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The representation of hierarchically structured knowledge in systems
using distributed patterns of activity is an abiding concern for the con-
nectionist solution of cognitively rich problems. Here, we use statistical
unsupervised learning to consider semantic aspects of structured knowl-
edge representation. We meld unsupervised learning notions formulated
for multilinear models with tensor product ideas for representing rich
information. We apply the model to images of faces.

1 Introduction

What do we know when we know the story of Moby Dick or the face
of an acquaintance? This question, or, more formally, that of competently
representing objects with hierarchical structure in connectionist systems,
has a critical part to play in addressing a range of pressing challenges in
computational cognitive science. Various ingenious suggestions have been
made (many starting and building from the foundation provided by the
seminal collection of papers in Hinton, 1991), involving a wide range of
computationally sophisticated mechanisms.

Much of this work is strongly motivated by aspects of predicate logic.
Thus, it is concerned with discrete literals and logical terms or propositions
linking them, and specifically with the idea that it should be possible to
fashion a representation freshly on the fly for essentially arbitrary concepts.
This rather episodic view accurately characterizes some cognitive tasks,
particularly those associated with linguistics. However, there are many
other tasks for which there is substantial structured semantic knowledge,
that is, (typically hierarchically) structured networks of statistical relation-
ships among a set of entities. This semantic structure provides a framework
within which episodic information should be viewed. The example we use
in this article is visual images of faces. There are numerous strong statistical
constraints in such images—for one simple instance, the close similarity of
the two eyes or two ears—and it is these that we seek to capture.

1.1 Unsupervised Learning. The requirements for this view amount
to finding this semantic structure and using it to practical effect. We seek
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to do both of these in a connectionist context, with distributed representa-
tions and without explicit pointers and the like. One obvious direction to
turn for ideas and methods is statistical unsupervised learning algorithms
(see Hinton, 1990; Rao, Olshausen, & Lewicki, 2002), which are explicitly
designed to extract and represent semantic structure of various sorts, and
whose connectionist credentials are burnished by their widespread use for
modeling the nature and development of the tuning properties of cortical
neurons. However, bar a few exceptions (notably for our work, Tenenbaum
& Freeman, 2000, and, under a somewhat whiggish interpretation, Grimes
& Rao, 2005), they have not been much applied to hierarchical structure.

Versions of unsupervised learning based on density estimation can be
viewed in the informal terms of characterizing the statistical structure of the
input patterns in terms of low-dimensional manifolds and finding a coor-
dinate system that parameterizes these manifolds. For instance, G. Hinton
(personal communication, 1994) has estimated that images of faces live
in a roughly 30- to 40-dimensional implicit space, embedded in the huge
numbers of dimensions of pixel-based inputs. Edelman (1999) presents an
excellent discussion of this sort of representation, albeit somewhat divorced
from the context of statistical unsupervised learning.

The way the manifolds are embedded in the space in which the input
lives, captures the overall statistical constraints among the collection of
patterns. The manifolds are useful in that individual examples can be rep-
resented in terms of their coordinates. The resulting representation system,
if learned correctly, provides an optimally compact representation for new
inputs drawn from the same distribution. It explicitly does not, however,
provide sensible coordinates for inputs that come from different distribu-
tions. It is intended to solve a different problem from that of representing
arbitrary episodic structure. Unsupervised learning algorithms that employ
strong priors can make strong claims for the manifolds and coordinate sys-
tems they extract, in the sense of finding things like underlying independent
structure in the collection of examples.

In sum, we consider the problem of discovering and using semantic
structure in domains in which it has inherently hierarchical forms. Although
it is an important task for the future, in this letter, we do not seek to find
the hierarchy itself (for images, this is provided naturally by the focus of
attention) but rather to elucidate its representational implications.

1.2 Representations for Visual Objects. Connectionist representations
sit at levels of detail and abstraction above those of neurally realizable
codes. We focus on a relatively narrow and concrete question about the
representation of hierarchical structure in a particular domain, and therefore
adopt three broad constraints and (gross) simplifications associated with
the sort of visual images we use: segmentation, invariance, and distributed
representations. Further, again to focus on representation, we do not attempt
to solve the challenging general problem of detection and classification of
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faces and other objects in images, a task that over the past several years has
attracted a number of powerful and probabilistic approaches (Burl, Leung,
& Perona, 1995; Burl, Weber, & Perona, 1998; Schiele & Crowley, 1996, 2000;
Fei-Fei, Fergus, & Perona, 2003; Fergus, Perona, & Zisserman, 2003; Liebe
& Schiele, 2003, 2004; Schneiderman & Kanade, 2004; Amit & Trouvé, 2005;
Sudderth, Torralba, Freeman, & Willsky, 2005; Crandall, Felzenszwalb, &
Huttenlocher, 2005). We discuss the relationship between our work and
these ideas later.

Issues of segmentation and invariance mostly have to do with pre-
processing. We help ourselves to a mechanism capable of extracting the
elements of a scene (e.g., a whole face, an eye, a nose) at appropriate
scales, in normalized coordinates. This is exactly the intent of Olshausen,
Anderson, & Van Essen, (1993) explicit shifter circuit, and the recent archi-
tecture of Amit and Mascaro (2003), which powerfully integrates detection
and recognition. It also underlies von der Malsburg’s (1988) dynamic link
architecture, and indeed has some resonances in the more bottom-up in-
variance sought in architectures such as the MAX model (Riesenhuber &
Poggio, 1999). Even in the face of the limited evidence about basis func-
tions associated with the focus of attention (Connor, Gallant, Preddie, &
Van Essen, 1996) for achieving an equivalent (Pouget & Sejnowski, 1997) of
shifting, this is obviously a large simplification. We justify it on the basis of
our key interest in the question of representation.

We also make the great simplification of restricting the manifold to be a
mixture of factor analysers (Hinton, Dayan, & Revow, 1997). This does lead
to a distributed code, but one that is obviously far too simple to reflect faith-
fully the sort of population code representation that we might legitimately
expect in the brain (Pouget, Dayan, & Zemel, 2000).

1.3 Tensors and Distributed Representations. Smolensky (1990) sug-
gested that tensor products are the natural means for representing and
manipulating structured knowledge that is represented as distributed pat-
terns of activity over multiple units. This idea has exerted significant influ-
ence over a wealth of subsequent work in the field, including, for instance,
the approaches of Plate (1995, 2003) and Gayler (1998), who have studied
generalizations and simplifications of tensor products, and also the commu-
nity working on recursive autoassociative memories (Hinton, 1990; Pollack,
1990; Sperduti, 1994).

Our work, which is an extension of Riesenhuber and Dayan (1996), also
fits comfortably into this tradition, albeit in the context of semantic statistical
ideas of unsupervised learning and thus the multilinear modeling frame-
work of Tenenbaum and Freeman (2000; see also Vasilescu & Terzopoulos,
2002, 2003, and Grimes & Rao, 2005). Compared with Riesenhuber and
Dayan (1996), we consider a much richer domain of visual objects (Blanz &
Vetter, 1999), and employ a more powerful unsupervised learning algorithm
that can also automatically cluster the objects into classes.
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In section 2 we describe the statistics of a structured domain, using a form
of discrete, multiscale representation of images of faces as an example. We
also describe the multilinear, unsupervised learning model that we employ
to capture these statistics. In section 3, we generalize this approach to en-
compass unsupervised clustering of separate object classes or subclasses.
Finally, in section 4, we consider how our model fits in with other ideas on
structured knowledge representation and present some more speculative
notions about domains rather far removed from face images.

2 Multilinear Models

The critical representational notion in this article is that hierarchically struc-
tured image objects should be considered as mappings from some form of
generalized focus of attention or eye position e to a form of observation x
that would be made at that focus of attention, that is:

image object : attentional position ⇒ observation.

I : e ⇒ x
(2.1)

Connor et al’s (1996) findings on the effects of the focus on attention on re-
ceptive fields in area V4 in visual cortex underlay Riesenhuber and Dayan’s
(1996) suggestion of a model of exactly this form (see also Salinas & Abbott,
1997). However, mappings of this sort date back at least to ideas on the
interactions between action and observation (see, e.g., the extensive dis-
cussion in Bridgeman, van der Heijden, & Velichkovsky, 1994). In terms
of a statistical generative model (MacKay, 1956; Neisser, 1967; Grenander,
1976–1981; Mumford, 1994; Hinton & Zemel, 1994; Dayan, Hinton, Neal, &
Zemel, 1995; Olshausen & Field, 1996; Hinton & Ghahramani, 1997), often
ascribed to feedback connections between cortical areas, the mapping in
equation 2.1 suggests that correlations among the observations x should be
explained by two structural features of the inputs: the existence of multi-
ple attentional foci for the same underlying object and the semantic (and
episodic) structure of the image objects I.

Figure 1 illustrates one way to conceive of the generative structure in the
images of faces and also shows how we generated the training data for the
letter. We used the face images from Blanz and Vetter (1999) together with
fiducial markers (T. Vetter, personal communication, May 2005; M. Riesen-
huber, personal communication, May 2005; Riesenhuber, Jarudi, Gilad, &
Sinha, 2004) that locate particular features (such as the pupils of the eyes)
in each image. The markers for the faces in the database were labeled by
hand. As discussed in section 1, doing this automatically is an important
task for preprocessing and is one of the key computations in models such
as Olshausen et al.’s (1993) and Amit and Mascaro’s (2003) shifter models;
however, we do not model it explicitly here.
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Figure 1: Hierarchical image decomposition. The left and right eyes, the nose,
and the mouth of 190 faces from the Blanz and Vetter (1999) database (an exam-
ple is shown in the top left, with the segments defined by fiducial markers) are
warped into the common reference frame specified by one of the faces. Seven
different images at three different resolutions are defined for each warped face
(the four separate subparts at the highest resolution, the two eyes together, and
the nose and mouth together at medium resolution, and all of them combined
at the lowest resolution), and are projected onto the top 20 principal compo-
nents of the seven separate covariance matrices. The 1488 pixels are therefore
represented three times over (once per resolution) in 140 numbers (middle rect-
angular block). The subparts of the face and the face itself can be reconstructed
from these coefficients to quite high fidelity (lower figures; with the irregular
outlines showing which parts defined the foci of attention).

The markers create a linear object class representation of the faces (Vetter
& Poggio, 1997; Beymer & Poggio, 1996), which allows them to be warped
into a common reference frame, which we arbitrarily define based on the
first face in the database (we could equally well have used the average face).
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For simplicity, we concentrate in this article on the two eyes, the nose, and
the mouth.

The top left-hand image in Figure 1 is an example face from the database.
The irregular lines delimit regions containing the eyes, nose, and mouth,
using the fiducial markers. These regions are then separately warped into
canonical coordinates, defined as those of the eyes, nose, and mouth of the
first face in the database. The image at the top right of the figure shows
the result of this warping. The full images in the database are defined
over 100 × 100 = 10, 000 pixels; in the canonical representation, right eye,
left eye, nose, and mouth are defined by 433, 394, 310, and 351 pixels,
respectively (since these are the sizes of these features in the first face).

We assume that subjects can determine their focus of attention at one
of three resolutions and thereby to seven discrete parts or subparts. At the
highest resolution, the four individual elements of the face can be sepa-
rately attended; at a medium resolution, either the two eyes or the nose and
mouth together can be selected; at the lowest resolution, all four parts are
represented collectively. The difference in resolution arises since items in the
focus of attention are represented in a fixed size structure, so, for instance,
the fidelity with which the full face can be represented is roughly a quarter
that of the individual elements. In practice, we create this fixed structure by
projecting the full input onto a fixed number d (d = 20 in the figure) of the
principal eigenvectors of their covariance matrices (using separate covari-
ance matrices for each of the seven resolutions). In terms of the relationship
in equation 2.1, an observation x is the reduced, d-dimensional description
of one element of a face at one resolution.

Principal component analysis (PCA) is exactly the outcome of the sim-
plest Hebbian unsupervised learning algorithm applied to the warped im-
ages (Linsker, 1988). Performing PCA is sensible because of the linear class
structure created by the fiducial markers (Vetter & Poggio, 1997; Beymer &
Poggio, 1996). In our highly simplified description, we consider the warp-
ing and projection to happen at the lowest levels of visual processing in
both recognition and generative directions. We thus have eigenfaces (Turk
& Pentland, 1991) plus equivalent eigenanalyses for the six other substruc-
tures. One can alternatively think of these coefficients as part-specific fea-
tures of the input.

The middle panel of Figure 1 shows the seven separate sets of coefficients
for the particular face, and the three lower panels show how well these co-
efficients can reconstruct the parts of the face at the different resolutions.
The irregular lines show which parts were separately decoded from the
coefficients and then pasted together. For the left image, the 4 collections of
20 coefficients representing the individual subparts have been separately
decoded and pasted to generate a single image. For the middle image, at
an intermediate resolution, the pair of 20 coefficients has been used—one
for the two eyes together and one for the nose and mouth together. For the
right image, at the lowest resolution, only a single set of coefficients has
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been used for all the subparts. The inset images show the principal com-
ponents and the mean at this lowest resolution. If one looks closely, this
reconstruction (depending on only 20 coefficients) is a little worse than that
at the high resolution (depending on 80), but the difference is relatively sub-
tle. However, note that the faces are certainly not all the same; for instance,
the mean face looks quite different from this particular example.

In total, including all possible resolutions, the complete input associated
with each face lives in a 7 × 20 = 140-dimensional space. One way of illus-
trating the overall task for unsupervised learning is through the covariance
matrix of all the faces in this space. That we normalized the dimension-
ality of each input using PCA implies that there is no off-diagonal struc-
ture within the 20 × 20 blocks along the diagonal of this full covariance
matrix, but we can expect substantial structure between the blocks, be-
cause of correlations between the features of the subparts (e.g., the eyes are
usually similar to each other), and the relationships between the different
resolutions. Note that the PCA at the lower resolutions was formally sepa-
rate from the PCA at the higher resolution, so the coefficients are not trivially
related to each other.

The rows of Figure 2 show the top few eigenvectors of the full covari-
ance matrix, ordered by increasing eigenvalue (every fifth one of which
is shown on the left of the figure). The eigenvectors can be thought of in
7 sets of 20 columns arising from the image substructures, whence some
interrelationships are apparent. For instance, the “rightwards” structure in
the eigenvectors arises since PCA was used to generate the fixed-size rep-
resentations of all seven elements of each complete face description, and
the resulting coefficients are also ordered. Also, the forms of the weightings
in the components associated with similar parts (e.g., left and right eyes)
are somewhat similar, even though separate eigenanalyses were used to
generate the 20 coefficients per component.

To capture the common structure among the component coefficients of
the faces and their parts, we consider a φ-dimensional hidden or latent
space (φ ≤ 140). That is, we consider the full representation of a face to be a
φ-dimensional vector h from which the PCA coefficients x associated with
each of the seven elements can be generated. In terms of relationship 1,
this entity should parameterize a map from attentional focus e to the PCA-
reduced, d-dimensional observation x that could be made at that focus of
attention. Following Tenenbaum and Freeman (2000), we do this using a
bilinear model, with

xi =
∑

jk

Oi jke j hk + ηi (2.2)

where ηi is component-wise independent noise and O is an observation
or imaging tensor that specifies how the latent description h of the face
determines the mapping from attentional focus to observation.
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Figure 2: Eigenvectors and eigenvalues of the covariance matris for the full
140 × 140–dimensional representation of the faces. The structure in the 140-
dimensional space is evident for the eigenvectors with the largest eigenvalues.
The eigenvalues of every fifth eigenvector are shown.

The last required element of the model is to allow for different classes of
faces. We do this by considering a mixture model. This adds significant rep-
resentational power, which is necessary given the highly constrained factor
analysis–based representation that we are employing. It can also be seen as
an abstraction of the sort of population code representation ubiquitously
employed by the cortex. We consider each class (each mixture component)
as being a separate (informal) manifold in h space. We describe the mani-
fold of class c by a φ-dimensional mean value νc and a ψ × φ–dimensional
factor loading matrix Gc , where ψ is the true underlying dimension of the
manifold. This makes the full latent description of a specific face in this
class from the class be

h = g · Gc + νc (2.3)

where g are the (episodic) ψ-dimensional factor values for this specific face
and are assumed to have an identity covariance matrix.
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Thus, in total, we have the multilinear model

xi =
∑

jk

Oi jke j

(∑
l

glGc
lk + νc

k

)
+ ηi . (2.4)

We consider the parameters of the imaging model O to be fixed for all
classes of images, since they share a single latent space; the parameters of
each class to be Gc and νc ; and the parameters of a particular face within a
class (its unique episodic description) to be the factors g.

Figure 3 shows the full generative model in the case that there are two
classes (c ∈ {1, 2}) with a handful of faces assigned (for the moment, ar-
bitrarily) to each. The episodic descriptions of the faces from each class
are shown as rectangles containing their ψ-dimensional descriptions (g).
These, via factor loadings (Gc) and together with class-specific mean values
νc (not shown), specify a location in a common φ-dimensional space (h),
which acts as the model’s hidden representation of the 140-dimensional full
representation of the face. The focus of attention (e) acts in a multilinear
manner to select which resolution and which subpart should be imaged.
This creates the canonical (in this case, 20-dimensional) representation x of
the part or subpart, which can then be imaged in canonical (warped) coor-
dinates by reversing (as best as possible) the projection from the collection
of eigenvectors used to create the reduced input representations.

In the terms of Tenenbaum and Freeman (2000), the imaging process
in equation 2.2 is symmetric, with h and e being treated equally. Given
that there are only a few possible foci of attention, we can also consider
an asymmetrical model with Oe

ik = ∑
j Oi jke j for the vector e associated

with attentional focus e. In this case, instead of using a φ-dimensional mean
vector νc for each class, it is easiest to use a 7d-dimensional mean for each
class and attentional focus. This has the disadvantage of not capturing
the fact that there is coordinated structure in the mean coming from the
observation process. However, it has the didactic advantage of making
more meaningful the comparisons between different values of the hidden
dimension φ, uncorrupted by errors in the means. We therefore use this
variant in the figures below. Concomitantly, we allow each (of the e =
1, . . . , 7) distinct attentional foci to have separate, independent noise terms
and so make η ∼ N [z,U], with diagonal covariance matrix

U = diag (υe
1 . . . υe

d ) (2.5)

consisting of the uniquenesses υe
i (the independent variance terms) for each

component i and attentional focus e. In this case, again dropping the class
label c for convenience, we can write

xe
i = νe

i +
∑

k

Oe
ik

∑
l

glGlk + ηe
i . (2.6)
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Figure 3: Generative model. Face factors g in one class (2) are mapped through a
class-specific factor loading matrix G2 into a hidden latent representation h and
are transformed by the observation tensor O to give the reduced representation
x of one of the subparts, from which the (warped) image can be reconstructed via
the principal components. Top-down control (the transparent gray blobs) acts
to control the choice of face and the choice of attentional focus, which influences
the use of O and the reconstruction process. The warping is not shown. There
is one collection of eigenvectors for each of right eye r, left eye e, nose n, mouth
m, both eyes %, mouth and nose o, and the whole face a.
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Having specified a rather rich representational structure for the images,
we use unsupervised learning to infer the parameters. In section 3, we con-
sider the case that we are ignorant of the true class of each face, turning to
the expectation-maximization (EM) algorithm (Dempster, Laird, & Rubin,
1977). If, however, we do know the classes (in this section, we arbitrar-
ily assign half the faces to one class, the other half to the other), then a
maximum likelihood fit of the parameters νe , Oe , Gc , and U to observed
data amounts to a form of weighted least-squares minimization, where the
weights arise as part of the full gaussian model. In this section, we con-
sider the related unweighted least-squares problem for which Tenenbaum
and Freeman (2000) suggested a solution method involving singular value
decomposition in an inner loop. To encompass the next section, in the full
weighted problem that has to be solved, we use a conjugate gradient scheme
(Carl Rasmussen’s minimize). As is conventional, we add a baseline to υe

i
to prevent the problem from becoming ill conditioned.

The unweighted case studied by Tenenbaum and Freeman (2000) can be
seen as introducing extra parameters g for each face and then minimizing
with respect to νe , Oe , Gc , and g the mean square error,

〈∑
ei

(
νe

i +
∑

k

Oe
ik

∑
l

glGlk − xe
i

)2〉
, (2.7)

averaged over all the faces in all the classes (which only share Oe ). In this
case, we can readily judge the model by considering the reconstructions of
the reduced representations xi ,

ν̂e
i +

∑
k

Ôe
ik

∑
l

ĝlĜlk, (2.8)

of the inputs at each attentional focus arising from each face associated with
the optimized values.1

Figure 4 duly shows the result of this optimization in various ways.
Figure 4A shows the reconstruction error per pattern as a function of φ, the
underlying dimension of the hidden space, and ψ , the number of hidden
factors. Reconstruction is already quite good for a hidden dimension of
around 30 or 40 and around 20 to 30 factors. As might be expected, in the
face of multilinearity, it is not generally very useful to trade off φ and ψ , the
reconstruction is high quality only if both are adequate. This is particularly
true for this case of only two classes of face.

Figure 4B shows how the multiple possible observations of a single face
are reconstructed as a function of the number of factors ψ , using as a hidden

1 With the important exception of the prior over the factors, this is very similar to the
outcome of a noise clean-up process associated with use of the generative model.



2304 P. Dayan

03570

0
35

70

0

0.1

0.2

0.3

0.4

10

20

30

 0 

80%

−0.2 0.2
 0 

80%

−0.2 0.2 −0.2 0.2 −0.2 0.2 −0.2 0.2 −0.2 0.2 −0.2 0.2

A B

C

reconstruction  error reconstruction

factors hidden dimensionφ ϕ

10 20 30 40 50 60 70ψ =

φ=
30

φ=
70

Figure 4: Reconstruction and reconstruction error for the multilinear model.
(A) Mean square reconstruction error per full (7 × 20 = 140-dimensional) rep-
resentation of the faces from two classes as a function of the dimensionality φ of
the hidden space and the number ψ of the factors within each space (for com-
parison, the mean square weight of the representations is 3.7). (B) Reconstruc-
tion of a single face pattern (the lowest three images, showing high, medium,
and low resolutions as in the bottom row of Figure 1 for φ = 30 dimensions
and ψ = {10, 20, 30} factors). (C) Histograms of the reconstruction errors for
φ = 30, 70 for various numbers of factors.

dimension φ = 30. The model generates the reduced observations x1, . . . , x7,
and these have then been mapped into the canonical face coordinates, just
as in the bottom row of Figure 1. Again, the differences are rather subtle, and
the reconstruction is quite competent even for relatively few factors. This
arises because of the redundancy in the full 140-dimensional representation
of the faces.

Figure 4C shows the quality of reconstruction in a slightly different
manner. Each subplot shows a histogram of the errors in reconstructing all
the elements of the xi for one whole class of faces. The upper row is for a
hidden dimension of φ = 30, the lower for a hidden dimension of φ = 70.
Along the rows, the number of factors ψ increases. Again, the high quality
of the reconstruction is readily apparent.
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A further way to test the model’s ability to capture the structure of the
domain is to see how well it can construct one part of a face from other
parts. If we know which class the face comes from and the attentional focus
of a given sample x, then we can reconstruct the mean (and variance) of
the observations at all the other possible attentional foci. Under gaussian
assumptions, the best way to do this is to use the full (in this case, 140 × 140–
dimensional) covariance matrices shown in Figure 2. Consider the case
that we observe a face from its first attentional focus x1. Then write the
covariance matrix for the class as

� =
(

�11 �11̄

�T
11̄ �1̄1̄

)
,

where 1 represents all the (in this case, 20) indices associated with the
first attentional focus, and 1̄ the (120) indices associated with the other
attentional foci. In this case, for jointly gaussian x1, x2, . . . , x7, we have the
conditional means

E[x2, . . . , x7|x1] = (x1 − x̄1) · �−1
11 �11̄ + [x̄2, . . . , x̄7],

where the x̄i are the unconditional means of the observations. Remember
that the key parts of the reconstructions are therefore the deviations from
their means of the reduced representations of the subparts.

Figure 5 shows this for the first class of face. Each small graph shows
a histogram of the errors in reconstructing the part shown in the icon in
the column from the part shown in the icon in the row. These errors are
normalized by the standard deviations of the reconstructed parts so that
they are comparable. Various features of these histograms are in accord
with obvious intuitions. For instance, given the whole, low-resolution face,
the reconstruction of all the other resolutions is good, with the medium
resolution easier to reconstruct than the others. The medium-resolution
depiction of the combined mouth and nose supports reconstruction of the
high-resolution mouth and nose representations much better than it does
the high-resolution eye representations, and conversely. The reconstruction
of the nose from the eyes or the mouth is superior to the reconstruction of
any of the other high-resolution parts.

However, the predictions in Figure 5 are based on the nearly 106 compo-
nents of the class-conditional covariance matrices. We seek reconstruction
based on our factor analysis model. Here, given a sample, such as x1, we
infer the distribution over the unknown factors g associated with the whole
face, which we can then use to synthesize approximations to x2, . . . , x7. In
the next section, we do this (implicitly) using the full factor model; here, we
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Figure 5: Reconstruction of the reduced representations. The plots show his-
tograms of the errors in reconstruction at high, medium, and low resolutions
(columns) based on inputs at each of these resolutions (rows), using the full
covariance matrix for the first class of faces. The errors are normalized by the
standard deviations of the representations of the reconstructed part to make
them directly comparable.

use the solution from the unweighted least-squares problem and therefore
an empirical sample factor covariance matrix,

�̂i j = 〈ĝi ĝ j 〉, (2.9)

averaging over the samples, and uniquenesses,

υ̂e
i =

〈(
ν̂e

i +
∑

k

Ôe
ik

(∑
l

ĝlĜlk

)
− xe

i

)2〉
(2.10)
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Figure 6: Reconstructions of all the parts from the full trilinear model, using
ψ = 20, 40 factors (rows) and ψ = 10, 30, 70 hidden dimensions (columns). Each
plot is exactly as in Figure 5, with the same limits for each graph.

using the best fit ĝ to the full x1, . . . , x7. Then if we write the ψ × d–
dimensional matrices,

P̂e
li =

∑
k

Ôe
ikĜlk,

we have, approximately,

E[gl |x1] = (�̂−1 + P̂1 · [Û1]−1 · P̂1)−1 · P̂1(x1 − ν̂1),

where Û1 snips out just the uniquenesses associated with the attentional
focus that is actually observed. For new attentional focus e, we have

E[xe
i |x1] = ν̂e

i +
∑

k

Ôe
ik

(∑
l

E[gl |x1]Ĝlk

)
. (2.11)

Figure 6 shows reconstruction (for testing data) according to equation
2.11, using the same format (and the same limits for each individual plot)
as Figure 5 and for various values of φ and ψ . The first thing to notice is that
when there are sufficient factors and dimensions (φ = 30;ψ = 20), recon-
struction is nearly indistinguishable from that involving the full covariance
matrix (in Figure 5). This is despite the use of many fewer parameters. For
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Figure 7: Factor Effects. Each, row shows the effect of a unit change to a single
factor on high-, medium-, and low-resolution images, shown in the same format
as the bottom row of Figure 1. The four rows are for the four hidden factors that
exert the greatest influence over the right and left eyes, nose, and mouth (top to
bottom). Influence can be either positive (bright) or negative (dark).

too small a hidden dimension, there is a near-uniform degradation in the
quality of all the reconstructions.

As a final view on the multilinear model, we can use the linearity to map
the hidden factors back into the image to see the effect of changing one of
their values on the whole face. First, we assess which hidden factor exerts
the greatest single influence over each of the four high-resolution parts.
We then calculate the net effect of changing this factor on all parts of the
image and at all resolutions by multiplying together the various observation
and factor matrices, and projecting the resulting change back into the full
image. Figure 7 shows the result. There is one row each for the factor with
the strongest influence over right and left eye, and nose and mouth; each
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column shows full images constructed from the subparts at high, medium,
and low resolutions, just as in the bottom row of Figure 1.

The most obvious aspect of these plots is that the factors chosen for max-
imal effect on one subpart do indeed have a greater effect on this subpart
than on the others. However, they are much more promiscuous than one
might have expected from the reconstruction plots in Figure 6, in which
there appeared to be a rather modest effect of one subpart on others. For in-
stance, in these factor effect plots, the changes to the two eyes are almost the
same for both factors. There are also more subtle effects—for example,
the factor that changes the left eye the most also has a tendency to change
the left part of the nose. These plots also show the correct operation of the
observation hierarchy in that the changes to parts at the high resolution are
replicated at lower resolutions. This was not a forgone conclusion—there
are separate parameters for Oe for different attentional foci e.

3 Clustering

We have so far assumed perfect knowledge of the classes from the outset
(using an arbitrary division into two equally sized groups). However, this
is clearly unreasonable, and we should also infer the classes from the data
themselves. As Tenenbaum and Freeman (2000) noted in their bilinear work,
the EM algorithm (Dempster et al., 1977) is ideal for this, provided that we
have a fully probabilistic model for each class. In the E step, the posterior
probability that each input face comes from each class is assessed. In the
M step, these posterior probabilities are used as class-specific importance
weightings for each face when both the parameters associated specifically
with each class and the common parameters are updated.

In our case, the model of equation 2.4, together with the basic assump-
tions, amounts to a full generative model (albeit in the eigenfeatures x rather
than the pixel input). It is therefore straightforward to perform an exact E
step, estimating the posterior responsibilities of the clusters for the data.
Here, we consider operating in the regime in which it is possible to study a
face from all possible attentional foci in order to calculate the posterior re-
sponsibilities. However, the generative model would also make it possible
to do incremental learning based on only partial views—x only from a few
attentional foci.

Since it is necessary to estimate the uniquenesses, learning is more brittle
than for the previous section. We therefore execute only a partial M step,
improving the estimates of the parameters of each class given these respon-
sibilities. We also anneal the minimum uniqueness as a way of avoiding
premature convergence. Once again, we use Rasmussen’s minimize.

Figure 8 shows the result of performing clustering on the entire collection
of faces. The faces are relatively homogeneous, and so we do not expect a
strong underlying cluster structure. In fact, on synthetic data that actually
satisfy the precepts of the full generative model, EM finds the true clusters
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Figure 8: Unsupervised clustering of the face classes. (Column 1) Posterior re-
sponsibilities of each of the four clusters for the 190 faces. (Column 2) Deviations
of the mean face of each class (those for which the posterior responsibility is
greater than 0.8) from the overall mean face. (Column 3) Histograms of the errors
in reconstructing the within-class face representations. (Column 4) Histograms
of the errors in reconstructing the representations of faces from the other classes.
Here φ = ψ = 70. For this figure, the partiality of the M-step involved a fixed
number of line searches in minimize for Ô, Ĝ, and Û , and a learning rate of
0.01 for changing the prior responsibilities of the clusters. The initial minimal
uniqueness was 0.9 and was annealed toward 0.1 at a rate of 0.995 per iteration.
We weakened the prior over g by multiplying the data by a factor of 10. The
histograms are directly comparable with those in Figure 4.

(data not shown). The left column shows the posterior responsibilities of
each of four classes for all 190 faces. EM does indeed assign faces to each
class, though with varying frequencies (27%, 47%, 7%, and 19%, respec-
tively). The second column shows how the mean (warped) face from each
class deviates from the overall mean face—some reasonable structure is
apparent, such as different overall skin tone. The third and fourth columns
show minimal evidence of efficacy of the clustering in that histograms of
errors in the reconstructions of all the (reduced representations of the) faces,
show that within-class faces (third column) are reconstructed more profi-
ciently than out-of-class faces (fourth column).
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Figure 9: Class-specific factor effects. Each column is associated with one class,
each row with the latent factor within the class having the maximal impact on
the relevant part. Each figure shows the net effect on high-resolution version of
each image of a unit change in the factors. After Figure 7.

Figure 9 shows another view of the differences between the different
classes, using the same underlying scheme as in Figure 7. Here, each column
is associated with a single class, showing in successive rows the impact on
the high-resolution version only (equivalent to just the left-hand column
of Figure 7) of the factor with the maximal effect on the right eye, left eye,
nose, and mouth. The differences between the different classes are quite
marked, despite the fact that all the effects happen through the medium of
the same hidden space (h).

4 Discussion

In this letter, we have considered the representation of hierarchically orga-
nized classes of images whose key structuring entity is an explicit variable:
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a focus of attention. We showed how to build a factor analysis–based gener-
ative model for such classes, and how it can be inferred from data. This was
in both a simple case, in which class identity was assumed to be known, and
a richer case, involving a mixture-generative model and the EM algorithm,
in which unsupervised clustering is also essential. We used the face data
from Blanz and Vetter (1999) as our key example. Our prime objective has
been to investigate how a single representation can encompass multilevel,
statistical, hierarchical structures of different identifiable sorts. Only after
we understand this better, perhaps also in richer statistical models than
the multilinear gaussian ones here, could the foundation of key cognitively
compelling computations over those representations become set. Manipu-
lating more richly structured knowledge is a topic of some current interest
in the belief net community (Koller & Pfeffer, 1998; Milch, Marthi, & Russell,
2004); we have considered it in more connectionist terms.

Our work has a rather diverse range of links. First, it took its structuring
of the problem of hierarchical representation from Riesenhuber and Dayan
(1996). That article set out to put into context the neurophysiological results
of Connor et al. (1996), who tested Olshausen et al.’s (1993) shifter model
of attention. Connor et al. found that a major effect of specifying the focus
of (visual) attention was not to translate and scale the mapping from lower
to higher visual areas, as expected from the shifter model, but rather to
scale multiplicatively the activity of at least one population of V4 neurons.
Riesenhuber and Dayan (1996) and Salinas and Abbott (1997) treated this
scaling as part of a basis function representation involving the simultaneous
coding of the focus of attention and image-object features. As has been well
explored (Poggio, 1990), particularly through the medium of models of pari-
etal cortex (Pouget & Sejnowski, 1997; Deneve & Pouget, 2003), such basis
function mappings allow a simple instantiation of complex functions of all
the variables represented. One can see the multilinear form in equation 2.6
in basis function terms, involving an interaction between a representation∑

l glGlk of the image contents and the effect Oe
ik of the attentional focus e.

More general basis functions could be used to allow nonlinear models of
the classes themselves and of the effects of the focus of attention.

Amit and Mascaro’s (2003) shifter-like model is also related. That model
has an attractively sophisticated shifting process that integrates bottom-up
and top-down information; it would be interesting to employ within it the
sort of hierarchical representations of the top-down information that has
been our focus. We have relied on shifting to achieve the sort of preprocess-
ing normalization leading to our observations, x.

A second key antecedent is the work of Tenenbaum and Freeman (2000)
on multilinear generative models for the mostly unsupervised separation
of different factors (“content,” for us the nature of the face, and “style,”
the attentional focus) that interact to determine inputs. They articulated a
general framework to study the sort of multiplicative interactions that we
have employed, related them to a range of existing ideas about bilinearity
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in perceptual domains (Koenderink and van Doorn, 1997), and showed
a most interesting application to typefaces. The particular method that
Tenenbaum and Freeman (2000) used to fit their generative model (avoiding
one gradient step through the use of singular value decomposition) could
be adapted to our case, but an iterative method seems to be required for
trilinear and higher-order models in any event. We used a gradient-based
minimizer to solve the whole problem.

Vasilescu and Terzopoulos (2002, 2003), building partly on the work of
De Lathauwer (1997) and Kolda (2001) (and based on ideas dating back at
least to Tucker, 1966), used a tensor extension to singular valued decom-
position (SVD) to find what can be seen as a joint coordinate scheme for
structured collections of images. Take the case of faces. Their method starts
from a data tensor, with the different dimensions of structural variation of
the images (such as viewpoints, lighting conditions, and identities) kept as
separate dimensions. Just as SVD on a normal two-dimensional matrix finds
left and right coordinate systems for the two spaces acted on by the matrix,
together with singular values that link them, joint SVD on the tensor finds
coordinate systems for each dimension together with what is called a core
tensor that links them collectively. Each coordinate system parameterizes its
dimension of variability. In terms of this scheme, our method is rather like
using the focus of attention as the independent dimension and marginaliz-
ing over identity (which can then be separated through the medium of the
mixture model). In these terms, we might expect the observation tensor O
to have a formal relationship with the SVD coordinates associated with the
focus of attention. Given this, extensions of the tensor decomposition idea,
such as to independent components analysis (De Lathauwer & Vandewalle,
2004; Vasilescu & Terzopoulos, 2005), could be most useful directions for
our work on representation.

A third link is to tensor product–based representations of structured
knowledge (Smolensky, 1990; Plate, 1995, 2003; Gayler, 1998). This strand
of work has placed most of its efforts into the problem of the representation
of arbitrary episodic structured facts, with representational elements newly
minted for each new case. The same is true for methods that are further from
tensor product notions, such as Rachkovskij and Kussul’s (2001) context-
dependent thinning method for binary distributed representations or Kan-
erva’s (1996) binary spatter codes. By contrast, we have focused on the
semantic structure underlying domains such as faces. However, the basic
linear operations inherent in the multilinear models (such as equation 2.4)
are indeed just tensor products of various sorts.

Perhaps an even closer link is to recursive autoassociative memories
(RAAMs; Pollack, 1990), their ancestor in Hinton’s notion of reduced de-
scriptions (Hinton, 1990) and their relational descendants (Sperduti, 1994),
since at their heart they are autoencoders, which are best understood as
forms of statistical generative model. However, again, RAAMs are nor-
mally considered in episodic rather than semantic terms, so the influence
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exerted by the overall statistical structure of a domain can be hard to dis-
cern. Paccanaro and Hinton’s (2001) linear relational embedding (LRE) can
be seen as an intermediate case. LRE, which significantly generalizes and
formalizes Hinton’s (1989) famous family trees network, does learn aspects
of the semantics of a domain, considering the overall structure of the group
of related facts about a number of different episodic examples.

A final important link arises through ideas in computational vision for
the representation of structured objects such as faces. There is a huge wealth
of techniques based on generative models of various sorts, from the sort
of image-based methods favored by Edelman (1999) through a variety of
approaches that decompose objects into parts and learn something about
the relative positions and form of these parts. For some methods, the parts
are sometimes intended to capture something about the true structure of the
object (Fischler & Elschlager, 1973; Grenander, 1976–1981; Mjolsness, 1990;
Revow, Williams, & Hinton, 1996). For other methods, the parts are features
more like dense subcomponents, or local patches of the images, or local
wavelet coefficients (Burl et al., 1995, 1998; Schiele & Crowley, 1996, 2000;
Fei-Fei et al., 2003; Liebe & Schiele, 2003, 2004; Schneiderman & Kanade,
2004; Amit & Trouvé, 2005). Most, though not all, methods incorporate
explicit knowledge about the geometrical relationships among the parts
and have it play a key role in the recognition processes of detection and
classification. Our method is best seen as image based, and although it
has implicit information about these relationships in its ability to generate
representations of parts from wholes (one of the main intents in Riesenhuber
& Dayan, 1996), we have not considered such sophisticated recognition
issues.

The most important future direction for this work is in the direction of
knowledge structures that are more general than images. Take stories as an
extreme, but seductively motivating, example, to which, for instance, Dolan
(1989) took the idea of tensor product representations. However, as with
other tensor product notions, this was formulated before the widespread
formulation of the sort of sophisticated statistical unsupervised learning
model that Tenenbaum and Freeman (2000) promulgated. Stories of a given
class (just like faces of a given class) share a semantic structure that defines
constraints among the actors and actions in the story (just like the eyes in a
face). A most critical difference is that although there are intuitive notions
of scale (perhaps summarization scale) and substructure in stories, there is
no obvious equivalent of what we have called the attentional focus e, as a
way of defining observations at different scales or resolutions. One possible
generalization of the key mapping definition (see equation 2.1) is:

story : question ⇒ answer

I : e ⇒ x
(4.1)
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with question and answer being coded in the same latent space. In a linear
version, this would imply a generalization of equation 2.4, with

xi =
∑

jk

Oi jk

(∑
m

qmQmj

) (∑
l

glGc
lk

)
+ ηi (4.2)

(ignoring the means), where q are the hidden factors underlying the
question, x is a representation of the answer, and O maps together the
question and story representations. Altogether q · Q acts as the equivalent
of the attentional focus e. In this case, the answer should perhaps live in
the same representational space as the question, that is, be itself captured
through factors Q, although this poses a rather more challenging unsuper-
vised learning problem.

Of course, the restriction to a purely multilinear generative model is
rather severe for learning. It will be important to consider nonlinear gen-
eralizations of this in which the eye position and the latent space (or the
question and the story) interact in richer manner. Some of the recent struc-
tured image representations mentioned above may provide some pointers.
The first of a very large number of steps might be to take advantage of the
much greater flexibility of a mixture model.
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