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Single electrode recordings in the inferotemporal cortex of monkeys 
during delayed visual memory tasks provide evidence for attractor dy- 
namics in the observed region. The persistent elevated delay activities 
could be internal representations of features of the learned visual stim- 
uli shown to the monkey during training. When uncorrelated stimuli 
are presented during training in a fixed sequence, these experiments 
display significant correlations between the internal representations. 
Recently a simple model of attractor neural network has reproduced 
quantitatively the measured correlations. An underlying assumption 
of the model is that the synaptic matrix formed during the training 
phase contains in its efficacies information about the contiguity of per- 
sistent stimuli in the training sequence. We present here a simple 
unsupervised learning dynamics that produces such a synaptic matrix 
if sequences of stimuli are repeatedly presented to the network at fixed 
order. The resulting matrix is then shown to convert temporal correla- 
tions during training into spatial correlations between attractors. The 
scenario is that, in the presence of selective delay activity, at the presen- 
tation of each stimulus, the activity distribution in the neural assembly 
contains information of both the current stimulus and the previous one 
(carried by the attractor). Thus the recurrent synaptic matrix can code 
not only for each of the stimuli presented to the network but also for 
their context. We combine the idea that for learning to be effective, 
synaptic modification should be stochastic, with the fact that attractors 
provide learnable information about two consecutive stimuli. We cal- 
culate explicitly the probability distribution of synaptic efficacies as 
a function of training protocol, that is, the order in which stimuli are 
presented to the network. We then solve for the dynamics of a network 
composed of integrate-and-fire excitatory and inhibitory neurons with 
a matrix of synaptic collaterals resulting from the learning dynamics. 

The network has a stable spontaneous activity, and stable delay 
activity develops after a critical learning stage. The availability of a 
learning dynamics makes possible a number of experimental predic- 
tions for the dependence of the delay activity distributions and the 
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correlations between them, on the learning stage and the learning pro- 
tocol. In particular it makes specific predictions €or pair-associates 
delay experiments. 

1 Introduction 

1.1 Correlated Delay Activities: Experiment and Theory. In the past 
20 years there has been a wealth of evidence for the existence of lo- 
cal reverberations of cell assemblies in the inferotemporal cortex (Fuster 
and Jervey 1981; Miyashita and Chang 1988; Miyashita 1988; Sakai and 
Miyashita 1991; Tanaka 1992), prefrontal cortex (Fuster 1973; Niki 1974; 
Goldman-Rakic 1987; Wilson ef al. 1993), and other areas of primates dur- 
ing delayed visual memory tasks (for a review see Fuster 1995). Together 
with experimental data, models have been proposed to account for the 
persistent delay activities (Dehaene and Changeux 1989; Zipser e l  al. 1993, 
Griniasty et al. 1993), in which excitatory recurrent synapses store the in- 
formation about the visual stimuli. The experiments of Miyashita (1988) 
on the activity in the inferotemporal (IT) cortex of monkeys trained to 
perform a delayed matching to sample task have disclosed significant 
correlations in the persistent activation of cells in the delay period fol- 
lowing the presentation of uncorrelated stimuli, when they are presented 
during training in a fixed sequence. 

Theoretical studies (Griniasty ef a/ .  1993; Amit rt al. 1994; Brunel 1994) 
have demonstrated that attractor neural networks, which embed in their 
synaptic structure information about contiguous stimuli learned in a se- 
quence, have correlated delay activities even though the learned stimuli 
are uncorrelated.' It may be worth pointing out that when stimuli arrive 
at IT, they may be uncorrelated because they have been so prepared or 
because they have been decorrelated on the way (Barlow 1961; Linsker 
1989; Atick 1992). In the model networks, the delay activity provoked 
in the neural assembly by the presentation of a given learned stimulus 
is correlated with the delay activity corresponding to other stimuli un- 
til a separation of several stimuli in the training sequence, despite the 
fact that the synaptic matrix connects only consecutive stimuli in the se- 
quence. The appearance of such correlations between the different delay 
activities is a transcription, during the learning process, of temporal cor- 
relations in the training information, into spatial (activity distribution) 
correlations of the internal representations of the different stimuli. The 
network therefore has a memory of the context of the presented stimuli. 
Some cognitive implications of this context sensitivity have been outlined 
in Amit (1995). 

'In these models an attractor is defined as the stable state reached by the system 
after the presentation of a stimulus, that is, the ensemble of persistent delay activities 
in the network. 
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The model simulated by Amit et al. (1994) consists of a network 
of integrate-and-fire neurons represented by their current-to-spike rate 
transduction function (Amit and Tsodyks 1991). Such neurons are taken 
to represent the excitatory neurons of the network, the pyramidal cells. 
It is in the synaptic matrix connecting these neurons that learning is 
manifested. The synaptic matrix, representing the training process, is 
constructed to represent the inclusion of the information about the con- 
tiguity of patterns in the training sequence, as in Griniasty et al. (1993). 
Inhibition is taken to have fixed synapses, and its role is to react in pro- 
portion to the mean level of activity in the excitatory network, so as to 
control the overall activity in the network. The delay activities are in- 
vestigated by presenting to the neural module one of the uncorrelated 
stimuli as a set of afferent currents into a subset of the excitatory neu- 
rons. These currents are removed after a short time, and the network is 
allowed to follow the dynamics as governed by the feedback represented 
in the matrix of synaptic collaterals. Eventually the network arrives at 
a stationary distribution of spike rates, that is, an attractor. This is the 
delay activity distribution corresponding to the stimulus that excited the 
network. Simulations of the model (Amit et al. 1994) are in quantitative 
agreement with the experimental data of Miyashita (1988). 

The dynamics of the model has been solved analytically in simplified 
conditions (Brunel 1994). This makes possible the explicit calculation 
of the correlations between the internal representations as a function of 
the parameters of the model. The main parameters controlling these 
correlations are the strength of the inclusion of the contiguity between 
stimuli in the synaptic matrix, relative to the strength of the inclusion of 
the stimuli themselves, and the balance between recurrent excitatory and 
inhibitory synaptic efficacies. The analysis deduces the mean fraction of 
neurons activated by a given stimulus (coding level, or sparseness) in the 
observed region, from the experimental data of Miyashita (1988). This 
makes possible the calculation of the correlation coefficients, which are 
again in quantitative agreement with all the available experimental data 
(see Fig. 9 of Brunel 1994) and the simulations of Amit et al. (1994). 

These previous studies used a fixed, prearranged synaptic matrix. In 
Amit et al. (1994) and Brunel (1994), the matrix was chosen to be simi- 
lar to the Willshaw matrix (Willshaw et al. 1969), with a limited number 
of synaptic states. Memory is coded exclusively in the excitatory-to- 
excitatory synapses. An important result (Amit et al. 1994) is that the 
correlations are rather insensitive to the particular matrix chosen, pro- 
vided it is Hebbian and that it includes the memory of the contiguity 
between stimuli. 

What is missing in these studies is a plausible dynamic learning pro- 
cess leading to a synaptic matrix that incorporates information of the 
temporal context of the stimuli shown to the network. A simple Heb- 
bian stochastic learning process has been discussed in Amit and Fusi 
(1994) and Amit and Brunel (1995), but such a learning process does not 



1680 Nicolas Brunel 

lead to temporal correlations in the formed attractors. The problem of 
learning the temporal associations of stimuli is the issue addressed in the 
present study. 

1.2 The Present Work. In this paper we discuss a possible scenario 
for learning in the presence of delay activity, which naturally leads to the 
inclusion of temporal correlations between stimuli in the synaptic matrix. 
The scenario is that first uncorrelated attractors are formed. An attrac- 
tor then carries information from the stimulus that provoked it until the 
presentation of the next stimulus. This information allows for a simple 
synaptic mechanism to store the memory of the context of any stimulus. 
We study the case of a finite set of stimuli that are repeatedly shown to 
the network. In the simplified case in which every excitatory neuron in 
the network is activated by at most one stimulus (Brunel 1994), it is pos- 
sible to calculate explicitly the probability distribution of every synaptic 
efficacy as a function of the learning procedure. If stimuli are shown 
repeatedly in a fixed order during learning, the resulting synaptic matrix 
is similar to the fixed matrix used in Amit e t a / .  (1994) and Brunel (1994). 
Given the synaptic matrix, we solve for the neural dynamics of the at- 
tractor network as in Brunel (1994), when one of the stimuli is presented. 

The network we study is composed of a large number of excitatory 
and inhibitory integrate-and-fire neurons, described by the statistics of 
their afferent currents and their spike emission rates. The network repre- 
sents a local module, similar to a cortical column, embedded in a much 
larger sea of neurons (the entire cortex). The module can be distinguished 
from the global network by two features: the high local excitatory con- 
nectivity and the range of inhibitory interactions (Braitenberg and Schiiz 
1991). Such a network has a stable state of low activity in which all 
neurons have a spontaneous activity of the order of one to five spikes 
per second in a plausible region of parameters (Amit and Brunel 1996). 
Furthermore, when learning occurs in the local module, and the synap- 
tic modifications are strong enough, a set of attractors correlated with 
the stimuli presented to the network develops. In each attractor a small 
subset of the excitatory neurons-the neurons activated by a particular 
stimulus-have elevated delay activities, on the order of 20 to 40 spikes 
per second. We chose to study both learning and retrieval dynamics in 
this network since the activity in its attractors is roughly in agreement 
with recorded data during visual memory experiments in both the infer- 
otemporal and prefrontal cortex. 

When learning occurs in the present network, on repeated presenta- 
tion o f  stimuli, uncorrelated attractors are initially formed. These attrac- 
tors make possible the inclusion of temporal correlations between stimuli 
in the synaptic matrix. This in turn provokes significant correlations in 
the delay activities corresponding to stimuli that have been shown repeat- 
edly contiguously to the network. Therefore the correlations between the 
internal representations of different stimuli reflect their context. 
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Using a plausible learning process, one reproduces the results found 
in the previous studies, which are in good agreement with experimental 
data (Miyashita 1988). This is not surprising since the synaptic matrix 
resulting from many presentations of the stimuli is quite similar to the 
matrix that was postulated in Amit etal. (1994) and Brunel(l994). One es- 
sential novelty is that the entire phenomenon takes place in the presence 
of stable spontaneous activity. The advantage of using a more realis- 
tic neural model is that neurons have both spontaneous and selective 
activity roughly in the range of the recorded data. 

The analysis of the learning dynamics made in this paper allows the 
prediction of: 

0 The evolution of the delay activities and the correlations between 
the internal representations during training, for a fixed training pro- 
cedure. 

0 The dependence of the correlations on the training procedure. 

The predictions of the theory are accessible to experiments as in 
Miyashita and Chang (1988), Miyashita (1988), and Sakai and Miyashita 
(1991). We focus the analysis on two particular cases: 

1. Training with stimuli in a fixed sequence (as in Miyashita 1988). 

2. Training with associated pairs (as in Sakai and Miyashita 1991). A 
set of stimuli is divided into pairs; stimuli in each pair are presented 
in fixed order; and pairs are presented at random. 

We also show how it is possible to deal with intermediate cases, as 
when the sequence of stimuli is interspersed with random items. 

The paper is organized as follows. In Section 2 we present in detail 
the model network and its elements. In Section 3 we present a simple sce- 
nario of synaptic dynamics that incorporates both associative long-term 
potentiation (LTP) and long-term depression (LTD). Then we describe a 
typical protocol of a visual memory experiment in which a delay pe- 
riod always follows the presentation of a stimulus. We show that in this 
situation, the analog synaptic dynamics reduces to a stochastic process 
acting on a two-state synapse. We then study in detail which kind of 
synaptic transitions may occur, depending on whether there is selective 
delay activity following the presentation of a stimulus. In Section 4 we 
study the situation of a small set of stimuli repeatedly shown to the net- 
work. In this case we calculate explicitly the probability distribution of 
the synaptic efficacies of the network as a function of the learning stage 
and of the learning protocol. Then, in Section 5, we study the network 
dynamics and show the influence of the synaptic dynamics on the de- 
lay activity, which is stabilized by the network after the presentation of 
a learned stimulus. This allows the study of the structure of the delay 
activity distributions as a function of the learning stage and the learning 
protocol. 
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2 The Model Neurons 

Each neuron in the network receives three types of inputs: from recur- 
rent (collateral) excitatory connections from other neurons in the same 
network; from inhibitory neurons inside the network; and from excita- 
tory neurons in other, unspecified, areas. The collateral connectivity in 
the network has no geometric structure; a neuron has equal probability 
(about 0.1) of having a synapse on any other neuron. 

Both excitatory and inhibitory neurons are leaky integrate-and-fire 
neurons described by the statistics of their input currents, which deter- 
mines their firing rates (Amit and Brunel 1996). Each type of neuron is 
characterized by a threshold H,,, a postspike hyperpolarization H,,, and 
an integration time constant T,,, with ( I  = E .  I indicating whether the neu- 
ron is excitatory or inhibitory, respectively. A neuron i of type o receives 
a large number of afferent spikes per integration time (Amit and Brunel 
1996), and hence a gaussian white noise input current of mean 1;' and 
standard deviation mi ' ,  through C,, synaptic contacts, which are divided 
in C,,i excitatory synapses and C,,, inhibitory ones. 

The synapses in the network are of four types, depending on all the 
possible types of pre- and postsynaptic neurons. For each synaptic type, 
the efficacies I,, ( i  and j denote the post- and presynaptic neuron, respec- 
tively) are drawn randomly from the distribution P,, {(I) ( ( I  and ,1 denote 
the type of post- and presynaptic neuron, respectively). P,,., has mean 

and standard deviation J<,,{A, where A represents the variability in 
the synaptic amplitude. A fraction s,, of the excitatory connections on 
a neuron of type ( t  arrive from outside the network. The excitatory- 
to-excitatory connections are plastic: the distribution PFr(J)  specifies the 
distribution of excitatory-to-excitatory links before the learning stage. As 
we will see, learning will modify this synaptic distribution. 

The spike rate of excitatory neuron i is v,!. The rate of inhibitory 
neuron is i 11:. The input currents from outside the column are described 
by a white noise with mean c" and standard deviation 07'. The input 
currents are provoked, in the absence of a stimulus, by the background 
activity outside the network. In the presence of a stimulus, the input 
currents are the sum of the background input and the input provoked 
by that stimulus. 

We assume that the correlations between the spike emission times 
o f  different neurons in the network do not affect their spike rates sig- 
nificantly. Thus we consider the spike emission processes of different 
neurons in the network as uncorrelated. In this case the mean and vari- 
ance of the input current to a neuron in the module are the sum of three 
independent contributions, coming from external excitatory, recurrent ex- 
citatory, and inhibitory currents (see Amit and Brunel 1996): 
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Figure 1: Current-to-frequency transduction function v = d(1.a) for H = 20 
mV, H = 0, 7 = 10 ms, TO = 2 ms and three values for the amplitude of the 
fluctuations of the currents a = 0 (full line), 2 mV (dashed line), and 5 mV 
(dotted line). 

and 

These currents are integrated by the membrane depolarization at the 
soma with a time constant 7,. The firing rate of neuron i of type (t is 
given by 

where 

is the transduction function (Ricciardi 1977), which depends on the abso- 
lute refractory period 70, the threshold O,, and postspike hyperpolariza- 
tion, or reset potential, Ha. The function 4 is plotted as a function of I for 
three different values of CT in Figure 1. It shows that the fluctuations of 
the currents have a significant effect on the spike rates when the average 
current depolarizes the neuron below threshold. Note that the precise 
form of the transduction function, equation 2.3, is not necessary for the 
qualitative features of the behavior of the network. 

In the following we take BE = 6’1 = 20 mV above the resting potential; 
HE = HJ = 0; TE = 10 ms; = 2 ms; and 70 = 2 ms. 
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The connectivity parameters are xF = 11 = 0.5; C ~ E  = Crr = 20000; 
and C ~ I  = GII = 2000. The average synaptic efficacies are expressed 
by the amplitude of the (excitatory or inhibitory) postsynaptic potential 
provoked by a spike, and thus in units of the potential: = 0.04 mV; 
Ill: = = 0.14 mV; 1" = 0.05 mV. The synaptic variability is taken to 
be 1 = 1. The synaptic external input has mean P"' = 11 mV and RMS 
d"' = 0.9 mV into excitatory neurons and P"' = 8.6 mV and RMS 1.6 mV 
into inhibitory neurons. These currents correspond to the activation of all 
the excitatory synapses coming from outside the network at a background 
rate of 3 sC1. For these parameters, the network has a stable state of 
spontaneous activity in which excitatory neurons emit about 3 spikes 
per second, while inhibitory ones emit 4.2 spikes per second. 

Note that this set of parameters is in a biologically plausible region 
(Braitenberg and Schiiz 1991; Komatsu ef al. 1988; Mason et al. 1991). 
The excitatory-to-excitatory synaptic efficacy is slightly smaller than the 
reported range of unitary excitatory postsynaptic potentials (EPSPs) in 
the neocortex and hippocampus, but we have here a neuron that sums 
linearly its inputs. When the input is nonlinear, a larger number of 
EPSPs are necessary to reach threshold than for a linear input, so the 
effective synaptic efficacy would be smaller than the reported values in 
thc case of a large number of inputs. In fact, the qualitative features to be 
discussed are fairly robust to small changes in the synaptic efficacies. If 
the inhibitory efficacies are weakened too much relative to the excitatory 
efficacies, the spontaneous activity state becomes unstable (Amit and 
Brunel 1996). 

3 Learning Dynamics 

3.1 Analog Short-Term Synaptic Dynamics. Excitatory-to-excitatory 
synapses in the network are plastic. Hebbian learning is modeled by a 
synaptic dynamics that incorporates both associative LTP and LTD (Amit 
and Brunel 1995): 

T c / l l ( t )  = -/iiif) + c l i i t i  (11 ~ l o ) (+ ( ] ! l ( f I  - 1 ~ 1 ~ ~ ( f ) )  + 10. (3.1) 

It is basically an integrator with a time constant T~. ,  The integrator 
has a structured source c0( t ) ,  representing Hebbian learning. This source 
is given in terms of the neural rates, r : ( t )  and uJ ( t ) ,  of the two neurons 
connected by this synapse as 

(3.2) 

X ~ are positive parameters separating potentiation from depression. 
Their values are chosen so that when the rates of both neurons are high, 
c,, >O; if one is high and one is low, c,, <0; and if both are very low, cli is 
negligible. 

c J t )  = X+v,(t)r/,(t) ~ A C \ / / l ( t )  + / / ! ( t ) ] .  
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The last term on the right-hand side of equation 3.1 is the "refresh" 
mechanism discussed in detail in Badoni et al. (1995). It represents one 
way of preventing the loss of memory due to the decay of the integrator 
when no source is present. If at any given moment the source c,,(f) 
exceeds the fluctuating threshold wll( t ) ,  a refresh source turns on to drive 
the synapse to the high value 11. If later the source vanishes, this synaptic 
value will remain above its threshold, and the efficacy JI will be stable 
indefinitely. On the other hand, if the instantaneous synaptic value is 
low, either because it started low or because it was high and the learning 
source was negative enough, the refresh source turns off, and in the 
absence of a source, that synapse decays to 10. This is the other long- 
term, stable state of a synapse. The transition of a synapse from the 
lower stable state to the upper one is identified with LTP. The opposite 
transition is LTD. This type of learning is effective in the sense that it can 
be (and has been) implemented in a material device (Badoni et al. 1995). 
It also incorporates the experimentally characterized distinction between 
short-term synaptic plasticity, represented by the analog dynamics driven 
by the source cll in equation 3.1, and long-term changes, represented by 
the stable synaptic states 11 and Jo separated by the threshold (see, e.g., 
Bliss and Collingridge 1993). 

The threshold is taken to be fluctuating to make the learning process 
more realistic. Here we have chosen to put noise on the threshold, but 
we could have chosen a fluctuating source cl,, whose average would be 
the right-hand side of equation (3.2). Interestingly enough, it has been 
shown that when synaptic transitions are stochastic, the capacity of the 
network is enhanced with respect to deterministic transitions (Amit and 
Fusi 1994), though learning will be slower. 

As a consequence, in the absence of the source term, each synapse has 
two asymptotically stable values, 10 and JI .  We further assume that the 
fluctuations of the threshold are limited to an interval [Jo + O+. - 0-1. 
The fluctuating threshold therefore defines a potentiation threshold 0+ 
such that if the synaptic value is initially low, there is a finite transition 
probability Jo + JI when the source c,, > 0, and a depression threshold 0- 
such that if the synaptic value is initially high, there is a finite transition 
probability 11 + 10 when c,, < -&. These thresholds are such that lo < 
Jo + H, < J1 - 8- < 11. In Figure 2 we illustrate two examples of the 
evolution of the synaptic efficacy on presentation of a stimulus. In both 
cases the synaptic efficacy is initially at 10 and the source term c,, is higher 
than the threshold H+. In the upper part of the figure, the synaptic efficacy 
does not cross the fluctuating threshold and decays to its low stable value 
after the stimulus is removed. In the lower part of the figure, the synaptic 
efficacy crosses the threshold and is driven to the high state JI, which is 
stable in absence of a stimulus. 

3.2 Learning Protocol and External Currents. The schematic learn- 
ing protocol we model is as follows. The stimuli shown to the network 



1686 Nicolas Brunel 

0.2 I I I 

0.1 5 , ..l.................................................- J 

...................................................... J1 - 8- 
,.--\*-- ,,~, ,,-.-"-",, /--- *- 

Figure 2: Analog synaptic dynamics. Synaptic efficacy (solid line) initially at  lo. 
A n  external stimulus imposes cI,  > H -  during the interval 50 < t < 150. In the 
upper part of the figure, the synapse does not cross the fluctuating threshold 
(long-dashed line) and remains in its low state l ~ .  In the lower part of the figure, 
the synapse crosses the fluctuating threshold and makes a transition toward the 
high state ) I .  Parameters: ],I = 0.04 mV; = 0.15 mV; 0, = 0.04 mV; H -  = 0.04 
mV (short-dashed lines). 

are labeled by = 1. .  . .  . p .  During the presentation of stimulus / I ,  the 
mean external current received by a n  excitatory neuron i is incremented 
selectively by I:',,$, where $' = 1.0 is the symbolic indication of whether 
cell i is activated by stimulus 1 ) .  In the absence of a stimulus, the exci- 



Hebbian Learning of Context in Recurrent Neural Networks 1687 

Stimulus po Stimulus p1 Stimulus p2 

Delay Delay L... 
Figure 3: Typical learning protocol in a visual memory experiment. Stimuli 
are presented in a sequence, with a delay between two successive presenta- 
tions. The line represents schematically the level of external currents to the 
local network. 

tatory afferent is just the spontaneous noise. Inhibitory neurons are not 
activated by the stimulus. The presentation of a stimulus is followed by 
a delay period of length t d ,  in which the selective part of the current is 
removed. Therefore, a typical experiment can be schematized by Figure 3 
in which presentation and delay intervals are kept fixed. The duration 
of each presentation t,, is taken to be much longer than the neuronal time 
constants 7 E . I .  Thus t, >> 10 ms. 

Note that in a delayed matching-to-sample (DMS) experiment, the 
sequence of stimuli is an alternate sequence of sample and match stimuli. 
The match stimulus is typically taken to be equal to the sample stimulus 
with 50% probability, and another randomly chosen stimulus otherwise. 
The learning protocol specifies how the sequence of sample stimuli is 
presented (see below). 

To simplify the discussion, we suppose that when stimulus p is shown, 
the activated excitatory neurons go rapidly to a steady-state rate vl, 

v1 = (V - us)$ + vs, 
where us is the spontaneous rate of excitatory neurons, during presenta- 
tion of the stimulus. When neuron i is activated by a stimulus, it goes 
to a high activity state V >> v,; if it is not activated, it stays at sponta- 
neous activity levels. When the stimulus is removed, two possibilities 
may occur (Amit and Brunel 1995,1996): 

1. The stimulus is unfamiliar. The network goes rapidly into its uni- 
form, unstructured, spontaneous activity state, 

v, = v, 

2. The stimulus is familiar. The activity of neurons activated during 
the presentation of the stimulus persists during the delay period 
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but with lower rates than during the presentation 

I / ,  = (Z’  - I / .  ) / ( I  + I / .  

where V > i’ > 11, 

Following the delay period, when the next stimulus is presented, there 
is a short interval in which both neurons active in the delay period and 
neurons activated by the next stimulus will be active. Later inhibition 
turns off the activity of the neurons that participated in the attractor in 
the delay period, leaving active only those neurons tagged by the new 
stimulus (Amit and Brunel 1995). This transient interval is assumed to 
be short compared to the presentation time. It will be typically of the 
order of the integration time T F  of an excitatory neuron. 

We further assume that the delay period is much longer than the 
synaptic integration time constant T, .  In this case, in the absence of delay 
activity, all synapses in the network at the end of the delay period will 
have decayed to their asymptotic values-],, or 1,. 

3.3 Synaptic Transitions: No Delay Activity Prior to Presentation. 
We first consider the case in which there was no delay activity before 
the presentation of the stimulus. When a stimulus is presented, one of 
eight situations may occur at a given synaptic site 1,. For each of the two 
possible stable values of the synapse (Jo, ]I) there are four pairs of activa- 
tion states of the pre- and postsynaptic neurons by the stimulus: ( V .  V), 
( V .  Oi ,  (0. V),  and (0,O) (where the low spontaneous rate is represented 
by 0). Because we assume a symmetric role for pre- and postsynaptic 
neurons, cases ( V. 0)  and (0. V )  are equivalent, and we consider only the 
case ( V  0) .  The number of situations is reduced to six: 

0 For ]!, = 10 and ( v I .  11,) = ( V .  V ) :  If the integrated synaptic source 
(equation 3.1) over the duration of the presentation t,, reaches the 
potentiation threshold, 

there is a probability p+ of activation of the refresh source, causing 
a transition of the synaptic value to ]I in the delay period. LTP has 
occurred. This probability depends on c, = X+V2 - 2XLV, Q+, and 
the ratio t I , / 7 , .  

0 For I,, = ]I and (vI  11,) = ( V .  0) or (0. V):  If 

the refresh source will be turned off with probability pL. J,  goes 
to 10, its low value, in the subsequent delay period. This transition 
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represents LTD. p -  depends on c- = A- (V + 74) - X+Vv,, 8- and the 
ratio tp/rc. 

0 In all other cases, no transitions can occur. 

Therefore in the absence of delay activity and when the presentation du- 
ration is kept fixed, we can represent the synaptic dynamics by a discrete 
stochastic-a random walk between the two synaptic stable states 10 and 
11. This is a familiar situation (Amit and Fusi 1994; Amit and Brunel 
1995), in which uncorrelated stimuli lead to uncorrelated attractors. 

3.4 Synaptic Transitions: Delay Activity Prior to the Presentation. 
In contrast, when neural activity persists during the delay period, the 
synaptic dynamics depends on the activation of the pre- and post synap- 
tic neurons by the stimulus but also on the activation of these neurons 
during the previous delay period. There are now 32 possible situations, 
depending on whether Ill is above or below threshold before the presen- 
tation and on the pair (11~ .  v,) during both stimulus presentation and the 
previous delay period. Since the transient interval during which either 
old delay and new stimulus-related activities are present is short com- 
pared to the presentation interval, the probabilities p ,  and p -  will not be 
much affected by the previous delay activity in the situations described in 
Section 3.3, where LTP or LTD occurs only due to stimulus presentation. 

A new LTP transition might occur. If before presentation J,, = 10, and 
during the transient interval rE 

(3.3) 
(vl, v,) = { (v. 0) during the delay period 

(0. V )  during the stimulus presentation, 

or 

(3.4) 
(v,. v,) = { (0, v) during the delay period 

(V. 0)  during the stimulus presentation, 

and if the integrated source of the synaptic dynamics over rE crosses the 
potentiation threshold, 

V(X+v - A _ )  (I - exp (-:)) - A-v > 8,. 

there is a probability ap,, of activation of the refresh source, which will 
drive the synaptic efficacy to 11 in the subsequent delay period. a is 
a function of the ratio rE/t, and of v/V. Typically if the presentation 
duration is much longer than T E ,  a << 1. 

A similar situation would occur also if (vl, v,) = (u, v) in the delay. 
However, in this case, the probability of LTP during the previous stim- 
ulus presentation is much larger than the one during the short transient 
period, and can be neglected. The only new situation leading to LTP in 
presence of delay activity is the one described in equations 3.3 and 3.4. 
We will see that this has important consequences for the synaptic matrix 



1690 Nicolas Brunel 

50 

45 
40 

35 

30 

25 

20 

15 

'/3 

0 5 10 15 20 25 30 35 40 45 50 

Figure 1: Regions where synaptic transitions occur in the ( vi. I / , )  plane. Frequen- 
cies are indicated in spikes per second. Above the dashed line, LTP transitions 
occur due to  presynaptic delay activity and postsynaptic activation by the new 
stimulus. In this case vi, is the delay activity prior to presentation of the stim- 
ulus. 

i n  the case of significant temporal correlations in the training sequence 
of stimuli, which in turn will affect significantly the neural dynamics. 

To conclude, we give a numerical example to illustrate the possible 
scenarios. We take the background synaptic efficacy JO = 0.04 mV, JI  = 
0.15 mV. The threshold for potentiation is 0, = 0.04 mV above 10, and 
for depression it is 0- =~ 0.04 mV below 11. The neuronal time constant 
is T! = 10 ms. The analog synaptic time constant is taken to be equal to 
the neuronal time constant, T, = 10 ms. This is consistent with the fact 
that stimuli shown during times of the order of 100 ms can be learned, 
which implies that 7; has to be shorter than 100 ms; otherwise, the analog 
synaptic value would not have time to reach the threshold zu,,. Note also 
that the results are not very sensitive to the precise value of T ~ ,  as long as 
it does not become too long compared to the neuronal time constant. The 
presentation duration is t,, = 200 ms. For A+ = 5.10 mVs2, A-  = 4.10-3 
mVs, Figure 4 shows in the space ( vt. 11,) the regions where potentiation 
or depression are possible. 
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Figure 5: Schematic illustration of synaptic transitions in three situations: time 
evolution of synaptic efficacy JI ,  (lower curves), presynaptic activity (v,), and 
postsynaptic activity (u,). (a) Pre- and postsynaptic neurons activated by stimu- 
lus, synapse initially low. (b) Presynaptic neuron silent during stimulus, postsy- 
naptic neuron activated, synapse initially high. (c) Presynaptic neuron activated 
during stimulus, postsynaptic neuron active in delay, synapse initially low. In 
all cases one can permute pre- and postsynaptic neurons, due to the symmetry 
of the short-term analog learning dynamics. 

Three situations leading to possible transitions are schematized in 
Figure 5. 

To conclude this section, we emphasize that one can imagine differ- 
ent scenarios for the occurrence of LTP when one neuron is active during 
the delay while the other is active during presentation of the next stim- 
ulus. For example, it would also naturally occur if the Hebbian source 
term of the synaptic dynamics described by equation 3.1 depends not 
on the instantaneous neural activities but rather on their average over 
some temporal window. In this section we have argued that in a simple 
and plausible short-term analog dynamics, this type of transition occurs 
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naturally. In the following sections we will no longer consider the short- 
term analog synaptic dynamics, but only the resulting stochastic process 
acting on the two stable synaptic states. 

4 Training the Network with a Fixed Set of Stimuli ~ 

We consider the case of a set E of a finite number of stimuli p. The 
initial distribution of excitatory-to-excitatory synaptic bonds is assumed 
uniform. 

for all ( i . j) .  During training the stimuli shown to the network are limited 
to the set E. The learning protocol defines the order in which the stimuli 
are presented to the network. We will now study the following training 
protocols: 

A. Random sequence: At each presentation, the stimulus is chosen ran- 
domly out of E. 

B. Fixed order: The stimuli are presented in a fixed cyclic order: 1.2.. . . . 
y .  1. and so on. We also study the intermediate situation in which 
at each time step there is a probability .Y of showing a randomly 
chosen stimulus in E instead of the predetermined one. For x = 1 
one recovers the case of random sequence. 

C. Random pairs: Stimuli in E are organized in p i2  pairs. Each stimulus 
has a paired associate p .  The pairs are selected at random. When 

a pair is chosen, both members are shown successively in a random 
order. We also study the intermediate situation in which at each 
time step there is a probability x of showing a randomly chosen 
stimulus instead of one of the paired associates. Again for s = 1 
the random sequence is recovered. 

Protocol B is similar to the protocol of the experiment of Miyashita 
(1988). In this experiment the sample stimuli are shown in a fixed order, 
while the match stimuli are chosen to be the sample with probability 0.5, 
and a random different stimulus otherwise. Thus it would correspond 
to protocol B with a probability s = 0.5 o f  showing a random stimulus. 
Protocol C is similar to the protocol of Sakai and Miyashita (1991). In this 
experiment the sample is a randomly selected stimulus. Then two match 
stimuli are shown, the paired associate and another randomly chosen 
stimulus. 

We consider the case in which the coding level f is very small, so that 
f p  < 1, but ~ C E L ,  where C i r  is the excitatory-to-ixcitatory connectivity, 
is very large. Consider neurons activated by a specific stimulus 1’. A 
fraction (exp[-f(p - l)!) - 1 - f ( p  - 1 I of these neurons is not activated 
by any other stimulus. Thus whenfp << 1, most selective neurons are 
activated by only one stimulus. We may therefore consider only these 
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neurons, and the network can be functionally divided in p + 1 sets of 
neurons. One set corresponds to neurons that are not activated by any 
stimulus. This set is denoted by Fo. The other sets of neurons correspond 
to neurons activated by one of the p stimuli. F, is the population of cells 
activated when stimulus p is presented, that is, F,, = {i1# = 1). 

Next we classify the excitatory-to-excitatory synapses. There are in 
the network four types of synaptic populations: 

1. Synapses that connect two neurons activated by the same stimu- 
lus. G,, is the population of all synapses from F, to itself, that is, 
{(i.j)I# = 1.7): = l}. 

2. Synapses connecting two neurons activated by two different stimuli. 
G,, is the population of synapses from F ,  to F,, that is, {(i.j)/q" = 

3. Synapses connecting a neuron activated by a stimulus to a neuron 
not activated by any stimulus. GPO is the population of synapses 
from Fo to Fir, that is, { ( i . j ) I f  = 1.71; = 0 v.}, and 
GO;, is the population of synapses from F,, to Fo, i.e. {(z. j) l$ = 
O for all 11. 7/: = I}. 

4. Synapses connecting two neurons, none of which is activated by 
any stimulus. Goo is the population of synapses from Fo to Fo, that 
is, {(i.j)I$ = 0.71; = 0 for all v j .  

To calculate the probability distribution of the synaptic efficacies in 
each of these populations, as a function of the learning protocol and of 
the duration of training, we define two units of time. The first corre- 
sponds to the interval between two presentations. Time in this unit will 
be referred to as t .  The second measure of time, T = p t ,  corresponds 
to the interval between two successive presentations of the same stimu- 
lus, for a fixed cyclic sequence as in protocol B. At a given time t n,L(t)  
is the number of times a given stimulus has been presented to the net- 
work, while rnp,(t) corresponds to the number of times stimulus v has 
been presented immediately following the delay activity provoked by 
stimulus p.  

The probability distribution of the efficacies in any population GArv is 
completely characterized by the probability of the synapse's being po- 
tentiated, that is, 

1.17; = 1j. 

for all 

g p v  = P ( l ,  = llI(i.j) E G , v ) .  

since p(J,, = Jo) = 1 -g,, for (i.]) E G,,. The details of the derivation of 
these probabilities are given in the Appendix. 

1. For a synapse in population G,, 

whereg(0) is the initial probability of finding a potentiated synapse. 
Thus, when nu, the number of presentations of stimulus / I , ,  becomes 
large, we get g,, -+ 1; all synapses become potentiated. 
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2. For synapses in population G,,,, with p # I / ,  the distribution de- 
pends not only on n,,, n”, and n,,,, but also on when the neighbor 
presentations were done. There are two simple cases in which the 
distribution can be calculated. The first is when stimuli 11 and n 
always follow each other. In this case the learning protocol can be 
divided in two intervals: the first corresponds to the absence of 
delay activity after presentation of a stimulus. After (n / , .  n,,) pre- 
sentations we have 

g,,,, = ( 1 - p ),11’+)1, gi0). 

gradually eliminating the potentiated interstimulus synapses con- 
tained in the initial distribution. In the second interval, delay ac- 
tivity has developed. When t ~ , , , ,  becomes large we obtain (see Ap- 
pendix for details) 

Another limit case is when 11  and I /  are never presented contigu- 
ously. In this case the probability of the synapse being potentiated 
is 

< y I“ , = (1 - p  . ) “ “ - - “ ‘g(O)  

and therefore \ranishes when the number of presentations becomes 
very large. In the intermediary situation, when joint presentations 
occur but not systematically, we define the relative frequency of the 
contiguous appearance of the two stimuli 

212 ,‘I/ 

1 1 / ,  f I I ,  
,,,(,, = ~~ 

The probability of having a potentiated link goes, when the number 
of presentations becomes very large at fixed pii,,, to 

3. For synapses in Gt+, or G,,,, one has 

8,lO = ‘yo/, = (1 ~ /’- i””,YiOi. 

and thus the probability of having a potentiated synapse goes to 
zero in the limit of many presentations of stimulus I / .  

4. The last population of synapses is composed of synapses that never 
see activity in the learning process. These synapses remain unmod- 
ified. We will see that these synapses do not play any role in the 
dynamics o f  the network. 
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We are now able to calculate the parameters gPv for the learning proto- 
cols described at the beginning of the section. For each of these learning 
protocols, the probability of occurrence of any stimulus is the same. This 
probability is l / p  where p is the number of stimuli. Thus it is convenient 
to express the parameters gpv as a function of T = p t .  For G,,, G,,”, GO-,, 
and Goo the distribution is independent of the learning protocol 

goom = g(0 )  

By contrast, the synaptic distributions in populations G,, for 11 # n 
depend rather drastically on the learning protocol. gtL, depends not only 
on T but also on pp,, the frequency of contiguous presentation of p and 
11 connected by a delay activity. The expression for g,, is 

g,,(T) = (1 - p-)T(*-p,J(l  - p -  - ap+)PJg(O) 

1.  ( P,uaP+(l - P - )  + P-(2 - P - )  
1 - (1 - p -  - ap+)PJ(l - p - ) P ” ” T  

+ P,VQP+ 

Recall that the dependence on the learning protocol arises only when 
persistent delay activity is present in the network. 

The next step is to calculate the frequency of contiguous presentation 
for any pair of stimuli p,,,, starting from the time at which persistent 
delay activity became stable in the network. Since during training all 
stimuli are presented the same average number of times, delay activity 
appears at the same stage of the learning protocol for all stimuli. We also 
suppose p > 2.  

Protocol A (random presentation sequence). For all p # 71 one has 

2 
Ppv = ~ p - 1 ’  

Every pair of stimuli has the same frequency of contiguous occur- 
rence. 

Protocol B (fixed presentation sequence). One has 

PppI l  = 1. 

since IJ and 11 f 1 always appear contiguously, and 

p,, = 0 for all v # p.  p 31 1 

Note that in this case, when the number of presentations becomes 
very large, the synaptic matrix becomes very similar to the matrix 
used in Amit et al. (1994) and Brunel (1994). If there is a probability 
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s of a randomly chosen stimulus between two successive stimuli, 
we have 

and 

Protocol C (paired associates). In this case 

Pp,, = 1. 

since j i  and p always occur contiguously, and 

1 

for I /  # , v . p .  Again, when a paired associate is replaced by a ran- 
domly chosen stimulus with probability s, we have 

and 

4x11 -s) 2s' (1 ~ I-)' 2s( l  -s) 
+ ~. ___ + for all I /  # I / .  / I  /), ! I ,  = F' / '-1 p - 2  p ( p - 2 )  

Thus the different synaptic distributions are now completely deter- 
mined as a function of the learning stage T and of the learning protocol. 
They are characterized by the matrix p giving the probability of mutual 
contiguous occurrence of any pair of stimuli in the learning set E.  

5 Learned Delay Activity Distributions 

To monitor the neural dynamics we define the average activity of neurons 
in population F,, (neurons driven by stimulus number p ) ,  

and the average activity of neurons that are not active in response to any 
stimulus, 
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The population-averaged activity in the entire excitatory network is 

m E ( t )  = mO(t) + f x [ m p ( t )  - mO(t)l 
w 

The population-averaged inhibitory activity is 

The average recurrent excitatory current impinging on a neuron of a 
given population F,, (here p denotes either a stimulus or 0) is: 

and its variance is 

The dynamics of the excitatory network is described by equation 5.1 and 
5.2, together with the equations giving the evolution of the means and 
variances of the depolarizations at the soma of excitatory neurons in 
populations F,. From equations 2.1 and 2.2, it follows that 

The terms appearing on the right-hand side of equations 5.3 and 5.4 are 
the decay term, the external contribution, the recurrent excitatory contri- 
bution, given by equations 5.1 and 5.2, and the inhibitory contribution. 

The corresponding equations for the inhibitory neurons are given by 

TlatII = -IZ + IFf  + CIEIIEmE - C Z Z ~ I Z ~ I  (5.5) 

and 

(5.6) 

In equations 5.5 and 5.6, the terms appearing on the right-hand side are, 
again, the decay term, the external contribution, the recurrent excitatory 
contribution, and the inhibitory contribution. The average activity in 
each population is, in turn, given by 

- “at (g;) = -.; + + c I E J : E ~ E  - ~z~:zm1. 2 

m, = $ E ( & ,  all) (5.7) 
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and 

! ? I /  = C l , ( I / . f l / ) .  (5.8) 
where the transduction functions o,, ( ( \  = E.  I )  are given by equation 2.3. 

To obtain the delay activity after presentation of a given stimulus 
at learning stage T, we proceed as follows: 

1. Initially all neurons have their stable spontaneous activity. Only 
background external currents are present. 

2.  Stimulus number I /  is presented by injecting into neurons of pop- 
ulation / /  a ”selective” external current above the background one. 
Neurons in this population are driven by the selective currents well 
above their spontaneous rates. Presentation lasts 100 ms (= 1071). 

3. At the end of the presentation, the ”selective” external currents are 
removed, and only background external afferents remain. After a 
short transient, all neurons reach a steady-state delay activity, which 
persists indefinitely. 

We choose the following parameters: The synaptic transition prob- 
abilities are p +  = =: 0.2; the neural parameters are as in Section 2. 
The background synaptic efficacy is lo = 0.04 mV, while the potentiated 
synaptic efficacy is ]I == 0.15 mV. The synaptic transition probability in 
the case of contiguous delay activity and stimulus activation np, is given 
by the following values of n :  n = 0.02 and a = 0.05. We use p = 50 stim- 
uli, each stimulus actilvating a fractionf = 0.01 of the excitatory neurons 
in the network (Brunel 1994). We have not explored the parameter space. 
Instead we have chosen a particular set of parameters to exhibit a case 
of good agreement with the experimentally observed delay activities in 
IT cortex of performing monkeys. 

5.1 Protocol A. Stimuli are shown in a random sequence. The upper 
part of Figure 6 shows the evolution of delay activities as a function of 
the learning stage (number of presentations per stimulus) for neurons in 
the population corresponding to the stimulus presented (diamonds) and 
neurons in populations corresponding to other stimuli (crosses). It shows 
that there is a critical learning stage T,, here T, = 11 (minimal number 
of presentations per stimulus for the creation of an attractor), beyond 
which selective delay activity appears. This critical learning stage is sim- 
ilar to the critical synaptic parameter of Amit and Brunel (1996). Before 
T, ,  neurons that are active during the presentation of any stimulus see 
their spontaneous activity slightly increase with T. This spontaneous ac- 
tivity is of the order of 3-4 5- ’ .  After T, the neurons representing the 
shown stimulus have an elevated delay activity of the order of 20-35 
sP1. Other excitatory neurons remain at spontaneous activity levels. The 
critical stage T, depends on the learning speed, which is controlled by 
the probabilities p +  and p - .  The lower part of Figure 6 shows the corre- 
sponding evolution of the activity of inhibitory neurons (crosses), which 
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Figure 6: Upper figure: Delay activity (DA) of neurons coding for the shown 
stimulus (0) and of neurons coding for other stimuli (+), as a function of the 
learning stage T.  Lower figure: Delay activity of inhibitory neurons (+) and 
other excitatory neurons (0). Activity is in units of 1/q, that is, 100 s-'. 
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also slightly increases with learning, and of other excitatory neurons not 
activated in any stimulus (diamonds), which decreases from 3 to 2 s-'. 
In this case, delay activities are uncorrelated since they simply reflect the 
structure of uncorrelated stimuli. 

5.2 Delay Activities for Protocol B. Stimuli are presented in a fixed 
order. Before T,, since there is no delay activity in the system, the neural 
rates are independent of the order of presentation. Immediately after T,, 
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Figure 7: Delay acti1,ity of a cell in population Fzs ,  as a function of the serial 
position of the shown stimulus, for 17 = 0.05 and three values of the learning 
stage T, indicated in the figure. The cell is active in the delay following stimulus 
25 but also in the delays following the presentation of its neighbors. These data 
can be compared with Figure 3a of Miyashita (1988). 
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Figure 8: Same as Figure 7, but with a = 0.02. 
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uncorrelated attractors develop as in the case of protocol A. Presentation 
of a given stimulus I /  activatcs neurons of the corresponding population, 
and this activity is maintained after removal of the stimulus, because 
synapses connecting these neurons have been sufficiently potentiated. 
After a while, activity in these neurons also provokes an increase in the 
actiiyity in neurons in the populations of the neighboring stimuli, that is, 
1, -+ 1 and j r  - 1, because synapses connecting these populations to F,, ,  
synapses of G,,,,=, , now hare an increased average efficacy. This activity 
can then propagate to further neighbors, / I  i 2 and so on. However, the 
inhibition controls the overall level of activity in the excitatory network, 
and therefore the activation spreads to only a few neighbors. This ac- 
tivation is also controlled by the parameter (2, which characterizes the 
magnitude of the strength of synapses of G,,,,+I relative to those of G,,,,. 
Depending on this parameter a, there exist two regimes, one of low cor- 
relation and the other of high correlation: 

1. High correlation (Figure 7,  n = 0.05): After T = 15 learning cycles, 
the activation of a neuron coding for a given stimulus in the delay 
following the presentation of its neighbors becomes of the order 
of its activation in the delay following the stimulus itself. When 
learning proceeds, more neighbors see their neurons increase their 
delay activity significantly. In this case the correlations between 
two attractors corresponding to neighbor stimuli are very high. 

2. Low correlation (Figure 8, a == 0.02): The activity of neurons in 
neighboring populations, though increased with respect to the other 
populations, remains low compared to the activity of neurons that 
represent the shown stimulus. Correlations between two represen- 
tations o f  neighbor stimuli remain relatively weak. 

In the absence of stable spontaneous activity (as was the case in Brunel 
1994), the structure of the delay activity is always as in Figure 7 (highly 
correlated delay activities). The presence of a stable spontaneous activ- 
ity allows for reverberations in which neurons coding for stimuli that are 
neighbors of the presented stimulus remain at low levels o f  activity (com- 
pared with the activation of neurons coding for the presented stimulus), 
though it is significantly higher than their spontaneous activity. 

Note that in the high-correlation regime, in addition to neurons cod- 
ing for the presented stimulus, those coding for nearest neighbors will 
also be significantly active during the delay. This fact implies that from 
the learning stage in which appears such a high nearest-neighbor delay 
activity (T = 15 in Fig. 7), learning due to delay activity could occur not 
only in synapses connecting nearest neighbors, as was assumed in Sec- 
tion 4, but also in synapses connecting next neighbors-that is, synapses 
from populations G,,,,+,-though quantitatively the potentiation proba- 
bility will be weaker for these synapses than for nearest-neighbor ones. 
In turn, at later learning stages, a high next-neighbor delay activity could 
appear, implying learning in populations of synapses G/,,,ij, and so on. 
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However, if one allows for learning in synapses connecting more dis- 
tant neighbors from the learning stage at which appears such significant 
neighbor delay activity, the picture remains qualitatively very similar. 
The main difference is that due to the potentiation of these synapses, 
more distant neighbors will be activated faster during the delay, enabling 
the network to reach the attractor in a shorter time, and the delay activ- 
ities of neurons coding for stimuli that are more distant than the nearest 
neighbor will be slightly higher. In any case, inhibition prevents signifi- 
cant delay activation of a large number of neuronal populations. 

It is easy to calculate correlations as well as rank correlation coef- 
ficients between the delay activities provoked by different stimuli (see 
Brunel 1994). Qualitatively these correlations are a decreasing function 
of the distance in the serial position of the stimuli that provoked the de- 
lay activities. These correlations decay to zero (or to negative values in 
the case of rank correlations) at a distance corresponding to the number 
of populations of cells activated above spontaneous levels in a given at- 
tractor. For example, in Figure 7 the correlations would be significant up 
to a distance of 5 in serial position. 

5.3 Protocol C: Paired Associates. In the case of paired associates, 
the situation is qualitatively similar to protocol 8, except that now only 
neurons coding for the shown stimulus and its paired associate are acti- 
vated in the delay period. Also in this case we can identify two regimes, 
with strong or weak correlation between delay activities corresponding to 
the pair associates. The main difference is that now, in the strongly corre- 
lated regime, the delay activity of paired associate neurons is equal to the 
delay activity of the neurons coding for the shown stimulus. Therefore 
the network has formed attractors that do correspond not to the indi- 
vidual pictures but to the pairs of pictures. This can be seen in Figure 9 
(a = 0.05) at learning stage T = 15. By contrast, in Figure 10 the represen- 
tations of paired associates become correlated with learning but remain 
distinct. Note the similarity of this figure with one of the cells shown in 
Sakai and Miyashita (1991). However, the comparison is not direct. Sakai 
and Miyashita (1991) give the activity of cells during presentation of the 
stimulus. The corresponding delay activity distributions, presented here, 
are not reported. The analysis predicts that the delay activity provoked 
by two paired associates should be significantly correlated or even be- 
come equal. Note that the formation of similar pair-coding attractors has 
also been observed in a model with a fixed synaptic matrix (Parga 1994). 

6 Discussion 

In this paper we have discussed an explicit, plausible learning process 
in a recurrent neural network, which, in the presence of delay activ- 
ity, implements the memory of the context of the learned stimuli in the 
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Figure 9: High-delay activity of a cell in population F?j, as a function of the 
serial position o f  the shown stimulus, for n = 0.05. The cell is active in the 
delay following stimulus 25 but also aftrr its paired associate (stimulus 26) is 
presented. 
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Figure 10: Same as Figure 9, but for a = 0.02. 
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synaptic matrix, In the case of stimuli shown in a fixed sequence during 
training, this synaptic matrix is found to be qualitatively similar to the 
matrix that was used in Amit ef n1. (1994) and Brunel (1994). With such 
a learning process it is possible to determine the statistical properties of 
the synaptic matrix as a function of the learning stage and the learning 
protocol. With the network composed of excitatory and inhibitory cells 
described in Amit and Brunel (1996), whose stable state in the absence 
of learning is a state in which neurons have a spontaneous activity of 
the order of 1 spike per second, it is possible to determine the statistical 
properties of the delay activities, again as a function of the learning stage 
and the learning protocol. In the only case in which to our knowledge 
experimental data are available (Miyashita 19SS), we recover the results 
of Amit eta!.  (1994) and Brunel (1994), which are in good agreement with 
the experiment. Furthermore the analysis allows prediction of either the 
evolution of the correlations during learning or the dependence of the 
correlations with the learning protocol. 

There are a number of tests of the theory presented in this paper that 
can in principle be done with visual memory experiments: 

1. The time of occurrence of selective delay activity should not depend 
on the learning protocol (i.e., on the way stimuli are presented). 

2. Delay activities corresponding to uncorrelated stimuli should ini- 
tially be uncorrelated. 

3.  Correlations between delay activities should only depend on the 
order of presentation nf fer  the appearance of selective delay activity 
in the network, and not on the order of presentation prior to delay 
activity. For example if stimuli are shown in a fixed order before 
the appearance of selective delay activity but in a random order 
afterward, the attractors should be uncorrelated. 

We turn now to a brief discussion of the elements of the model. Exci- 
tatory and inhibitory cells are integrate-and-fire neurons described by the 
statistics of their input currents and their output firing frequency (Amit 
and Brunel 1996). This model roughly accounts for the average sponta- 
neous and selective activities observed in the visual memory experiments. 
Last, though the average delay activities themselves do  depend on the 
details of the model neuron, the correlations between the attractors of 
the system seem largely independent of the details of the single neuron. 
Large-scale simulations of networks of integrate-and-fire neurons are cur- 
rently under way to confirm that these correlations are preserved if one 
considers networks of spiking neurons rather than neurons described by 
firing rates. 

The implementation of temporal correlations between stimuli in the 
synaptic matrix depends crucially on a mechanism leading to long-term 
potentiation when delay activity in one neuron connected by a synapse is 
immediately followed by stimulus-provoked activity in the other neuron 
connected by that synapse. This simple mechanism leads to the imple- 
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mentation of such correlations. In this paper this mechanism-and the 
whole synaptic process-was supposed to be symmetric in pre- and post- 
synaptic neurons. This assumption of symmetry was taken for simplicity, 
but it is not necessary. In fact, experimental data suggest that LTP can be 
induced when postsynaptic activity follows presynaptic activity by 100 
ms (Levy and Steward 1983; Gustafsson et a[. 1987); on the other hand, if 
postsynaptic activity precedes presynaptic activity, LTP does not occur. 
The formalism developed in this paper can easily be generalized to such 
an asymmetric situation. This issue will be considered in a future work. 

Appendix: Synaptic Distributions 

1. For a synapse in population GILIL: At each presentation of stimulus 
11, a synapse that is in its low state has a probability p+ of making 
a transition to the potentiated state. Thus after n J t )  presentations 

where g(0) is the initial probability of finding a potentiated synapse. 
2. For synapses in population G,, with p # u, the situation is some- 

what more complicated, since the distribution depends not only on 
n,,, n,, and np, but also on when the neighbor presentations were 
done. There are two simple cases in which the distribution can be 
calculated. The first is when stimuli p and u always follow each 
other. In this case, the learning protocol can be divided into two 
intervals. The first corresponds to the absence of delay activity after 
presentation of a stimulus. At each presentation of stimuli p or u, 
potentiated synapses have a probability p -  of making a transition 
to the low state. Thus after (nw,  n,) presentations we have 

g,, = (1 - p-)fl,+'I, d o ) .  
In the second interval, delay activity has developed. When a con- 
tiguous presentation of p and v occurs, there is a probability ap+ for 
low synapses of making a transition to the high state. Thus after 
n,,, occurrences of the contiguous presentation of stimuli p and I /  

separated by the delay period, we have 

(1 - P-  - ap+)"uug(o) g,,, = (1 - p_)"P+"v-"PLy 

When n,, becomes large we have 

Another limit case is when p and Y are never presented contigu- 
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ously. In this case the probability of the synapse's being potentiated 
is 

= (1  - /L , )8 r~ ,~ '1~<y !o )  

and therefore vanishes when the number of presentations increases. 
In the intermediary situation when joint presentations occur 

but not systematically, we use an interpolation in the relative fre- 
quency of the contiguous appearance of the two stimuli 

211p 
lz l ,  4 ! I , .  

/ I / * , ,  = 

This expression is 

(1 - /, s,,,. = 

tp,,,.f?/?- 

(1  - - f7 ,LJ.  )"'"S(o) 
1 - (1 - / I  - 0"- ) " I "  ( 1 ~ .--I / J L ) " i "  

)" '  - 1 1 ,  - I l , , ,  

i /$(l.qL(l - I'L 1 + p ( 2  - ,L' 1 
and interpolates between the two preceding limit cases. The prob- 
ability of having a potentiated link goes, when the number of pre- 
sentations becomes very large at fixed I)/,,,, to 

3. For synapses in Go,, and G,,,,, presentation of stimulus causes 
presentations one has depression with probability j 7 - ,  and after 

,q,,o 7 ,yo/, = i 1 - FJ- i""Xi0). 

and thus the probability of having a potentiated synapse goes to 
zero in the limit of many presentations of stimulus I/. 
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