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Information about context can enable local processors to discover latent
variables that are relevant to the context within which they occur, and
it can also guide short-term processing. For example, Becker and Hinton
(1992) have shown how context can guide learning, and Hummel and Bie-
derman (1992) have shown how it can guide processing in a large neural
net for object recognition. This article studies the basic capabilities of a
local processor with two distinct classes of inputs: receptive field inputs
that provide the primary drive and contextual inputs that modulate their
effects. The contextual predictions are used to guide processing without
confusing them with receptive field inputs. The processor’s transfer func-
tion must therefore distinguish these two roles. Given these two classes of
input, the information in the output can be decomposed into four disjoint
components to provide a space of possible goals in which the unsuper-
vised learning of Linsker (1988) and the internally supervised learning
of Becker and Hinton (1992) are special cases. Learning rules are derived
from an information-theoretic objective function, and simulations show
that a local processor trained with these rules and using an appropriate
activation function has the elementary properties required.

1 Introduction

Many studies have shown that useful computational capabilities can arise
from local processors whose outputs are a function of just the weighted
sum of their inputs. It has also been shown that these capabilities can be
enhanced by providing the local processors with specific contextual infor-
mation that affects processing in a way quite different from that of the pri-
mary driving inputs. For example, Becker and Hinton (1992) have shown
how specific information about context can be used to guide learning. They
assumed multiple processing channels that operate on different input data
sets across which there is statistical dependence. The aim of learning was to
discover functions of the input data that make this statistical dependence
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easier to compute. To do this, the mutual information in the outputs of the
separate processors was maximized. The channels therefore communicated
information to each other about their current outputs, but this information
was used only for learning and had no effect on the short-term processing.
However, contextual information can also be used to guide processing. For
example, Hummel and Biederman (1992) have shown how it could be used
to guide processing in a large neural net for object recognition. In their case,
the contextual connections, called fast enabling links, were used to determine
the phase with which an oscillatory output would be produced but with-
out having any effect on the amplitude. This is important because it was
the amplitude of the signal that conveyed information about the extent to
which the receptive field inputs met the featural requirements of the local
processor. Many detailed psychological findings support the approach of
Hummel and Biederman (1992). Analogous proposals have emerged from
the discovery of context-sensitive synchronization between the spike trains
of cortical cells (Singer, 1990; Engel, König, Kreiter, Schillen, & Singer, 1992;
Eckhorn, Reitboeck, Arndt, & Dike, 1990) and of a basis for it in horizon-
tal intrinsic connections (Löwel & Singer, 1992). Singer (1990) and Engel et
al. (1992) call the contextual inputs coupling connections, and Eckhorn et al.
(1990) call them linking connections. The aspect of these connections that is
crucial here is that they help specify whether a signal is relevant in some
immediate context, but they do not change what it means.

From a statistical point of view, the motivation for studying processors
with contextual guidance is that they might implement some form of la-
tent structure analysis that discovers the predictive relationships implicit
in separate data sets. Some nets can be described as discovering the princi-
pal components of variation in the receptive field inputs. Becker and Hinton
(1992) describe their algorithm as providing a nonlinear version of canonical
correlation. Fisher (1936) developed a method for the extraction of canoni-
cal variates, using training data, that provided optimal linear directions of
discrimination between underlying feature classes. If class labels are one
of the data sets, then the method of canonical correlation (Hotelling, 1936)
may be used to provide the Fisher discriminant functions. This is relevant
to the case of supervised learning with an external teacher. However, as
Kay (1992) showed, canonical correlation can be used in a neural network
for the extraction of linear latent variables under contextual supervision.
This suggests that discovery of predictive relationships between diverse
data sets could be one goal of the cerebral cortex and that this goal can be
formulated at the level of local circuits and can be usefully combined with
the compressive recoding of the receptive field input data.

This article has four aims: (1) to show how local processors can use con-
textual input in a way that does not confound it with the information trans-
mitted about the receptive field; (2) to show how finding predictive relations
between data sets can be combined with the compressive recoding of the re-
ceptive field input data; (3) to apply gradient ascent to the formally specified
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goals to derive learning rules for the receptive and contextual field weights;
and (4) to describe simulations that test whether such a local processor has
the basic properties required.

There is a strong tradition in studies of cortical computation that pro-
poses the reduction of redundancy as a major organizing principle (Barlow,
1961; Atick & Redlich, 1993). This goal can be specified locally and can be
formulated as that of maximizing the mutual information between the input
and the output of local processors under certain constraints (e.g., Linsker,
1988). Because this goal is formulated for local processors without contex-
tual inputs, however, it cannot take context into account. “In a complex
network, or in an animal’s brain, it is totally unclear how a component is
to ‘decide’ what transformation its connections should perform. If a local
optimization principle is to be used—one that does not take account of re-
mote high level goals—then we do not know what information is going to
be needed at high levels. Since we don’t know what information we can af-
ford to discard, it is reasonable to preserve as much information as possible
within the imposed constraints” (Linsker, 1988, p. 116). Given this view, it
is then necessary to assume that selection of the information that is relevant
within specific contexts must occur at some later and quite distinct stage of
processing.

The possibility being studied here is that contextual inputs provide local
processors with a way of distinguishing relevant from irrelevant informa-
tion even at early stages of processing. This contextual information does
not necessarily have to come from remote high-level goals, however, but
could be a specific local context appropriate to the position of the local pro-
cessor within the system as a whole. Becker and Hinton (1992) have shown
how maximizing the mutual information between the outputs of units that
receive their inputs from diverse proximal data sets can provide internal
supervision that enables local processors to discover distal variables that
are only implicit in the input data. They formulate this goal in information-
theoretic terms. Linsker (1988) also uses an information-theoretic approach,
but his goal was to maximize the mutual information between the inputs
and the outputs of each local processor, without taking any contextual in-
formation into account. Section 3 shows how these two goals may be seen
as specific points within a large space of possible goals.

Throughout this article, it is assumed that the units of a given local proces-
sor are probabilistic with their values being described by random variables.
We denote the values of the m receptive field (RF) units and n contextual
field (CF) units, respectively, by R1,R2, . . . ,Rm and C1,C2, . . . ,Cn and we
use the vector notation R and C. We make no assumptions regarding the
probabilistic mechanism that produces the values of R and C; instead the
empirical distributions of the input data are used, thus freeing us from rigid
probabilistic modeling and allowing greater generality. It is assumed that
the output of the local processor is represented by a binary random variable
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X, with conditional output probability,

Pr(X = 1|R = r,C = c) = 1
1+ exp(−A(sr, sc))

, (1.1)

where sr =
∑m

i=1 wiri − w0 and sc =
∑n

i=1 vici − v0 denote, respectively, the
integrated RF and CF input fields, the {wi} and the {vi}denote the weights on
the connections between the output and the RF and CF inputs, respectively,
w0 and v0 are the RF and CF biases, A denotes a function that specifies the
internal activation, and we have taken the scale parameter of the logistic
nonlinearity to be unity.

2 Activation Functions with Contextual Guidance

Becker and Hinton (1992) did not allow the contextual information to affect
the short-term dynamics because they did not want the separate processors
to maximize the mutual information in their outputs simply by driving
each other. The use of context to affect learning without affecting ongoing
processing is not only biologically implausible, however, but it also fails to
use context to guide processing.

We therefore require an activation function that possesses the following
properties: if the integrated RF input is zero, then the activation should be
zero; if the integrated CF input is zero, then the activation should be the
integrated RF input; if the integrated RF and CF inputs agree, then the gain
of the function relating activation to RF input should be increased; if the
integrated RF and CF inputs disagree, then the gain of the function relating
activation to RF input should be decreased; only the integrated RF input
should determine the sign of the activation so that context cannot affect the
direction of the output decision.

The following function possesses all of these properties,

A(sr, sc) = 1
2

sr(1+ exp(2srsc)) (2.1)

and was used in the experiments described below. It is one of a class of
functions of the form sr(k1 + (1 − k1) exp(k2srsc)), where k1 and k2 are con-
stants (0< k1 <1, k2 >0). This class of functions was motivated in part by the
assumption that the effect of context should depend on the prevailing state
of activation and was also derived mathematically from the above require-
ments (Kay, 1994). This class of functions does not uniquely encapsulate the
above functional requirements but nevertheless is sufficient. The activation
function is illustrated in Figure 1.

The activation function (see equation 2.1) is not intended to translate
directly into neurophysiology, and we do not know whether any translation
is possible. We do know, however, that cortical pyramidal cells in general
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Figure 1: (A) The surface of output probability with respect to the integrated
RF and CF inputs. It is apparent when the RF and CF inputs agree that appro-
priate saturation takes place. The inbuilt asymmetry of the activation function
is clear when one considers the quadrants where the RF and CF inputs disagree:
When the RF value is positive and the CF value negative, the rate at which
the probability reaches saturation as the RF value increases is depressed only
slightly, whereas when the RF and CF values are reversed, the high, positive CF
value cannot reach saturation with a probability of 1. (B) The output probabil-
ity plotted as a function of RF activity for five fixed values of the CF activity.
These cross-sectional curves are constrained to pass through the point where
the probability is 0.5 and the RF is zero and they do not intersect. We see that the
CF activity boosts the rate of saturation of the probability. (C) A cross-section
through the probability surface for five fixed values of the RF activity. This part
is strikingly different from (B). This illustrates that the probability curves cannot
pass through the 0.5 barrier and that appropriate saturation cannot be achieved
by the CF activity alone.
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have voltage-dependent gain control channels. Furthermore, Hirsch and
Gilbert (1991) have shown that the long-range horizonatal collaterals in V1
have a voltage-dependent rather than a driving synaptic physiology and can
learn (Hirsch & Gilbert, 1993). These collaterals join pyramidal cells with
nonoverlapping RFs and are a primary example of what we call contextual
inputs.

3 Information-Theoretic Objective Functions

To show how the use of contextual inputs extends the range of possible
goals, we compare the computational goals proposed by Linsker (1988) and
Becker and Hinton (1992). Linsker’s Infomax goal is to maximize the mutual
information I(X; R) between the RF inputs, R, and the output X. Becker and
Hinton’s explicitly stated goal was to maximize I(X; C), that is, the mutual
information between the output of one channel and the contextual inputs
from other channels. However, their implicit intention was to maximize
the shared information between X, R, and C. To express this explicitly we
introduce the concept of three-way mutual information, which is defined by

I(X;R;C) = I(X;R)− I(X;R|C) (3.1)

and equivalent versions (see Figure 2). Note that in the general form of def-
inition (see equation 3.1), X may also be a vector and that this definition can
be extended to n-way mutual information (Kay, 1994). The various infor-
mation components can be most easily seen with the aid of a diagram (see
Figure 2).

When contextual connections from neighboring channels exist, we may
consider definition 3.1 in the form

I(X;R) = I(X;R;C)+ I(X;R|C)
so that the information shared by the output and RF inputs may be decom-
posed into that shared also with the CF, that is, I(X;R;C), and that which
is not shared with the CF, that is, I(X;R |C). Similarly, I(X ;C | R) denotes
the information that is transmitted about the contextual inputs that is not
shared with the RF activity. The term H(X | R,C) denotes the conditional
Shannon entropy in the output given RF and CF inputs and represents the
output information shared with neither the RFs nor the CFs. It can be seen
from Figure 2 that the information in the marginal output distribution may
be decomposed as follows:

H(X) = I(X;R;C)+ I(X;R|C)+ I(X;C|R)+H(X|R,C).

We would normally wish to decrease I(X;C | R) and H(X|R,C), but we
desire I(X;R;C) to grow and possibly also I(X;R |C). A class of objective
functions that specifies these computational goals is given by the following:

F = I(X;R;C)+ φ1I(X;R|C)+ φ2I(X;C|R)+ φ3H(X|R,C). (3.2)
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Figure 2: The decomposition of the information in the output into four disjoint
components. Each circle represents the total information in each component
of the local processor. The inset shows the flow of information through the
processor.

The parameters φ1, φ2, and φ3 express the importance of their respec-
tive information components relative to the three-way mutual information
I(X;R;C). We now focus on the subclass of objective functions where φ2 = φ3
= 0.

Taking φ1 =1, and so giving the terms I(X;R;C) and I(X;R|C) equal impor-
tance, we obtain from equation 3.1 that F = I(X;R). This is Linsker’s Infomax
objective function; but note that in order to obtain a formal equivalence to
his computational goal, the contextual connection would require being set to
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zero. Becker and Hinton intended to maximize I(X;R;C), which is achieved
by taking φ1 = 0.

Hence, φ1 is a critical parameter; allowing it to increase from 0 to 1 makes
it possible to specify the relative importance to be afforded to maximizing
information transmission within channels as compared with maximizing
predictability across channels. Schmidhuber and Prelinger (1993) describe
an algorithm for discovering predictable classifications. Taking φ1 = 1 −
ε, φ2 = ε, and φ3 = 0 in our system gives the the objective function

F = εI(X;C)+ (1− ε)I(X;R),
which is an information-theoretic analog of their objective function. Thus,
a general class of objective functions has been introduced that subsumes
the computational goals of Linsker (1988) and Becker and Hinton (1992) as
special cases and allows hybrid possibilities.

4 Learning Rules

Learning rules for the modification of the RF and CF weights were derived
using gradient ascent. A summary is presented in the appendix. The rules
are

∂F
∂w
=
〈
(ψ3A− Ō)p(1− p)

∂A
∂sr

R
〉

R,C
(4.1)

∂F
∂v
=
〈
(ψ3A− Ō)p(1− p)

∂A
∂sc

C
〉

R,C
(4.2)

where

Ō = log
E

(1− E)
− ψ1 log

ER

(1− ER)
− ψ2 log

EC

(1− EC)
.

In practice, empirical averages are taken over input patterns, which
means that no explicit probabilistic modeling of inputs is required; also it is
not necessary to learn explicitly the joint probability distribution of R and C;
all that is required is to learn the expectations E, ER, and EC. For example, EC
is the average output probability taken over all RF input patterns, for which
the contextual inputs are equal to C. The weight changes 1w and 1v are
taken to be proportional to the partial derivatives in equations 4.1 and 4.2,
respectively. These equations are written for batch learning; online learning
is performed by removing the averaging brackets. It is important to stress
that the required weight changes and also the expectations may be calcu-
lated recursively and updated after the presentation of each pattern, and so
online learning may be achieved without making a double pass through the
data within each epoch (Kay, 1994). Online learning was used successfully
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in the experiments described in section 5. The term Ō represents a dynamic
average that can be influenced by the current CF inputs as well as by the
current RF inputs. The term p(1− p) provides intrinsic weight stabilization.
The partial derivatives of activation function (see equation 2.1) are given by

∂A
∂sr
= 1

2
+
(

1
2
+ srsc

)
exp(2srsc)

∂A
∂sc
= s2

r exp(2srsc).

The weight change specified by these rules is nonmonotonically related
to postsynaptic activity in a similar way to that proposed by Bienenstock,
Cooper, and Munro (1982). It is also similar to the simpler form of nonmono-
tonicity found by Artola, Brocher, and Singer (1990) in studies of plasticity
in slices of adult rat neocortex and which has been shown to have useful
computational properties by Hancock, Smith, and Phillips (1991).

5 Experiments and Discussion

We now provide two different illustrations of the role of contextual guid-
ance in the processing of receptive field data. The following experiments
were conducted using a net with two channels, each having its own re-
ceptive field inputs and a single output unit, with contextual connections
between the outputs. Hence, the output unit within each of the channels
is an example of a local processor as defined in this article. In all of the
experiments online learning was used; the initial weights were generated
randomly from the uniform distribution on the interval [−0.01, 0.01]; the
learning rate per input pattern was taken to be 0.5 divided by the num-
ber of input patterns; the input patterns were presented randomly to the
network; the network was set to learning mode for 1000 epochs, by which
time the objective function had stabilized in all of the experimental runs;
and the means of the random variables representing the outputs of the local
processors were communicated to each other in order to provide mutual
contextual guidance.

5.1 Discovery of Latent Structure Using Contextual Guidance. The
purpose of the experiments described in this subsection is fourfold: (1) to
show that when the three-way mutual information is used as the objec-
tive function for each local processor, the net can “discover” the variable
that is predictably related across channels, but is not the most informative
variable within channels, even when the cross-channel correlation is weak;
(2) to show that this variable is discovered more quickly when it is also the
most informative variable within channels; (3) to demonstrate that the use
of Infomax on the combined receptive field data (treated as a single data set)
fails to discover the relevant variable; and (4) to demonstrate that a number
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of other obvious activation functions do not produce the desired solution
in experiment 1.

Four distinct binary input patterns were generated comprising positive
and negative horizontal and vertical bar patterns of size 5 × 5, the sign of
the pattern being determined by the sign of the central horizontal row or
vertical column of the input patterns, with all other entries of the patterns
having the opposite sign. In experiment 1, a batch of 100 input patterns was
used, consisting of an equal number (14) of positive and negative horizontal
bar patterns and an equal number (36) of positive and negative vertical
bar patterns, and these 100 patterns were presented randomly within both
channels. The patterns were presented so that the horizontal bar pattern
was present in both channels on 28 percent of occasions and its sign was
perfectly correlated across channels. In the other 72 percent of presentations,
the vertical bar pattern was presented to both channels, but its sign was
uncorrelated across channels.

When the objective function at each output was the three-way mutual in-
formation (φ1 = 0), the RF weights in both channels converged to the pattern
displayed in Figure 3A (or its negative) and both processors signaled the sign
of the horizontal bar pattern. That is, the output probability obtained when
the positive and negative horizontal bar was presented to the network was
1 and 0 (or vice versa), respectively, while the vertical bar patterns produced
values close to 0.5. On the other hand, when the objective function was set
to Infomax (φ1 = 1 and the cross-channel contextual connections fixed at
0), the result was different. The RF weights in both channels converged to
the pattern shown in Figure 3C (or its negative), but this time the sign of
the input pattern was signaled by the processors without any distinction as
to whether the horizontal or vertical bar pattern was present. That is, the
output probability obtained when the positive horizontal and vertical bar
patterns were presented was 1, and it was 0 for the negative patterns (or vice
versa). Thus, we conclude in the Infomax case that the four distinct input
patterns are clustered into two groups defined solely by the sign of their bar
pattern, but the presence of a horizontal or vertical bar pattern cannot be
distinguished. On the other hand, when the three-way mutual information
is the objective function, the sign of the horizontal bar is signaled by each
processor; this is the variable correlated (weakly) across channels and indi-
cates the relevance of the horizontal bar pattern, as opposed to the vertical
one, with respect to the current context. This demonstration illustrates the
critical role played by the φ1 parameter in the objective function and the
role of contextual guidance in selecting and signaling the relevant variable
in the receptive field data.

The patterns shown in Figure 3 are very close to those obtained by per-
forming a traditional principal component analysis on the data and are,
approximately, the second (A) and first (C) principal components, respec-
tively.

In experiment 2, the relative frequencies of presentation of the horizontal
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Figure 3: (A) The converged RF weights when the sign of the horizontal bar pat-
tern is correlated across channels but not the most informative variable within
channels, and the computational goal was to maximize the three-way mutual
information. (C) The converged RF weights when the computational goal was
Infomax. (B, D) The signs of the weights in (A) and (C), respectively. The con-
verged weights when the RF and CF inputs were concatenated and presented in
a single channel, and the objective was Infomax, are displayed in (E) and their
signs in (F).

and vertical patterns were reversed, with a horizontal and vertical bar pat-
tern present on 72 percent, and 28 percent, of occasions, respectively. In this
case, the sign of the horizontal bar is the most informative variable within
channels as well as being correlated across channels. In both cases, when
the three-way mutual information and Infomax were employed as objective
functions, the RF weights converged to a pattern of the form in Figure 3A;
when the three-way mutual information was used, the speed of learning
was greater than in the previous experiment, as is illustrated in Figure 4.

We divided the input data into two distinct channels, which we termed
the RF and CF inputs. In experiment 3, we reconsider the first experiment
but present the combined RF and CF input data within a single channel and
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Figure 4: The three-way mutual information during the course of learning in
the experiments involving the horizontal and vertical bar patterns. The upper
two graphs show the objective function for both local processors in the case
where the sign of the horizontal bar is correlated across channels and also the
most informative variable within channels. The lower graphs were obtained in
the case where the sign of the horizontal bar was correlated across channels but
not the most informative variable within channels.

attempt to discover the sign of the horizontal bar pattern using Infomax as
the objective function. Figure 3E shows a typical example of the stabilized
RF weights in this case. There are six input patterns. The output probability
was 1 when the 5 × 10 pattern was a positive horizontal bar pattern, a
concatenation of two positive vertical bar patterns and a concatenation of
a negative with a positive vertical bar pattern and 0 for the other three
inputs; thus, the stabilized net fails to signal unambiguously the sign of
the horizontal bar. Of course, this is hardly surprising. After all, there is
nothing in the Infomax goal to signify the additional information that the
sign of the horizontal bar pattern is the relevant variable; that is where
contextual guidance is required. This simple experiment demonstrates the
value of separating the input data into two separate channels.
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Finally, in experiment 4, experiment 1 was conducted using different
separable activation functions: sr + sc, srsc, sr + srsc, and sr exp(sc). With
the exception of srsc, with which no learning happened, the use of these
activation functions failed to produce the desired result: the signaling of the
sign of the horizontal bar pattern. An Infomax-type solution was obtained
with the output probability being 1 for both positive patterns and 0 for
the negative ones (or vice versa). This demonstrates that a nonseparable
activation function is required and that the type defined in equation 2.1 is
sufficient.

5.2 Contextual Guidance from a Stochastic Supervisor. The purpose
of this experiment is to discover whether the provision of incomplete infor-
mation about the “true” class of an input pattern, in the form of contextual
guidance, improves on the performance of unsupervised classification.

Real data were used from a study of a rare hypertensive sydrome (Conn’s
syndrome) which can be due to either a benign tumor in the adrenal cor-
tex (type A) or bilateral hyperplasia of the adrenal glands (type B) (Brown,
Fraser, Lever, & Robertson, 1971). Data are available on 31 patients compris-
ing age, blood pressures, and five blood plasma measurements (Aitchison
& Dunsmore, 1975), thus providing eight-dimensional input patterns; 20 of
the patients are known, postsurgery, to have type A and the remaining 11
type B. The data for each variable were recoded as +1 for an observation
above the mean value and −1 otherwise. Real examples raise an impor-
tant computational issue for the approach defined in this article: that it is
required to store a conditional average ER for each distinct input pattern.
Clearly with large data sets, this could produce a serious computational
overload. However, it transpires that this is not a problem at all; there is an
exact simplification of the mathematics in this case. Each distinct input RF
pattern corresponds to only one CF pattern, and hence the conditional aver-
age ER becomes the current output probability, and so this potential storage
problem disappears (Kay, 1994). It is not even necessary to rewrite this case
as a special form of the learning rules as the recursive, online nature of the
algorithm takes care of it automatically.

In the experiment, the RF data were the 31 eight-dimensional binary pat-
terns. The CF data were generated as follows. The true class types were
represented as (0,1) or (1,0) patterns. These were linearly transformed to
(−1, 1) and (1,−1), respectively. Then each of these patterns was multiplied
by a random number generated from the uniform distribution on the inter-
val [0.2, 0.8]. This corresponds to the assumption that the probability for
the correct class varies randomly and uniformly between 0.6 and 0.9. These
patterns provided incomplete information as to the true class of each RF
input pattern, and these CF inputs provided stochastic supervision. When
the computational goal was Coherent Infomax, the architecture employed
consisted of eight RF inputs and two CF inputs in two different channels.
Each channel had an output unit, and these provided each other with cross-
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channel contextual guidance. When the computational goal was Infomax,
the stochastic units were combined with the data within a single RF in order
to provide a fairer comparison with Coherent Infomax. The network was
run with the objective function set to Infomax (φ1 = 1) and to the three-way
mutual information (φ1 = 0), but in each case the weights were initialized
from the same random numbers. This procedure was performed five times,
each time using a different seed of the random number generator.

The results were as follows. In Infomax mode (completely unsupervised
learning) the output probabilities of the patterns saturated and so divided
the inputs into two groups. Comparing these results with the knowledge
about the true classes, the number of misclassification errors was 7, 7, 8, 8, 8
on the five runs, and the average misclassification rate was 24.5 percent. On
the other hand, when contextual guidance was applied, using the three-way
mutual information as the objective function, the same five patterns were
misclassified on all runs, giving an average misclassification rate of 16.1 per-
cent. Hence this experiment demonstrates that the provision of additional
incomplete information about the appropriate classification of the input RF
patterns, in the form of stochastic supervision via contextual guidance, can
provide a more appropriate grouping of the RF input patterns. Furthermore,
this may be achieved in practice using the methodology introduced in this
article.

5.3 Conclusions. These studies show that local processors can discover
functions of the RF inputs that are predictably related to the context in
which they occur and can use those predictions to guide processing without
confusing them with the information transmitted about the RF. They also
demonstrate that the methodology introduced here possesses the required
computational capabilities. The methodology has recently been extended to
deal with the incorporation of multiple layers and local processors having
multiple output units. The capabilities of these more complex networks are
currently under investigation and will be reported.
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Appendix

For further details of these derivations, see Kay (1994). It is convenient to
rewrite the objective function (see equation 3.2) in the following form,

F = H(X)− ψ1H(X|R)− ψ2H(X|C)− ψ3H(X|R,C), (A.1)
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whereψ1 = 1−φ2,ψ2 = 1−φ1, andψ3 = φ1+φ2−φ3−1. Biases are accom-
modated by the usual practice of introducing additional inputs clamped at
−1. We require the partial derivatives of F taken with respect to w and v.
Recall from equation 1.1 that the output unit is bipolar and that the condi-
tional probability that the output is +1 is given by a logistic nonlinearity. It
follows that the conditional output entropy is given by

H(X|R,C) = −〈p log p+ (1− p) log(1− p)〉R,C , (A.2)

where the output probability p = 1/(1+ exp(−A(sr, sc)) and the activation
function A is that defined in equation 2.1. The notation 〈· · ·〉R,C denotes the
operation of taking the average with respect to the joint distribution of R
and C.

It follows that

∂H(X|R,C)
∂w

= −
〈(

log
p

(1− p)

)
p(1− p)

∂A
∂sr

R
〉

R,C
(A.3)

∂H(X|R,C)
∂v

= −
〈(

log
p

(1− p)

)
p(1− p)

∂A
∂sc

C
〉

R,C
. (A.4)

In order to deal with the other entropy terms in equation A.1, we require
expressions for the marginal probability that X = 1 as well as the conditional
probabilities Pr(X = 1 | R = r) and Pr(X = 1 | C = c). Given the simplicity
of the binary output case, these are the averages of p taken, respectively,
over the joint distribution of R and C, the conditional distribution of C
given that R = r and the conditional distribution of R given that C = c. These
terms are denoted, respectively, by E, ER, and EC. Now using result A.2,
applying differentiation to yield results similar to equations A.3 and A.4,
and collecting terms gives equations 4.1 and 4.2.

References

Aitchison, J., & Dunsmore, I. R. (1975). Statistical prediction analysis. Cambridge:
Cambridge University Press.

Artola, A., Brocher, S., & Singer, W. (1990). Different voltage-dependent thresh-
olds for the induction of long-term depression and long-term potientiation
in slices of the rat visual cortex. Nature (London), 347, 69–72.

Atick, J. J., & Redlich, A. N. (1993). Convergent algorithm for sensory receptive
field development. Neural Comp., 5, 45–60.

Barlow, H. B. (1961). Possible principles underlying the transformations of sen-
sory messages. In W. A. Rosenblith (Ed.), Sensory Communication (pp. 217–
234). Cambridge, MA: MIT Press.

Becker, S., & Hinton, G. E. (1992). Self-organizing neural network that discovers
surfaces in random-dot stereograms. Nature (London), 355, 161–163.



910 Jim Kay and W. A. Phillips

Bienenstock, E. L., Cooper, L. N., & Munro, P. W. (1982). Theory for the develop-
ment of neuronal selectivity: Orientation specificity and binocular interaction
in visual cortex. J. Neurosci., 2, 32–48.

Brown, J. J., Fraser, R., Lever, A. F., & Robertson, J. I. S. (1971). Abstracts of World
Medicine, 45, 549–644.

Eckhorn, R., Reitboeck, H. J., Arndt, M., & Dicke, P. (1990). Feature linking among
distributed assemblies: Simulations and results from cat visual cortex. Neural
Comp., 2, 293–306.

Engel, A. K., König, P., Kreiter, A. K., Schillen, T. B., & Singer, W. (1992). Temporal
coding in the visual cortex: New vistas on integration in the nervous system.
Trends in Neuroscience, 15, 218–226.

Fisher, R. A. (1936). The use of multiple measurements in taxonomic problems.
Annals of Eugenics, 7, 179–188.

Hancock, P. J. B., Smith, L. S., & Phillips, W. A. (1991). Neural Comp., 3, 201–212.
Hirsch, J. A., & Gilbert, C. D. (1991). Synaptic physiology of horizontal connec-

tions in the cat’s visual cortex. J. Neurosci., 11, 1800–1809.
Hirsch, J. A., & Gilbert, C. D. (1993). Long-term changes in synaptic strength

along specific intrinsic pathways in the cat visual cortex. J. Physiol., 461, 247–
262.

Hotelling, H. (1936). Relation between two sets of variates. Biometrika, 28, 321–
377.

Hummel, J. E., & Biederman, I. (1992). Dynamic binding in a neural network for
shape recognition. Psych. Rev., 99, 480–517.

Kay, J. (1992). Feature discovery under contextual supervision using mutual
information. In Proceedings of the 1992 International Joint Conference on Neural
Networks (Baltimore) (Vol. 4, pp. 79–84).

Kay, J. (1994). Information-theoretic neural networks for the contextual guidance of
learning and processing: Mathematical and statistical considerations (Tech. Rep.)
Aberdeen, UK: Biomathematics and Statistics Scotland, Macaulay Land Use
Research Institute.

Linsker, R. (1988). Self-organization in a perceptual network. Computer, 21, 105–
117.
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