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It is generally believed that a neuron is a threshold element that fires 
when some variable u reaches a threshold. Here we pursue the question 
of whether this picture can be justified and study the four-dimensional 
neuron model of Hodgkin and Huxley as a concrete example. The model 
is approximated by a response kernel expansion in terms of a single vari- 
able, the membrane voltage. The first-order term is linear in the input and 
its kernel has the typical form of an elementary postsynaptic potential. 
Higher-order kernels take care of nonlinear interactions between input 
spikes. In contrast to the standard Volterra expansion, the kernels depend 
on the firing time of the most recent output spike. In particular, a zero- 
order kernel that describes the shape of the spike and the typical after- 
potential is included. Our model neuron fires if the membrane voltage, 
given by the truncated response kernel expansion, crosses a threshold. 
The threshold model is tested on a spike train generated by the Hodgkin- 
Huxley model with a stochastic input current. We find that the threshold 
model predicts 90 percent of the spikes correctly. Our results show that, to 
good approximation, the description of a neuron as a threshold element 
can indeed be justified. 

1 Introduction 

Neuronal activity is the result of a highly nonlinear dynamic process that 
was first described mathematically by Hodgkin and Huxley (1952), who 
proposed a set of four coupled differential equations. The mathematical 
analysis of these and other coupled nonlinear equations is known to be a 
hard problem, and an intuitive understanding of the dynamics is difficult to 
obtain. Hence, a simplified description of neuronal activity is highly desir- 
able and has been attempted repeatedly, for example, by FitzHugh (1961); 
Rinzel(l985); Abbott and Kepler (1990); Av-Ron, Pamas, and Segel(l991); 
Kepler, Abbott, and Marder (1992); and Joeken and Schwegler (1995), to 
mention only a few. An example of a simple model of neuronal spike dy- 
namics is the integrate-and-fire neuron, which dates back to Lapicque (1907) 
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and has become quite popular in neural networks modeling (see, e.g., Usher, 
Schuster, and Niebur, 1993; Abbott & van Vreeswijk, 1993; Tsodyks, Mitkov, 
& Sompolinsky, 1993; Hopfield & Herz, 1995). 

In this article we aim at a generalized, and realistic, version of the inte- 
grate-and-fire model. In order to reduce the four nonlinear equations of 
Hodgkin and Huxley to a simplified model with a single, scalar variable u, 
we use the spike response method, which has been introduced previously 
(Gerstner, 1991,1995; Gerstner &van Hemmen, 1992). A spike is triggered at 
a time tf if the membrane potential u approaches a threshold 0 from below. 
For f > tf and tf being the most recent firing time, the membrane voltage u 
in the reduced description is given by an expansion of the form, 

0 

The following spike is generated if u ( t )  = 0 and $ u ( t )  > 0, which defines 
the next firing time t f ,  and so on. The kernels q and E have a direct neuronal 
interpretation. The first term v ( t  - t f )  in the right-hand side of equation 1.1 
describes the form of a spike and the typical afterpotential following it. The 
action potential is triggered at t = t f ,  it reaches its maximum after a time 
6, and it is followed by a period of hyperpolarization that extends over 
approximately 15 ms (see Figure la). From a different point of view, we 
can think of v ( t  - t f )  as the neuron’s response to the threshold crossing at 
tf .  Similarly, the kernel 6 describes the response of the membrane potential 
to an input current 1. More precisely, t;”(cm;s) as a function of s is the 
linear response to a small current pulse at time s = 0 given that the neuron 
did not fire in the past. In biological terms, E ( ’ )  describes the form of the 
postsynaptic potential evoked by an input spike (see Figure lb). Since the 
responsiveness of the membrane to input pulses is reduced during or shortly 
after an action potential, the form of the postsynaptic potential depends also 
on the time f - tf that has passed since the last output spike. Higher-order 
terms in equation 1.1 describe the nonlinear interaction between several 
input pulses. 

We concentrate here on the four-dimensional set of equations proposed 
by Hodgkin and Huxley to describe the spike activity in the giant axon of the 
squid (Hodgkin & Huxley, 1952). We consider it as a well-studied standard 
model of spike activity, even though it does not provide a correct description 
of spiking in cortical neurons of mammals. The methods introduced below 
are, however, more general and can also be applied to more detailed neuron 
models, which often involve tens or hundreds of variables (Yamada, Koch, 
& Adams, 1989; Wilson, Bhalla, Uhley, & Bower, 1989; Traub, Wong, Miles, 
& Michelson, 1991; and Ekeberg et al., 1991). 
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Figure 1: Kernels corresponding to the Hodgkin-Huxley equations and ob- 
tained by the methods described in this article. (a) The kernel ql describes the 
typical shape of a spike and the afterpotential. The spike has been triggered at 
time t = 0. (b) The first-order kernel ti’’ describes the form of the postsynaptic 
potential. The solid line in (b) shows the postsynaptic potential evoked by a 
short pulse of unit strength that has arrived at time t = 0 while no spikes had 
been generated in the past. If there was an output spike At = 6.5 ms (dotted line) 
or A t  = 10.5 ms (dashed line) before the arrival of the input pulse, the response 
is significantly reduced. The solid line corresponds to At = co. 
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2 Theoretical Framework 

2.1 Standard Volterra Expansion. In order to approximate the mem- 
brane voltage u of the Hodgkin-Huxley equations, we start with a Volterra 
expansion (Volterra, 1959), 

~ ( t )  = ds cA1)(S)Z(f - S )  i 0 

eA2'(s, s')Z(t - s)Z(t - s') + . . . (2.1) 
0 0  

The first-order term cA')(s) describes the membrane's linear response to 
an external input current Z(f), the second-order term cA2)(s, s') takes into 
account nonlinear interactions between inputs at two different times, and 
the following terms take care of higher-order nonlinearities. We would like 
to stress that equation 2.2 is an ansatz whose usefulness we still have to 
verify. It is by no means evident that the series converges reasonably quickly. 

2.2 Expansion During and After Spikes. When dealing with series ex- 
pansions, we have to examine their convergence. As we will see, the expan- 
sion 2.1 converges as long as the input is so weak that no spikes are gen- 
erated. If a spike is triggered at time ff by some strong input, the neuronal 
dynamics jumps onto a trajectory in phase space that is always (nearly) the 
same-the action potential. During the spike, the evolution is determined 
by nonlinear intrinsic processes and is hardly influenced by external input. 
We therefore replace equation 2.1 by 

x 

+- ds ds' ci2'(t - t f ;  s, s')Z(t - s)Z(t - s') +. . . (2.2) 2! ' J  s 
0 0  

Here q l ( t  - t f )  describes the evolution of the membrane potential during 
the spike and the relaxation process thereafter. In biological terms, ql ( t  - t f )  
gives the form of a spike and the afterpotential. As in equation 2.1, the 
term 6;') describes the membrane's linear response to an input Z(t). Since 
inputs are much less effective during and shortly after a spike, the term 6;') 

depends on the time t - tf that has passed since the spike was triggered 
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at tf. The E ' S  are called response kernels. The formal arguments justifying 
equation 2.2 are discussed in the appendix. 

The lower index of ci') indicates that we take into account the effects 
of the most recent spike only. We can systematically increase the accuracy 
of our description by including more and more spikes that have occurred 
in the recent past. Taking into account the most recent p spikes, we would 
have: 

u( t )  = qp( t  - 4. . . . , f - $) 
Tx)  

I ] . . . . ,  t - $ ; s ) l ( t - s )  
0 

I +- ds ds' cj2)(f - {, . . . , k - fp; s, s')l(f - s)l(t - s') 
2! ' J  J 

0 0  

+. . .  (2.3) 

In general, qp(al, . . . , ap) is a complicated function of the p arguments. 
Since we expect that adaptation is the dominant effect, we make the ansatz 

U 

(2.4) 
k=l 

Here q1 ( a )  describes a single spike and its afterpotential. A linear summa- 
tion of the afterpotentials of several preceding spikes is often sufficient to 
describe the well-known adaptation effects of neuronal activity (Gerstner 
& van Hemmen, 1992; Ekeberg et al., 1991; Kernel1 & Sjoholm, 1973). 

We will show that for the Hodgkin-Huxley model, excellent results are 
achieved with equation 2.2, that is, with p = 1. In other words, only the most 
recent output spike affects the dynamics. This is not too surprising since the 
Hodgkin-Huxley equations show no pronounced adaptation effects. 

2.3 Relation to Integrate-and-Fire Models. In passing we note that the 
integrate-and-fire model is a special case of equation 2.3 with the response 
kernels (Gerstner, 1995) 

where uo is the voltage to which the system is reset after a spike, T is the mem- 
brane time constant, and o(.) is the Heaviside step function with @(s) = 1 
for s 1 0 and 0 otherwise. Since the standard integrate-and-fire model is lin- 
ear except at firing, the determination of the kernels is simple. In particular, 
all terms beyond 6:') vanish. 
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Equation 2.5 applies to the "one-step" integrate-and-fire model without 
synaptic or dendritic integration, but generalizations are straightforward. 
We mention three types of generalization: 

1. The synaptic input current is not a &pulse but is described by a broad 
pulse a@) where s = 0 is the time of presynaptic spike arrival. In this 
case, the response kernel 6;') has a finite rise time proportional to the 
width of the input pulse a. 

2. Dendritic integration can be incorporated by a broad input pulse &. 
The effect is the same as in the first generalization. 

3. We can include a time-dependent threshold #O + #(a )  where IJ is the 
time that has passed since the last output spike. 

Points 1 and 3 are not relevant for a comparison with the Hodgkin-Huxley 
model, since the equations of Hodgkin and Huxley do not describe synaptic 
or dendritic transmission processes either. With respect to point 3, it is easy 
to see that a time-dependent threshold is equivalent to changing the form 
of the ql-kernel. The firing condition is 

00 

0 

Subtracting @(a) on both sides of the equation leads back to equation 1.1 
with q(a )  = qI(a)  - #(a).  

In section 4.3, we test the performance of integrate-and-fire models with 
and without time-dependent threshold on a scenario with a fluctuating 
input current and compare the results with the Hodgkin-Huxley model. 

2.4 Derivation of the Kernels. For complicated neuron models described 
by several nonlinear differential equations, the kernels can be derived sys- 
tematically by the following procedure. In order to compute the response 
kernel $), we linearize the equations around the constant solution u ( t )  = U 
with zero input I(t) = 0. The kernel 6;'' is the voltage component of the 
Green's function of the linearized equation. Second and higher-order ker- 
nels can be obtained analytically by more involved methods. The mathe- 
matical details are in the Appendix. 

We have explicitly calculated the kernels c:'), . . . ,.A3' for the Hodgkin- 
Huxley equations using a computer algebra system. Albeit the length of the 
expressions grows rather fast-the third-order kernel has about 400 simple 
terms-we found it more convenient, faster, and less consuming of com- 
puter memory to calculate the kernels analytically than using a numerical 
procedure. 

It is instructive, however, to see how the kernels can be obtained nu- 
merically. To get the linear kernel, we solve the Hodgkin-Huxley equations 
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numerically for an input current Z(t) = c i to(t) ,  where it,,(t) is a short current 
pulse of unit strength at to, for example, i to(t)  = 5-l @(t - to + s/2) 8 ( s / 2  - 
t + t o )  with r << 1 ms. This is an approximate &function. We denote the 
voltage component of the solution by u[c  it,](t) and set c,!jl ’(t) = ( u [ c  it,](t - 
to )  - ii) / c in the limit c -+ 0 and r + 0, where U is the steady-state solution 
for zero input current. In a similar vein, we measure the voltage response 
to two current pulses so as to find c,!jz’. 

The improved kernel c:’) can only be found numerically. This is done in 
a similar way as above. We use an input current made up of two current 
pulses: Z(t) = c1 it, ( t )  + c2 it,(t). The first pulse at tl is strong enough to 
generate an output spike at tf. The membrane potential after the spike 
serves as a reference trajectory U[CI if ,] .  Now we add the second pulse at 
time t2 and consider the difference, 

1 su = lim c; { u[cI it, + cz it2] - u[c1 it, I ]  . 
c p o  
r - O  

(2.7) 

The difference Su(t )  gives the values of the linear response kernel c;’’(a; s) 
on a ”diagonal line” with (a; s) = (s + t Z  - tf ;  s), 

The procedure is repeated for variable offsets f Z  - tf by changing the interval 
between the first and the second pulse. Since the effect of the spike at tf 
decreases for t >> tf, we have 

(2.9) 

where e,!jl)(s) is the analytically derived kernel introduced above. 
Finally, the kernel 9 is determined by solving the Hodgkin-Huxley equa- 

tions numerically with input Z(t) = c ito(t). The amplitude c has been chosen 
sufficiently large so as to evoke a spike. The exact value of c is not impor- 
tant. We set ql ( t  - t f )  = lim,,o u[c  ifJ(t) - ii for t > to where tf is the time 
when u[c  it,](t) crosses a formal threshold 19 and ii is the constant solution 
with zero input. Once the amplitude c is fixed, the kernel 9 is uniquely de- 
termined as the form of an action potential with, apart from the triggering 
pulse, zero input current. 

The only free parameter is the threshold 9,  which is to be found by an 
optimization procedure described below. 

2.5 Comparison with Wiener Expansions. The approach indicated so 
far shows that all kernels can be found by a systematic and straightforward 
procedure. The kernels can be derived either analytically, as described in 
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the appendix, or numerically by studying the system’s response to input 
pulses on a small set of examples. 

This is in contrast to the Wiener theory (Wiener, 1958; Palm & Poggio, 
1977), which analyzes the response of a system to gaussian white noise. Since 
Wiener’s approach to the description of nonlinear systems is a stochastic 
one, the determination of the Wiener kernels requires large sets of input 
and output data (Palm & Poggio, 1978; Korenberg, 1989). Exploiting the 
deterministic response of the system to well-designed inputs (short pulses) 
thus simplifies things significantly. The study of impulse response functions 
is a well-known approach to linear or weakly nonlinear systems. Here we 
have extended this approach to highly nonlinear systems under the proviso 
that the response kernels 6 are (almost everywhere) continuous functions 
of their arguments. 

It is important to keep in mind that Volterra and Wiener series cannot fully 
reproduce the threshold behavior of spike generation, even if higher-order 
terms are taken into account. The reason is that these expansions can only 
approximate mappings that are smooth, whereas the mapping from input 
current I ( t )  to the time course of the membrane voltage has an apparent 
discontinuity at the spiking threshold (see Figure 2). Of course, this is not a 
discontinuity in the mathematical sense, but the output is very sensitive to 
small changes in the input current (Cole, Guttman, & Bezanilla, 1970; Rinzel 
& Ermentrout, 1989). We have to correct for this by adding the kernel q each 
time the series expansion indicates that a spike will occur, say, by crossing 
an appropriate threshold value. In doing so, we no longer expand around 
the constant solution u ( t )  = 0, but around u ( t )  = q(t  - tf), the time course 
of a standard action potential. 

The general framework outlined in this section will now be applied to 
the Hodgkin-Huxley equations. 

3 Application to Hodgkin-Huxley Equations 

Applying the theoretical analysis to the Hodgkin-Huxley equations, we 
begin by specifying the equations and then explain how the reduction to 
the spike response model is performed. 

3.1 Hodgkin-Huxley Spike Trains. According to Hodgkin and Huxley 
(Hodgkin & Huxley, 1952; Cronin, 1987), the voltage u(t)  across a small patch 
of axonal membran ( e g ,  close to the hillock) changes at a rate given by 

where I ( t )  is a time-dependent input current. The constants U N ~ ,  UK, and 
UL are the equilibrium potentials corresponding to sodium, potassium, and 
”leakage currents,” and the 8’s are parameters of the respective ion conduc- 
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Figure 2: Threshold behavior of the Hodgkin-Huxley equations (see equations 
3.1 and 3.2). We show the response of the Hodgkin-Huxley equations to a cur- 
rent pulse of l ms duration. A current amplitude of 7.0 p A  cm-* suffices to 
evoke an action potential (solid line; the maximum at 100 mV is out of scale), 
whereas a slightly smaller pulse of 6.9 PA cm-2 fails to produce a spike (dashed 
line). The time course of the membrane voltage is completely different in both 
cases. Therefore, the mapping of the input current onto the time course of the 
membrane voltage is highly sensitive to changes in the input around the spiking 
threshold. The bar in the upper left indicates the duration of the input pulse. 

tances. The variables m, n, and h change according to a differential equation 
of the form 

dx 
- = (rx(v) (1 - x )  - bx(u) x 
dt (3.2) 

with x E ( m ,  n, h) .  The parameters are given in Table 1. 
For a biological neuron that is part of a larger network of neurons, the in- 

put current is due to spike input from many presynaptic neurons. Hence the 
input current is not constant but fluctuates. In our simulations, we therefore 
use an input current generated by the following procedure. Every 2 ms, a 
random number is drawn from a gaussian distribution with zero mean and 
standard deviation u .  The discrete current values at intervals of 2 ms are 
linearly interpolated and define the input I(t). This approach is intended to 
mimic the effect of spike input into the neuron. The procedure is somewhat 
arbitrary but easily implementable and leads to a spike train with a broad 
interval distribution and realistic firing rates depending on u, as shown in 
Figure 3. 

We emphasize that our single-variable model is intended to reproduce 
the firing times of the spikes generated by the Hodgkin-Huxley equations. 
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Table 1: Parameters of the Hodgkin-Huxley Equations (Membrane Capacity, 
C = 1pF/cm2) 

X vx 81 

Nu 115mV 120mS/cm2 
K -12mV 36mS/cm2 
L 10.6mV 0.3mS/cm2 

~ ~~ 

n 
m 
h 0.07exp(-v/ 20) 1/[exp(3-0.1v)+l l  

(0.1 - 0.01 v) / [exp(l - 0.1 V) - 11 
(2.5 - 0.1 v) / Iexp(2.5 - 0.1 U) - 1) 

0.1 25 exp( -v / 80) 
4exp(-v/ 18) 

This is a harder problem than fitting the gain function for constant input 
current. 

3.2 Approximation by a Threshold Model. We want to reduce the four 
Hodgkin-Huxley equations (3.1 and 3.2) to the spike response model (see 
equation 2.2) in such a way that the model generates a spike train identical 
with or at least similar to the original one of Figure 3a. The reduction will 
involve four major steps: 

(3) 1. Calculate the response functions cA1), cA2), and q, . 

2. Derive the kernel r]l. 

3. Analyze the corrections to 

4. Determine a threshold criterion for firing. 

that are caused by the most recent 
output spike. 

Before starting, we note that for I ( t )  = f, the Hodgkin-Huxley equations 
allow a stationary solution with constant values v( t )  = 5, m(t )  = Z, h( t )  = h, 
and n ( t )  = Ti. The constant solution is stable if 1 is smaller than a threshold 
value f , ~  = 9.47pA/cm2, which is determined by the parameter values 
given in Table 1. 

3.2.2 Standard Volterra Expansion. The kernels cA1)(sl) and cA2)(s1, s2) 
have been derived as indicated in the appendix and are shown in Fig- 
ures l b  (solid line) and 4. Figure 5 shows a small section of the spike 
train of Figure 3a with a single spike. Two intervals, one before (lower 
left) and a second during and immediately after the spike (lower right), are 
shown on an enlarged scale. Before the spike occurs, the numerical solu- 
tion of the Hodgkin-Huxley equations (solid) is well approximated by the 
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Figure 3: Hodgkin-Huxley model. (a) 1000 ms of a simulation of the Hodgkin- 
Huxley equations stimulated through a fluctuating input current I ( t )  with zero 
mean and standard deviation 3pA/cm2. Because of the fluctuating input, the 
spikes occur at stochastic intervals with a broad distribution. (b) A histogram 
of the interspike interval (ISI) sampled over a period of 100 s. 

first-order Volterra expansion u ( t )  = I d s  cA1)(s) I ( t  - s) (long dashed line) 
and even better by the second-order approximation (dotted line). During a 
spike, however, even an approximation to third order fails completely (see 
Figure 6). 

The discrepancy during a spike may be surprising at first sight but is not 
completely unexpected. During action potential generation, the neuronal 
dynamics is mainly driven by internal processes of channel opening and 
closing, much more than by external input. Mathematically, the reason is 



1026 Werner M. Kistler, Wulfram Gerstner, and J. Leo van Hemmen 

r 4  20  0 
I. - 
- 0  - 

15 
vl 

E 
\ 10 . 
Y 

5 

0 
0 5 10 15 2 0  I 

s / m s  

Figure 4 Second-order kernel for the Hodgkin-Huxley equations. The figure 
exhibits a contour plot for the second-order kernel cA2)(s, s’). The kernel vanishes 
identically for negative arguments, as is required by causality. 

that the series expansion is valid only as long as I ( t )  is not too large; see the 
Appendix. 

3.2.2 Expansion lncluding Action Potentials. In order to account for the 
remaining differences, we have to add explicitly the shape of the spike 
and the afterpotential by way of the kernel r,q(s). The function ql(s) has 
been determined by the procedure explained in section 2 and is shown in 
Figure la. If we add ~1 (t - t f )  but continue to work with the standard kernels 
q, (s), q, (s, s’), . . . we find large errors in an interval up to roughly 20 ms 
after a spike. This is exemplified in the lower right of Figure 5 where the long- 
dashed line shows the approximation u(t)  = ql ( t  - tf) + Jds  chl)(s) l ( t  - s). 
From a biological point of view, this is easy to understand. The kernel c f ) ( s )  
describes a postsynaptic potential in response to a standard input spike. 
Due to refractoriness, the responsiveness of the membrane is lower after 
a spike, and for this reason the postsynaptic potential looks different if an 
input pulse arrives shortly after an output spike. We then have to work with 
the improved kernels E ~ ) ( c ;  s), ci2)(o; s, s’), . . . introduced in equation 2.2. 
The dotted line in the lower-right graph of Figure 5 gives the approximation 
u(t)  := r,q(t - t j )  + Jds  ci’)(t - tf; s) l( t  - s), and we see that the fit is nearly 
perfect. 

(1) (2) 

3.2.3 Threshold Criterion. The trigger time tf of an action potential is 
given by a simple threshold crossing process. Although the expansion in 
terms of the E kernels will never give the perfect form of the spike, the 
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Figure 5: Systematic approximation of the Hodgkin-Huxley model by the spike 
response model (see equation 2.2). The upper graph shows a small section of 
the Hodgkin-Huxley spike train of Figure 3a. The lower left diagram shows 
the solution of the Hodgkin-Huxley equations (solid) and the first (dashed) 
and second (dotted) order approximation with the kernels 6:;’ and 6;’’ before 
the spike occurs on an enlarged scale. The lower right diagram illustrates the 
behavior of the membrane immediately after an action potential. The solution 
of the Hodgkin-Huxley equations (solid line) is approximated by u ( t )  = ql( t  - 
t ’ )  + Sdsc:;’(s)  I ( t  - s), a dashed line. Using the improved kernel 6;’ ’  instead of 
6:;’ results in a nearly perfect fit (dotted line). 

truncated series expansion does exhibit rather significant peaks at positions 
where the Hodgkin-Huxley model produces spikes (see Figure 6). We there- 
fore decided to apply a simple voltage threshold criterion instead of using 
some other derived quantity such as the derivative v or an effective input 
current (Koch, Bernander, & Douglas, 1995). Whenever the membrane po- 
tential in terms of the expansion (see equation 2.3) reaches the threshold 
29 from below, we define a firing time tf and add a contribution q( t  - tf) .  
The threshold parameter 29 is considered as a fit parameter and has to be 
optimized as described below. 
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Figure 6: Approximation of the Hodgkin-Huxley model by a standard Volterra 
expansion (see equation 2.1) during a spike. Here we demonstrate the impor- 
tance of the kernel q1 as it appears in equation 2.2. First- (long dashed) and 
second-order approximation (dashed) using the kernels ~61' and cf'  produces a 
significant peak in the membrane potential where the Hodgkin-Huxley equa- 
tions generate an action potential (solid line), but even the third-order approx- 
imation (dotted) fails to reproduce the spike with a peak of nearly 100 mV (far 
out of scale). The remaining difference is taken care of by the kernel q l .  

4 Simulation Results 

We have compared the full Hodgkin-Huxley model and the spike response 
model(seeequation2.2) inasimulationof spikeactivityover 100,000ms (i.e., 
100 s). In so doing, we have accepted a spike of the spike response model to 
be coincident with the corresponding spike of the Hodgkin-Huxley model 
if it arrives within a temporal precision of f 2  ms. 

4.1 Coincidence Measure. As a measure of the rate of coincidence of 
spikes generated by the Hodgkin-Huxley equations and another model such 
as equation 2.3, we define an index r that is the number of coincidences 
minus the number of coincidences by chance relative to the total number 
of spikes produced by the Hodgkin-Huxley and the other model. More 
precisely, r is the fraction 

Here Ncoinc is the number of coincident spikes of Hodgkin-Huxley and 
the other model as counted in a single simulation run, NHH the number of ac- 
tion potentials generated by the Hodgkin-Huxley equations, and N ~ R M  the 
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number of spikes produced by model, say, equation 2.2. The normalization 
factor N restricts r to unity in the case of a perfect coincidence of the other 
model’s spike train with the Hodgkin-Huxley one (Ncoinc = Nsm = NHH). 
Finally, (Ncoinc) is the average number of coincidences obtained if the spikes 
of our model were generated not systematically but randomly by a homoge- 
neous Poisson process. Hence r x 0, if equation 2.2 would produce spikes 
randomly. The definition 4.1 is a modification of an idea of Joeken and 
Schwegler (1995). 

In order to calculate (Ncoinc), we perform a gedanken experiment. We are 
given the numbers NHH and N s m  and divide the total simulation time into 
K bins of 4 ms length each. Due to refractoriness, each bin contains at most 
one Hodgkin-Huxley spike; we denote the number of these bins by NHH. 
So ( K  - NHH) bins are empty. We now distribute N s m  randomly generated 
spikes among the K bins, each bin receiving at most one spike. A coincidence 
occurs each time a bin contains a Hodgkin-Huxiey spike and a random 
spike. The probability of encountering Ncoinc coincidences is thus hyperge- 
ometrically distributed, that is, p(Ncoinc) = (2:c) ( N s ~ ! ~ o m c )  / (Nsk), with 
mean (Ncoinc) = NSRM NHH / K. To see why, we use a simple analogy. Imag- 
ine an urn with NHH black balls and (K - NHH) white balls, and perform a 
random sampling of N s ~  balls without replacement. The number of black 
balls drawn from the urn corresponds to the number of coincidences in the 
original problem. This setup is governed by the hypergeometric distribution 
(Prohorov & Rozanov, 1969; Feller, 1970). In passing, we note that dropping 
the refractory side condition leads to a binomial distribution and, hence, to 
the same result for (Ncoinc). 

Using the correct normalization, N = 1 - NHH / K, we thus obtain a 
suitable measure: r has expectation zero for a purely random spike train, 
yields unity in case of a perfect coincidence of the spike response model’s 
spike train with the Hodgkin-Huxley one, and is bounded by -1 from below. 
A negative r hints at a negative correlation. Furthermore, r is linear in the 
number of coincidences and monotonically decreasing with the number of 
erroneous spikes. That is, r decreases with increasing NsRM while Ncoinc is 
kept fixed or with decreasing Ncoinc while N,, is kept fixed. 

While simulating the spike response model, we have found that due to 
the long-lasting afterpotential, a single misplaced spike causes subsequent 
spikes to occur with high probability at false times too. Since this is not 
a numerical artifact but a well-known and even experimentally observed 
biological effect (Mainen & Sejnowski, 1995), we have adopted the following 
procedure in order to eliminate this type of problem from the statistics. Every 
time the spike response model fails to reproduce a spike of the Hodgkin- 
Huxley spike train, we note an error and add the kernel q at the position 
where the original Hodgkin-Huxley spike occurred. Analogously, we count 
an error and omit the afterpotential if the spike response model produces 
a spike where no spike should occur. In case of a coincidence between the 
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Hodgkin-Huxley spike and a spike of the spike response model, we take 
no action; we place the ‘I kernel at the position suggested by the threshold 
criterion. Without correction, I- would decrease by at most a few percentage 
points, and the standard deviation would increase by a factor of two. 

4.2 Low Firing Rate. The results of the simulations for low mean firing 
rates are summarized in Table 2. Due to the large interspike intervals, effects 
from spikes in the past are rather weak. Hence we can ignore the dependence 
of the c kernels on the former firing times and work with cA1)(s) instead 
of ci”(a;  s). We do, however, take into account the kernel ql(s). Higher- 
order kernels co , co give a significant improvement over an approximation 
with only. This reflects the importance of the nonlinear interaction of 
input pulses. In a third-order approximation, the spike response model 
reproduces 85 percent of the Hodgkin-Huxley spikes correctly (see Table 2). 

(2) (3) 

4.3 High Firing Rate. At higher firing rates, the influence of the most re- 
cent output spike is more important than the nonlinear interaction between 
input pulses. We therefore use the kernel ci l )  but neglect higher-order terms 
with ei2), cj3), . . . in equation 2.2. Figure 7 gives the results of the simula- 
tions with different mean firing rates. As for Table 2, the threshold 19 and 
the time S between the formal threshold crossing time tf and the maximum 
of the action potential have been optimized in a separate run over 10 s. For 
this optimization run we have used an input current with (T = 3 pA/cm2, 
corresponding to a mean firing rate of about 33 Hz; the maximum mean 
firing rate is in the range of 70 Hz. 

For firing rates above 30 Hz, the single-variable model reproduces about 
90 percent of the Hodgkin-Huxley spikes correctly. This is quite remarkable 
since we have used only the first-order approximation, 

J 

and neglected all higher-order terms. If we neglected the influence of the 
last spike, we would end up with a coincidence rate of only 73 percent, even 
in a second-order approximation using kernels ch’) and c 8 ’ .  

Closer examination of the simulation results for various mean firing rates 
reveals a systematic deviation of the mean firing rate of the spike response 
model from the mean firing rate of the Hodgkin-Huxley equations. More 
precisely, the spike response model generates additional spikes where no 
spike should occur, and it misses fewer spikes if the standard deviation of 
the input current is increased-which is quite natural (Mainen & Sejnowski, 
1995). 

We have performed the same test with two versions of traditional inte- 
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Table 2: Simulation Results of the Spike Response Model Using the Volterra 
Kernels 661'. . . . , E,, (3) 

First 4.00 2.85 91 f 8  71 f 7  2 O f 5  1 6 f 3  0.788f0.030 
Second 4.70 2.75 87% 11 74f8 1 3 f 3  1 3 f 2  0.845f0.016 
Third 5.80 2.50 88f10 7 6 f 8  1 3 f 3  11 f 3  0.858f0.019 

Note: The table gives the number of spikes produced by the spike response model (NsRM), 
the number of coincidences (Ncoinc), the number of spikes produced by the spike response 
model where no spike should occur (Nwrong), and the number of missing spikes (Nrnisd).  
The numbers give the average and standard deviation after 10 tuns with different realiza- 
tions of the input current and a duration of 10 s per tun. The numbers should be compared 
with the number of spikes in the Hodgkin-Huxley model, NHH = 87 f 8. The coincidence 
rate r has been defined by equation 4.1. For random gambling we would obtain r zz 0. 
The parameters (9 (threshold) and 6 (time from threshold crossing to maximum of the 
action potential) have been determined by optimizing the results in a separate run over 
10 s. 

grate-and-fire models: a simple integrate-and-fire model with reset poten- 
tial u0 and time constant r ,  and an integrate-and-fire model with time- 
dependent threshold derived from the rpkernel found by the methods de- 
scribed in section 2.4--29(a) = -ql(a) for CJ > 5ms and B ( a )  = 00 for 
CJ < 5 ms. The results are summarized in Figure 8. We have optimized the 
parameters r ,  190, and uo with a fluctuating input current as already ex- 
plained and found optimal performance for a time constant of r = 1 ms. 
This surprisingly short time constant should be compared to the time con- 
stants of the 6;') kernel. Indeed, if the time since the last spike is shorter than 
about 10 ms (see Figure lb), the 6;'' kernel approaches zero within a few 
milliseconds. The optimized reset value was uo = -3 mV and the threshold 
190 = 3.05mV respectively 00 = 2.35mV for the model with respectively 
without time-dependent threshold. 

4.4 Response to Current Step Functions. Constant input currents have 
been a paradigm to neuron models ever since Hodgkin and Huxley (1952), 
although a constant current is very far from reality and one may wonder 
whether it offers a sensible criterion for the behavior of neurons producing 
spikes and, thus, responding to fluctuating input currents. Nevertheless, 
we want to study the response of our model to current steps and compare 
it with that of the original Hodgkin-Huxley model. 

As a consequence of the oscillatory behavior of the first-order kernel E;') 

(see Figure lb), our model exhibits a phenomenon known as inhibitory re- 
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Figure 7: Simulation results for different mean firing rates using the first-order 
improved kernel 6;’ ’  only. The black bars indicate the number of spikes (left axis) 
produced by the Hodgkin-Huxley model; the neighboring bars correspond to 
the number of spikes of the spike response model. The gray shading reflects the 
coincident spikes. All numbers are averages of 10 runs over 10 s with different 
realizations of the input current. The mean firing rate varies between 23 and 
40 Hz. The error bars are the corresponding standard deviations. The line in 
the upper part of the diagram indicates the coincidence rate r (right axis) as 
defined by equation 4.1. The parameters 19 = 4.7mV and 6 = 2.15ms have 
been optimized in a separate run with an input current with standard deviation 
o = 3pA cm-’. 

bound. Suppose we have a constant inhibitory (i.e., negative) input current 
for time t < 0, which is turned off suddenly at t = 0. We can easily cal- 
culate the membrane potential from equation 1.1 if we assume that there 
are no spikes in the past. The resulting voltage trace exhibits a significant 
oscillation (see Figure 9). If the current step is large enough, the positive 
overshooting triggers a single spike after the release of the inhibition. Since 
equation 1.1 is linear in the input, the amplitude of the oscillatory response 
of the membrane potential in Figure 9 is proportional to the height of the 
current step but independent of the absolute current values before or after 
the step. This is in contrast to the Hodgkin-Huxley equations, where am- 
plitude and frequency of the oscillations depend on both step height and 
absolute current values (Mauro, Conti, Dodge, & Schor, 1970). 

The limitations of a voltage threshold for spike prediction can be investi- 
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Figure 8: Comparison of various threshold models. The diagram shows the 
coincidence rate r defined in section 4.1 for a simple integrate-and-fire model 
with time constant r = 1 ms and reset potential ug = -3 mV (i&f), an integrate- 
and-fire model with time-dependent threshold (i&f*), and the spike response 
model (SRM). The error bars indicate the standard deviation of 10 simulations 
over 10 s each with a fluctuating input current with u = 3wA cm-*. 

gated by systematically studying the response of the model to current steps 
(see Figure 10). For t < 0 we apply a constant current with amplitude 11. 
At t = 0 we switch to a stronger input 12 > 11. Depending on the values 
of the final input current 12 and the step height AI = 12 - 11 we observe 
three different modes of behavior in the original Hodgkin-Huxley model, 
as is well known (Cronin 1987). For small steps and low final input currents, 
the membrane potential exhibits a transient oscillation but no spikes (inac- 
tive phase 1). Larger steps can induce a single spike immediately after the 
step (single-spike phase S). Increasing the final input current further leads to 
repetitive firing (R). Note that repetitive firing is possible for I > 6 PA cm-’, 
but firing must be triggered by a sufficiently large current step AI. Only for 
currents larger than 9.47 FA/cm2 is there autonomous firing independent 
of the current step. We conclude from the step response behavior that there 
are two different threshold paradigms: a single-spike threshold (dashed line 
in Figure 10) and a threshold for repetitive firing (solid line). 

We want to compare these results with the behavior of our threshold 
model. The same set of step response simulations has been performed with 
the spike response model. Comparing the threshold lines in the (12, AI) 
diagram for the Hodgkin-Huxley model and the spike response model, we 
can state a qualitative correspondence. The spike response model exhibits 
the same three modes of response as the Hodgkin-Huxley equations. Let us 
have a closer look at the two thresholds: the single-spike threshold and the 
repetitive firing threshold. The slope of the single-spike threshold (dashed 
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Figure 9: Response of the spike response model to a current step. An inhibitory 
input current that is suddenly turned off produces a characteristic oscillation of 
the membrane potential. The overshooting membrane potential can trigger an 
action potential immediately after the inhibition is turned off. The amplitude of 
the oscillation is proportional to the height of the current step. Here, the current 
is switched from -1 pA cm-' to 0 at time t = 0. 

line in Figure 10) is far from perfect if we compare the lower and the upper 
parts of the figure. The slope is determined by the mean Jds chl)(s) of the 
linear response kernel ,A1) and is therefore fixed as long as we stick to the 
membrane voltage as the relevant variable used in applying the threshold 
criterion. 

We now turn to the threshold of repetitive firing. The position of the 
vertical branch of the repetitive-firing threshold (solid line in Figure 10) is 
shifted to lower current values as compared to the Hodgkin-Huxley model. 
Consequently, the gain function of the spike response model is shifted to 
lower current values too (see Figure 11). The repetitive-firing threshold is 
directly related to the (free) threshold parameter 1.9 and can be moved to 
larger current values by increasing 19. Using 19 = 9 mV instead of I.9 = 
4.7mV results in a reasonable fit of the Hodgkin-Huxley gain function (see 
Figure 11). However, a shift of I.9 would also shift the single-spike threshold 
of Figure 10 to larger current values, and the triggering of single spikes 
at low currents would be made practically impossible. The value for the 
threshold parameter d = 4.7mV found by optimization with a fluctuating 
input as described in section 4.3 is therefore a compromise. 

It follows from Figure 10 that there is not a strict voltage threshold for 
spiking in the Hodgkin-Huxley model. Nevertheless, our model qualita- 
tively exhibits all relevant phases, and, with the fluctuating input scenario, 
there is even a fine quantitative agreement. 
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Figure 10: Comparison of the response to current steps of the Hodgkin-Huxley 
equations (upper graph) and the spike response model (lower graph). At time 
t = 0 the input current is switched from II to 4, and the behavior of the models 
is studied in dependence on the final current Z2 and the step height AI = 12 - 
I,. The figures in the center indicate in the manner of a phase diagram three 
different regimes: (I) the neuron remains inactive; (S) a single spike is triggered; 
(R) repetitive firing is induced. We have chosen four representative pairs of 
values of Iz and AI  (marked by dots in the phase diagram) and plotted the 
corresponding time course of the membrane potential on the left and the right 
of the main diagram so that the responses of Hodgkin-Huxley model and spike 
response model can be compared. The parameters for the spike response model 
are the same as those detailed in the caption to Figure 7. 



1036 

1 2 5  

1 0 0  

2 7 5 -  
1 

% 

2 5  

0 

Werner M. Kistler, Wulfram Gerstner, and J. Leo van Hemmen 

- ’  

- 

I ;  
I i  

- 

1 I 

Figure 11: Comparison of the gain function (output firing rate for constant input 
current I as a function of I) of the spike response and the Hodgkin-Huxley model. 
The threshold parameter B = 4.7mV found by the optimization procedure 
described in section43 gives a gain function of the spike response model (dashed 
line) that is shifted toward lower current values as compared to the gain function 
of the Hodgkin-Huxley model (solid line). Increasing the threshold parameter 
to B = 9 mV results in a reasonable fit (dotted line). 

5 Discussion 

In contrast to the complicated dynamics of the Hodgkin-Huxley equations, 
the spike response model in equation 2.2 has a straightforward and intu- 
itively appealing interpretation. Furthermore, the transparent structure of 
the model has a great number of advantages. The dynamical behavior of a 
single neuron can be discussed in simple but biological terms of threshold, 
postsynaptic potential, refractoriness, and afterpotential. 

As a first example, we discuss the refractory period. Refractoriness of 
the Hodgkin-Huxley model leads to two distinct effects. On the one hand, 
we have shunting effects-a reduced responsiveness of the membrane to 
input spikes during and immediately after the spike-that is related to ab- 
solute refractoriness and is expressed in our model by the first argument of 
ci”. In addition, the kernel 71 induces an afterpotential corresponding to a 
relative refractory period. In the Hodgkin-Huxley model, the afterpotential 
corresponds with hyperpolarization and lasts for about 15 ms, followed by 
a rather small depolarization. A different form of the afterpotential with a 
significant depolarizing phase would lead to intrinsic bursting (Gerstner & 
van Hemmen, 1992). So the neuronal behavior is easily taken care of by the 
spike response model. 

As a second example, let us focus on the temperature dependence of the 
various kernels. Temperature can be included in the Hodgkin-Huxley equa- 
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tions by multiplying the right-hand side of equation 3.2 by a temperature- 
dependent factor { (Cronin, 1987), 

< = exp [ln(3.0) (T - 6.3) / 10.01, (5.1 ) 

with the temperature T in degrees Celsius. Equation 3.1 remains unmod- 
ified. In Figure 12 we have plotted the resulting c;’) and q1 kernels for 
different temperatures. Although the temperature correction affects only 
the equations for m, h, and n, the overall effect can be approximated by a 
time rescaling, since the form of both kernels is not modified but stretched 
in time with decreasing temperature. 

Apart from the transparent structure, the single-variable model is open to 
a mathematical analysis that would be inconceivable for the full Hodgkin- 
Huxley equations. Most important, the collective behavior of a large net- 
work of neurons can now be predicted if the form of the kernels q and c( l )  is 
known (Gerstner & van Hemmen, 1993; Gerstner, 1995; Gerstner, van Hem- 
men, & Cowan, 1996). In particular, the existence and stability of collective 
oscillations can be studied by a simple graphical construction using the ker- 
nels and c( l ) .  It can be shown that a collective oscillation is stable if the sum 
of the postsynaptic potentials is increasing at the moment of firing. Other- 
wise it is unstable (Gerstner et al., 1996). Furthermore, it can be shown that 
in a fully connected and homogeneous network of spike response neurons 
with a potential described by equation 1.1, the state of asynchronous firing 
is almost always unstable (Gerstner, 1995). Also in simulations of a network 
of Hodgkin-Huxley neurons, a spontaneous breakup of the asynchronous 
firing state and a small oscillatory component in the mean firing activity 
have been observed (Wang, personal communication, 1995). 

In summary, we have used the Hodgkin-Huxley equations as a well- 
studied reference model of spike dynamics and shown that it can indeed 
be reduced to a threshold model. Our methods are more general and can 
also be applied to more elaborate models that involve many ion currents 
and a complicated spatial structure. Furthermore, an analytic evaluation of 
some of the kernels (see the appendix for mathematical details) is possible. 
We have also presented a numerical algorithm to determine the response 
kernels that, in contrast to the Wiener method, can be determined quickly 
and easily. In fact, the spike response method we have used in our analysis 
can be seen as a systematic approach to a reduction of a complex system to 
a threshold model. 

Appendix 

In this appendix we treat Volterra’s theory (Volterra, 1959) in the context of 
inhomogeneous differential equations, indicate under what conditions and 
how the kernels of the Volterra series can be computed analytically, and 
isolate the mathematical essentials of our own approach. 
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Figure 12: Temperature dependence of the kernels corresponding to the 
Hodgkin-Huxley equations. Both ql kernel (a) and 6;’) kernel (b) show apart 
from a stretching in time no significant change in form if temperature is de- 
creased from 15.0 (dotted line) and 10.0 (dashed line) to 6.3 (solid line) degrees 
Celsius. 

A.l Volterra Series. We start by studying the ordinary differential equa- 
tion 

where j is a given function of time and X denotes differentiation of x ( t )  with 
respect to t .  We require that for j = 0, x = 0 should be an attractive fixed 
point with a sufficiently large basin of attraction so that the system returns 
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to equilibrium if the perturbation j ( t )  is turned off. Furthermore, we require 
f and j to be continuous and bounded and f to fulfill a Lipschitz condition. 
Finally, j E C2(R) should have compact support so that x E C2(R). 

Under these premises there exists a unique solution x ,  with x (  -m) = 0 
for each input j E A c C2(R). Hence, the time course of the solution x is a 
function' of the time course of the perturbation j, formally, 

F : A c C2(R) += C2(R), 
j H F[j] = x with x(t) - f ( x ( t ) )  = j ( t ) ,  V t  E R. (A.2) 

Let us suppose that the function F is analytic in a neighborhood of the 
constant solution x = 0. For a precise definition of the notion of analyticity 
and conditions under which it holds, we refer to Thomas (1996). In case of 
analyticity there is a Taylor series (Dieudonnk, 1968; Dunford & Schwartz, 
1958; Kolmogorov & Fomin, 1975; Hille & Phillips, 1957) for F, 

1 
2! 

F[jl = 0 + F'[Ol[jl + -F"[Ol[j, jl + . . . (A.3) 

This series is convergent with respect to the II.112-norm, that is, F[j](t) = x ( t )  
for almost all t E R. Each derivative F(")[O] in equation A.3 is a continuous n- 
linear mapping from (C2(R))" to C2(R). Hence, F'"'[O][.](t) : (C2(IR))" -+ R 
is a continuous n-linear functional for almost all (fixed) t E R. We know that 
every such functional has a Volterra-like integral representation (Volterra, 
1959; Palm & Poggio, 1977; Palm, 1978), 

In the most general case the kernels c:") are distributions. We will see, how- 
ever, that the kernels describing equation A.2 are (almost everywhere) con- 
tinuous functions from C2(Rt1). 

Combining equations A.3 and A.4 yields the Volterra series of F ,  

c (2 ) ( t l ,  t 2 )  j(t-tl) j(t-t2) + 

' The bracket convention is such that (..) denotes the dependence on a real or complex 
scalar, and I..] denotes the dependence on a function. 
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+ ... (A.5) 

Because we expand around the constant solution x = 0, the 6 kernels 
depend not on the time t but on the difference ( t  - t*), t‘ being the time 
when we have stated the initial condition. In this subsection, we calculate 
the solution for the initial condition x(t’ = -00) = 0 and the 6 kernels do 
not depend on t at all. We have therefore dropped the index t from 6;”) as it 
occurs in equation A.4. As is discussed in section A.3, dropping the index 
is possible only if no spike occurs in the past. 

We can easily generalize this formalism to systems of differential equa- 
tions, 

and obtain 

+- dti dtz tl*’(tl, t 2 )  j ( t - t l )  j ( t - t 2 )  +.  . . 2! ‘ J  s 
As opposed to the lower index t in equation A.4, and the lower index p in 
equation 2.3, the subscript k in equation A.7 denotes the kth vector compo- 
nent of the system throughout the rest of this appendix. 

A.2 Calculation of the Kernels. We want to prove that the kernels CAI),  

ch2), . . . can be calculated explicitly for fairly arbitrary systems of differential 
equations. In particular, it is possible to obtain analytic expressions for the 
kernels in terms of the eigenvalues of the linearization of the N-dimensional 
system of differential equations we start with. 

Suppose f in equation A.6 is analytic in the neighborhood of x = 0 so 
that we can expand f in a Taylor series around x = 0. In doing so, we use 
the Einstein summation convention. We substitute the Taylor series into 
equation A.6, 

realize that the derivatives are evaluated at x = 0, and switch to Fourier 
transforms, 
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(-4.9) 

The Fourier transform of the Volterra series (see equation A.7) is 

We substitute this into equation A.9 and obtain a polynomial (in a convolu- 
tion algebra) in terms of j ( w ) ,  

Here we have defined the abbreviations c k  = 8 k . l  , 

and 

(A.13) 

Equation A.l l  holds for every function j .  The coefficients of j ( w )  therefore 
have to vanish identically, and we are left with a set of linear equations for 
the kernels, which can be solved consecutively, 

(A.14) 



1042 Werner M. Kistler, Wulfram Gerstner, and J. Leo van Hemmen 

Note that we have to invert only one matrix, ckl(w), in order to solve equa- 
tion A.14 for all kernels. The inverse of ckl(w) is 

(A.15) 

where C,,,(w) is the adjunct matrix of ckl(w) defined in equation A.12. 
Solving equation A.14, we obtain for c; ' (wl ,  . . . , w,) an expression with 

a denominator that is a product of the characteristic polynomial p(w)  := 
det ckl(w), evaluated at different frequencies w .  For instance, solving equa- 
tion A.14 for ck (w1, cry) yields a denominator p(w1) p(w2) p(w1 + q), and 
the denominator in ci3 ' (wl ,  q, w3) is p(w1) p(w2) p(w3) p(w1 + w3) p(w2 + 
w3)p(wl + q + w3), and so forth. If we know the roots of p(w),  that is, 
the eigenvalues of the system of differential equations, we can factorize 
the denominator and easily determine the residues of c r ) ( w l ,  . . . , w,) and 
thus derive an analytic expression for the inverse Fourier transform of 

(2) 

( n )  
ck (w13...,wn)! 

The coefficients uklnl E C are sums and differences of the N eigenvalues hk 
of the N-dimensional system of differential equations, 

The computational difficulties are reduced to the calculation of the N 
roots of a polynomial of degree N where N is the system dimension; see 
equation A.6. 

A.3 Limitations. In most cases, the function F is not an entire function; 
in other words, the series expansion around the constant solution x = 0 does 
not converge for all perturbations j (Thomas, 1996). For the Hodgkin-Huxley 
equations, we have found numerically that the truncated series expansion 
gives a fine approximation to the true solution only as long as the input 
current keeps well below the spiking threshold. This is not too surprising, 
since the solution of Hodgkin-Huxley equations exhibits an apparent dis- 
continuity at spiking threshold. Consider a family of input functions given 
by 

j r  : t H j o O ( t  - s ) O ( t  + 5).  (A.18) 

These are square pulses with height j o  and duration 2s. There is a threshold 
j lY(r)  and a small constant S with 6 / j I 9 ( s )  << 1 so that for j o  < j ,Y(s) - S 
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no spike occurs, whereas for jo  > j a  ( 7 )  + S at least one spike is triggered 
within a given compact interval (see Figure 2). Thus, the two-norm of the 
derivative, IIF’[jr]112 =Z l lF[jr  + S ]  - F [ j ,  - 8]l l2  / 28, takes large values as j o  
approaches the value j o ( 7 ) ,  and we do not expect the series expansion to 
converge beyond that point. 

In the body of this article, we introduced the response function q in 
order to address this problem. The key advantage of 171 and the ”improved” 
kernelsci’), ci2’, . . . is that we no longer expand around theconstant solution 
x = 0 but around a solution of the Hodgkin-Huxley equations that contains 
a single spike at t = tf. In the context of equation A.5, we have argued that 
the c kernels do not depend on the absolute time. However, since the new 
zero-order approximation u ( t )  = q l ( t  - tf) contains a spike, homogeneity 
of time is destroyed and the improved c kernels depend on ( t  - t f )  where 
tf is the latest firing time. Unfortunately, there is no analytic solution for 
the Hodgkin-Huxley equations with spikes. We therefore have to, and did, 
resort to numerical methods in order to determine the kernel c r )  in the 
neighborhood of a spike. 

In order to construct approximations of solutions with more than one 
spike, we have to concatenate these single-spike approximations. We can 
then exploit the fact that the truncated series expansion exhibits rather 
prominent peaks in the membrane potential at positions where the Hodgkin- 
Huxley equations would produce a spike. The task is to decide from the 
truncated series expansion which of the peaks in the approximated mem- 
brane potential belong to a spike and which do not. In the main body of 
the article, we investigated how well this can be done by using a threshold 
criterion. 
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