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Abstract
Gaussian scale mixture models offer a top-down description of signal generation that captures key
bottom-up statistical characteristics of filter responses to images. However, the pattern of
dependence among the filters for this class of models is prespecified. We propose a novel
extension to the gaussian scale mixture model that learns the pattern of dependence from observed
inputs and thereby induces a hierarchical representation of these inputs. Specifically, we propose
that inputs are generated by gaussian variables (modeling local filter structure), multiplied by a
mixer variable that is assigned probabilistically to each input from a set of possible mixers. We
demonstrate inference of both components of the generative model, for synthesized data and for
different classes of natural images, such as a generic ensemble and faces. For natural images, the
mixer variable assignments show invariances resembling those of complex cells in visual cortex;
the statistics of the gaussian components of the model are in accord with the outputs of divisive
normalization models. We also show how our model helps interrelate a wide range of models of
image statistics and cortical processing.

1 Introduction
The analysis of the statistical properties of natural signals such as photographic images and
sounds has exerted an important influence over both sensory systems neuroscience and
signal processing. From the earliest days of the electrophysiological investigation of the
neural processing of visual input, it has been hypothesized that neurons in early visual areas
decompose natural images in a way that is sensitive to aspects of their probabilistic structure
(Barlow, 1961; Attneave, 1954; Simoncelli & Olshausen, 2001). The same statistics lie at
the heart of effective and efficient methods of image processing and coding.

There are two main approaches to the study of the statistics of natural signals. Bottom-up
methods start by studying the empirical statistical regularities of various low-dimensional
linear or nonlinear projections of the signals. These methods see cortical neurons in terms of
choosing and manipulating projections, to optimize probabilistic and information-theoretic
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metrics (Shannon, 1948; Shannon & Weaver, 1949), such as sparsity (Field, 1987), and
efficient coding including statistical independence (Barlow, 1961; Attneave, 1954; Li &
Atick, 1994; Nadal & Parga, 1997). In contrast, top-down methods (Neisser, 1967; Hinton &
Ghahramani, 1997) are based on probabilistic characterizations of the processes by which
the signals are generated and see cortical neurons as a form of coordinate system
parameterizing the statistical manifold of the signals.

There has been substantial recent progress in bottom-up statistics. In particular, a wealth of
work has examined the statistical properties of the activation of linear filters convolved with
images. The linear filters are typically chosen to qualitatively match retinal or cortical
receptive fields. For example, primary visual cortex receptive fields (e.g., simple cells) are
tuned to a localized spatial region, orientation, and spatial frequency (Hubel & Wiesel,
1962). These receptive fields are also closely related to multi-scale wavelet decompositions,
which have gained wide acceptance in the computational vision community. For typical
natural images, empirical observations of a single linear filter activation reveal a highly
kurtotic (e.g., sparse) distribution (Field, 1987). Groups of linear filters (coordinated across
parameters such as orientation, frequency, phase, or spatial position) exhibit a striking form
of statistical dependency (Wegmann & Zetzsche, 1990; Zetzsche, Wegmann, & Barth, 1993;
Simoncelli, 1997), which can be characterized in terms of the variance (Simoncelli, 1997;
Buccigrossi & Simoncelli, 1999; Schwartz & Simoncelli, 2001). The importance of variance
statistics had been suggested earlier in pixel space (Lee, 1980) and has been addressed in
other domains such as speech (Brehm & Stammler, 1987) and even finance (Bollerslev,
Engle, & Nelson, 1994).

There has also been substantial recent progress in top-down methods (Rao, Olshausen, &
Lewicki, 2002), especially in understanding the tight relationship between bottom-up and
top-down ideas. In particular, it has been shown that optimizing a linear filter set for
statistical properties such as sparseness or marginal independence (Olshausen & Field, 1996;
Bell & Sejnowski, 1997; van Hateren & van der Schaaf, 1998) in the light of the statistics of
natural images can be viewed as a way of fitting an exact or approximate top-down
generative model (Olshausen & Field, 1996). These methods all lead to optimal filters that
are qualitatively matched to simple cells. The bottom-up variance coordination among the
filters has also found a resonance in top-down models (Wainwright & Simoncelli, 2000;
Wainwright, Simoncelli, & Willsky, 2001; Hyvärinen & Hoyer, 2000a; Romberg, Choi, &
Baraniuk, 1999, 2001; Karklin & Lewicki, 2003a, 2005). Various generative models have
built hierarchies on top of simple cell receptive fields, leading to nonlinear cortical
properties such as the phase invariance exhibited by complex cells together with other rich
invariances.

This article focuses on a hierarchical, nonlinear generative modeling approach to
understanding filter coordination and its tight relation to bottom-up statistics. We build on
two substantial directions in the literature, whose close relationship is only slowly being
fully understood.

One set of ideas started in the field of independent component analysis (ICA), adding to the
standard single, linear layer of filters a second layer that determines the variance of the first-
layer activations (Hyvärinen & Hoyer, 2000a, 2000b; Hoyer & Hyvärinen, 2002; Karklin &
Lewicki, 2003a, 2005; Park & Lee, 2005). In particular, Karklin and Lewicki (2003a, 2003b,
2005) suggested a model in which the variance of each unit in the first layer arises from an
additive combination of a set of variance basis function units in the second layer. The
method we propose can be seen as a version of this with competitive rather than cooperative
combination of the second-layer units.
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The other set of ideas originates with the gaussian scale mixture model (GSM) (Andrews &
Mallows, 1974; Wainwright & Simoncelli, 2000; Wainwright et al., 2001),1 which has
strong visibility in the image processing literature (Strela, Portilla, & Simoncelli, 2000;
Portilla, Strela, Wainwright, & Simoncelli, 2001, 2003; Portilla & Simoncelli, 2003). GSM
generative models offer a simple way of parameterizing the statistical variance dependence
of the first-layer filter activations in a way that captures some of the key bottom-up
statistical properties of images. However, although GSMs parameterize the dependence of
linear filters, they do not by themselves specify the pattern of dependence among the filters.
This is the key hurdle in their application as a top-down basis for bottom-up, hierarchical
learning models. In these terms, we propose an extension to the GSM model that learns the
pattern of dependencies among linear filters, thereby learning a hierarchical representation.

In the next section, we discuss bottom-up statistical properties of images. We describe and
motivate the use of gaussian scale mixture models and then pose the question of learning a
hierarchical representation in this framework. This lays the groundwork for the rest of the
article, in which we develop the model and hierarchical learning more formally and
demonstrate results on both synthetic data and natural image ensembles. An earlier version
of part of this work appeared in Schwartz, Sejnowski, & Dayan (2005).

2 Bottom-Up and Top-Down Statistics of Images
At the heart of both bottom-up and top-down methods are the individual and joint statistics
of the responses of the set of linear Gabor-like filters that characterize simple-cell receptive
fields in primary visual cortex.

The distribution of the activation of a single linear filter when convolved with an image is
highly kurtotic. That is, the response of the filter is often approximately zero, but
occasionally the filter responds strongly to particular structures in the image (Field, 1987).

The joint statistics of two related linear filters convolved with the same image exhibit a
striking form of statistical dependence: when one of the filters responds strongly to a
prominent aspect in the image, the other filter may also respond strongly (say, if two
spatially displaced vertical filters are responding to an elongated vertical edge in the image).
This is also known as a self-reinforcing characteristic of images (e.g., Turiel, Mato, Parga, &
Nadal, 1998). The strength of this dependence is determined by the featural similarity of the
linear filters in terms of relative location, orientation, spatial scale, phase, and so forth. The
coordination is reflected in the joint conditional distribution having the shape of a bowtie
and thus following a variance dependency (Buccigrossi & Simoncelli, 1999; Schwartz &
Simoncelli, 2001), or by examining the marginal versus the joint distributions (Zetzsche et
al., 1993; Zetzsche & Nuding, 2005). Huang and Mumford (1999) analyzed joint contour
plots for a large image database and modeled the joint dependencies as a generalized 2D
gaussian. The dependencies can be seen in the responses of various types of linear filters,
including predefined wavelets and filters designed to be maximally sparse or independent.
These are also present even when the filter responses are linearly decorrelated.

Another view on this self-reinforcing characteristics comes (Wainwright & Simoncelli,
2000; Wainwright et al., 2001) from the top-down GSM model, which was originally
described by Andrews and Mallows (1974) over 30 years ago. The model consists of two
components: a multidimensional gaussian g, multiplied by a positive scalar random variable

1Another class of models, which has recently been related both to ICA and the GSM, is the energy-based product of Student-t models
(Osindero et al., 2006).
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v. The second component v effectively “scales” the gaussian component g, forming a
“mixture,” l, according to the equation:

(2.1)

with density

(2.2)

where m is the number of filters, Σ is the covariance matrix, and mixer v is distributed
according to a prior distribution p[v].2

In its application to natural images (Wainwright & Simoncelli, 2000), we typically think of
each li as modeling the response of a single linear filter when applied to a particular image
patch. We will also use the same analogy in describing synthetic data. We refer to the scalar
variable v as a mixer variable to avoid confusion with the scales of a wavelet.3 Figure 1A
illustrates a simple two-dimensional GSM generative model, in which l1 and l2 are generated
with a common mixer variable v. Figures 1B and 1C show the marginal and joint conditional
gaussian statistics of the gaussian and mixer variables for data synthesized from this model.

The GSM model provides the top-down account of the two bottom-up characteristics of
natural scene statistics described earlier: the highly kurtotic marginal statistics of a single
linear filter and the joint conditional statistics of two linear filters that share a common
mixer variable (Wainwright & Simoncelli, 2000; Wainwright et al., 2001). Figure 1D shows
the marginal and joint conditional statistics of two filter responses l1 and l2 based on the
synthetic data of Figures 1B and 1C.

The GSM model bears a close relationship with bottom-up approaches of image statistics
and cortical representation. First, models of sparse coding and cortical receptive field
representation typically utilize the leptokurtotic properties of the marginal filter response,
which arise naturally in a generative GSM model (see Figure 1D, left). Second, GSMs offer
an account of filter coordination, as in, for instance, the bubbles framework of Hyvärinen
(Hyvärinen, Hurri, & Vayrynen, 2003). Coordination arises in the GSM model when filter
responses share a common mixer (see Figure 1D, right). Third, some bottom-up frameworks
directly consider versions of the two GSM components. For instance, models of image
statistics and cortical gain control (Schwartz & Simoncelli, 2001) result in a divisively
normalized output component that has characteristics resembling that of the gaussian
component of the GSM in terms of both the marginal and joint statistics (see Figure 1B and
Wainwright & Simoncelli, 2000). Further, Ruderman and Bialek (1994) postulate that the
observed pixels in an image (note, not the response of linear filters convolved with an
image) can be decomposed into a product of a local standard deviation and a roughly
gaussian component. In sum, the GSM model offers an attractive way of unifying a number
of influential statistical approaches.

In the original formulation of a GSM, there is one mixer for a single collection of gaussian
variables, and their bowtie statistical dependence is therefore homogeneous. However, the
responses of a whole range of linear filters to image patches are characterized by

2In other work, the mixture has also been defined as , resulting in slightly different notation.
3Note that in some literature, the scalar variable has also been called a multiplier variable.
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heterogeneity in their degrees of statistical dependence. Wainwright and Simoncelli (2000)
considered a prespecified tree-based hierarchical arrangement (and indeed generated the
mixer variables in a manner that depended on the tree). However, for a diverse range of
linear filters and a variety of different classes of scenes, it is necessary to learn the
hierachical arrangement from examples. Moreover, because different objects induce
different dependencies, different arrangements may be appropriate for different image
patches. For example, for a given pair of filters, the strength of the joint conditional
dependency can vary for different image patches (see Figure 2). This suggests that on a
patch-by-patch basis, different mixers should be associated with different filters. Karklin and
Lewicki (2003a) suggested what can be seen as one way of doing this: generating the
(logarithm of the) mixer value for each filter as a linear combination of the values of a small
number of underlying mixer components.

Here, we consider the problem in terms of multiple mixer variables v = (vα, vβ …), with the
linear filters being clustered into groups that share a single mixer. As illustrated in Figure 3,
this induces an assignment problem of marrying linear filter responses li and mixers vj,
which is the main focus of this article. Inducing the assignment is exactly the process of
inducing a level of a hierarchy in the statistical model. Although the proposed model is more
complex than the original GSM, in fact we show that inference is straightforward using
standard tools of expectation maximization (Dempster, Laird, & Rubin, 1977) and Markov
chain Monte Carlo sampling. Closely related assignment problems have been posed and
solved using similar techniques, in a different class of image model known as dynamical tree
modeling (Williams & Adams, 1999;Adams & Williams, 2003) and in credibility networks
(Hinton, Ghahramani, & Teh, 1999).

In this article, we approach the question of hierarchy in the GSM model. In section 3, we
consider estimating the gaussian and mixer variables of a GSM model from synthetic and
natural data. We show how inference fails in the absence of correct knowledge about the
assignment associations between gaussian and mixer variables that generated the data. For
this demonstration, we assume the standard GSM generative model, in which each gaussian
variable is associated with a single mixer variable. In section 4, we extend the GSM
generative model to allow probabilistic mixer overlap and propose a solution to the
assignment problem. We show that applied to synthetic data, the technique finds the proper
assignments and infers correctly the components of the GSM generative model. In section 5,
we apply the technique to images. We show that the statistics of the inferred GSM
components match the assumptions of the generative model and demonstrate the hierarchical
structure that emerges.

3 GSM Inference of Gaussian and Mixer Variables
Consider the simple, single-mixer GSM model described in equation 2.1. We assume g are
uncorrelated, with diagonal covariance matrix σ2 , and that v has a Rayleigh distribution:

(3.1)

For ease, we develop the theory for a = 1. In this case, the variance of each filter response li
(we will describe the li as being filter responses throughout this section, even though they
mostly are generated purely synthetically) is exponentially distributed with mean 2. The
qualitative properties of the model turn out not to depend strongly on the precise form of
p[v]. Wainwright et al. (2001) assumed a similar family of mixer variables arising from the
square root of a gamma distribution (Wainwright & Simoncelli, 2000), and Portilla et al.
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considered other forms such as the log normal distribution (Portilla et al., 2001) and a
Jeffrey’s prior (Portilla et al., 2003).

As stated above, the marginal distribution of the resulting GSM is highly kurtotic (see
Figure 1D, left). For our example, given p[v], in fact l follows a double exponential
distribution:

(3.2)

The joint conditional distribution of two filter responses l1 and l2 follows a bowtie shape,
with the width of distribution of one response increasing for larger values (both positive and
negative) of the other response (see Figure 1D, right).

The inverse problem is to estimate the n + 1 variables g1, …, gn, v from the n filter responses
l1, …, ln. It is formally ill posed, though regularized through the prior distributions. Four
posterior distributions are particularly relevant and can be derived analytically from the
model:

1. p[v|l1] is the local estimate of the mixer, given just a single filter response. In our
model, it can be shown that

(3.3)

where (n, x) is the modified Bessel function of the second kind (see also
Grenander & Srivastava, 2002). For this, the mean is

(3.4)

2. p[v|l] is the global estimate of the mixer, given all the filter responses. This has a

very similar form to p[v|l1], only substituting  for |l1|,

(3.5)

whose mean is

(3.6)

Note that E[v|l] has also been estimated numerically in noise removal for other
mixer variable priors (e.g., Portilla et al., 2001).

3. p[g1|l1] is the local estimate of the gaussian variable, given just a local filter
response. This is
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(3.7)

where (sign{l1}g1) is a step function that is 0 if sign{l1} ≠ sign{g1}. The step
function arises since g1 is forced to have the same sign as l1, as the mixer variables
are always positive. The mean is

(3.8)

4. p[g1|l] is the estimate of the gaussian variable, given all the filter responses. Since
in our model, the gaussian variables g are mutually independent, the values of the
other filter responses l2, …, ln provide information only about the underlying
hidden variable v. This leaves p[g1|l] proportional to p(l1|g1)P(l2, …, ln|v = l1/g1)
p(g1), which results in

(3.9)

with mean

(3.10)

We first study inference in this model using synthetic data in which two groups of filter
responses l1, …, l20 and l21, …, l40 are generated by two mixer variables vα and vβ (see the
schematic in Figure 4A, and the respective statistics in Figure 4B). That is, each filter
response is deterministically generated from either mixer vα or mixer vβ, but not both. We
attempt to infer the gaussian and mixer components of the GSM model from the synthetic
data, assuming that we do not know the actual mixer assignments.

Figures 4C and 4D show the empirical distributions of estimates of the conditional means of
a mixer variable E(vα |{l}) (see equations 3.4 and 3.6) and one of the gaussian variables
E(g1|{l}) (see equations 3.8 and 3.10) based on different assumed assignments. For
inference based on too few filter responses, the estimates do not match the actual
distributions (see the second column labeled “too local”). For example, for a local estimate
based on a single filter response, the gaussian estimate peaks away from zero. This is
because the filter response is a product of the two terms, the gaussian and the mixer, and the
problem is ill posed with only a single filter estimate. Similarly, the mixer variable is not
estimated correctly for this local case. Note that this occurs even though we assume the
correct priors for both the mixer and gaussian variables and is thus a consequence of the
incorrect assumption about the assignments. Inference is also compromised if it is based on
too many filter responses, including those generated by both vα and vβ (see the third column,
labeled “too global”). This is because inference of vα is based partly on data that were
generated with a different mixer, vβ (so when one mixer is high, the other might be low, and
so on). In contrast, if the assignments are correct and inference is based on all those filter
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responses that share the same common generative mixer (in this case vα), the estimates
become good (see the last column, labeled “just right”).

In Figure 4E, we show the joint conditional statistics of two components, each estimating
their respective g1 and g2. Again, as the number of filter responses increases, the estimates
improve, provided that they are taken from the right group of filter responses with the same
mixer variable vα. Specifically, the mean estimates of g1 and g2 become more independent
(see the last column). Note that for estimations based on a single filter response, the joint
conditional distribution of the gaussian appears correlated rather than independent (second
column); for estimation based on too many filter responses generated from either of the
mixer variables, the joint conditional distribution of the gaussian estimates shows a
dependent (rather than independent) bowtie shape (see the third column). Mixer variable
joint statistics also deviate from their actual independent forms when the estimations are too
local or global (not shown). These examples indicate modes of estimation failure for
synthetic GSM data if one does not know the proper assignments between mixer and
gaussian variables. This suggests the need to infer the appropriate assignments from the
data.

To show that this is not just a consequence of an artificial example, we consider estimation
for natural image data. Figure 5 demonstrates estimation of mixer and gaussian variables for
an example natural image. We derived linear filters from a multiscale oriented steerable
pyramid (Simoncelli, Freeman, Adelson, & Heeger, 1992), with 100 filters, at two preferred
orientations, 25 nonoverlapping spatial positions (with spatial subsampling of 8 pixels), and
a single phase and spatial frequency peaked at 1/6 cycles per pixel. By fitting the marginal
statistics of single filters, we set the Rayleigh parameter of equation 3.1 to a = 0.1. Since we
do not know a priori the actual assignments that generated the image data, we demonstrate
examples for which inference is either very local (based on a single wavelet coefficient
input) or very global (based on 40 wavelet coefficients at two orientations and a range of
spatial positions).

Figure 5 shows the inferred marginal and bowtie statistics for the various cases. If we
compare the second and third columns to the equivalents in Figures 4C to 4E for the
synthetic case, we can see close similarities. For instance, overly local or global inference of
the gaussian variable leads to bimodal or leptokurtotic marginals, respectively. The bowtie
plots are also similar. Indeed, we and others (Ruderman & Bialek, 1994;Portilla et al., 2003)
have observed changes in image statistics as a function of the width of the spatial
neighborhood or the set of wavelet coefficients.

It would be ideal to have a column in Figure 5 equivalent to the “just right” column of
Figure 4. The trouble is that the equivalent neighborhood of a filter is defined not merely by
its spatial extent, but rather by all of its featural characteristics and in an image and image-
class dependent manner. For example, we might expect different filter neighborhoods for
patches with a vertical texture everywhere than for patches corresponding to an edge or to
features of a face. Thus, different degrees of local and global arrangements may be
appropriate for different images. Since we do not know how to specify the mixer groups a
priori, it is desirable to learn the assignments from a set of image samples. Furthermore, it
may be necessary to have a battery of possible mixer groupings available to accommodate
the statistics of different images.

4 Solving the Assignment Problem
The plots in Figures 4 and 5 suggest that it should be possible to infer the assignments, that
is, work out which linear filters share common mixers, by learning from the statistics of the
resulting joint dependencies. Further, real-world stimuli are likely better captured by the
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possibility that inputs are coordinated in somewhat different collections in different images.
Hard assignment problems, in which each input pays allegiance to just one mixer, are
notoriously computationally brittle. Soft assignment problems, in which there is a
probabilistic relationship between inputs and mixers, are computationally better behaved.
We describe the soft assignment problem and illustrate examples with synthetic data. In
section 5, we turn to image data.

Consider the richer mixture-generative GSM shown in Figure 6. To model the generation of
filter responses li for a single image patch (see Figure 6A), we multiply each gaussian
variable gi by a single mixer variable from the set vα, vβ, …, vμ. In the deterministic (hard
assignment) case, each gaussian variable is associated with a fixed mixer variable in the set.
In the probabilistic (soft assignment) case, we assume that gi has association probability pij
(satisfying Σj pij = 1, ∀i) of being assigned to mixer variable vj. Note that this is a
competitive process, by which only a single mixer variable is assigned to each filter
response li in each patch, and the assignment is determined according to the association
probabilities. As a result, different image patches will have different assignments (see
Figures 6A and 6B). For example, an image patch with strong vertical texture everywhere
might have quite different assignments from an image patch with a vertical edge on the right
corner. Consequently, in these two patches, the linear filters will share different common
mixers. The assignments are assumed to be made independently for each patch. Therefore,
the task for hierarchical learning is to work out association probabilities suitable for
generating the filter responses. We use χi ∈ {α, β, … μ} for the assignments

(4.1)

Consider a specific synthetic example of a soft assignment: 100 filter responses are
generated probabilistically from three mixer variables, vα, vβ, and vγ. Figure 7A shows the
association probabilities pij. Figure 8A shows example marginal and joint conditional
statistics for the filter responses, based on an empirical sample of 5000 points drawn from
the generative model. On the left is the typical bowtie shape between two filter responses
generated with the same mixer, vα, 100% of the time. In the middle is a weaker dependency
between two filter responses whose mixers overlap for only some samples. On the right is an
independent joint conditional distribution arising from two filter responses whose mixer
assignments do not overlap.

There are various ways to try solving soft assignment problems (see, e.g., MacKay, 2003).
Here we use the Markov chain Monte Carlo method called Gibbs sampling. The advantage
of this method is its flexibility and power. Its disadvantage is its computational expense and
biological implausibility—although for the latter, we should stress that we are mostly
interested in an abstract characterization of the higher-order dependencies rather than in a
model for activity-dependent representation formation. Williams and Adams (1999)
suggested using Gibbs sampling to solve a similar assignment problem in the context of
dynamic tree models. Variational approximations have also been considered in this context
(Adams & Williams, 2003; Hinton et al., 1999).

Inference and learning in this model proceeds in two stages, according to an expectation
maximization framework (Dempster et al., 1977). First, given a filter response li, we use
Gibbs sampling to find possible appropriate (posterior) assignments to the mixers. Second,
given the collection of assignments across multiple filter responses, we update the
association probabilities pij (see the appendix).
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We tested the ability of this inference method to find the association probabilities in the
overlapping mixer variable synthetic example shown in Figure 7A. The Gibbs sampling
procedure requires that we specify the number of mixer variables that generated the data. In
the synthetic example, the actual number of mixer variables is 3. We ran the Gibbs sampling
procedure, assuming the number of possible mixer variables is 5 (e.g., > 3). After 500
iterations, the weights converged near the proper probabilities. In Figure 7A, we plot the
actual probability distributions for the filter response associations with each of the mixer
variables. In Figure 7B, we show the estimated associations for three of the mixers: the
estimates closely match the actual association probabilities; the other two estimates yield
association probabilities near zero, as expected (not shown).

We estimated the gaussian and mixer components of the GSM using the Bayesian equations
of the previous section (see equations 3.10 and 3.6), but restricting the input samples to
those assigned to each mixer variable. In Figure 8B, we show examples of the estimated
distributions of the gaussian and mixer components of the GSM. Note that the joint
conditional statistics of both gaussian and mixer are independent, since the variables were
generated as such in the synthetic example. The Gibbs procedure can be adjusted for data
generated with different Rayleigh parameters a (in equation 3.1), allowing us to model a
wide range of behaviors observed in the responses of linear filters to a range of images. We
have also tested the synthetic model for cases in which the mixer variable generating the
data deviates somewhat from the assumed mixer variable distribution: Gibbs sampling still
tends to find the proper association weights, but the probability distribution estimate of the
mixer random variable is not matched to the assumed distribution.

We have thus far discussed the association probabilities determined by Gibbs inference for
filter responses over the full set of patches. How does Gibbs inference choose the
assignments on a patch-by-patch basis? For filter responses generated deterministically,
according to a single mixer, the learned association probabilities of filter responses to this
mixer are approximately equal to a probability of 1, and so the Gibbs assignments are
correct approximately 100% of the time. For filter responses generated probabilistically
from more than one mixer variable (e.g., filter responses 21–40 or 61–80 for the example in
Figures 7 and 8), there is potential ambiguity about the generating mixer. We focus
specifically on filter responses 21 to 40, which are generated from either vα or vβ. Note that
the overall association probabilities for the mixers for all patches are 0.6 and 0.4,
respectively. We would like to know how these are distributed on a patch-by-patch basis.

To assess the correctness of the Gibbs assignments, we repeated 40 independent runs of
Gibbs sampling for the same filter responses and computed the percentage correct
assignment for filter responses that were generated according to vα or vβ (note that we know
the actual generating mixer values for the synthetic data). We did this on a patch-by-patch
basis and found that two factors affected the Gibbs inference: (1) the ratio of the two mixer
variables vβ/vα for the given patch and (2) the absolute value of the ambiguous filter
response for the given patch. Figure 9 summarizes the Gibbs assignments. The x-axis
indicates the ratio of the absolute value of the ambiguous filter response and vα. The y-axis
indicates the percentage correct for filter responses that were actually generated from vα
(black circles) or vβ (gray triangles). In Figure 9A we depict the result for a patch in which
the ratio vβ/vα was approximately 1/10 (marked by an asterisk on the x-axis). This indicates
that filter responses generated by vα are usually larger than filter responses generated by vβ,
and so for sufficiently large or small (absolute) filter response values, it should be possible
to determine the generating mixer. Indeed, Gibbs assigns correctly filter responses for which
the ratio of the filter response and vα are reasonably above or below 1/10 but does not fare as
well for ratios that are in the range of 1/10 and could have potentially been generated by
either mixer. Figure 9B illustrates a similar result for vβ/vα ≈ 1/3. Finally, Figure 9C shows
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that for vβ/vα ≈ 1, all filter responses are in the same range, and Gibbs resorts to the
approximate association probabilities, of 0.6 and 0.4, respectively.

We also tested Gibbs inference in undercomplete cases for which the Gibbs procedure
assumes fewer mixer variables than were actually used to generate the data. Figure 10 shows
an example in which we generated 75 sets of filter responses according to 15 mixer
variables, each associated deterministically with five (consecutive) filter responses. We ran
Gibbs assuming that only 10 mixers were collectively responsible for all the filter responses.
Figure 10 shows the actual and inferred association probabilities in this case. The procedure
correctly groups together five filters in each of the 10 inferred associations. There are groups
of five filters that are not represented by a single high-order association, and these are spread
across the other associations, with smaller weights. The added noise is expected, since the
association probabilities for each filter must sum to 1.

5 Image Data
Having validated the inference model using synthetic data, we turned to natural images.
Here, the li are actual filter responses rather than synthesized products of a generative
model. We considered inference on both wavelet filters and ICA bases and with a number of
different image sets.

We first derived linear filters from a multiscale oriented steerable pyramid (Simoncelli et al.,
1992), with 232 filters. These consist of two phases (even and odd quadrature pairs), two
orientations, and two spatial frequencies. The high spatial frequency is peaked at
approximately 1/6 cycles per pixel and consists of 49 nonoverlapping spatial positions. The
low spatial frequency is peaked at approximately 1/12 cycles per pixel, and consists of 9
nonoverlapping spatial positions. The spacing between filters, along vertical and horizontal
spatial shifts, is 7 pixels (higher frequency) and 14 pixels (lower frequency). We used an
ensemble of five images from a standard compression database (see Figure 12A) and 8000
samples.

We ran our method with the same parameters as for synthetic data, with 20 possible mixer
variables and Rayleigh parameter a = 0.1. Figure 11 shows the association probabilities pij
of the filter responses for each of the obtained mixer variables. In Figure 11A, we show a
schematic (template) of the association representation that follows in Figure 11B for the
actual data. Each set of association probabilities for each mixer variable is shown for
coefficients of two phases, two orientations, two spatial frequencies, and the range of spatial
positions along the vertical and horizontal axes. Unlike the synthetic examples, where we
plotted the association probabilities in one dimension, for the images we plot the association
probabilities along a two-dimensional spatial grid matched to the filter set.

We now study the pattern of the association probablilities for the mixer variables. For a
given mixer, the association probabilities signify the probability that filter responses were
generated with that mixer. If a given mixer variable has high association probabilities
corresponding to a particular set of filters, we say that the mixer neighborhood groups
together the set of filters. For instance, the mixer association probabilities in Figure 11B
(left) depict a mixer neighborhood that groups together mostly vertical filters on the left-
hand side of the spatial grid, of both even and odd phase. Strikingly, all of the mixer
neighborhoods group together two phases of quadrature pair. Quadrature pairs have also
been extracted from cortical data (Touryan, Lau, & Dan, 2002; Rust, Schwartz, Movshon, &
Simoncelli, 2005) and are the components of ideal complex cell models. However, the range
of spatial groupings of quadrature pairs that we obtain here has not been reported in visual
cortex and thus constitutes a prediction of the model. The mixer neighborhoods range from

Schwartz et al. Page 11

Neural Comput. Author manuscript; available in PMC 2010 August 4.

H
H

M
I Author M

anuscript
H

H
M

I Author M
anuscript

H
H

M
I Author M

anuscript



sparse grouping across space to more global grouping. Single orientations are often grouped
across space, but in a couple of cases, both orientations are grouped together. In addition,
note that there is some probabilistic overlap between mixer neighborhoods; for instance, the
global vertical neighborhood associated with one of the mixers overlaps with other more
localized, vertical neighborhoods associated with other mixers. The diversity of mixer
neighborhoods matches our intuition that different mixer arrangements may be appropriate
for different image patches.

We examine the image patches that maximally activate the mixers, similar to Karklin and
Lewicki (2003a). In Figure 12 we show different mixer association probabilities and patches
with the maximum log likelihood of P(v| patch). One example mixer neighborhood (see
Figure 12B) is associated with global vertical structure across most of its “receptive” region.
Consequently, the maximal patches correspond to regions in the image data with multiple
vertical structure. Another mixer neighborhood (see Figure 12C) is associated with vertical
structure in a more localized iso-oriented region of space; this is also reflected in the
maximal patches. This is perhaps similar to contour structure that is reported from the
statistics of natural scenes (Geisler, Perry, Super, & Gallogly, 2001; Hoyer & Hyvärinen,
2002). Another mixer neighborhood (see Figure 12D) is associated with vertical and
horizontal structure in the corner, with maximal patches that tend to have any structure in
this region (a roof corner, an eye, a distant face, and so on). The mixer neighborhoods in
Figures 12B and 12D bear similarity to those in Karklin and Lewicki (2003a).

Although some of the mixer neighborhoods have a localized responsive region, it should be
noted that they are not sensitive to the exact phase of the image data within their receptive
region. For example, in Figure 12C, it is clear that the maximal patches are invariant to
phase. This is to be expected, given that the neighborhoods are always arranged in
quadrature pairs.

From these learned associations, we also used our model to estimate the gaussian and mixer
variables (see equations 3.10 and 3.6). In Figure 13, we show representative statistics for the
filter responses and the inferred variables. The learned distributions of gaussian and mixer
variables match our assumptions reasonably well. The gaussian estimates exhibit joint
conditional statistics that are roughly independent. The mixer variables are typically
(weakly) dependent.

To test if the result is not merely a consequence of the choice of wavelet-based linear filters
and natural image ensemble, we ran our method on the responses of filters that arose from
ICA (Olshausen & Field, 1996) and with 20-by-20 pixel patches from Field’s image set
(Field, 1994; Olshausen & Field, 1996). Figure 14 shows example mixer neighborhood
associations in terms of the spatial and orientation/frequency profile and corresponding
weights (Karklin & Lewicki, 2003a). The association grouping consists of both spatially
global examples that group together a single orientation at all spatial positions and
frequencies and more localized spatial groupings. The localized spatial groupings sometimes
consist of all orientations and spatial frequencies (as in Karklin & Lewicki, 2003a) and are
sometimes more localized in these properties (e.g., a vertical spatial grouping may tend to
have large weights associated with roughly vertical filters). The statistical properties of the
components are similar to the wavelet example (not shown here). Example maximal patches
are shown in Figure 15. In Figure 15B are maximal patches associated with a spatially
global diagonal structure; in Figure 15C are maximal patches associated with approximately
vertical orientation on the right-hand side; in Figure 15D are maximal patches associated
with low spatial frequencies. Note that there is some similarity to Karklin and Lewicki
(2003a) in the maximal patches.
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So far we have demonstrated inference for a heterogeneous ensemble of images. However, it
is also interesting and perhaps more intuitive to consider inference for particular images or
image classes. We consider a couple of examples with wavelet filters, in which we both
learn and demonstrate the results on the particular image class. In Figure 16 we demonstrate
example mixer association probabilities that are learned for a zebra image (from a Corel
CD-ROM). As before, the neighborhoods are composed of quadrature pairs (only even
phase shown); however, some of the spatial configurations are richer. For example, in
Figure 16A, the mixer neighborhood captures a horizontal-bottom/vertical-top spatial
configuration. In Figure 16B, the mixer neighborhood captures a global vertical
configuration, largely present in the back zebra, but also in a portion of the front zebra.
Some neighborhoods (not shown here) are more local.

We also ran Gibbs inference on a set of 40 face images (20 different people, 2 images of
each) (Samaria & Harter, 1994). The mixer neighborhoods are again in quadrature pairs
(only even phase shown). Some of the more interesting neighborhoods appear to capture
richer information that is not necessarily continuous across space. Figure 17A shows a
neighborhood resembling a loose sketch of the eyes, the nose, and the mouth (or
moustache); the maximal patches are often roughly centered accordingly. The neighborhood
in Figure 17B is also quite global but more abstract and appears to largely capture the left
edge of the face along with other features. Figure 17C shows a typical local neighborhood,
which captures features within its receptive region but is rather nonspecific.

6 Discussion
The study of natural image statistics is evolving from a focus on issues about scale-space
hierarchies and wavelet-like components and toward the coordinated statistical structure of
the wavelets. Bottom-up ideas (e.g., bowties, hierarchical representations such as complex
cells) and top-down ideas (e.g., GSM) are converging. The resulting new insights inform a
wealth of models and concepts and form the essential backdrop for the work in this article.
They also link to engineering results in image coding and processing.

Our approach to the hierarchical representation of natural images was motivated by two
critical factors. First, we sought to use top-down models to understand bottom-up
hierarchical structure. As compellingly argued by Wainwright and Simoncelli (2000;
Wainwright et al., 2001), Portilla et al. (2001, 2003), and Hyvarinen et al. (2003) in their
bubbles framework, the popular GSM model is suitable for this because of the transparent
statistical interplay of its components. This is perhaps by contrast with other powerful
generative statistical approaches such as that of De Bonet and Viola (1997). Second, as also
in Karklin and Lewicki, we wanted to learn the pattern of the hierarchical structure in an
unsupervised manner. We suggested a novel extension to the GSM generative model in
which mixer variables (at one level of the hierarchy) enjoy probabilistic assignments to
mixture inputs (at a lower level). We showed how these assignments can be learned using
Gibbs sampling. Williams and Adams (1999) used Gibbs sampling for solving a related
assignment problem between child and parent nodes in a dynamical tree. Interestingly,
Gibbs sampling has also been used for inferring the individual linear filters of a wavelet
structure, assuming a sparse prior composed of a mixture of gaussian and Dirac delta
function (Sallee & Olshausen, 2003), but not for resolving mixture associations.

We illustrated some of the attractive properties of the technique using both synthetic data
and natural images. Applied to synthetic data, the technique found the proper association
probabilities between the filter responses and mixer variables, and the statistics of the two
GSM components (mixer and gaussian) matched the actual statistics that generated the data
(see Figures 7 and 8). Applied to image data, the resulting mixer association neighborhoods
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showed phase invariance like complex cells in the visual cortex and showed a rich behavior
of grouping along other features (that depended on the image class). The statistics of the
inferred GSM components were a reasonable match to the assumptions embodied in the
generative model. These two components have previously been linked to possible neural
correlates. Specifically, the gaussian variable of the GSM has characteristics resembling
those of the output of divisively normalized simple cells (Schwartz & Simoncelli, 2001); the
mixer variable is more obviously related to the output of quadrature pair neurons (such as
orientation energy or motion energy cells, which may also be divisively normalized). How
these different information sources may subsequently be used is of great interest. Some
aspects of our results are at present more difficult to link strongly to cortical physiology,
such as the local contour versus more global patterns of orientation grouping that emerge in
our and other approaches.

Of course, the model is oversimplified in a number of ways. Two particularly interesting
future directions are allowing correlated filter responses and correlated mixer variables.
Correlated filters are particularly important to allow overcomplete representations.
Overcomplete representations have already been considered in the context of estimating a
single mixer neighborhood in the GSM (Portilla et al., 2003) and in recent energy-based
models (Osindero, Welling, & Hinton, 2006). They are fertile ground for future
investigation within our framework of multiple mixers. Correlations among the mixer
variables could extend and enrich the statistical structure in our model and are the key route
to further layers in the hierarchy. As a first stage, we might consider a single extra layer that
models a mixing of the mixers, prior to mixing the mixer and gaussian variables.

In our model, the mixer variables themselves are uncorrelated, and dependencies arise
through discrete mixer assignments. Just as in standard statistical modeling, some
dependencies are probably best captured with discrete mixtures and others with continuous
ones. In this regard, it is interesting to compare our method to the strategy adopted by
Karklin and Lewicki (2003a). Rather than having binary assignments arising from a mixture
model, they accounted for the dependence in the filter responses by deriving the (logarithms
of the) values of all the mixers for a particular patch from a smaller number of underlying
random variables that were themselves mixed using a set of basis vectors. Our association
probabilities reveal hierarchical structure in the same way that their basis vectors do, and
indeed there are some similarities in the higher-level structures that result. For example,
Karklin and Lewicki obtain either global spatial grouping favoring roughly one orientation
or spatial frequency range or local spatial grouping at all orientations and frequencies. We
also obtain similar results for the generic image ensembles, but our spatial groupings
sometimes show orientation preference.

The relationship between our model and Karklin and Lewicki’s is similar to that between the
discrete mixture of experts model of Jacobs, Jordan, Nowlan, and Hinton (1991) and the
continuous model of Jacobs, Jordan, and Barto (1991). One characteristic difference
between these models is that the discrete versions (like ours) are more strongly competitive,
with the mixer associated with a given group having to explain all their variance terms by
itself. The discrete nature of mixer assignments in our model also led to a simple
implementation of a powerful inference tool.

There are also other directions to pursue. First, various interesting bottom-up approaches to
hierarchical representation are based on the idea that higher-level structure changes more
slowly than low-level structure (Földiak, 1991; Wallis & Baddeley, 1997; Becker, 1999;
Laurenz & Sejnowski, 2002; Einhäuser, Kayser, König, & Körding, 2002; Körding, Kayser,
Einhäuser, & König, 2003). Although our results (and others like them; Hyvärinen & Hoyer,
2000b) show that temporal coherence is not necessary for extracting features like phase
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invariance, it would certainly be interesting to capture correlations between mixer variables
over time as well as over space. Understanding recurrent connections within cortical areas,
as studied in a bottom-up framework by Li (2002), is also key work for the future.

Second, as in applications in computer vision, inference at higher levels of a hierarchical
model can be used to improve estimates at lower levels, for instance, removing noise. It
would be interesting to explore combined bottom-up and top-down inference as a model for
combined feed forward and feedback processing in the cortex. It is possible that a form of
predictive coding architecture could be constructed, as in various previous suggestions
(MacKay, 1956; Srinivasan, Laughlin, & Dubs, 1982; Rao & Ballard, 1999), in which only
information not known to upper levels of the hierarchy would be propagated. However, note
the important distinction between the generative model and recognition processes, such as
predictive coding, that perform inference with respect to the generative model. In this
article, we focused on the former.

We should also mention that not all bottom-up approaches to hierarchical structure fit into
the GSM framework. In particular, methods based on discriminative ideas such as the
Neocognitron (Fukushima, 1980) or the MAX model (Riesenhuber & Poggio, 1999) are
hard to integrate directly within the scheme. However, some basic characteristics of such
schemes, notably the idea of the invariance of responses at higher levels of the hierarchy, are
captured in our hierarchical generative framework.

Finally, particularly since there is a wide spectrum of hierarchical models, all of which
produce somewhat similar higher-level structures, validation remains a critical concern.
Understanding and visualizing high-level, nonlinear, receptive fields is almost as difficult in
a hierarchical model as it is for cells in higher cortical areas. The advantages for the model
—that one can collect as many data as necessary and that the receptive fields arise from a
determinate computational goal—turn out not to be as useful as one might like. One
validation methodology, which we have followed here, is to test the statistical model
assumptions in relation to the statistical properties of the inferred components of the model.
We have also adopted the maximal patch demonstration of Karklin and Lewicki (2003a), but
the results are inevitably qualitative. Other known metrics in the image processing literature,
which would be interesting to explore in future work, include denoising, synthesis, and
segmentation.
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Appendix: Gibbs Sampling
We seek the association probabilities pij between filter response (ie mixture) li and mixer vj
that maximize the log likelihood
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(A.1)

averaged across all the input cases l. As in the expectation maximization algorithm
(Dempster et al., 1977), this involves an inner loop (the E phase), calculating the distribution
of the (binary) assignments χ = {χij}for each given input patch P[χ|l], and an outer loop (a
partial M phase), which in this case sets new values for the association probability pij closer
to the empirical mean over the E step:

(A.2)

We use Gibbs sampling for the E phase. This uses a Markov chain to generate samples of
the binary assignments χ ~ P[χ|l] for a given input. In any given assignment, define ηj = Σi χij

to be the number of filters assigned to mixer j and  to be the square root of the
power assigned to mixer j. Then, by the same integrals that lead to the posterior probabilities
in section 3,

(A.3)

For Rayleigh prior a = 1, we have

(A.4)

where  is a constant.

For the Gibbs sampling, we consider one filter i* at random, and, fixing all the other

assigments, , we generate a new assignment χ′ according to the probabilities

(A.5)

We do this many times to try to get near to equilibrium for this Markov chain and then can
generate sample assignments that approximately come from the distribution P[χ|l]. We then
use these to update the association probabilities

(A.6)

using only a partial M step because of the approximate E step.
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Figure 1.
(A) Generative model for a two-dimensional GSM. Each filter response, l1 and l2, is
generated by multiplying (circle with X symbol) its gaussian variable, g1 and g2, by a
common mixer variable v. (B) Marginal and joint conditional statistics (bowties) of the
gaussian components of the GSM. For the joint conditional statistics, intensity is
proportional to the bin counts, except that each column is independently rescaled to fill the
range of intensities. (C) Marginal statistics of the mixer component of the GSM. The mixer
is by definition positive and is chosen here from a Rayleigh distribution with parameter a =.
1 (see equation 3.1), but exact distribution of mixer is not crucial for obtaining statistical
properties of filter responses shown in D. (D) Marginal and joint conditional statistics
(bowties) of generated filter responses.
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Figure 2.
Joint conditional statistics for different image patches, including white noise. Statistics are
gathered for a given pair of vertical filters that are spatially nonoverlapping. Image patches
are 100 by 100 pixels. Intensity is proportional to the bin counts, except that each column is
independently rescaled to fill the range of intensities.
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Figure 3.
Assignment problem in a multidimensional GSM. Filter responses l = {l1, …, ln} are
generated by multiplying gaussian variables g = {g1, …, gn} by mixer variables {vα, …, vμ},
where we assume μ < n. We can think of each mixture li as the response of a linear filter
when applied to a particular image patch. The assignment problem asks which mixer vj was
assigned to each gaussian variable gi, to form the respective filter response li. The set of
possible mixers vα, vβ, vγ is surrounded by a rectangular black box. Gray arrows mark the
binary assignments: l1 was generated with mixer vα, and l2 and ln were generated with a
common mixer vγ. In section 4 and Figure 6, we also consider what determines this binary
assignment.
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Figure 4.
Local and global estimation in synthetic GSM data. (A) Generative model. Each filter
response is generated by multiplying its gaussian variable by one of the two mixer variables
vα and vβ. (B) Marginal and joint conditional statistics of sample filter responses. For the
joint conditional statistics, intensity is proportional to the bin counts, except that each
column is independently rescaled to fill the range of intensities. (C–E) Left column: actual
(assumed) distributions of mixer and gaussian variables; other columns: estimates based on
different numbers of filter responses (either 1 filter, labeled “too local”; 40 filters, labeled
“too global”; or 20 filters, labeled “just right,” respectively). (C) Distribution of estimate of
the mixer variable vα. Note that mixer variable values are by definition positive. (D)
Distribution of estimate of one of the gaussian variables, g1. (E) Joint conditional statistics
of the estimates of gaussian variables g1 and g2.
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Figure 5.
Local and global estimation in image data. (A–C) Left: Assumed distributions of mixer and
gaussian variables; other columns: estimates based on different numbers of filter responses
(either 1 filter, labeled “too local,” or 40 filters, including two orientations across a 38 by 38
pixel region, labeled “too global,” respectively). (A) Distribution of estimate of the mixer
variable vα. Note that mixer variable values are by definition positive. (B) Distribution of
estimate of one of the gaussian variables, g1. (C) Joint conditional statistics of the estimates
of gaussian variables g1 and g2.

Schwartz et al. Page 24

Neural Comput. Author manuscript; available in PMC 2010 August 4.

H
H

M
I Author M

anuscript
H

H
M

I Author M
anuscript

H
H

M
I Author M

anuscript



Figure 6.
Extended generative GSM model with soft assignment. (A) The depiction is similar to
Figure 3, except that we examine only the generation of two of the filter responses l1 and l2,
and we show the probabilistic process according to which the assignments are made. The
mixer variable assigned to l1 is chosen for each image patch according to the association
probabilities p1α, p1β, and p1γ. The binary assignment for filter response l1 corresponds to
mixer vα = 9. The binary choice arose from the higher association probability p1α = 0.65,
marked with a gray ellipse. The assignment is marked by a gray arrow. For this patch, the
assignment for filter l2 also corresponds to vα = 9. Thus, l1 and l2 share a common mixer
(with a relatively high value). (B) The same for a second patch; here assignment for l1
corresponds to vα = 2.5, but for l2 to vγ = 0.2.
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Figure 7.
Inference of mixer association probabilities in a synthetic example. (A) Each filter response
li is generated by multiplying its gaussian variable by a probabilistically chosen mixer
variable, vα, vβ, or vγ. Shown are the actual association probabilities pij (labeled probability)
of the generated filter responses li with each of the mixer variables vj. (B) Inferred
association probabilities pij from the Gibbs procedure, corresponding to vα, vβ, and vγ.
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Figure 8.
Inference of gaussian and mixer components in a synthetic example. (A) Example marginal
and joint conditional filter response statistics. (B) Statistics of gaussian and mixer estimates
from Gibbs sampling.
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Figure 9.
Gibbs assignments on a patch-by-patch basis in a synthetic example. For filter responses of
each patch (here, filter responses 21–40), there is ambiguity as to whether the assignments
were generated according to vα or vβ (see association probabilities in Figure 7). We
summarize the percentage correct assignments computed over 40 independent Gibbs runs
(y-axis), separately for the patches with filter responses actually generated according to vα
(black, circles) and filter responses actually generated according to vβ (gray, triangles).
There are overall 20 points corresponding to the 20 filter responses. For readability, we have
reordered vα and vβ, such that vα ≥ vβ. The x-axis depicts the ratio of the absolute value of
each ambiguous filter response in the patch (labeled “patch”), and vα. The black asterisk on
the x-axis indicates the ratio vβ/vα. See the text for interpretation. (A) vβ/vα ≈ 1/10. (B) vβ/vα
≈ 1/3. (C) vβ/vα ≈ 1.
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Figure 10.
Inference of mixer association probabilities in an undercomplete synthetic example. The
data were synthesized with 15 mixer variables, but Gibbs inference assumes only 10 mixer
variables. (A) Actual association probabilities. Note that assignments are deterministic, with
0 or 1 probability, in consecutive groups of 5. (B) Inferred association probabilities.
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Figure 11.
Inference of mixer association probabilities for images and wavelet filters. (A) Schematic of
filters and association probabilities for a single mixer, on a 46-by-46 pixel spatial grid
(separate grid for even and odd phase filters). Left: Example even phase filter along the
spatial grid. To the immediate right are the association probabilities. The probability that
each filter response is associated with the mixer variable ranges from 0 (black) to 1 (white).
Only the example filter has high probability, in white, with a vertical line representing
orientation. Right: Example odd phase filter and association probabilities (the small line
represents higher spatial frequency). (B) Example mixer association probabilities for image
data. Even and odd phases always show a similar pattern of probabilities, so we summarize
only the even phase probability and merge together the low- and high-frequency
respresentation. (C) All 20 mixer association probabilities for image data for the even phase
(arbitrarily ordered). Each probability plot is separately normalized to cover the full range of
intensities.

Schwartz et al. Page 30

Neural Comput. Author manuscript; available in PMC 2010 August 4.

H
H

M
I Author M

anuscript
H

H
M

I Author M
anuscript

H
H

M
I Author M

anuscript



Figure 12.
Maximal patches for images and wavelet filters. (A) Image ensemble. Black box marks the
size of each image patch. (B–E) Example mixer association probabilities and 46×46 pixel
patches that had the maximum log likelihood of P(v|patch).
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Figure 13.
Inference of gaussian and mixer components for images and wavelet filters. (A) Statistics of
images through one filter and joint conditional statistics through two filters. Filters are
quadrature pairs, spatially displaced by seven pixels. (B) Inferred gaussian statistics
following Gibbs. The dashed line is assumed statistics, and the solid line is inferred
statistics. (C) Statistics of example inferred mixer variables following Gibbs. On the left are
the mixer association probabilities, and the statistics are shown on the right.
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Figure 14.
Inference of mixer association probabilities for Field’s image ensemble (Field, 1994) and
ICA bases. (A) Schematic example of the representation for three basis functions. In the
spatial plot, each point is the center spatial location of the corresponding basis function. In
the orientation/frequency plot, each point is shown in polar coordinates where the angle is
the orientation and the radius is the frequency of the corresponding basis function. (B)
Example mixer association probabilities learned from the images. Each probability plot is
separately normalized to cover the full range of intensities.
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Figure 15.
Maximal patches for Field’s image ensemble (Field, 1994) and ICA bases. (A) Example
input images. The black box marks the size of each image patch. (B–D) The 20×20 pixel
patches that had the maximum log likelihood of P(v|patch).
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Figure 16.
(A–B) Example mixer association probabilities and maximal patches for zebra image and
wavelets. Maximal patches are marked with white boxes on the image.
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Figure 17.
Example mixer association probabilities and maximal patches for face images (Samaria &
Harter, 1994) and wavelets.
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