in the Appendix 
is a stochastic one. That is, its entries are nonnegative, and all row sums 
equal 1. The eigenvalues are in absolute value less than or equal to 1; it 
is indecomposable because of its special form (equation A.2); the eigen- 
value X = 1 is nondegenerate; the corresponding eigenvector (1.1. . . . -1) 
is to be excluded; and there is no way to reduce 5 to "cyclic form" so 
that all the other eigenvalues are in the open unit disc {A; 1x1 < l}  (Horn 
and Johnson 1985; Gantmacher 1959). We decompose the initial vector 6 
with respect to the eigenvectors of 5 (Jordan decomposition) and iterate. 
Since there is no eigenvalue with 1x1 = 1 present in the decomposition, 
all the X k  converge to zero as k + 00. So we are done. This applies 
in particular to a system of leaky integrate-and-fire neurons with purely 
inhibitory interactions. 

4.3 Nasty Counterexample. What happens if the mean time shifts do 
not vanish? We study a simple though somewhat academic example that 
serves to clarify the question: What is the response if all neurons have the 
same time shift 6( -P), which, however, is different for different e? That is, 
we assume that all neurons are synchronous but slightly aperiodic and 
study whether the network returns to a periodic state. The network's 
past clearly contradicts the requirement of vanishing mean time shift. 
Taking advantage of equation 4.7, we get 

(4.11) 

The corresponding matrix F (cf. the Appendix) now has the entries Foe = 

(V;+I + ~ O & ~ + I ) / ( C I ~ O V ; + ~  + l o ~ h + ~ )  for 0 I e I P,,, - 1 in the first row 
and F,,, = hP,,,+1 for ,u 2 1. Because all row sums equal 1, there is 
an eigenvalue X1 = 1 corresponding to the eigenvector (1, 1, 1. . . .), a 
uniform time shift. We ask whether all other eigenvalues are less than 
1 in absolute value. First we study a special case. Let us assume that 
7/;+1 + JooE;+l 2 0 for all e 2 0. We then arrive at a stochastic matrix and 
can repeat the arguments of the previous paragraph so as to conclude 
that all the other eigenvalues are in absolute value less than unity. Thus 
the neurons relax to the T-periodic state. 

In general, the situation is more complicated since v; + lo&; can be 
negative for some e. Take, for instance, em,, = 2. Then the eigenvalues 
are 1 (always present) and -FO~.  Thus, stability requires -1 < 501 < 1. 
We have the boundary condition 500 + Fol = 1. If 501 is outside the 
interval [--l.l], then the neurons can remain coherent but escape from 
the T-periodic state. The state that evolves out of such an instability can 
be a collective bursting with the intervals between the coherent spiking 
of the neurons varying systematically, for example, a limit cycle of period 
TI + TI where the collective interspike intervals alternate between TI and 
T2 (cf. the Appendix, nonvanishing mean time shifts). In contrast to 
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the intrinsic burster of Figure ld ,  this would be a network effect. The 
example shows that the condition of the locking theorem is necessary but 
need not be sufficient as soon as the side condition of vanishing mean 
time shift is to be dropped-for instance, because H is too small. Then 
additional requirements may, but need not, apply. 

Stepping back for an over\riew, we want to isolate what requirements 
guarantee that equation 4.10 is both a necessary and a sufficient condi- 
tion for a coherent excitation to be stable in a spatially homogeneous 
network of spiking neurons. There are two conditions. First, we have to 
restrict the network structure and require full or, at least, high connectiv- 
ity. In this case, any perturbation can be separated into a uniform time 
shift of all neurons and a set of single-neuron time shifts with vanishing 
mean. We have argued that both a vanishing mean and the absence of 
uniform time shifts are quite natural for system-inherent perturbations 
of a biological network where the number of neighbors IZ is large-the 
more so since coherent oscillations in the brain will last for only a finite 
amount of time. Second, to eliminate the-we admit, rather academic- 
possibility that different uniform time shifts A (  / )  lead to an "exploding" 
coherent oscillation, we would have to require, say, short-term memory 
with ;(s)  = r l ( s )  = 0 for 5 2 2T. Additional, especially experimental, 
work is needed to explore whether this requirement is really necessary 
or just academic. 

Our results also hold in randomly diluted systems and can be ex- 
tended to include variations of the parameters such as the delays (Ger- 
stner t>t 01. 1993). A similar analysis can be used to study semicollective 
oscillations where the neurons spontaneously divide themselves into two 
or more groups of synchronous units (Gerstner and van Hemmen 1993; 
Gerstner 1995). 

5 Discussion and Summary _ _ _ _ ~  

It is time to harvest some corollaries. Before doing so we discuss the 
essentials of our approach. We finish the paper with a summary. 

5.1 Discussion. What is the gist of what we have done? We have 
seen that (axonal) delays in the millisecond range are quite important. 
The mathematics of standard stability theory for systems with delays is 
very intricate (Hale 1977), not to say nasty, and the upshot, an entire 
function with infinitely many zeros, which all have to be located and 
proved to possess a negative real part, is hardly accessible to immediate 
analysis, if any. We have therefore proposed a more biophysical approach 
that directly tackles the time evolution of a perturbation: a collection of 
time shifts. 

In Section 2, Figures 2 and 3, we have shown that coherent oscillations 
can exist in a system with purely excitatory interactions provided the de- 
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Figure 5: Geometric method: Combination of excitatory and inhibitory cou- 
plings. All neurons have fired at t = 0. The next spike occurs once 10 + Jo€(t) 
(solid line) crosses the decreasing effective threshold 8 - q ( t )  (dashed line). We 
assume short-range inhibition (short delay) and long-range excitation (long de- 
lay). The excitatory and inhibitory contributions are indicated by dotted lines. 
The sum of both yields the postsynaptic potential joe(t). The oscillation with 
period T is stable (s) since 7[ = 0. A similar construction applies to the case of 
excitation with short delay and inhibition with long delay. 

lays are long enough, that is, exceed a lower bound. On the other hand, 
in networks with purely inhibitory interactions, coherent oscillations are 
always stable, provided the delay is less than some upper bound. Most 
neurobiologically relevant systems, however, consist of a mixture of both 
excitatory and inhibitory interactions. Here we consider two models, 
which are, in a sense, each other’s opposite. First, the inhibitory inter- 
action is assumed to be short range and, hence, is to be associated with 
short delays. On the other hand, the excitatory interaction is long range 
and thus equipped with long delays. As is exemplified by Figure 5, here 
too a collective oscillation is stable. A companion model is the one with 
short-range excitation and long-range inhibition. One easily verifies that 
a similar construction shows that this setup also allows for stable coherent 
excitations. It is fair to summarize these results by saying that stability 
is determined by a subtle interplay between axonal delays, postsynaptic 
potentials, and refractory behavior. 

Gerstner et al. (1993) and Ritz et al. (1994) have extensively studied a 
system with medium- or long-range excitatory interactions and a strictly 
local inhibition so as to represent a local but finite-range inhibitory inter- 
action in a simplified way. ”Strictly local” means that each neuron has 
a self-inhibitory loop with delay A. The analytical and computational 
advantages are evident, but one may wonder whether this setup can be 
integrated into the present formalism. The answer is in the affirmative 
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as  one sees most easily by noticing that a self-inhibitory loop is nothing 
but a kind of refractory behavior and thus can be incorporated in rl. 

5.2 Integrate-and-Fire Neurons Revisited. Finally, it may be worth- 
while to discuss a subtler, though truly academic, case that has excitatory 
couplings with zero delay and postsynaptic potentials with a very short 
rise time. Most of the integrate-and-fire models studied so far belong 
to this class (Mirollo and Strogatz 1990; Abbott and van Vreeswijk 1993; 
Tsodyks et nl.  1993; Treves 1993; Usher et nl.  1993). Because interactions 
are now instantaneous, neurons receive an excitatory postsynaptic po- 
tential as soon as one of the presynaptic neurons fires. In particular, a 
neuron that is late as compared to a collective oscillation experiences an 
extra contribution to its membrane potential (equation 4.4) of the form 
s, /,,:(f). In other words, we have to include the i = $1 term in equa- 
tion 4.4. If we start linearizing the shifts Clf we have to take care of an 
extra term :'((I). 

More precisely, let us assume that lim>+)+ d:(s)/ds >> 0. Admittedly, 
this is somewhat academic but illustrates the underlying locking principle 
quite nicely. The function :is) is not differentiable at s = 0 since ~ ' ( 0 )  = 0 
for s < 0 so Iim.-,,- dr(s) /ds  = 0. Hence a straightforward linearization 
at 5 = 0 is not possible. Nevertheless, we can derive analytical results 
if we work out the case of positive (by > 0) and negative shifts (if < 
0) separately. Let us focus on the situation where a single neuron i is 
too early ( h p  < 0) and all other neurons are firing too late by a small 
amount b') > 0 so that ( b y )  = 0. In this case, we can use equation 4.9 
with (formally) r' < 0. Thus, ib,'I > I"pI and the shift increases. On the 
other hand, a neuron that is late by an amount b! > 0 will experience 
an input due to not only the firings of previous cycles but also to the 
spikes of the very same cycle. Thus, we have to include a contribution :x 
lim,-o $ z ( s )  >> 0. This gives a large, positive contribution and results in a 
new effective E' >> 0. Thus a neuron that is late with respect to a collective 
oscillation receives a strong locking signal and is immediately pulled back 
into synchronous firing. A neuron that fires too early, however, will fire 
even earlier during the next cycle (cf. Fig. 6). In principle it may happen 
that after several cycles, the neuron is early by nearly a full period. In 
this case we can consider it as being late as compared to the previous 
cycle, and, thus, i t  will be pulled into the collective oscillation. In the 
long run, it may happen that a collective oscillation rebuilds itself even 
though it is locally unstable. Since our mathematical argument is a local 
one and the above considerations are global, we cannot predict whether 
this actually happens. 

Mirollo and Strogatz (1990) have shown that for some models with 
delay less interactions, a collective oscillation is indeed the only solution. 
A different form of a global argument has been put forward by Herz 
and Hopfield (1995; Hopfield and Herz 1995), who analyze a system 
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Figure 6: Excitation with zero delay. (a) In a coherent oscillation, neurons 
would fire with a period T given by the intersection of the decreasing effective 
threshold fi - q (dashed) and the excitation JOE. The whole pattern is repeated 
with period T. (b) If one of the neurons fires too early at time f = T + 6' with 
5' < 0 or too late, if 6 O  > 0, the decreasing threshold is shifted to the left or to 
the right, respectively (dotted lines). A shift to the left is increased after another 
period; a shift to the right is decreased. Thus, a neuron that has fired too late 
will be pulled back into the collective oscillation (short bar to the right of 2T), 
whereas a neuron that has fired too early drifts away (long bar to the left of 2T). 

of nonleaky integrate-and-fire neurons with excitatory nearest-neighbor 
couplings J I I  2 0 and indicate a Lyapunov function under the conditions 
&J, = J and C,J, = J. Their "ingoing" condition &], = J, whatever 
i, is directly understood once we invoke the geometric method so as to 
construct the solution self-consistently. As we have seen, local stability 
with four nearest neighbors is easily obtained, but it is hard to prove 
global stability. It is exactly here that a Lyapunov function pays off. It 
can be shown that for their nonleaky system with excitatory interaction, 
a whole family of solutions exists including the fully coherent state, par- 
tially synchronized states, and asynchronous firing (Herz and Hopfield 
1995). 
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5.3 Summary. In summary, being very conservative and, thus, drop- 
ping all side conditions, we have proved that a collective oscillation in a 
fully connected network of spiking neurons with standard dynamics and 
short-term memory [ / / i s )  = 0 for .s 2 2T where T is the oscillation period] 
is an asymptotically stable solution, if firing occurs while the response 
due to the input from other neurons (i.e., the postsynaptic potential) is 
increasing. More generally, if neuronal memory lasts longer and/or if 
the neurons receive input from i i  < N presynaptic neurons, then an in- 
creasing postsynaptic potential is necessary but need not be sufficient 
for coherent spiking. The condition is the more stringent the larger the 
number 17 of interacting neighbors. In fact, we have argued that in n 
spatially homogeneous network with I I  of the order of one thousand or 
more stability is guaranteed under the single condition of an increasing 
postsynaptic potential as the neurons fire. 

As a consequence of our locking theorem, one can analyze existence 
and stability of a coherent oscillation through a purely geometric method, 
as sketched in Section 2. Stability holds for purely inhibitory interactions 
with practically arbitrary delays less than a large upper bound A < A::!k 
and for purely excitatory input with delays exceeding a positive lower 
bound A Agk,, which depends on the network parameters. Delay- 
less excitatory interactions are locally unstable, and all neurons that fire 
too early will drift away from the collective oscillation. We have also 
studied the case with both short-range inhibitory and long-range exci- 
tatory interaction--or the other way around-and found that coherent 
oscillations are abundantly present. This observation is also supported 
by a stability analysis of incoherent firing states. It can be shown that 
incoherent states are almost always unstable, and low-amplitude oscilla- 
tions can form spontaneously (Abbott and van Vreeswijk 1993; Gerstner 
and van Hemmen 1993; Gerstner 1995). In other words, oscillations in a 
network of spiking neurons seem to be be omnipresent, and one has to 
explain why they are not found that abundantly in nature. That, maybe, 
is an interesting problem, which so far has not been faced. 

Appendix 

In this Appendix we exhibit the full mathematical structure associated 
with the stability matrix F as defined in equation 4.6. First, we discuss the 
general mathematical framework; then we perform the stability analysis 
for equation 4.8. 

General Formalism. Because of spatial homogeneity, there was no 
harm in assuming I ,  = lo, whatever 1 .  We define h’ to be the denomi- 
nator of equation 3.6, denote by J the matrix (]!!) and by 1 the unit matrix, 
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and rewrite the equation as 

During the next time step, S,(l)  also belongs to the past. So we are 
working in the Hilbert space Ft, which is a direct sum of R~ with the 
usual inner product, labeled by l running from 0 to L,,, - 1. Both rli 
and 6; vanish for l beyond P,,,, the minimal one that does this job. In 
H we define p by a matrix whose elements are operators. Its first row 
stems from equation A.l, whose left-hand side is now called 6(0), and 
the other rows follow from the observation that, after one period, the 
present has been shifted into the past, and so on. That is, (~5)(-1) = 6(0), 
(~6) ( -2)  = 6(-1), . . . so that row p is of the form b l L , , + l l .  Thus we obtain 
the matrix 

A(1) A(2) A(3) ‘ .  A(!max - 1) A(4nax) 

0 

1 0 0 “ ’  0 
0 1 0 . . ’  0 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  i 0 0 0 ‘ f .  1 

Proving asymptotic stability of a coherent oscillation means showing that 
limk--i3L ~ ~ ( 6 )  = 0 for fixed S. It is the matrix (A.2) that has to be iterated. 

Stability for Vanishing Mean Time Shifts. Here we study equa- 
tion 4.8. The summations on the right-hand side have 0 5 P 5 P m a x  - l. 
The mean time shifts vanishing, the problem becomes local, restricted to 
i, its dimension is reduced by 1/N as compared to A.2 to P,,,, and we 
are left with a matrix whose first row has the entries Fop = A(P + 1) = 

77i+1/(Cy ~ i i + ~  + 10 Xu E;+,), the other entries being F,, = ShL.v+l once 2 1, 
and 0 5 I, LL. v 5 l,,, - 1. That is, the dimension of the problem equals 
tmax. We have to estimate the eigenvalues of F. In the case of short-term 
memory, we are left with a 1 x 1 matrix-the fraction in equation 4.9. In 
the case of a standard dynamics, all the 17; are nonnegative. Furthermore, 
X u  v;+~ + 10  Ca = k’(T) > 0 tells us that the threshold in equation 4.2 
is reached from below. Hence all the entries of F are nonnegative. That 
is, F is a ”positive” matrix. 

Positive matrices have remarkable properties (Horn and Johnson 1985; 
Gantmacher 1959). We list a few of them. They have a natural order: 
A 2 0 if and only if A ,  2 0 for all entries of the matrix A,  and A 2 B if 
and only if A - B 2 0. Let p(A)  denote the maximal 1x1 of the eigenvalues 
X of the matrix A. By good reason p(A) is called the spectral radius. For 
A 5 B,  one has p(A) 5 p ( B ) .  Adopting for vectors x the convention 
x > 0 once x, > 0 for all i, one can show that Ax = Ax with A 2 0 
and x > 0 implies X = p(A).  Moreover, if A”’ > 0 for some rn (i.e., A is 
irreducible), then this eigenvalue is nondegenerate (simple) by a classical 
theorem of Perron and Frobenius, x > 0, and, for the (noncyclic) matrix 
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under consideration, it is the only eigenvalue X with 1x1 = / ) ( A ) .  The 
other eigenvalues are smaller in absolute value. As long as all the row 
sums are 5 1, so are all the 1x1 (by the Gersgorin circle theorem [Bellman 
19701, say). We now return to our problem. 

The sum C / A ( I )  equals 1 if and only if \,I El  E: ,~  = 0. Then F is a 
stochastic matrix and its eigenvector x = (1.1.1. . . .) > 0 belongs to the 
eigenvalue /)(IF) = 1. In passing we note that the characteristic polynomial 
of F equals 

1-1 

so that X = 1 is evidently an eigenvalue. Let 6 be a matrix with Cr E ; + ~  < 
0 or, equivalently, 1, A ( ( )  > 1. We now allow the A ( ( )  2 0 to increase 
from their old values belonging to IF to their new ones associated to IF. 
That is, we decrease some of the E ~ + I  and in so doing increase some 
of the A ( { ) .  We would like to stress that we can always arrange the 
transformation from F to 6 this way. 

Let us start with A({t l )  and write F (  ti) = ? + t iX  where X has a single 
1 in the first row at := and zeros everywhere else. By increasing ti 

through ti = 0 we push the eigenvalue corresponding to p( F) = 1 through 
1 at a positive rate since by perturbation theory (Kato 1966) for ti = 0 

/ j ( F ( h - ) )  = (,(F) t h . ( y . X X ) .  ('4.3) 

Here y = F+y is the eigenvector of the Hermitean adjoint matrix IF' be- 
longing to the eigenvalue /,(!;*) = 1; this matrix is also positive. The 
inner product (y. X x )  := y,ls,,, is strictly positive since y > 0, either by 
direct computation or from general considerations. Thus for t i  > 0 we 
find /)( F(K i > 1 whereas for ti < 0 we obtain /)(IF) < 1 as a consequence 
of A 5 B,  implying /,(A) 5 p(B). Increasing the entries A ( ( )  one after the 
other, we arrive at the full matrix ? with p(6 )  > 1. The corresponding 
eigenvector is not the uniform shift (1. 1 ) and therefore cannot be 
excluded. This finishes the proof that > 0 is necessary and 
sufficient so as to guarantee that a coherent oscillation is asymptotically 
stable under perturbations with vanishing mean time shift. 

Stability for Nonvanishing Mean Time Shifts. We now study a sit- 
uation where all neurons have a common, nonzero, time shift h ( 0 .  The 
evolution of the time shift is given by equation 4.11, which reduces in 
the case = 2 to 

with eigenvalues Xo = 1 and XI = - F c l .  The eigenvector to X i  is (-Fol. 1). 
Let us assume Fol > 1 and consider a perturbation along the eigenvec- 

tor corresponding to the eigenvalue XI. Specifically, we take h ( - 1 )  = b 
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(that is, the second last firing has been delayed by a small amount 6) and  
S(0) = -Fol S (that is, the last firing was too early by F o l 6 ) .  An application 
of equation A.4 yields that the next firing is too late by S(1) = F& 6, the 
following firing is again too early by S(2) = -F& 6, and so on. It follows 
that, for Fol > 1, the system evolves toward a bursting state where long 
and short intervals alternate. For Fol < -1, the delay increases mono- 
tonically as time proceeds. The present argument is a linear stability 
analysis and holds in the neighborhood of the oscillatory state only. It 
cannot predict the new limit state that the system approaches. 
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