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Abstract

Recently, there has been an outburst of interest in extending topographic maps of

vectorial data to more general data structures, such as sequences or trees. However,

at present, there is no general consensus as to how best to process sequences using

topographic maps and this topic remains a very active focus of current neurocom-

putational research. The representational capabilities and internal representations

of the models are not well understood. We rigorously analyze a generalization of

the Self-Organizing Map (SOM) for processing sequential data, Recursive SOM (Rec-

SOM) (Voegtlin, 2002), as a non-autonomous dynamical system consisting of a set of

fixed input maps. We argue that contractive fixed input maps are likely to produce

Markovian organizations of receptive fields on the RecSOM map. We derive bounds on

parameter β (weighting the importance of importing past information when processing

sequences) under which contractiveness of the fixed input maps is guaranteed. Some

generalizations of SOM contain a dynamic module responsible for processing temporal

contexts as an integral part of the model. We show that Markovian topographic maps

of sequential data can be produced using a simple fixed (non-adaptable) dynamic

module externally feeding a standard topographic model designed to process static

vectorial data of fixed dimensionality (e.g. SOM). However, by allowing trainable
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feedback connections one can obtain Markovian maps with superior memory depth

and topography preservation. We elaborate upon the importance of non-Markovian

organizations in topographic maps of sequential data.

1 Introduction

In its original form the self-organizing map (SOM) (Kohonen, 1982) is a nonlinear pro-

jection method that maps a high-dimensional metric vector space onto a two-dimensional

regular grid in a topologically ordered fashion (Kohonen, 1990). Each grid point has an

associated codebook vector representing a local subset (Voronoi compartment) of the data

space. Neighboring grid points represent neighboring regions of the data space. Given a

collection of possibly high-dimensional data points, by associating each point with its code-

book representative (and so in effect with its corresponding grid point) a two-dimensional

topographic map of the data collection is obtained. Locations of the codebook vectors

in the data space are adapted to the layout of data points in an unsupervised learning

process. Both competitive learning1 and co-operative learning2 are employed. Many mod-

ifications of the standard SOM have been proposed in the literature (e.g. Yin, 2002; Lee

& Verleysen, 2002). Formation of topographic maps via self-organization constitutes an

important paradigm in machine learning with many successful applications e.g. in data

and web-mining.

Most approaches to topographic map formation operate on the assumption that the

data points are members of a finite-dimensional vector space of a fixed dimension. Re-

cently, there has been an outburst of interest in extending topographic maps to more

general data structures, such as sequences or trees.

Several modifications of SOM to sequences and/or tree structures have been proposed

in the literature - (Barreto, Araújo & Kremer, 2003) and (Hammer et al., 2004) review

most of the approaches. Modified versions of SOM that have enjoyed a great deal of inter-

est equip SOM with additional feed-back connections that allow for natural processing of

recursive data types. No prior notion of metric on the structured data space is imposed,

instead, the similarity measure on structures evolves through parameter modification of

the feedback mechanism and recursive comparison of constituent parts of the structured

data. Typical examples of such models are Temporal Kohonen Map (Chappell & Tay-

lor, 1993), recurrent SOM (Koskela et al., 1998), feedback SOM (Horio & Yamakawa,

2001), recursive SOM (Voegtlin, 2002), merge SOM (Strickert & Hammer, 2003) and

SOM for structured data (Hagenbuchner, Sperduti, & Tsoi, 2003). Other alternatives for

1for each data point there is a competition among the codebook vectors for the right

to represent it
2not only the codebook vector that has won the competition to represent a data point

is allowed to adapt itself to that point, but so are, albeit to a lesser degree, codebook

vectors associated with grid locations topologically close to the winner
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constructing topographic maps of structured data have been suggested e.g. in (James &

Miikkulainen, 1995; Principe, Euliano & Garani, 2002; Wiemer, 2003; Schulz & Reggia,

2004).

At present, there is no general consensus as to how best to process sequences with

SOMs and this topic remains a very active focus of current neurocomputational research

(Barreto, Araújo & Kremer, 2003; Schulz & Reggia, 2004; Hammer et al., 2004). As

pointed out in (Hammer et al., 2004), the representational capabilities of the models

are hardly understood. The internal representation of structures within the models is

unclear and it is debatable as to which model of recursive unsupervised maps can represent

the temporal context of time series in the best way. The first major steps towards a

much needed mathematical characterization and analysis of such models were taken in

(Hammer et al., 2004; Hammer et al., 2004a). The authors present the recursive models

of unsupervised maps in a unifying framework and study such models from the point of

view of internal representations, noise tolerance and topology preservation.

In this paper we continue with the task of mathematical characterization and theo-

retical analysis of the hidden ‘build-in’ architectural biases for topographic organizations

of structured data in the recursive unsupervised maps. Our starting position is viewing

such models as non-autonomous dynamical systems with internal dynamics driven by a

stream of external inputs. In the line of our recent research, we study the organization

of the non-autonomous dynamics on the basis of dynamics of individual fixed-input maps

(Tiňo, Čerňanský & Beňušková, 2004). Recently, we have shown how contractive behavior

of the individual fixed-input maps translates to non-autonomous dynamics that organizes

the state space in a Markovian fashion: sequences with similar most recent entries tend

to have close state-space representations. Longer shared histories of the recently observed

items result in closer state-space representations (Tiňo, Čerňanský & Beňušková, 2004;

Hammer & Tiňo, 2003; Tiňo & Hammer, 2003).

We concentrate on the Recursive SOM (RecSOM) (Voegtlin, 2002), because RecSOM

transcends the simple local recurrence of leaky integrators of earlier models and it has

been demonstrated that it can represent much richer dynamical behavior (Hammer et al.,

2004).

By studying RecSOM as a non-autonomous dynamical system, we attempt to answer

the following questions: Is the architecture of RecSOM naturally biased towards Marko-

vian representations of input streams? If so, under what conditions may Markovian rep-

resentations occur? How natural are such conditions, i.e. can Markovian organizations of

the topographic maps be expected under widely-used architectures and (hyper)parameter

settings in RecSOM? What can be gained by having a trainable recurrent part in Rec-

SOM, i.e. how does RecSOM compare with a much simpler setting of SOM operating on

a simple non-trainable iterative function system with Markovian state-space organization

(Tiňo & Dorffner, 2001)?

The paper has the following organization: We introduce the RecSOM model in section
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Figure 1: Recursive SOM architecture. The original SOM algorithm is used for both input

vector s(t) and for the context represented as the map activation y(t-1) from the previous

time step. Solid lines represent trainable connections, dashed line represents one-to-one

copy of the activity vector y. The network learns to associate the current input with

previous activity states. This way each neuron responds to a sequence of inputs.

2 and analyze it rigorously as a non-autonomous dynamical system in section 3. The

experiments in section 4 are followed by a discussion in section 5. Section 6 concludes the

paper by summarizing the key messages of this study.

2 Recursive Self-Organizing Map - RecSOM

The architecture of the RecSOM model (Voegtlin, 2002) is shown in figure 1. Each neuron

i ∈ {1, 2, ..., N} in the map has two weight vectors associated with it:

• wi ∈ Rn – linked with an n-dimensional input s(t) feeding the network at time t

• ci ∈ RN – linked with the context

y(t− 1) = (y1(t− 1), y2(t− 1), ..., yN (t− 1))

containing map activations yi(t− 1) from the previous time step.

The output of a unit i at time t is computed as

yi(t) = exp(−di(t)), (1)

where3

di(t) = α · ‖s(t)−wi‖2 + β · ‖y(t− 1)− ci‖2. (2)

3‖ · ‖ denotes the Euclidean norm
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In eq. (2), α > 0 and β > 0 are model parameters that respectively influence the effect

of the input and the context upon neuron’s profile. Both weight vectors can be updated

using the same form of learning rule (Voegtlin, 2002):

∆wi = γ · hik · (s(t)−wi), (3)

∆ci = γ · hik · (y(t− 1)− ci), (4)

where k is an index of the best matching unit at time t, k = argmini∈{1,2,...,N} di(t), and

0 < γ < 1 is the learning rate. Note that the best matching (‘winner’) unit can be

equivalently defined as the unit k of the highest activation yk(t):

k = argmax
i∈{1,2,...,N}

yi(t). (5)

Neighborhood function hik is a Gaussian (of width σ) on the distance d(i, k) of units i and

k in the map:

hik = e−
d(i,k)2

σ2 . (6)

The ‘neighborhood width’, σ, linearly decreases in time to allow for forming topographic

representation of input sequences.

3 Contractive fixed-input dynamics in RecSOM

In this section we wish to answer the following principal question: Given a fixed RecSOM

input s, under what conditions will the mapping y(t) 7→ y(t + 1) become a contraction,

so that the autonomous RecSOM dynamics is dominated by a unique attractive fixed

point? As we shall see, contractive fixed-input dynamics of RecSOM can lead to maps

with Markovian representations of temporal contexts.

Under a fixed input vector s ∈ Rn, the time evolution (2) becomes

di(t+ 1) = α · ‖s−wi‖2 + β · ‖
(

e−d1(t), e−d2(t), ..., e−dN (t)
)

− ci‖2. (7)

After applying a one-to-one coordinate transformation yi = e−di , eq. (7) reads

yi(t+ 1) = e−α‖s−wi‖
2 · e−β‖y(t)−ci‖2

, (8)

where

y(t) = (y1(t), y2(t), ..., yN (t)) =
(

e−d1(t), e−d2(t), ..., e−dN (t)
)

.

We denote the Gaussian kernel of inverse variance η > 0, acting on RN , by Gη(·, ·),
i.e. for any u,v ∈ RN ,

Gη(u,v) = e−η‖u−v‖2
. (9)

The system of equations (8) can be written in a vector form as

y(t+ 1) = Fs(y(t)) = (Fs,1(y(t)), ..., Fs,N (y(t))) , (10)
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Figure 2: Illustration for the proof of Lemma 3.1. The line ω(y,y′) passes through y,y′ ∈
RN . The (N−1)-dimensional hyperplane Ω(c,y,y′) is orthogonal to ω(y,y′) and contains

the point c ∈ RN . c̃ is the orthogonal projection of c onto ω(y,y′), i.e. Ω(c,y,y′) ∩
ω(y,y′) = {c̃}.

where

Fs,i(y) = Gα(s,wi) ·Gβ(y, ci), i = 1, 2, ..., N. (11)

Recall that given a fixed input s, we aim to study the conditions under which the map

Fs becomes a contraction. Then, by the Banach Fixed Point theorem, the autonomous

RecSOM dynamics y(t + 1) = Fs(y(t)) will be dominated by a unique attractive fixed

point ys = Fs(ys).

A mapping F : RN → RN is said to be a contraction with contraction coefficient

ρ ∈ [0, 1), if for any y,y′ ∈ RN ,

‖F(y)− F(y′)‖ ≤ ρ · ‖y− y′‖. (12)

F is a contraction if there exists ρ ∈ [0, 1) so that F is a contraction with contraction

coefficient ρ.

Lemma 3.1 Consider three N -dimensional points y,y′, c ∈ RN , y 6= y′. Denote by

Ω(c,y,y′) the (N − 1)-dimensional hyperplane orthogonal to (y − y′) and containing c.

Let c̃ be the intersection of Ω(c,y,y′) with the line ω(y,y′) passing through y,y′ (see figure
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2). Then, for any β > 0,

max
u∈Ω(c,y,y′)

{

|Gβ(y,u)−Gβ(y
′,u)|

}

= |Gβ(y, c̃)−Gβ(y
′, c̃)|.

Proof: For any u ∈ Ω(c,y,y′),

‖y− u‖2 = ‖y− c̃‖2 + ‖u− c̃‖2

and

‖y′ − u‖2 = ‖y′ − c̃‖2 + ‖u− c̃‖2.

So,

|Gβ(y,u)−Gβ(y
′,u)| = | exp{−β‖y− u‖2} − exp{−β‖y′ − u‖2}|

= exp{−β‖u− c̃‖2} · | exp{−β‖y− c̃‖2} − exp{−β‖y′ − c̃‖2}|
≤ | exp{−β‖y− c̃‖2} − exp{−β‖y′ − c̃‖2}|,

with equality if and only if u = c̃. Q.E.D.

Lemma 3.2 Consider any y,y′ ∈ RN , y 6= y′ and the line ω(y,y′) passing through y,y′.

Let ω(y,y′) be the line ω(y,y′) without the segment connecting y and y′, i.e.

ω(y,y′) = {y + κ · (y− y′)| κ ∈ (−∞,−1] ∪ [0,∞)}

Then, for any β > 0,

argmaxc∈ω(y,y′)
{

|Gβ(y, c)−Gβ(y
′, c)|

}

∈ ω(y,y′).

Proof: For 0 < κ ≤ 1
2 , consider two points

c(−κ) = y− κ · (y− y′) and c(κ) = y + κ · (y− y′).

Let δ = ‖y− y′‖. Then,

Gβ(y, c(−κ)) = Gβ(y, c(κ)) = e−βδ2κ2

and

Gβ(y
′, c(κ)) = e−βδ2(1+κ)2 < e−βδ2(1−κ)2 = Gβ(y

′, c(−κ)).

Hence,

Gβ(y, c(κ))−Gβ(y
′, c(κ)) > Gβ(y, c(−κ))−Gβ(y

′, c(−κ)).

A symmetric argument can be made for the case

c(−κ) = y′ − κ · (y′ − y), c(κ) = y′ + κ · (y′ − y), 0 < κ ≤ 1

2
.
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It follows that for every4 c− ∈ ω(y,y′) \ω(y,y′) in between the points y and y′, there

exist a c+ ∈ ω(y,y′) such that

|Gβ(y, c+)−Gβ(y
′, c+)| > |Gβ(y, c−)−Gβ(y

′, c−)|.

Q.E.D.

For β > 0, define a function Hβ : R+ × R+ → R,

Hβ(κ, δ) = eβδ
2(2κ+1) − 1

κ
− 1. (13)

Theorem 3.3 Consider y,y′ ∈ RN , ‖y− y′‖ = δ > 0. Then, for any β > 0,

argmaxc∈RN
{

|Gβ(y, c)−Gβ(y
′, c)|

}

∈ {cβ,1(δ), cβ,2(δ)},

where

cβ,1(δ) = y + κβ(δ) · (y− y′), cβ,2(δ) = y′ + κβ(δ) · (y′ − y)

and κβ(δ) > 0 is implicitly defined by

Hβ(κβ(δ), δ) = 0. (14)

Proof: By Lemma 3.1, when maximizing |Gβ(y, c)−Gβ(y
′, c)|, we should locate c

on the line ω(y,y′) passing through y and y′. By Lemma 3.2, we should concentrate only

on ω(y,y′), i.e. on points outside the line segment connecting y and y′.

Consider points on the line segment

{c(κ) = y + κ · (y− y′)| κ ≥ 0}.

Parameter κ > 0, such that c(κ) maximizes |Gβ(y, c)−Gβ(y
′, c)|, can be found by maxi-

mizing

gβ,δ(κ) = e−βδ2κ2 − e−βδ2(κ+1)2 . (15)

Setting the derivative of gβ,δ(κ) (with respect to κ) to zero results in

e−βδ2(κ+1)2(κ+ 1)− e−βδ2κ2
κ = 0, (16)

which is equivalent to

e−βδ2(2κ+1) =
κ

κ+ 1
. (17)

Note that κ in (17) cannot be zero, as for finite positive β and δ, e−βδ2(2κ+1) > 0. Hence,

it is sufficient to concentrate only on the line segment

{c(κ) = y + κ · (y− y′)| κ > 0}.
4A \B is the set of elements in A not contained in B
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It is easy to see that κβ(δ) > 0 satisfying (17) also satisfies Hβ(κβ(δ), δ) = 0. Moreover,

for a given β > 0, δ > 0, there is a unique κβ(δ) > 0 given by Hβ(κβ(δ), δ) = 0. In other

words, the function κβ(δ) is one-to-one. To see this, note that eβδ
2(2κ+1) is an increasing

function of κ > 0 with range (eβδ
2
,∞), while 1 + 1

κ
is a decreasing function of κ > 0 with

range (∞, 1).

The second derivative of gβ,δ(κ) is (up to a positive scaling constant 1
2βδ2 ) equal to:

e−βδ2(κ+1)2
[

1− 2βδ2(κ+ 1)2
]

− e−βδ2κ2 [

1− 2βδ2κ2
]

(18)

which can be rearranged as
[

e−βδ2(κ+1)2 − e−βδ2κ2
]

− 2βδ2
[

e−βδ2(κ+1)2(κ+ 1)2 − e−βδ2κ2
κ2
]

. (19)

The first term in (19) is negative, as for κ > 0, e−βδ2(κ+1)2 < e−βδ2κ2
. We will show

that the second term, evaluated at κβ(δ) = K, is also negative. To that end, note that by

(16),

e−βδ2(K+1)2(K + 1)2 − e−βδ2K2
K(K + 1) = 0.

But because e−βδ2K2
K > 0, we have

e−βδ2(K+1)2(K + 1)2 − e−βδ2K2
K2 > 0,

and so

−2βδ2
[

e−βδ2(K+1)2(K + 1)2 − e−βδ2K2
K2
]

is negative.

Because the second derivative of gβ,δ(κ) at the extremum point κβ(δ) is negative, the

unique solution κβ(δ) of Hβ(κβ(δ), δ) = 0 yields the point cβ,1(δ) = y + κβ(δ) · (y − y′)

that maximizes |Gβ(y, c)−Gβ(y
′, c)|.

Arguments concerning the point cβ,2(δ) = y′ + κβ(δ) · (y′ − y) can be made along the

same lines by considering points on the line segment

{c(κ) = y′ + κ · (y′ − y)| κ > 0}.

Q.E.D.

Lemma 3.4 For all k > 0,

(1+2k)

2(1 + k)2
< log

(

1+k

k

)

<
(1+2k)

2k2
. (20)

Proof: Consider the functions

∆1(k) =
(1 + 2k)

2k2
− log(

1 + k

k
)

∆2(k) = log(
1 + k

k
)− (1 + 2k)

2(1 + k)2

9



We find that

lim
k→0

∆1(k) ' 1/2k2 + log(k) > 0, limk→∞∆1(k) ' 1/k2 > 0

lim
k→0

∆2(k) ' − log(k) > 0, limk→∞∆2(k) ' 1/k2 > 0.

Since

∆′
1(k) = −

(1+2k)
k3(1+k)

< 0,

∆′
2(k) = −

(1+2k)
k(1+k)3

< 0,

both functions ∆1(k) and ∆2(k) are monotonically decreasing positive functions of k > 0.

Q.E.D.

Lemma 3.5 For β > 0, consider a function Dβ : R+ → (0, 1),

Dβ(δ) = gβ,δ(κβ(δ)), (21)

where gβ,δ(κ) is defined in (15) and κβ(δ) is implicitly defined by (13) and (14). Then,

Dβ has the following properties:

1. Dβ > 0,

2. limδ→0+ Dβ(δ) = 0,

3. Dβ is a continuous monotonically increasing concave function of δ.

4. limδ→0+
dDβ(δ)

dδ
=
√

2β
e
.

Proof:

To simplify the presentation, we do not write subscript β when referring to quantities

such as Dβ , κβ(δ) etc.

1. Since κ(δ) > 0 for any δ > 0,

D(δ) = e−βδ2κ(δ)2 − e−βδ2(κ(δ)+1)2 > 0.

2. Even though the function κ(δ) is known only implicitly through (13) and (14), the

inverse function, δ(κ), can be obtained explicitly from (13)–(14) as

δ(κ) =

√

log(1+κ
κ

)

β(1 + 2κ)
. (22)
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Now, δ(κ) is a monotonically decreasing function. This is easily verified, as the

derivative of δ(κ),

δ′(κ) = − (1 + 2κ+ 2κ(1 + κ) log( 1+κ
κ

))

2κ(1 + κ)(1 + 2κ)2

√

β log( 1+κ
κ
)

(1+2κ)

(23)

is negative for all κ > 0.

Both κ(δ) and δ(κ) are one-to-one (see also proof of theorem 3.3). Moreover, δ(κ)→
0 as κ→∞, meaning that κ(δ)→∞ as δ → 0+. Hence, limδ→0+ D(δ) = 0.

3. Since δ(κ) is a continuous function of κ, κ(δ) is continuous in δ. Because e−βδ2κ(δ)2−
e−βδ2(κ(δ)+1)2 is continuous in κ(δ), D(δ) is a continuous function of δ.

Because of the relationship between δ and κ(δ), we can write the derivatives dD(δ)
dδ

and d2D(δ)
dδ2 explicitly, changing the independent variable from δ to κ. Instead of D(δ),

we will work with the corresponding function of κ, D(κ), such that

D(δ) = D(κ(δ)). (24)

Given a κ > 0 (uniquely determining δ(κ)), we have (after some manipulations),

D(δ(κ)) = D(κ) = 1

(1 + κ)

(

κ

1+κ

)
κ2

(1+2κ)

. (25)

Since δ(κ) and κ(δ) are inverse functions of each other, their first- and second-order

derivatives are related through

κ′(δ) =
1

δ′(k)
, (26)

κ′′(δ) =
−δ′′(k)
(δ′(k))3

, (27)

where k = κ(δ).

Furthermore, we have that

D′ =
dD(δ)

dδ
=

dD(κ)
dκ

dκ(δ)

dδ
= D′ κ′ (28)

and

D′′ =
d2D

dδ2
=

d

dδ

(

dD
dκ

dκ

dδ

)

=
d2D
dκ2

(

dκ

dδ

)2

+
dD
dκ

d2κ

dδ2
= D′′ κ′2 +D′ κ′′. (29)

11



Using (25)–(29), we arrive at derivatives of D(δ) with respect to δ, expressed as

functions of k5:

dD

dδ
(k) =

D′(k)

δ′(k)
, (30)

d2D

dδ2
(k) =

1

δ′(k)3
(

D′′(k) δ′(k)−D′(k) δ′′(k)
)

. (31)

The derivatives (30) and (31) can be calculated explicitly, and evaluated for all k > 0.

After simplification, dD
dδ

(k) and d2D
dδ2 (k) read

2β(1 + k)

(

1+k

k

)

−(1+k)2

(1+2k)

√

log(1+k
k

)

β(1 + 2k)
(32)

and

2β
(1+k)

(1+2k)

(

1+k

k

)

−(1+k)2

(1+2k) [1+2k−2k2 log(1+k
k
)] [1+2k−2(1+k)2 log(1+k

k
)]

[1+2k+2k(1+k) log( 1+k
k
)]

, (33)

respectively.

Clearly, dD
dδ

(k) > 0 for all β > 0 and k > 0. To show that d2D
dδ2 (k) < 0, recall that by

lemma 3.4,
(1+2k)

2(1 + k)2
< log

(

1+k

k

)

<
(1+2k)

2k2

for all k > 0, and so

1+2k−2k2 log

(

1+k

k

)

> 0,

1+2k−2(1+k)2 log

(

1+k

k

)

< 0.

All the other factors in (33) are positive.

4. Considering only the leading terms as δ → 0 (k →∞), we have

lim
δ→0+ (k→∞)

dD

dδ
(k) '

√

2β

e
+O

(

1

k2

)

,

and so

lim
δ→0+

dDβ(δ)

dδ
=

√

2β

e
.

Q.E.D.

Denote by Gα(s) the collection of activations coming from the feed-forward part of

RecSOM,

Gα(s) = (Gα(s,w1), Gα(s,w2), ..., Gα(s,wN )). (34)

5k > 0 is related to δ through k = κ(δ)
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Theorem 3.6 Consider an input s ∈ RM . If for some ρ ∈ [0, 1),

β ≤ ρ2
e

2
‖Gα(s)‖−2, (35)

then the mapping Fs (eqs. (10) and (11)) is a contraction with contraction coefficient ρ.

Proof: Recall that Fs is a contractive mapping with contraction coefficient 0 ≤ ρ < 1

if for any y,y′ ∈ RN ,

‖Fs(y)− Fs(y
′)‖ ≤ ρ · ‖y− y′‖.

This is equivalent to saying that for any y,y′,

‖Fs(y)− Fs(y
′)‖2 ≤ ρ2 · ‖y− y′‖2,

which can be rephrased as

N
∑

i=1

G2α(s,wi) · (Gβ(y, ci)−Gβ(y
′, ci))

2 ≤ ρ2 · ‖y− y′‖2, (36)

For given y,y′, ‖y− y′‖ = δ > 0, let us consider the worst case scenario with respect

to the position of the context vectors ci, so that the bound (36) still holds. By theorem

3.3, when maximizing the left hand side of (36), we should locate ci on the line passing

through y and y′, at either

cβ,1(δ) = y + κβ(δ) · (y− y′),

or

cβ,2(δ) = y′ + κβ(δ) · (y′ − y),

where κβ(δ) is implicitly defined by Hβ(κβ(δ), δ) = 0. In that case, we have

|Gβ(y, cβ,j(δ))−Gβ(y
′, cβ,j(δ))| = Dβ(δ), j = 1, 2.

Since Dβ(δ) is a continuous concave function on δ > 0 and limδ→0+ Dβ(δ) = 0, with

limδ→0+
dDβ(δ)

dδ
=
√

2β
e
, we have the following upper bound:

Dβ(δ) ≤ δ

√

2β

e
. (37)

Applying (37) to (36), we get that if

δ2
2β

e

N
∑

i=1

G2α(s,wi) ≤ ρ2 δ2, (38)

then Fs will be a contraction with contraction coefficient ρ.

Inequality (38) is equivalent to

2β

e
‖Gα(s)‖2 ≤ ρ2. (39)

Q.E.D.
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Figure 3: Functions Dβ(δ) for β = 0.5 and β = 2 (solid lines). Also shown (dashed lines)

are the linear upper bounds (37).

Corollary 3.7 Consider a RecSOM fed by a fixed input s. Define

Υ(s) =
e

2
‖Gα(s)‖−2. (40)

Then, if β < Υ(s), Fs is a contractive mapping.

We conclude the section by mentioning that we empirically verified validity of the

analytical bound (37) for a wide range of values of β, 10−2 ≤ β ≤ 5. For each β, the

values of κβ(δ) were numerically calculated on a fine grid of δ-values from the interval

(0, 6). These values were then used to plot functions Dβ(δ) and to numerically estimate

the limit of the first derivative of Dβ(δ) as δ → 0+. Numerically determined values

matched perfectly the analytical calculations. As an illustration, we show in figure 3

functions Dβ(δ) for β = 0.5 and β = 2 (solid lines). Also shown (dashed lines) are the

linear upper bounds (37).

4 Experiments

In this section we demonstrate and analyze (using the results of section 3) the potential

of RecSOM for creating Markovian context representations on three types of sequences of

different nature and complexity: stochastic automaton, laser data and natural language.

The first and the third data sets were also used in (Voegtlin, 2002).

Following Voegtlin (2002), in order to represent the trained maps, we calculate for

each unit in the map its receptive field (RF). Receptive field of a neuron is the common
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suffix of all sequences for which that neuron becomes the best-matching unit (Voegtlin,

2002). Voegtlin (2002) also suggests to measure the amount of memory captured by the

map through quantizer depth,

QD =
N
∑

i=1

pi`i, (41)

where pi is the probability of the RF of neuron i and `i is its length.

To assess maps from the point of view of topography preservation, we introduce a

measure that aims to quantify the maps’ topographic order. For each unit in the map we

first calculate the length of the longest common suffix shared by RFs of that unit and its

immediate topological neighbors. In other words, for each unit i on the grid, we create

a set of strings Ri consisting of RF of unit i and RFs of its four neighbors on the grid6.

The length of the longest common suffix of the strings in Ri is denoted by `(Ri). The

topography preservation measure7 TP is the average of such shared RF suffix lengths over

all units in the map,

TP =
1

N

N
∑

i=1

`(Ri). (42)

In order to get an insight about the benefit of having a trainable recurrent part in

RecSOM, we also compare RecSOM with standard SOM operating on Markovian suffix-

based vector representations of fixed dimensionality obtained from a simple non-trainable

iterative function system (Tiňo & Dorffner, 2001).

4.1 Stochastic automaton

The first input series was a binary sequence of 300,000 symbols generated by a first-order

Markov chain over the alphabet {a, b}, with transition probabilities P (a|b) = 0.3 and

P (b|a) = 0.4 (Voegtlin, 2002). Attempting to replicate Voegtlin’s results, we used RecSOM

with 10×10 neurons and one-dimensional coding of input symbols: a = 0, b = 1. We chose

RecSOM parameters from the stable region on the stability map evaluated by Voegtlin for

this particular stochastic automaton (Voegtlin, 2002): α = 2 and β = 1. The learning rate

was set to γ = 0.1. To allow for map ordering, we allow the neighborhood width, σ (see

eq. (6)), to linearly decrease from 5.0 to 0.5 during the first 200.000 iterations (ordering

phase), and then keep it constant over the next 100.000 iterations (fine-tuning phase)8.

6neurons at the grid boundary have less than four nearest neighbors
7It should be noted that quantifying topography preservation in recursive extensions of

SOM is not as straightforward as in traditional SOM (Hammer et al., 2004). The proposed

TP measure quantifies the degree of local conservation of suffix based RFs across the map.
8Voegtlin did not consider reducing the neighborhood size. However, we found that

the decreasing neighborhood width was crucial for topographic ordering. Initially small σ

did not lead to global ordering of weights. This should not be surprising, since for σ = 0.5
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Figure 4: Converged input (left) and context (right) weights after training on the stochastic

automaton. All values are between 0 (code of ’a’ – white) and 1 (code of ’b’ – black).

Input weights can be clustered into two groups corresponding to the two input symbols,

with a few intermediate units at the boundary. Topographic organization of the context

weights is also clearly evident.

Weights of the trained RecSOM (after 300.000 iterations) are shown in figure 4. Input

weights (left) are topographically organized in two regions, representing the two input

symbols. Context weights of all neurons have a unimodal character and are topographically

ordered with respect to the peak position (mode).

Receptive fields (RFs) of all units of the map are shown in figure 5. For each unit

i ∈ {1, 2, ..., N}, its RF is shaded according to the local topography preservation measure

`(Ri) (see (42))9. The RFs are topographically ordered with respect to the most recent

symbols. This map is consistent with the input weights of the neurons (left part of figure 4),

when considering only the last symbol.

The RecSOM model can be considered a nonautonomous dynamical system driven by

the external input stream (in this case, sequences over an alphabet of two input symbols ’a’

and ’b’). In order to investigate the fixed-input dynamics (10) of the mappings10 Fa and

Fb for symbols ’a’ and ’b’, respectively, we randomly (with uniform distribution) initialized

context activations y(0) in 10,000 different positions within the state space (0, 1]N . For

each initial condition y(0), we checked asymptotic dynamics of the fixed input maps Fs,

s ∈ {a, b}, by monitoring L2-norm of the activation differences (y(t) − y(t − 1)) and

recording the limit set (after 1000 iterations). Both autonomous dynamics settle down in

the respective unique attractive fixed points ya = Fa(ya) and yb = Fb(yb). An example

(used in (Voegtlin, 2002)), the value hik of the neighborhood function for the nearest

neighbor is only exp(−1/.52) = 0.0183) (considering a squared grid of neurons with mesh

size 1). Decreasing σ is also important in standard SOM.
9We thank one of the anonymous reviewers for this suggestion.
10We slightly abuse the mathematical notation here by indexing the fixed input RecSOM

maps F with the actual input symbols, rather than their vector encodings s.
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Figure 5: Receptive fields of RecSOM trained on the stochastic two-state automaton.

Topographic organization is observed with respect to most recent symbols (only 5 symbols

are shown for clarity). Empty slots signify neurons that were not registered as best-

matching units when processing the data. Receptive field of each unit i is shaded according

to the local topography preservation measure `(Ri). For each input symbol s ∈ {a, b}, we
mark the position of the fixed point attractor is of the induced (fixed input) dynamics on

the map by a square around its RF.

of the fixed-input dynamics is displayed in figure 6. Both autonomous systems settle in

the fixed points in roughly 10 iterations. Note the unimodal profile of the fixed points,

e.g. there is a unique dimension (map unit) of pronounced maximum activity.

It is important to appreciate how the character of the RecSOM fixed-input dynamics

(10) for each individual input symbol shapes the overall organization of RFs in the map.

For each input symbol s ∈ {a, b}, the autonomous dynamics y(t) = Fs(y(t − 1)) induces

a dynamics of the winner units on the map:

is(t) = argmax
i∈{1,2,...,N}

yi(t)

= argmax
i∈{1,2,...,N}

Fs,i(y(t− 1)). (43)

To illustrate the dynamics (43), for each of the 10,000 initial conditions y(0), we first let

the system (10) settle down by preiterating it for 1000 iterations and then mark the map

position of the winner units is(t) for further 100 iterations. As the fixed-input dynamics

for s ∈ {a, b} is dominated by the unique attractive fixed point ys, the induced dynamics

17



Figure 6: Fixed-input dynamics of RecSOM trained on the stochastic automaton – symbol

’a’ (1st row), symbol ’b’ (2nd row) . The activations settle to a stable unimodal profile

after roughly 10 iterations.

on the map, (43), settles down in neuron is, corresponding to the mode of ys:

is = argmax
i∈{1,2,...,N}

ys,i. (44)

Position of the neuron is is marked in figure 5 by a square around its RF. The neuron is

will be most responsive to input subsequences ending with long blocks of symbols s. As

seen in figure 5, receptive fields of other neurons on the map are organized with respect

to the closeness of the neurons to the fixed input winners ia and ib. Such an organization

follows from the attractive fixed point behaviour of the individual maps Fa, Fb, and the

unimodal character of their fixed points ya and yb. As soon as symbol s is seen, the mode

of the activation profile y drifts towards the neuron is. The more consecutive symbols s

we see, the more dominant the attractive fixed point of Fs becomes and the closer the

winner position is to is. Indeed, for each s ∈ {a, b}, the RF of is ends with a long block

of symbols s and the local topography preservation `(Ris) around is is high.

This mechanism for creating suffix-based RF organization is reminiscent of the Marko-

vian fractal subsequence representations used in (Tiňo & Dorffner, 2001) to build Markov

models with context dependent length. In the next subsection we compare maps of Rec-

SOM with those obtained using a standard SOM operating on such fractal representations

(of fixed dimensionality). Unlike in RecSOM, the dynamic part responsible for processing

temporal context is fixed.

Theoretical upper bounds on β guaranteeing the existence of stable activation profiles

in the fixed-input RecSOM dynamics were calculated as11: Υ(a) = 0.0226 and Υ(b) =

0.0336. Clearly, a fixed-point (attractive) RecSOM dynamics is obtained for values of β

well above the guaranteed theoretical bounds (40).

4.2 IFS sequence representations combined with standard SOM

Previously, we have shown that a simple affine contractive iterative function system (IFS)

(Barnsley, 1988) can be used to transform temporal structure of symbolic sequences into

a spatial structure of points in a metric space (Tiňo & Dorffner, 2001). The points rep-

resent subsequences in a Markovian manner: Subsequences sharing a common suffix are

11Again, we write the actual input symbols, rather than their vector encodings s.
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Figure 7: Standard SOM operating on IFS representations of symbolic streams (IFS+SOM

model). Solid lines represent trainable feed-forward connections. No learning takes place

in the dynamic IFS part responsible for processing temporal contexts in the input stream.

mapped close to each other. Furthermore, the longer is the shared suffix the closer lie the

subsequence representations.

The IFS representing sequences over an alphabet A of A symbols operates on an m-

dimensional unit hypercube [0, 1]m, where12 m = dlog2Ae. With each symbol s ∈ A we

associate an affine contraction on [0, 1]m,

s(x) = kx + (1− k)ts, ts ∈ {0, 1}m, ts 6= ts′ for s 6= s′, (45)

with contraction coefficient k ∈ (0, 12 ]. The attractor of the IFS (45) is the unique set K ⊆
[0, 1]m, known as the Sierpinski sponge (Kenyon & Peres, 1996), for which K =

⋃

s∈A s(K)

(Barnsley, 1988).

For a prefix u = u1u2...un of a string v over A and a point x ∈ [0, 1]m, the point

u(x) = un(un−1(...(u2(u1(x)))...)) = (un ◦ un−1 ◦ ... ◦ u2 ◦ u1)(x) (46)

constitutes a spatial representation of the prefix u under the IFS (45). Finally, the overall

temporal structure of symbols in a (possibly long) sequence v over A is represented by a

collection of the spatial representations u(x) of all its prefixes u, with a convention that

x = {12}m.

Theoretical properties of such representations were investigated in (Tiňo, 2002). The

IFS-based Markovian coding scheme can be used to construct generative probabilistic

12for x ∈ R, dxe is the smallest integer y, such that y ≥ x
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models on sequences analogous to the variable memory length Markov models (Tiňo &

Dorffner, 2001). Key element of the construction is a quantization of the spatial IFS repre-

sentations into clusters that group together subsequences sharing potentially long suffixes

(densely populated regions of the suffix-organized IFS subsequence representations).

The Markovian layout of the IFS representations of symbolic sequences can also be used

for constructing suffix-based topographic maps of symbolic streams in an unsupervised

manner. By applying a standard SOM (Kohonen, 1990) to the IFS representations one

may readily obtain topographic maps of Markovian flavour, similar to those obtained by

RecSOM. The key difference between RecSOM and IFS+SOM (standard SOM operating

on IFS representations) is that the latter approach assumes a fixed non-trainable dynamic

part responsible for processing temporal contexts in the input stream. The recursion is not

a part of the map itself, but is performed outside the map as a preprocessing step before

feeding the standard SOM (see figure 7). As shown in figure 8, the combination of IFS

representations13 and standard SOM14 leads to a suffix-based organization of RFs on the

map, similar to that produced by RecSOM. In both models, the RFs are topographically

ordered with respect to the most recent input symbols.

The dynamics of SOM activations y, driven by the IFS dynamics (45) and (46), again

induces the dynamics (43) of winning units on the map. Since the IFS maps are affine

contractions with fixed points ta and tb, the dynamics of winner units for both input

symbols s ∈ {a, b} settles in the SOM representations is of ts. Note how fixed points is

of the induced winning neuron dynamics shape the suffix-based organization of receptive

fields in figure 8.

To compare RecSOM and IFS+SOM maps in terms of quantization depth (QD) (41)

and topography preservation (TP) (42), we varied RecSOM parameters α and β and ran 40

training sessions for each setting of (α, β). The resulting TP and QD values were compared

with those of the IFS+SOM maps constructed in 40 independent training sessions. Other

parameters were the same as in the previous simulations, and were identical for both

models. We chose a 3 × 3 design using α ∈ {1, 2, 3} and β ∈ {0.2, 0.7, 1} attempting to

meaningfully cover the parameter space of RecSOM (see (Voegtlin, 2002)). Each RecSOM

model was compared to IFS+SOM using a two-tail t-test. Results are shown in Table 1.

The number of stars denotes the significance level of the difference (p < 0.05, 0.01, 0.001,

in ascending order). Almost all differences are significant. Specifically, QD of RecSOM

is significantly higher for all combinations of α and β15. The TP for RecSOM is also

significantly higher in most cases, except for those with higher β/α ratio. As explained in

13IFS coefficient k = 0.3
14parameters such as learning rate and schedule for neighborhood width σ were taken

from RecSOM
15Due to the constraints imposed by topographic organization of RFs, the quantizer

depths of the maps are smaller than that of the theoretically optimal (unconstrained)

quantizer computed by Voegtlin (2002) as QD = 7.08.
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Figure 8: Receptive fields of a standard SOM trained on IFS representations of sequences

obtained from the automaton. Suffix-based topographic organization similar to that found

in RecSOM is apparent. Receptive field of each unit i is shaded according to the local

topography preservation measure `(Ri). For each s ∈ {a, b}, we mark the position of the

fixed point attractor is of the induced dynamics on the map by a square around its RF.

section 4.1, trivial contractive fixed input dynamics dominated by unique attractive fixed

points lead to Markovian suffix-based RF organizations. Lower TP values are observed

for higher β/α ratios, because in those cases, more complicated fixed-input dynamics can

arise, breaking the Markovian RF maps.

β \α 1.0 2.0 3.0

0.2 5.84∗∗∗ 2.51∗∗∗ 6.15∗∗∗ 2.77∗∗∗ 6.05∗∗∗ 2.55∗∗∗

0.7 6.11∗∗∗ 1.27∗∗∗ 6.14∗∗∗ 2.21∗∗∗ 6.12∗∗∗ 2.43∗∗∗

1.0 5.75∗∗∗ 0.75∗∗ 5.87∗∗∗ 2.00 5.92∗∗∗ 2.10∗∗∗

Table 1: Means of the (QD, TP) measures, averaged over 40 simulations, for RecSOM

trained on the stochastic automaton. Corresponding means for IFS+SOM were as follows:

QD = 5.55 and TP = 1.96.

4.3 Laser data

In this experiment we trained the RecSOM on a sequence of quantized activity differences

of a laser in a chaotic regime. The series of length 8000 was quantized into a sym-
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bolic stream over 4 symbols (as in (Tiňo & Köteles, 1999; Tiňo & Dorffner, 2001; Tiňo,

Čerňanský & Beňušková, 2004)) represented by two-bit binary codes: a = 00, b = 01,

c = 10, d = 11. RecSOM with 2 inputs and 10×10 = 100 neurons was trained for 400.000

iterations, using α = 1, β = 0.2 and γ = 0.1. The neighborhood width σ linearly decreased

5.0→ 0.5 during the first 300.000 iterations and then remained unchanged.

The behavior of the model was qualitatively the same as in the previous experiment.

The map of RFs was topographically ordered with respect to most recent symbols. By

checking the asymptotic regimes of the fixed-input RecSOM dynamics (10) as in the

previous experiment, we found out that the fixed-input dynamics are again driven by

unique attractive fixed points ya, yb, yc and yd. As before, the dynamics of winning

units on the map induced by the fixed-input dynamics y(t) = Fs(y(t− 1)), s ∈ {a, b, c, d},
settled down in the mode position is of ys.

Upper bounds on β guaranteeing the existence of stable activation profiles in the

fixed-input RecSOM dynamics were determined as: Υ(a) = 0.0326, Υ(b) = 0.0818,

Υ(c) = 0.0253 and Υ(d) = 0.0743. Again, we observe contractive behavior for β above

the theoretical bounds.

As in the first experiment, we trained a standard SOM on (this time two-dimensional)

inputs created by the IFS (45). Again, both RecSOM and the combination of IFS with

standard SOM16 lead to suffix-based maps of RFs, i.e. the maps of RFs were topographi-

cally ordered with respect to most recent input symbols.

Analogously to the previous experiment, we compared quantization depths and topog-

raphy preservation measures of RecSOMs and IFS+SOM in a large set of experimental

runs with varying RecSOM parameters α and β. Results are shown in Table 2. As before,

QD of RecSOM is always significantly higher, whereas the TP measure for RecSOM is

higher except for cases of higher β/α ratio.

β \α 1.0 2.0 3.0

0.2 5.07∗∗∗ 1.44 5.52∗∗∗ 1.77∗∗∗ 4.92∗∗∗ 1.63∗∗∗

0.7 5.49∗∗∗ 0.75∗∗∗ 5.92∗∗∗ 1.41 5.81∗∗∗ 1.59∗∗∗

1.0 5.66∗∗∗ 0.55∗∗∗ 6.75∗∗∗ 1.16∗∗∗ 6.73∗∗∗ 1.42

Table 2: Means of the (QD, TP)measures, averaged over 40 simulations, for RecSOM

trained on the laser data. Corresponding means for IFS+SOM were as follows: QD =

4.63 and TP = 1.42.

16IFS coefficient k = 0.3; learning rate and schedule for the neighborhood width σ were

taken from RecSOM
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Figure 9: Receptive fields of RecSOM trained on English text. Dots denote units with

empty RFs. Receptive field of each unit i is shaded according to the local topography

preservation measure `(Ri).

4.4 Language

In our last experiment we used a corpus of written English, the novel ”Brave New World”

by Aldous Huxley. In the corpus we removed punctuation symbols, upper-case letters

were switched to lower-case and the space between words was transformed into a symbol

’-’. The complete data set (after filtering) comprised 356606 symbols. Letters of the

Roman alphabet were binary-encoded using 5 bits and presented to the network one at

a time. Unlike in (Voegtlin, 2002), we did not reset the context map activations between

the words. RecSOM with 400 neurons was trained for two epochs using the following

parameter settings: α = 3, β = 0.7, γ = 0.1 and σ : 10 → 0.5. Radius σ reached its final

value at the end of the first epoch and then remained constant to allow for fine-tuning of

the weights. The map of RFs is displayed in figure 9.

Figure 10 illustrates asymptotic regimes of the fixed-input RecSOM dynamics (10) in

terms of map activity differences between consecutive time steps17. We observed a variety

17Because of the higher dimensionality of the activation space (N = 400), we used a

different strategy for generating the initial conditions y(0). We randomly varied only

those components yi(0) of y(0), which had a potential to give rise to different fixed-input

dynamics. Since 0 < yi(0) ≤ 1 for all i = 1, 2, ..., N , it follows from (11), that these can

only be components yi, for which the constant Gα(s,wi) is not negligibly small. It is

sufficient to use a small enough threshold θ > 0, and set yi(0) = 0 if Gα(s,wi) < θ. Such
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Figure 10: Fixed-input asymptotic dynamics of RecSOM after training on English text.

Plotted are L2 norms of the differences of map activities between the successive iterations.

Labels denote the associated input symbols (for clarity, not all labels are shown).

of behaviors. For some symbols, the activity differences converge to zero (attractive fixed

points); for other symbols, the differences level at nonzero values (periodic attractors of

period two, e.g. symbols ’i’, ’t’, ’a’, ’-’). Fixed input RecSOM dynamics for symbol ’o’

follows a complicated aperiodic trajectory18.

Dynamics of the winner units on the map induced by the fixed-input dynamics of Fs

are shown in figure 11 (left). As before, for symbols s with dynamics y(t) = Fs(y(t− 1))

dominated by a single fixed point ys, the induced dynamics on the map settles down in

the mode position of ys. However, some autonomous dynamics y(t) = Fs(y(t − 1)) of

period two (e.g. s ∈ {n, h, r, p, s}) induce a trivial dynamics on the map driven to a single

point (grid position). In those cases, the points y1, y2 on the periodic orbit (y1 = Fs(y
2),

y2 = Fs(y
1)) lie within the representation region (Voronoi compartment) of the same

neuron. Interestingly enough, the complicated dynamics of Fo and Fe translates into

aperiodic oscillations between just two grid positions. Still, the suffix based organization

of RFs in figure 9 is shaped by the underlying collection of the fixed input dynamics of Fs

(illustrated in figure 11 (left) through the induced dynamics on the map).

Theoretical upper bounds on β (eq. (40)) are shown in figure 12. Whenever for an

input symbol s the bound Υ(s) is above β = 0.7 (dashed horizontal line) used to train

RecSOM (symbols ’z’, ’j’, ’q’, ’x’), we can be certain that the fixed input dynamics given by

a strategy can significantly reduce the dimension of the search space. We used θ = 0.001

and the number of components of y(0) involved in generating the initial conditions varied

from 31 to 138, depending on the input symbol.
18A detailed investigation revealed that the same holds for the autonomous dynamics

under symbol ’e’ (even though this is less obvious by scanning figure 10).
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Figure 11: Dynamics of the winning units on the RecSOM (left) and IFS+SOM (right)

maps induced by the fixed-input dynamics. The maps were trained on a corpus of written

English (”Brave New World” by Aldous Huxley).

the map Fs will be dominated by an attractive fixed point. For symbols s with Υ(s) < β,

there is a possibility of a more complicated dynamics driven by Fs. We marked β-bounds

for all symbols s with asymptotic fixed-input dynamics that goes beyond a single stable

sink by an asterisk. Obviously, as seen in the previous experiments, Υ(s) < β does not

necessarily imply more complicated fixed input dynamics on symbol s. However, in this

case, for most symbols s with Υ(s) < β, the associated fixed-input dynamics was indeed

different from the trivial one dominated by a single attractive fixed point.

We also trained a standard SOM with 20 × 20 neurons on five-dimensional inputs

created by the IFS19 (45). The map is shown in figure 13. The induced dynamics on the

map is illustrated in figure 11 (right). The suffix based organization of RFs is shaped by

the underlying collection of autonomous attractive IFS dynamics.

Table 3 compares the QD and TP measures of the RecSOMs to IFS+SOM maps.

In this case higher β/α ratios quickly lead to rather complicated fixed-input RecSOM

dynamics, breaking the Markovian suffix-based RF organization of contractive maps. This

has a negative effect on the QD and TP measures.

5 Discussion

5.1 Topographic maps with Markovian flavour

Maps of sequential data obtained by RecSOM often seem to have a Markovian flavor.

The neural units become sensitive to recently observed symbols. Suffix-based receptive

19IFS coefficient k = 0.3; learning rate and schedule for the neighborhood width σ were

taken from RecSOM
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Figure 12: Theoretical bounds on β for RecSOM trained on the English text. β-bounds

for all symbols with asymptotic fixed-input dynamics richer than a single stable sink are

marked by an asterisk.

fields (RFs) of the neurons are topographically organized in connected regions according

to the last symbol. Within each of those regions, RFs are again topographically organized

with respect to the symbol preceding the last symbol etc. Such a ‘self-similar structure’

is typical of spatial representations of symbolic sequences via contractive (affine) Iterative

Function Systems (IFS) (Jeffrey, 1990; Oliver et al., 1993; Román-Roldan, Bernaola-

Galván & Oliver, 1994; Fiser, Tusnady & Simon, 1994; Hao, 2000; Hao, Lee & Zhang,

2000; Tiňo, 2002). Such IFS can be considered simple non-autonomous dynamical systems

driven by an input stream of symbols. Each IFS mapping is a contraction and therefore

each fixed-input autonomous system has a trivial dynamics completely dominated by an

attractive fixed point. However, the non-autonomous dynamics of the IFS can be quite

complex, depending on the complexity of the input stream (see (Tiňo, 2002)).

More importantly, it is the attractive character of the individual fixed-input IFS maps

that shapes the Markovian organization of the state space. Imagine we feed the IFS with

a long string s1...sp−2sp−1sp...sr−2sr−1sr... over some finite alphabet A of A symbols.

Consider the IFS states at time instances p and r, p < r. No matter how far apart the

time instances p and r are, if the prefixes s1:p = s1...sp−2sp−1sp and s1:r = s1...sr−2sr−1sr

share a common suffix, the corresponding IFS states (see eqs. (45-46)), s1:p(x) and s1:r(x),

will lie close to each other. If s1:p and s1:r share a suffix of length L, then for any initial
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Figure 13: Receptive fields of a standard SOM with 20× 20 units trained on IFS outputs,

obtained on the English text. Topographic organization is observed with respect to the

most recent symbols. Receptive field of each unit i is shaded according to the local

topography preservation measure `(Ri).

position x ∈ [0, 1]m, m = dlog2Ae,

‖s1:p(x)− s1:r(x)‖ ≤ kL
√
m, (47)

where 0 < k < 1 is the IFS contraction coefficient and
√
m is the diameter of the IFS

state space [0, 1]m. Hence, the longer is the shared suffix between s1:p and s1:r, the shorter

will be the distance between s1:p(x) and s1:r(x). The IFS translates the suffix structure

of a symbolic stream into a spatial structure of points (prefix representations) that can be

captured on a two-dimensional map using e.g. a standard SOM, as done in our IFS+SOM

model.

Similar arguments can be made for a contractive RecSOM of N neurons. Assume that

for each input symbol s ∈ A, the fixed-input RecSOM mapping Fs (eqs. (10-11)) is a

contraction with contraction coefficient ρs. Set

ρmax = max
s∈A

ρs.

For a sequence s1:n = s1...sn−2sn−1sn over A and y ∈ (0, 1]N , define

Fs1:n(y) = Fsn(Fsn−1(...(Fs2(Fs1(y)))...))

= (Fsn ◦ Fsn−1 ◦ ... ◦ Fs2 ◦ Fs1)(y). (48)
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β \α 1.0 2.0 3.0

0.2 1.68∗ 0.30∗∗∗ 2.03∗∗∗ 0.58∗∗∗ 2.04∗∗∗ 0.64∗∗∗

0.7 1.15∗∗∗ 0.10∗∗∗ 1.89∗∗∗ 0.30∗∗∗ 1.93∗∗∗ 0.39∗∗∗

1.0 0.92∗∗∗ 0.06∗∗∗ 1.66 0.21∗∗∗ 1.81∗∗∗ 0.31∗∗∗

Table 3: Means of the (QD, TP) measures, averaged over 40 simulations, for RecSOM

trained on the language data. Corresponding means for IFS+SOM were as follows: QD

= 1.65 and TP = 0.59.

Then, if two prefixes s1:p and s1:r of a sequence s1...sp−2sp−1sp...sr−2sr−1sr... share a

common suffix of length L, we have

‖Fs1:p(y)− Fs1:r(y)‖ ≤ ρLmax

√
N, (49)

where
√
N is the diameter of the RecSOM state space (0, 1]N .

For sufficiently large L, the two activations y1 = Fs1:p(y) and y2 = Fs1:r(y) will be

close enough to have the same location of the mode,20

i∗ = argmax
i∈{1,2,...,N}

y1i = argmax
i∈{1,2,...,N}

y2i ,

and the two subsequences s1:p and s1:r yield the same best matching unit i∗ on the map,

irrespective of the position of the subsequences in the input stream. All that matters is that

the prefixes share a sufficiently long common suffix. We say that such an organization of

RFs on the map has a Markovian flavour, because it is shaped solely by the suffix structure

of the processed subsequences, and it does not depend on the temporal context in which

they occur in the input stream. Obviously, one can imagine situations where (1) locations

of the modes of y1 and y2 will be distinct, despite a small distance between y1 and

y2, or where (2) the modes of y1 and y2 coincide, while their distance is quite large.

This follows from discontinuity of the best-matching-unit operation (5). However, in our

extensive experimental studies, we have registered only a negligible number of such cases.

Indeed, some of the Markovian RFs in RecSOM maps obtained in the first two experiments

over small (two- and four-letter) alphabets were quite deep (up to 10 symbols21).

Our experiments suggest that, compared with IFS+SOM maps, RecSOM maps with

lower β/α ratio, e.g. RecSOM maps constructed with stronger emphasis on recently

observed history of inputs, are capable of developing Markovian organizations of RFs with

significantly superior memory depth and topography preservation (quantified by the QD

(41) and TP (42) measures, respectively).

20or at least mode locations on neighboring grid points of the map
21in some rare cases even deeper
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5.2 Non-Markovian topographic maps

Periodic (beyond period 1), or aperiodic attractive dynamics of autonomous systems

y(t) = Fs(y(t − 1)) lead to potentially complicated non-Markovian organizations of RFs

on the map. By calculating the RF of a neuron i as the common suffix shared by subse-

quences yielding i as the best matching unit (Voegtlin, 2002), we always create a suffix

based map of RFs. Such RF maps are designed to illustrate the temporal structure learnt

by RecSOM. Periodic or aperiodic dynamics of Fs can result in a ‘broken topography’ of

RFs: two sequences with the same suffix can be mapped into distinct positions on the map,

separated by a region of very different suffix structure. Such cases result in lower values

of the topography preservation measure TP (42). For example, depending on the context,

subsequences ending with ’ee’ can be mapped either near the lower-left, or near the lower-

right corners of the RF map in figure 9. Unlike in contractive RecSOM or IFS+SOM

models, such context-dependent RecSOM maps embody a potentially unbounded memory

structure, because the current position of the winner neuron is determined by the whole

series of processed inputs, and not only by a history of recently seen symbols. Unless we

understand the driving mechanism behind such context-sensitive suffix representations,

we cannot fully appreciate the meaning of the RF structure of a RecSOM map.

There is a more profound question to be asked: What is the principal motivation behind

building topographic maps of sequential data? If the motivation is a better understanding

of cortical signal representations (e.g. Wiemer, 2003), then a considerable effort should

be devoted to mathematical analysis of the scope of potential temporal representations

and conditions for their emergence. If, on the other hand, the primary motivation is data

exploration or data preprocessing, then we need to strive for a solid understanding of the

way temporal contexts get represented on the map and in what way such representations

fit the bill of the task we aim to solve.

There will be situations, where finite memory Markovian context representations are

quite suitable. In that case, contractive RecSOM models, and indeed IFS+SOM models

as well, may be appropriate candidates. But then the question arises of why exactly there

needs to be a trainable dynamic part in self-organizing maps generalized to handle sequen-

tial data. As demonstrated in the first two experiments, IFS+SOM models can produce

informative maps of Markovian context structures without an adaptive recursive submodel.

One criterion for assessing the quality of RFs suggested by Voegtlin (2002) is the quantizer

depth (QD) (eq. (41)). Another possible measure quantifying topology preservation on

maps is the TP measure of equation (42). If coding efficiency of induced RFs and their

topography preservation is a desirable property22, then RecSOM with Markovian maps

seem to be superior candidates to IFS+SOM models. In other words, having a trainable

dynamic part in self-organizing maps has its merits. Indeed, in our experiments RecSOM

22Here we mean coding efficiency of RFs constrained by the two-dimensional map struc-

ture. Obviously, unconstrained codebooks will always lead to better coding efficiency.
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maps with lower β/α ratio, lead to Markovian RF organizations with significantly superior

QD and TP values.

For more complicated data sets, like the English language corpus of the third exper-

iment, RF maps beyond simple Markovian organization may be preferable. Yet, it is

crucial to understand exactly what structures that are more powerful than Markovian

organization of RFs are desired and why. It is appealing to notice in the RF map of fig-

ure 9 the clearly non-Markovian spatial arrangement into distinct regions of RFs ending

with the word-separation symbol ’-’. Because of the special role of ’-’ and its high fre-

quency of occurrence, it may indeed be desirable to separate endings of words in distinct

islands with more refined structure. However, to go beyond mere commenting on empirical

observations, one needs to address issues such as

• what properties of the input stream are likely to induce periodic (or aperiodic)

fixed input dynamics leading to context-dependent RF representations in SOMs

with feedback structures,

• what periods for which symbols are preferable,

• what is the learning mechanism (e.g. sequence of bifurcations of the fixed input

dynamics) of creating more complicated context dependent RF maps.

Those are the challenges for our future work.

5.3 Linking RecSOM parameter β to Markovian RF organizations

RecSOM parameter β weighs the significance of importing information about possibly

distant past into processing of sequential data. Intuitively, it is not surprising that when

β is sufficiently small, e.g. when information about the very recent inputs dominates

processing in RecSOM, the resulting maps will have Markovian flavour. This intuition

was given a more rigorous form in section 3. Contractive fixed input mappings are likely

to produce Markovian organizations of RFs on the RecSOM map. We have established

theoretical bounds on parameter β that guarantee contractiveness of the fixed input maps.

Using corollary 3.7, we obtain:

Corollary 5.1 Provided

β <
e

2N
, (50)

irrespective of the input s, the map Fs of a RecSOM with N recurrent neurons will be a

contraction. For any external input s, the fixed-input dynamics of such a RecSOM will be

dominated by a single attractive fixed point.

Proof: It is sufficient to realize that

‖Gα(s)‖2 =
N
∑

i=1

e−2α‖s−wi‖
2 ≤ N.
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Q.E.D.

We experimentally tested the validity of the β bounds bellow which the fixed input

dynamics was proved to be driven exclusively by attractive fixed points. Using 5× 5 map

grid (N = 25), with β = 0.05 (slightly below the bound (50)), and setting α = 1, we

ran a batch of RecSOM training sessions for each of the three data sets considered in this

paper. The other model parameters were set as described in section 4. We evaluated the

autonomous dynamics for each symbol, assessed by the L2 norm of consecutive differences

of the map activity profiles. In all cases, the differences vanished in less than 10 iterations.

Because the β parameter was set bellow the theoretical bound (50), the training process

could never induce an autonomous dynamics beyond the trivial one dominated by an

attractive fixed point.

We constructed a bifurcation diagram for the RecSOM architecture described in section

4.4. After training, we varied β, while keeping other model parameters fixed. For each 0 ≤
β ≤ 3 with step 0.01, we computed map activity differences between consecutive time steps

during 100 iterations (after initial 400 preiterations). The activation differences for input

symbol ’o’ are shown in figure 14. Three dominant types of autonomous dynamics were

observed: fixed point dynamics, period-2 attractors, and aperiodic oscillations (roughly

for 0.6 < β < 1). As expected, for small values of β, the dynamics is always governed

by a unique fixed point. For higher values of β, the dynamics switches between periodic,

fixed-point and aperiodic regimes23.

We conclude by noting that when the inputs and input weights are taken from a set

of diameter ξ, we have for the bound (40),

e

2N
≤ Υ(s) ≤ e

2N
e2αξ

2
.

The lower bound follows from Corollary 5.1, the upper bound follows from minimizing

‖Gα(s)‖ in (40).

5.4 Related work

It has been recently observed in (Hammer et al., 2004) that Markovian representations of

sequence data occur naturally in topographic maps governed by leaky integration, such

as Temporal Kohonen Map (Chappell & Taylor, 1993). Moreover, under some imposed

circumstances, SOM for structured data (Hagenbuchner, Sperduti & Tsoi, 2003) can rep-

resent trees in a Markovian manner by emphasising the topmost parts of the trees. These

interesting findings were arrived at by studying pseudometrics in the data structure space

induced by the maps. We complement the above results by studying the RecSOM map,

potentially capable of very complicated dynamic representations, as non-autonomous dy-

namical systems governed by a collection of fixed input dynamics. Corollary 5.1 states

23The results are shown for one particular initial condition y(0). Qualitatively similar

diagrams were obtained for a variety of initial conditions y(0).
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Figure 14: RecSOM map activity differences between consecutive time steps during 100

iterations (after initial 400 preiterations) for 0 ≤ β ≤ 3, step size 0.01. The input is fixed

to symbol ’o’. The map was trained on the language data as described in section 4.4.

that if parameter β, weighting the importance of importing the past information into pro-

cessing of sequential data, is smaller than e
2N (N is the number of units on the map),

the map is likely to be organized in a clear Markovian manner. The bound e/(2N) may

seem rather restrictive, but as argued in (Hammer et al., 2004), the context influence has

to be small for time series data to avoid instabilities in the model. Indeed, the RecSOM

experiments of Hammer et al. (2004) (albeit on continuous data) used N = 10× 10 = 100

units and the map was trained with β = 0.06, which is only slightly higher than the

bound e/(2N) = 0.0136. Obviously the bound e/(2N) can be improved by considering

other model parameters (Corollary 3.7), as demonstrated in figure 12.

Theoretical results of section 3 and corollary 5.1 also complement Voegtlin’s stability

analysis of the the weight adaptation process during training of RecSOM. For β < e/(2N),

stability of weight updates with respect to small perturbations of the activity profile y is

ensured (Voegtlin, 2002). Voegtlin also shows, using Taylor expansion arguments, that if

β < e/(2N), small perturbations of the activities will decay (fixed input maps are locally

contractive). Our work extents this result to perturbations of arbitrary size24. Based on

our analysis, we conclude that for each RecSOMmodel satisfying Voegtlin’s stability bound

on β, the fixed input dynamics for any input will be dominated by a unique attractive

24We are thankful to one of the anonymous reviewers who pointed this out.
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fixed point. This renders the map Markovian quality and training stability.

Finally, we note that it has been shown that representation capabilities of merge SOM

(Strickert & Hammer, 2003) and SOM for structured data (Hagenbuchner, Sperduti &

Tsoi, 2003) operating on sequences transcend those of finite memory Markovian models

in the sense that finite automata can be simulated (Strickert & Hammer, 2005; Hammer

et al., 2004). It was assumed that there is no topological ordering among the units of the

map. Also, the proofs are constructive in nature and it is not obvious that deeper memory

automata structures can be actually learnt with Hebbian learning (Hammer et al. 2004).

It should be emphasised that the type of analysis presented in this paper would not be

feasible for the merge SOM and SOM for structured data models, since their fixed-input

dynamics are governed by discontinuous mappings (due to discrete winner determination

when calculating the context)25.

5.5 Relation between IFS+SOM and recurrent SOM models

In this section we show that in the test mode (no learning), the IFS+SOM model acts

exactly like the recurrent SOM (RSOM) model (Koskela et al., 1998). Given a sequence

s1s2... over a finite alphabet A, the RSOM model determines the winner neuron at time

t by identifying the neuron i with the minimal norm of

di(t) = ν (tst −wi) + (1− ν) di(t− 1), (51)

where 0 < ν < 1 is a parameter determining the rate of ‘forgetting the past’, tst is the

code of symbol st presented at RSOM input at time t and wi is the weight vector on

connections connecting the inputs with neuron i.

Inputs x(t) feeding standard SOM in the IFS+SOM model evolve with the IFS dy-

namics (see (45) and (46))

x(t) = k x(t− 1) + (1− k) tst , (52)

where 0 < k < 1 is the IFS contraction coefficient. Best matching unit in SOM is

determined by finding the neuron i with the minimal norm of

Di(t) = x(t)−wi = k x(t− 1) + (1− k) tst −wi. (53)

But Di(t− 1) = x(t− 1)−wi, and so

Di(t) = k Di(t− 1) + (1− k) (tst −wi), (54)

which, after setting ν = 1− k, leads to

Di(t) = ν (tst −wi) + (1− ν) Di(t− 1). (55)

25This was pointed out by one of the anonymous reviewers.
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Provided ν = 1− k, the equations (51) and (55) are equivalent.

The key difference between RSOM and IFS+SOM models lies in the training process.

While in RSOM, the best matching unit i with minimal norm of di(t) is shifted towards

the current input tst , in IFS+SOM the winner unit i with minimal norm of Di(t) is shifted

towards the (Markovian) IFS code x(t) coding the whole history of recently seen inputs.

6 Conclusion

We have rigorously analyzed a generalization of the Self-Organizing Map (SOM) for pro-

cessing sequential data, Recursive SOM (RecSOM) (Voegtlin, 2002), as a non-autonomous

dynamical system consisting of a set of fixed input maps. We have argued and experi-

mentally demonstrated that contractive fixed input maps are likely to produce Markovian

organizations of receptive fields on the RecSOM map. We have derived bounds on the

parameter β, weighting the importance of importing the past information into processing

of sequential data, that guarantee contractiveness of the fixed input maps.

Generalizations of SOM for sequential data, such as Temporal Kohonen Map Chappell

& Taylor, 1993), recurrent SOM (Koskela et al., 1998), feedback SOM (Horio & Yamakawa,

2001), RecSOM (Voegtlin, 2002) and merge SOM (Strickert & Hammer, 2003), contain

a dynamic module responsible for processing temporal contexts as an inherent part of

the model. We have shown that Markovian topographic maps of sequential data can be

produced by a simple fixed (non-adaptable) dynamic module externally feeding the topo-

graphic model. However, allowing trainable feedback connections does seem to benefit the

map formation, even in the Markovian case: compared with topographic maps fed by the

fixed dynamic module, RecSOM maps are capable of developing Markovian organizations

of receptive fields with significantly superior memory depth and topography preservation.

We argue that non-Markovian organizations in topographic maps of sequential data

may potentially be very important, but much more empirical and theoretical work is

needed to clarify the map formation in SOMs endowed with feedback connections.
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Hammer, B., & Tiňo, P. (2003). Neural networks with small weights implement finite

memory machines. Neural Computation, 15(8), 1897–1926.

Hao, B.-L. (2000). Fractals from genomes – exact solutions of a biology-inspired problem.

Physica A, 282, 225–246.

Hao, B.-L., Lee, H., & Zhang, S. (2000). Fractals related to long DNA sequences and

complete genomes. Chaos, Solitons and Fractals, 11, 825–836.

Horio, K., & Yamakawa, T. (2001). Feedback self-organizing map and its application

to spatio-temporal pattern classification. International Journal of Computational

Intelligence and Applications, 1(1), 1–18.

James, D., & Miikkulainen, R. (1995). Sardnet: A self-organizing feature map for

sequences. In G. Tesauro, D. Touretzky, & T. Leen (Eds.), Proceedings of the Ad-

vances in Neural Information Processing Systems, Volume 7, (pp. 577–584). Morgan

Kaufmann.

Jeffrey, J. (1990). Chaos game representation of gene structure. Nucleic Acids Research,

18(8), 2163–2170.

Kenyon, R., & Peres, Y. (1996). Measures of full dimension on affine invariant sets.

Ergodic Theory and Dynamical Systems, 16, 307–323.

35



Kohonen, T. (1982). Self–organizing formation of topologically correct feature maps.

Biological Cybernetics, 43, 59–69.

Kohonen, T. (1990). The self-organizing map. Proceedings of the IEEE, 78(9), 1464–

1479.

Koskela, T., Varsta, M., Heikkonen, J., & Kaski, K. (1998). Recurrent SOM with local

linear models in time series prediction. In 6th European Symposium on Artificial

Neural Networks (pp. 167–172). D-facto Publications.

Lee, J., & Verleysen, M. (2002). Self-organizing maps with recursive neighborhood

adaptation. Neural Networks, 15(8–9), 993–1003.

Oliver, J.L., Bernaola-Galván, P., Guerrero-Garcia, J., & Román-Roldan, R. (1993).

Entropic profiles of dna sequences through chaos-game-derived images. Journal of

Theor. Biology, (160), 457–470.

Principe, J., Euliano, N., & Garani, S. (2002). Principles and networks for self-organization

in space-time. Neural Networks, 15(8–9), 1069–1083.

Román-Roldan, R., Bernaola-Galván, P., & Oliver, J. (1994). Entropic feature for

sequence pattern through iteration function systems. Pattern Recognition Letters,

15, 567–573.

Schulz, R., & Reggia, J. (2004). Temporally asymmetric learning supports sequence

processing in multi-winner self-organizing maps. Neural Computation, 16(3), 535–

561.

Strickert, M., & Hammer, B. (2003). Neural gas for sequences. In T. Yamakawa (Ed.),

Proceedings of the Workshop on Self-Organizing Maps (WSOM’03) (pp. 53–57).

Kyushu Institute of Technology.

Strickert, M., & Hammer, B. (2005). Merge som for temporal data. Neurocomputing,

64, 39–72.
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