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We study the relationship between the accuracy of a large neuronal pop-
ulation in encoding periodic sensory stimuli and the width of the tuning
curves of individual neurons in the population. By using general simple
models of population activity, we show that when considering one or
two periodic stimulus features, a narrow tuning width provides better
population encoding accuracy. When encoding more than two periodic
stimulus features, the information conveyed by the population is instead
maximal for finite values of the tuning width. These optimal values are
only weakly dependent on model parameters and are similar to the width
of tuning to orientation or motion direction of real visual cortical neurons.
A very large tuning width leads to poor encoding accuracy, whatever the
number of stimulus features encoded. Thus, optimal coding of periodic
stimuli is different from that of nonperiodic stimuli, which, as shown
in previous studies, would require infinitely large tuning widths when
coding more than two stimulus features.

1 Introduction

The width of the tuning curves of individual neurons to sensory stimuli
plays an important role in determining the nature of a neuronal population
code (Pouget, Deneve, Ducom, & Latham, 1999; Zhang & Sejnowski, 1999).
On the one hand, narrow tuning makes single neurons highly informative
about a specific range of stimulus values. On the other hand, coarse tuning
increases the size of the population activated by the stimulus, but at the
price of making individual neurons less precisely tuned.

An important question is whether there is an optimal value of tuning
width that allows a most effective trade-off between these two partly con-
flicting requirements of high encoding accuracy by single neurons and
engagement of a large population. When considering the encoding of non-
periodic stimulus variables, such as the Cartesian coordinates of position in
space, Zhang and Sejnowski (1999) demonstrated that under very general
conditions, the information about the stimulus conveyed by the population
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scales as σ D−2, where σ stands for the width of the tuning curve and D is
equal to the number of encoded stimulus features. Thus, extremely narrow
tuning curves are better for encoding one nonperiodic stimulus feature,
whereas extremely coarse tuning curves are better for encoding more than
two nonperiodic features (Zhang & Sejnowski, 1999).

However, many important stimulus variables are described by periodic
quantities. Example of such variables are the direction of motion and the
orientation of a visual stimulus. Thus, it is crucial to investigate how the
population accuracy in encoding periodic stimuli depends on the tuning
width. Here, we address this problem, and we find that under general
conditions and in marked contrast with the case of nonperiodic stimuli,
the population accuracy in encoding periodic stimuli decreases quickly for
large tuning widths, whatever the stimulus dimensionality. For stimulus
dimensions D > 2, there is a finite optimal value of the tuning curve width
for which the population conveys maximal information. If D is in the range
2 to 6, the optimal tuning widths predicted by the model are similar in
magnitude to those observed in visual cortex. This suggests that the tuning
widths of visual cortical neurons are efficient at transmitting information
about a small number of periodic stimulus features.

2 Model of Encoding Periodic Variables

We consider a population made up of a large number N of neurons. The
response of each individual neuron is quantified by the number of spikes
fired in a certain poststimulus time window. Thus, the overall neuronal
population response is represented as an N-dimensional spike count vector.
We assume that the neurons are tuned to a small number D of periodic
stimulus variables, such as the orientation or the direction of motion of a
visual object. The stimulus variable will be described as an angular vector
θ = (θ1, . . . , θD) of dimension D. A real cortical neuron may also encode
sensory variables that are not periodic, such as retinal position or speed
of motion. However, for simplicity here, we will focus entirely on periodic
variables.

The neuronal tuning curves, which quantify the mean spike count of
each neuron to the presented D-dimensional stimulus, are all taken to be
identical in shape but having their maxima at different angles. Thus, each
neuron is uniquely identified by its preferred angle φ. For concreteness, we
choose the following multidimensional circular normal form for the tuning
function,

f (θ − φ) ≡ b + f0(θ − φ) = b + m
D∏

i=1

exp
(

cos(ν(θi − φi )) − 1
(νσ )2

)
,

(2.1)
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where b is the baseline (nonstimulus-induced) firing. The stimulus-
modulated part of the tuning curve f0(θ − φ) depends on σ , the width
of tuning, and on m, the response modulation. As in Zhang and Sejnowski
(1999), we assume that the preferred angles of each neurons are distributed
across the population uniformly over the D-dimensional cuboid region
[−π/ν, π/ν]D. The parameter ν sets the period of the tuning function, which
is equal to (2π)/ν. For example, ν = 1 corresponds to a period equal to 2π

and would describe a motion direction angle, whereas ν = 2 corresponds
to a period equal to π and would describe an orientation angle.

For simplicity, we assume that different stimulus dimensions are mapped
in a separable way. Thus, the stimulus-dependent part of the multidi-
mensional tuning curve in equation 2.1 is written as a product of a one-
dimensional circular normal function over the different stimulus dimen-
sions:

g(θi − φi ) = exp
(

cos(ν(θi − φi )) − 1
(νσ )2

)
. (2.2)

This tuning function has been used in neural coding models (see, e.g.,
Pouget, Zhang, Deneve, & Latham, 1998 and Sompolinsky, Yoon, Kang, &
Shamir, 2001). It was chosen here because, unlike the most commonly used
gaussian models, it is a genuinely periodic function of the stimulus, and
it fits accurately experimental tuning curves for both orientation-sensitive
(Swindale, 1998) and direction-sensitive (Kohn & Movshon, 2004) neurons
in primary visual cortex. In Figure 1 we plot two examples of the one-
dimensional circular normal distribution in equation 2.2, compared with
their respective gaussian approximations. If σ is smaller than ≈200, the
circular normal function closely resembles a gaussian tuning curve (see
equation). For tuning widths much larger than ≈200, the shape of the circular
tuning functions differs substantially from the gaussian.

The above assumption that the multidimensional tuning curve is just a
product of one-dimensional tuning curves of individual features has been
used extensively in population coding models. In addition to being, mathe-
matically convenient for its simplicity, the multiplicative form of the multi-
dimensional tuning function describes well the tuning of neurons in higher
visual cortical areas to, for example, complex multidimensional rotations
(Logothetis, Pauls, & Poggio, 1995) or to local features describing complex
boundary configurations (Pasupathy & Connor, 2001).

We assume that the neurons in the population are uncorrelated at fixed
stimulus. Thus, the stimulus-conditional probability of population response
P(r|θ) is a product of the spike count distribution of each individual neu-
ron. Although it is a simplification, this assumption is useful because it
makes our model mathematically tractable, and it is sufficient to account
in most cases for the majority of information transmitted by real neu-
ronal populations (Nirenberg, Carcieri, Jacobs, & Latham, 2001; Petersen,
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Figure 1: Comparison of periodic and nonperiodic tuning functions for an
orientation-selective neuron coding one stimulus variable. The curves show
mean firing rates as a function of the difference between the presented and the
preferred stimulus of the neuron. Solid lines: periodic tuning function given by
equation 2.2 for ν = 2 (orientation selectivity) and for two values of the tuning
width σ . Dashed lines: nonperiodic (gaussian) tuning function for the same
tuning widths. The difference between the periodic and nonperiodic tuning
functions becomes apparent for large tuning widths and for angles away from
the preferred one.

Panzeri, & Diamond, 2001; Oram, Hatsopoulos, Richmond, & Donoghue,
2001). However, in section 8 we introduce a specific model that takes into
account cross-neuronal correlations and demonstrates that the conclusions
obtained with the uncorrelated assumption are still valid in that correlated
case.

Following Zhang and Sejnowski (1999), we choose a general model of
the activity of the single neuron in the population by requiring that the
probability that the neuron with preferred angle φ emits r spikes in response
to stimulus θ is an arbitrary function of the mean spike count only:

P(r |θ) = S(r, f (θ − φ)). (2.3)
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Optimal Periodic Tuning Widths 1559

In this article, some specific cases of single-neuron models that satisfy this
assumption are studied in detail. We shall also derive scaling rules of the
encoding efficiency as a function of σ and D that are valid for any model of
single-neuron firing that satisfies equation 2.1.

3 Fisher Information

The ability of the population to encode accurately a particular stimulus
value can be quantified by means of Fisher information (Cover & Thomas,
1991). When the stimulus is a D-dimensional periodic variable, Fisher
information is a D × D matrix, J, whose elements i, j are measured in units
of deg−2 and are defined as follows:

J i, j (θ ) = −
∫

drP(r|θ)
(

∂2

∂θi ∂θ j
log P(r|θ )

)
. (3.1)

Fisher information provides a good measure of stimulus encoding because
it sets a limit on the accuracy with which a particular stimulus value can be
reconstructed from a single observation of the neuronal population activity.
In fact, it satisfies the following generalized Cramér-Rao matrix inequality
(Cover & Thomas, 1991),

� ≥ J−1 , (3.2)

where � is the covariance matrix of the D-dimensional error made by any
unbiased estimation method reconstructing the stimulus from the neuronal
population activity.

Since the neurons fire independently, the population Fisher information
is simply given by the sum over all neurons of the single-neuron Fisher
information (Cover & Thomas, 1991). The latter, denoted as J (neuron)

i, j (θ − φ),
has the following expression:

J (neuron)
i, j (θ − φ) = −

∫
dr S(r, f (θ − φ))

(
∂2

∂θi ∂θ j
log S(r, f (θ − φ))

)
.

(3.3)

By computing explicitly the derivatives in the above expression, one can
rewrite the single-neuron Fisher information in equation 3.3 as follows:

J (neuron)
i, j (θ − φ) =

[
f 2
0 (θ − φ)

∫
dr

S′(r, f (θ − φ))2

S(r, f (θ − φ))

]

× sin((ν(θi − φi )) sin(ν(θ j − φ j ))
ν2σ 4 , (3.4)

D
ow

nloaded from
 http://direct.m

it.edu/neco/article-pdf/18/7/1555/816554/neco.2006.18.7.1555.pdf by guest on 12 O
ctober 2021
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where S′ = ∂
∂z S(r, z), and we require the integral over responses in the above

equation to be convergent, so that the single-neuron Fisher information is
finite.

Since the number of neurons in the population is assumed to be large
and since a neuron is uniquely identified by the center φ of its tuning curve,
we can compute the population Fisher information by approximating the
sum over the neurons by an integral over the preferred angles φ,

J i, j (θ ) = NνD

(2π )D

∫ π/ν

−π/ν

d Dφ J (neuron)
i, j (θ − φ), (3.5)

where
∫ π/ν

−π/ν
d Dφ denotes the angular integration over the D-dimensional

cuboid region [−π/ν, π/ν]D. Since the term in square brackets in
equation 3.4 is an even function of each of the angular variables, the integral
in equation 3.5 will be nonzero only when i = j . It is also clear that because
of symmetry over index permutations, the population Fisher information
J i, j (θ ) is proportional to the identity matrix. Moreover, since the integrand
in equation 3.5 is a periodic function integrated over its whole period, the
Fisher information in the equation does not depend on the value of angular
stimulus variable. Thus, dropping index notation and the θ-dependency
in the argument, we will denote by J the diagonal element of the Fisher
information matrix, and call it simply Fisher information.

4 Poisson Model

We begin our analysis of population coding of periodic stimuli by con-
sidering a neuronal firing model satisfying equation 2.3: we assume that
single-neuron statistics at fixed stimulus is described by a Poisson process
with mean given by the neuronal tuning function, equation 2.1:

P(r |θ) = ( f (θ − φ))r

r !
exp (− f (θ − φ)) . (4.1)

The Fisher information conveyed by the Poisson neuronal population is as
follows,

J = NνD

(2π)D

∫ π
ν

− π
ν

d Dφ

[
f 2
0 (θ − φ)
f (θ − φ)

sin2(ν(θ1 − φ1))
ν2σ 4

]
, (4.2)

where the term in square brackets is the single-neuron Fisher information,
and θ1 and φ1 denote the projections of θ and φ along the first stimulus
dimension. In the following, we will study how the Poisson population
Fisher information depends on the model parameters.
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Figure 2: (A) Fisher information per neuron J /N as a function of the tuning
curve width σ for a population of orientation-selective “Poisson” neurons, for
stimulus dimensions D = 1, 2, 3, and 4. Solid lines correspond to the periodic
stimulus Fisher information J and were calculated with equation 4.3. For plot-
ting, the parameter m (which has only a trivial multiplicative effect) was fixed
to 5. Dotted lines correspond to the nonperiodic Fisher information Jnp and
were calculated using gaussian tuning curves of width σ (Zhang & Sejnowski,
1999). (B) Fisher information per neuron J /N for a population of gaussian in-
dependent neurons, for different dimensions of the periodic stimulus variable.
Parameters were as follows: m = 5; b = 0.5, α = 1, and β = 1.

4.1 Analytical Solution with No Baseline Firing. First, we consider the
case in which there is no baseline firing: b = 0. In this case, it is possible to
integrate exactly equation 4.2 and obtain the following analytical solution
for J,

J = Nm
σ 2 K1(ν2σ 2)K D−1

0 (ν2σ 2) , (4.3)

where

Kn(x) = e−1/x In(1/x), (4.4)

and In(x) stands for the nth order modified Bessel function of the first
kind. As in the nonperiodic case (Zhang & Sejnowski, 1999), N and m
affect the Fisher information in equation 4.3 only as trivial multiplicative
factors. Thus, we can focus on the dependence of Fisher information on
σ and D. Figure 2A compares the periodic-stimulus Fisher information J
(normalized in the plot as Fisher information per neuron J /N) to that
obtained in the nonperiodic case (which we will denote as Jnp, and has
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1562 M. Montemurro and S. Panzeri

a very simple σ -dependence: Jnp ∝ σ D−2; see Zhang & Sejnowski, 1999).
It is apparent that the periodic-stimulus Fisher information J depends on
σ in a more complex way than the nonperiodic one Jnp. While for D = 1
there is no qualitative difference between the periodic and the nonperiodic
case (with both J and Jnp being divergent at σ = 0), significant differences
appear for D ≥ 2. If D = 2, J is not constant with σ , but it has a maximum
at σ = 0 and then decays rapidly. If D > 2, in sharp contrast with Jnp, J
exhibits a maximum at finite σ . The optimal values of σ that maximized J
were 26.6, 34.1, 39.9, 44.9 degrees for D = 3, 4, 5, and 6, respectively.

The dependence of J on σ and D and its relation with Jnp can be under-
stood by comparing their respective expressions and taking into account
the properties of the functions Kn(ν2σ 2), as follows.

For small σ , Kn(ν2σ 2) scales to zero as σ . Thus, the small-σ scaling of the
periodic-stimulus model is identical to that of Zhang & Sejnowski (1999).
This is because as σ → 0, the periodic tuning function tends to a gaussian
and σ can be rescaled away from the angular integrals as in the nonperiodic
case.

For large σ , K0(ν2σ 2) increases monotonically toward 1, whereas
K1(ν2σ 2) (which has a maximum at νσ ≈ 0.8) decreases toward zero as
1/σ 2. Thus, J decreases rapidly to zero as 1/σ 4 for any D. This is very dif-
ferent from the nonperiodic case, in which Jnp grows to infinity for large σ

if D > 2 (Zhang & Sejnowski, 1999).
The occurrence of a finite-σ maximum of J can also be understood in

terms of the Kn functions. If D is 1 or 2, then the dominant factor is 1/σ 2,
which leads to a maximum of J at σ = 0. For larger (but finite) D, the term
K D−1

0 becomes more and more important, and thus the maximum of J is
shifted toward larger σ . However, unlike in the nonperiodic case, since
K0 saturates at 1 and K1 goes to zero for σ → ∞, this maximum must be
reached at a finite σ value. An infinite optimal σ value can only be reached
in the D → ∞ limit, where K D−1

0 is dominant and the other terms can be
neglected.

It is interesting to compare the optimal values of tuning width obtained
with our model with the widths of orientation tuning curves observed in
visual cortex (summarized in Table 1). The width of orientation tuning of
V1 neurons is typically in the range of 17 to 21 degrees. In higher cortical
visual areas, the tuning curves get progressively broader: σ is approximately
26 degrees in MT and 38 degrees in V4. Thus, tuning widths of cortical
neurons are neither too narrow nor too wide and are similar in magnitude
to the optimal ones obtained from information-theoretic principles when
considering multidimensional periodic stimuli.

What is the advantage of using tuning widths in this intermediate
range of 15 to 40 degrees observed in cortex? Our model results sug-
gest that unlike very narrow or very wide tuning widths, tuning widths
in this intermediate range are rather efficient at conveying informa-
tion over a range of stimulus dimensions. Intermediate tuning widths
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Table 1: Typical Values of Tuning Widths to Either Orientation or Motion Di-
rection of Neurons in Different Visual Cortex Areas.

Species Area Stimulus σ [deg]

Ferret V1 O 15–17∗
Cat V1 O 14.6†

Macaque V1 O 19–22∗
Macaque MT O 24–27∗
Macaque V4 O 38†

Macaque V1 D 25–29∗
Macaque MT D 35–40∗

Notes: These values were taken or derived from published reports.
† = the original data were reported as the standard deviation σ of
the experimental tuning curve. ∗ = the original published values
were given as full widths at half height, and we then converted
into σ using equation 2.1 with D = 1. Since the conversion depends
on the value of the baseline firing b, we report the converted σ

assuming a baseline firing ranging from 10% of the response mod-
ulation m (lower σ value) to zero baseline firing (upper σ value).
Sources: Usrey, Sceniak, and Chapman (2003); Henry, Dreher, and
Bishop (1974); Albright (1984); McAdams and Maunsell (1999).

(e.g., σ = 25 degrees) would not be efficient for D = 1. However, they
would be highly efficient at encoding a handful of periodic stimulus fea-
tures (e.g., D = 2, · · · , 5). On the other hand, using a small width of tuning,
say, σ = 5 degrees, would be more efficient for D = 1, only marginally
more efficient for D = 2, but very inefficient for D > 3. Using a large σ of
90 degrees would lead to poor information transmission for any value of
D below ≈15. Therefore, the advantage of intermediate tuning widths is
that they offer a highly efficient information transmission across a range of
stimulus dimensions, provided that the population encodes more than one
stimulus feature.

The results obtained for orientation tuning are easily extended to coding
of direction stimulus variables (i.e., ν = 1). It is easy to see that apart from
an overall multiplicative factor ν2, the Fisher information in equation 4.3
depends on σ only through the product νσ (Notice that this is true not only
for the Poisson model solution in equation 4.3, but also for the general Fisher
information in equation 3.5). Thus, the dependence of the information on
σ for direction-selective populations will be the same as that obtained for
orientation-selective neurons, with an overall rescaling of σ by 2. There-
fore, for any D, optimal tuning widths for direction-selective populations
are exactly twice those corresponding to orientation-selective populations.
Table 1 shows that in both V1 and MT, the motion direction tuning widths
are larger than the orientation tuning widths, by a factor of ≈1.5. Cortical
direction tuning widths are hence also efficient for D > 1.
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4.2 Effect of Baseline Firing. If there is baseline firing, that is, b > 0, it is
not possible to express J by a simple analytical formula such as equation 4.3.
However, we can gain insight into the effect of baseline firing by obtaining
approximate solutions for the limiting cases of very small and very large b,
as follows. Here we will focus on how robust the optimal σ values are that
were found above in the D > 2 case.

When b is very small, we can expand the integrand in equation 4.2 in
powers of b/ f0(θ − φ).1 Keeping up to first order in b/ f0(θ − φ), we obtain:

J = Nm
σ 2

[
K1(ν2σ 2)K D−1

0 (ν2σ 2) − b
2m

]
. (4.5)

The first term corresponds to the Fisher information, equation 4.3, for the
case b = 0, which has a maximum at a certain value of tuning curve width,
which we indicate by σ∗. The second term is a perturbative correction that
decreases monotonously when increasing σ . Consequently, for D > 2, the
effect of a small baseline firing is to increase slightly the optimal σ with
respect to the σ∗ values obtained for b = 0.

How much can the optimal σ values increase when increasing the base-
line firing? This can be established by considering the opposite limit,
b → ∞. In this case, f0(θ − φ)/b 
 1 for all angles, and we can expand
the integrand in equation 4.2 in powers of f0(θ − φ)/b. Up to first order in
b−1, we find:

J = Nm2

b σ 2

[
K1

(
ν2σ 2

2

)
K D−1

0

(
ν2σ 2

2

)
− m

b
K1

(
ν2σ 2

3

)
K D−1

0

(
ν2σ 2

3

)]
.

(4.6)

The first contribution is the asymptotic behavior for b → ∞ and has a
maximum at σ = √

2σ ∗. It can be shown that the correction term tends to
decrease the optimal value of σ from its

√
2σ ∗ asymptotic large-b value.

This suggests that the maximal effect of baseline firing on optimal σ values
consists in an increase of a factor

√
2 with respect to the optimal value for

b = 0, and this maximal effect is reached when baseline firing dominates.
We have verified this prediction by integrating numerically equation 4.2
for different values of b. We found that (data not shown) for D = 3 and 4,
the optimal σ values were located, for any b, between σ∗ and

√
2σ∗. Thus,

optimal tuning width values are robust to the introduction of baseline firing.

1 This expansion is valid if b/ f0(θ − φ) 
 1 for all angles. This condition can be met if
σ is nonzero and b is sufficiently small.
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5 Gaussian Model

We consider next another model of single-cell firing, the gaussian model,
which describes well the statistics of spike counts of visual neurons when
spikes are counted over sufficiently long windows (Abbott, Rolls, & Tovée,
1996; Gershon, Wiener, Latham, & Richmond, 1998). This model, unlike the
Poisson one, permits considering the effect of autocorrelations between
the spikes emitted by the same neuron. The statistics of single-neuron
spike counts for the gaussian model are defined as follows:

P(r |θ) = 1√
2πψ(ζ )

exp

(
− (r − f (θ − φ))2

2ψ2(ζ )

)
, (5.1)

where the standard deviation of spike counts, ψ , is an arbitrary function of
the mean: ζ = f (θ − φ). Under these assumptions, it is easy to show that
the population Fisher information J has the following expression,

J = NνD

(2π)D

∫ π
ν

− π
ν

d Dφ

[
f 2
0 (θ − φ)

(
1

ψ2(ζ )
+ 2ψ ′2(ζ )

ψ2(ζ )

)
sin2(ν(θ1 − φ1))

ν2σ 4

]
,

(5.2)

where the term in square brackets is the single-neuron Fisher information,
and ψ ′(ζ ) = ∂

∂ζ
ψ(ζ ).

Since the variance of spike counts of cortical neurons is well described
by a power law function of the mean spike count (Tolhurst, Movshon, &
Thompson, 1981; Gershon et al., 1998), from now on we will assume that ψ

is a power law function of the tuning curve:

ψ = α1/2 f β/2(θ − φ). (5.3)

In this case, equation 5.2 becomes

J = NνD

(2π)D

∫ π
ν

− π
ν

d Dφ

×
[

f 2
0 (θ − φ)

(
1

α f β (θ − φ)
+ β2

2 f 2(θ − φ)

)
sin2(ν(θ1 − φ1))

ν2σ 4

]
. (5.4)

For cortical neurons, the parameters α and β are typically close to 1, both
distributed within the range 0.8 to 1.4 (Gershon et al., 1998; Dayan & Abbott,
2001). If all spike times are independent, then the spiking process is Poisson,
and α and β would both be 1. Deviations of α and β from 1 require the pres-
ence of autocorrelations. Therefore, the study of how J depends on α and
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β allows an understanding of how autocorrelations influence population
coding.

The dependence of the gaussian model Fisher information on σ and D is
plotted in Figure 2B. For this plot, we chose m = 5. The parameters α and β

were both set to 1, so that, as for the Poisson process, the variance of spike
counts equals the mean. In this case, the scaling of Fisher information is
essentially identical to that of the Poisson model in Figure 2A.

We investigated numerically the dependence of J on α and β. We found
that the shape of Fisher information plotted in Figures 2A and 2B is con-
served across the entire range analyzed. In particular, J scaled to zero for
large σ for any D and scaled as σ D−2 for small σ . For D = 1, J was always
divergent at σ = 0. For D = 2, the maximum was always at σ = 0. For
D > 2, J always had a maximum at finite values of σ . The position of the
maximum varied slightly as a function of α and β. Results for the position
of the maximum for D = 3 and D = 4 are reported in Figure 3. The position
of the maxima was almost unchanged when varying α. They varied within
less than 3 degrees for D = 3 and 5 degrees for D = 4 when β varied within
the typical cortical range 0.8 to 1.4.

The similarity between the gaussian model Fisher information, equa-
tion 5.4, and the Poisson model Fisher information, equation 4.3, can be
explained by noting that if m is large and β < 2, then the second additive
term within parentheses in equation 5.4 can be neglected and the gaussian
model Fisher information has the following approximated solution:

J ≈ Nm2−β

α(2 − β)σ 2 K1

(
ν2σ 2

2 − β

)
K D−1

0

(
ν2σ 2

2 − β

)
. (5.5)

This expression is (apart from an overall multiplicative factor) identical to
the population Fisher information for the Poisson model, equation 4.3, with
an overall rescaling of the arguments of the K functions by a factor 2 − β.
Therefore, if the exponent β of the power law variance-mean relationship,
equation 5.3, is approximately 1 (as for real cortical neurons), the optimal
values of the gaussian model in the large-m case are almost identical to the
ones obtained for the Poisson population. It is worth noting that the α- and
β-dependence of J arising from the large-m approximation in equation 5.5
are compatible with the intermediate-m numerical results of Figure 3, which
showed that the optimal σ values depend very mildly on α and decrease
monotonically with β at fixed D.

If m is not very large, then the second additive term within parentheses
in equation 5.4 contributes to the gaussian Fisher information. However,
we have verified that under a wide range of parameters, this contribution
is less dependent on σ than the other one and does not shift the maxima or
alter the dependence of J on σ and D in a prominent way.
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Figure 3: Optimal tuning width, σopt (corresponding to a maximum of Fisher
information J ), for a population of orientation-selective “gaussian” neurons,
as a function of the parameters α and β defining the power law spike count
mean variance relationship, equation 5.3. (A) The number of encoded stimulus
variables is D = 3. Here β is kept fixed while α is varied. (B) Here, α is kept
fixed, β is varied, and D = 3. (C) Now D is 4; β is kept fixed, while α is varied.
(D) Again D is 4. Here, α is kept fixed, and β is varied.

Thus, we conclude that the values of optimal tuning widths obtained
with the Poisson model are robust to changes in model details such as the
introduction of autocorrelations parameterized by α and β, as long as these
parameters remain within the realistic cortical range.

6 General Multiplicative Noise Model

To further check the robustness of the above conclusions, we introduced a
more general model of single-neuron firing: the multiplicative noise model.
This model, unlike the Poisson and the gaussian models, has the advantage
of not assuming a particular functional form for the variability of neuronal
responses at fixed stimulus. It assumes that the variability of spike counts
in response to any stimulus is generated by an arbitrary stochastic process
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1568 M. Montemurro and S. Panzeri

modulated by an arbitrary function ψ of the mean spike rate. In this case,
the spike rate of each neuron is given by the following equation,

r = f (θ − φ) + ε ψ(ζ )z , (6.1)

where z is an arbitrary stochastic process of zero mean and unit variance
with distribution Q(z), ψ(ζ ) ≡ ψ ( f (θ − φ)), and ε is a parameter that mod-
ulates the overall strength of the response variability. Under these assump-
tions, the single-neuron’s spike count probability is

P(r |θ) = 1
εψ(ζ )

Q
(

(r − f (θ − φ))
εψ(ζ )

)
, (6.2)

and the single-neuron Fisher information, equation 3.3, has the following
form:

J (neuron)
i,i (θ ) = f 2

0 (θ − φ) sin2(ν(θi − φi ))
ε2ψ2(ζ )ν2σ 4

× [
T0(Q) + 2εψ ′(ζ )T1(Q) + ε2ψ ′2(ζ )T2(Q)

]
. (6.3)

The coefficients Ti (Q) are a function of the noise distribution only and are
defined as follows:

T0(Q) =
∫

Q′2(z)
Q(z)

dz ; T1(Q) =
∫

Q′(z)dz +
∫

Q′2(z)z
Q(z)

dz

T2(Q) = 1 +
∫

Q′2(z)
Q(z)

z2dz + 2
∫

Q′(z)zdz. (6.4)

Although equation 6.3 permits the computation of the population Fisher
information for any multiplicative noise model, in the following we will
concentrate on examining two interesting limiting cases: very low and very
high noise strengths. In examining these two cases, we will assume that
(as for the gaussian model) the variance of the noise ψ2 is in a power law
relationship with the mean, equation 5.3.

6.1 Low Noise Limit. We first consider the low noise limit ε 
 1. In
this case, responses are almost deterministic, and single neurons convey
information by stimulus-induced changes in the mean spike rate (Brunel &
Nadal, 1998). In this limit, the population Fisher information J can be
calculated by keeping the leading order in ε only in the single-neuron
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Fisher information, equation 6.3, and then integrating it over the preferred
stimuli, obtaining:

J = Nm2−β T0(Q)
α(2 − β)σ 2 K1

(
ν2σ 2

2 − β

)
K D−1

0

(
ν2σ 2

2 − β

)
. (6.5)

The dependence of the low-noise Fisher information on σ and D is thus
affected only by β, with all other model parameters entering only as an
overall multiplicative factor. Equation 6.5 is identical (apart from an overall
multiplicative factor) to the large-m approximation of the gaussian model
Fisher information, equation 5.5. It is also identical (apart from a rescaling
of the argument of Kn) to the Poisson model exact solution in equation 4.3.

6.2 High Noise Limit. We considered next the case of very noisy neu-
rons: ε � 1. In this limit, information is transmitted entirely by stimulus-
modulated changes of the variance ψ2. (If the variance was not stimu-
lus dependent, then information would be zero in the high noise limit;
Samengo & Treves, 2001). Taking the ε → ∞ of the single-neuron Fisher in-
formation, integrating it over the preferred angles, and taking into account
equation 5.3, we obtain the following expression for the population Fisher
information:

J = NνD

(2π)D

∫ π
ν

− π
ν

d Dφ

[
f 2
0 (θ − φ)

(
T2(Q)

α f β (θ − φ)

)
sin2(ν(θ1 − φ1))

ν2σ 4

]
. (6.6)

In this limit, J is thus independent of the noise strength ε and depends
on the details of the single-neuron model only through a multiplicative
factor T2(Q). It can be seen that its expression is similar to the first (and
dominant) additive term of the gaussian solution, equation 5.4. Because of
this similarity, when integrating numerically equation 6.6, we found that
the dependence of the high-noise population Fisher information on σ and
D is remarkably consistent with that obtained for the Poisson and gaussian
models (see Figure 2), and that the changes in the position of the maxima
when varying α and β were again similar to those reported in Figure 3 for
the gaussian model (data not shown).

In summary, the dependence on σ and D of the information transmitted
by a population of neurons described by the general multiplicative model
behaves in a way consistent with the results obtained above in both the
high-noise and the low-noise limit.

7 General Scaling Limits for Large and Small σ

After having analyzed three different classes of single-neuron firing models,
in this section we switch back to the most general firing model in equation
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2.3, in which the single-neuron statistics is an arbitrary function of the mean
spike rate; we consider its small- and large-σ scaling. We will derive that
for any such firing model, Fisher information scales in an universal way
as σ D−2 for small σ and goes to zero as 1/σ 4 for large σ . Thus, for D > 2,
Fisher information reaches a maximum for a finite value of the tuning width,
whatever the firing model considered.

7.1 Small σ Scaling. When σ 
 1, the exponential in equation 2.1 gives
a nonzero contribution to the tuning function only when θ − φ ∼ 0. In this
regime, we can take a Taylor expansion of the cosines in the exponent of
equation 2.1, obtaining the following,

f (θ − φ) � b + m exp

(
− |θ − φ|2

2σ 2

)
≡ G

(
|θ − φ|2

σ 2

)
, (7.1)

where in the above G(|θ − φ|2 /σ 2) is the standard gaussian tuning function.
The population Fisher information becomes

J = NνD

(2π)D

∫ π/ν

−π/ν

d Dφ Ã

(
|θ − φ|2

σ 2

)
(θ1 − φ1)2

σ 2 , (7.2)

where, following Zhang and Sejnowski (1999), the function Ã is defined as
follows:

Ã

(
|θ − φ|2

σ 2

)
= exp

(
−|θ − φ|2

σ 2

) ∫
dr

S′
(

r, G
(

|θ−φ|2
σ 2

))2

S
(

r, G
(

|θ−φ|2
σ 2

)) . (7.3)

By introducing new integration variables ξi = (θi − φi )/σ , one can rewrite
equation 7.2 as follows:

J = σ D−2 NνD

(2π )D

∫ π/(νσ )

−π/(νσ )
d Dξ Ã

(|ξ |2) ξ 2
1 . (7.4)

By taking the small-σ limit of the above expression, one gets

J = σ D−2 NνD

(2π )D

∫ +∞

−∞
d Dξ Ã

(|ξ |2) ξ 2
1 . (7.5)

If the improper integral above converges, then the periodic Fisher informa-
tion scales as σ D−2 for small σ , coinciding with the universal scaling rule for
nonperiodic stimuli found by Zhang and Sejnowski (1999). It is important
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to note that for a given neuronal model defined by a probability function S,
equation 7.5 is the Fisher information obtained if the tuning curve was gaus-
sian with variance σ and the stimulus variable ξ was nonperiodic (Zhang &
Sejnowski, 1999). Thus, the small-σ scaling of the periodic-stimulus Fisher
information J is ∝ σ D−2 whenever the Fisher information of the correspond-
ing gaussian nonperiodic tuning model is well defined (see Wilke & Eurich,
2001, for cases and parameters in which the gaussian model nonperiodic
Fisher information is not well defined).

7.2 Large σ Scaling. When σ � 1, the argument of the exponentials in
equation 2.1 is very small. Thus, the following expansion will be valid:

f (θ − φ) � b + m + m
D∑

i=1

(
cos(ν(θi − φi )) − 1

(νσ )2

)
≈ f (0) + O

(
1
σ 2

)
.

(7.6)

Consequently, the population Fisher information becomes

J ≈ 1
σ 4

[
m2

∫
dr

S′(r, m + b)2

S(r, m + b)

] ∫
dφ

sin2(θ1 − φ1)
ν2 . (7.7)

Thus, for large σ , Fisher information goes to zero as σ 4 for any stimulus
dimensionality.

8 Correlations Between Neurons

The analysis above considered a population of independent neurons. In
this section, we address the effect of correlated variability among the pop-
ulations on the position of the optimal values of the tuning curve width.
For simplicity, we shall consider that the firing statistics are governed by a
multivariate gaussian distribution as follows,

P(r|θ) = 1√
(2π )N|C| e− 1

2 (r−f)T C−1(r−f) (8.1)

where C is the population correlation matrix and f stands for a column
vector whose components are the neuron tuning functions, that is, f ≡
[ f (θ − φ(1)), . . . , f (θ − φ(N))]T , φ(k) being the preferred stimulus of the kth
neuron. The correlation matrix is defined as follows,

C (kl) = [δkl + (1 − δkl )q ] ψ(ζ (k))ψ(ζ (l)), (8.2)
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where ζ (p) ≡ f (θ − φ(p)), and (to ensure that the correlation matrix C is pos-
itive definite) the cross-correlation strength parameter q is allowed to vary
in the range 0 ≤ q < 1. The Fisher information for this gaussian-correlated
model is given by the following expression (Abbott & Dayan, 1999):

J i j (θ ) = ∂fT

∂θi
C−1 ∂f

∂θ j
+ 1

2
Tr

[
dC
dθi

C−1 dC
dθ j

C−1
]

. (8.3)

By inserting the correlation matrix definition given by equation 8.2, into
equation 8.3, and taking the continuous limit for N � 1 (Abbott & Dayan,
1999; Wilke & Eurich, 2001), one arrives at the following expression:

J i j (θ ) = NνD−2

(2π)D(1 − q )σ 4

∫ π
ν

− π
ν

d Dφ f 2
0 (θ − φ)

(
1

ψ2(ζ )
+ (2 − q )ψ ′2(ζ )

ψ2(ζ )

)

× sin(ν(θi − φi )) sin(ν(θ j − φ j )). (8.4)

Note that as for the uncorrelated model discussed in section 2, the only
nonzero elements of the Fisher information matrix are the diagonal ones;
these elements are all identical and do not depend on the value of angular
stimulus variable. Thus, dropping index and θ-dependency notation, we
will again simply denote by J the diagonal element of the Fisher information
matrix in equation 8.4.

The expression of J for the correlated model in equation 8.4 is almost
identical to the one for the uncorrelated gaussian model in equation 5.2,
the only difference being a q -dependent relative weight of the two additive
terms within parentheses in equation 8.4. Since, as explained in section
5, the first additive term in parentheses is the prominent one in shaping
the σ - and D-dependence of J, the correlated model J behaves very much
like the uncorrelated-gaussian-model J in equation 5.2. In particular, the
cross-correlation parameter q affects the optimal σ values in a very marginal
way. Thus, we expect that the only appreciable effect of the cross-correlation
strength q is to shift slightly the position of the maximum for D > 2. The
variations of the optimal σ values of the correlated model as a function of
q (obtained integrating numerically equation 8.4) are reported in Figure 4
for D = 3 and D = 4. ψ(ζ ) was again chosen according to equation 5.3 with
α = 1 and β = 1. It is apparent that the values of the optimal tuning widths
found for the uncorrelated model are virtually unchanged throughout the
entire allowed range of cross-correlation strength q .

9 Discussion

Determining how the encoding accuracy of a population depends on
the tuning width of individual neurons is crucial for understanding the
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Figure 4: Optimal tuning widths for a population of orientation-selective neu-
rons with gaussian firing statistics in the presence of uniform cross correlations,
as a function of the cross-correlation strength parameter q . The two cases D = 3
(lower curve) and D = 4 (upper curve) are separately reported.

transformation of the sensory representation across different levels of the
cortical hierarchy (Hinton, McClelland, & Rumelhart, 1986; Zohary, 1992).

Generalizing previous results obtained for nonperiodic stimuli (Zhang &
Sejnowski, 1999), here we have determined how encoding accuracy of peri-
odic stimuli depends on the tuning width. Although we found no universal
scaling rule, the dependence of the encoding accuracy of periodic stimuli
on the width of tuning was remarkably consistent across neural models
and model parameters. This indicates that the key properties of encoding
of periodic variables are general.

The encoding accuracy of angular variables differs significantly from that
of nonperiodic stimuli. The two major differences are that (1) whatever the
number of stimulus features D, very large tuning widths are inefficient for
encoding a finite number of periodic variables, and (2) for D > 2, interme-
diate values of tuning widths (within the range observed in cortex) provide
the population with the largest representational capacity. These differences
suggest that population coding of periodic stimuli may be influenced by
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computational constraints that differ from those influencing the coding of
nonperiodic stimuli.

As for the nonperiodic case (Zhang & Sejnowski, 1999), the neural pop-
ulation information about periodic stimuli depends crucially on D, the
number of stimulus features being encoded. This number is not known ex-
actly; therefore, it is difficult to derive precisely the optimal tuning widths
in each cortical area. However, some evidence indicates that neurons may
encode a small number of stimulus features, and in many cases the number
of encoded features is more than one. For example, visual neurons extract
a few features out of a rich dynamic stimulus (Brenner, Bialek, & de Ruyter
van Steveninck, 2000; Touryan, Lau, & Dan, 2002), and a small number of
different stimulus maps are often found to coexist over the same area of cor-
tical tissue (Swindale, 2004). Our results show that in this regime in which
more than one (but no more than a few) periodic features are encoded, tun-
ing widths within the range observed in cortex are efficient at transmitting
information.

We showed that the optimal tuning width for population coding in-
creases with the number of periodic features being encoded. Neurophysio-
logical data in Table 1 show a progressive increase of tuning widths across
the cortical hierarchy, consistent with the idea that higher visual areas en-
code complex objects described by a combination of several stimulus pa-
rameters (Pasupathy & Connor, 2001), thus requiring larger tuning widths
for efficient coding.

In summary, our results demonstrate that tuning curves of intermediate
widths offer computational advantages when considering the encoding of
periodic stimuli.
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