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Abstract

It is well known in the statistics literature that augmenting binary
and polychotomous response models with Gaussian latent variables en-
ables exact Bayesian analysis via Gibbs sampling from the parameter
posterior. By adopting such a data augmentation strategy, dispensing
with priors over regression coefficients in favour of Gaussian Process
(GP) priors over functions, and employing variational approximations
to the full posterior we obtain efficient computational methods for
Gaussian Process classification in the multi-class setting1. The model
augmentation with additional latent variables ensures full a posteri-

ori class coupling whilst retaining the simple a priori independent
GP covariance structure from which sparse approximations, such as
multi-class Informative Vector Machines (IVM), emerge in a very nat-
ural and straightforward manner. This is the first time that a fully
Variational Bayesian treatment for multi-class GP classification has
been developed without having to resort to additional explicit approx-
imations to the non-Gaussian likelihood term. Empirical comparisons
with exact analysis via MCMC and Laplace approximations illustrate
the utility of the variational approximation as a computationally eco-
nomic alternative to full MCMC and it is shown to be more accurate
than the Laplace approximation.

1 Introduction

In (Albert and Chib, 1993) it was first shown that by augmenting binary
and multinomial probit regression models with a set of continuous latent
variables yk, corresponding to the k’th response value where yk = mk + ε,
ε ∼ N (0, 1) and mk =

∑
j βkjxj, an exact Bayesian analysis can be per-

formed by Gibbs sampling from the parameter posterior. As an exam-
ple consider binary probit regression on target variables tn ∈ {0, 1}, the
probit likelihood for the nth data sample taking unit value (tn = 1) is
P (tn = 1|xn,β) = Φ(βTxn), where Φ is the standardised Normal Cumula-
tive Distribution Function (CDF). Now, this can be obtained by the follow-
ing marginalisation

∫
P (tn = 1, yn|xn,β)dyn =

∫
P (tn = 1|yn)p(yn|xn,β)dyn

and as by definition P (tn = 1|yn) = δ(yn > 0) then we see that the required
marginal is simply the normalizing constant of a left truncated univariate

1Matlab code to allow replication of the reported results is available at http://www.

dcs.gla.ac.uk/people/personal/girolami/pubs 2005/VBGP/index.htm
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Gaussian so that P (tn = 1|xn,β) =
∫
δ(yn > 0)Nyn

(βTxn, 1)dyn = Φ(βTxn).
The key observation here is that working with the joint distribution P (tn =
1, yn|xn,β) = δ(yn > 0)Nyn

(βTxn, 1) provides a straightforward means of
Gibbs sampling from the parameter posterior which would not be the case if
the marginal term, Φ(βTxn), was employed in defining the joint distribution
over data and parameters.

This data augmentation strategy can be adopted in developing efficient
methods to obtain binary and multi-class Gaussian Process (GP) (Williams
and Rasmussen, 1996) classifiers as will be presented in this paper. With the
exception of (Neal, 1998), where a full Markov Chain Monte Carlo (MCMC)
treatment to GP based classification is provided, all other approaches have
focussed on methods to approximate the problematic form of the poste-
rior2 which allow analytic marginalisation to proceed. Laplace approxima-
tions to the posterior were developed in (Williams and Barber, 1998) whilst
lower & upper bound quadratic likelihood approximations were considered
in (Gibbs, 2000). Variational approximations for binary classification were
developed in (Seeger, 2000) where a logit likelihood was considered and mean
field approximations were applied to probit likelihood terms in (Opper and
Winther, 2000), (Csato et al, 2000) respectively. Additionally, incremen-
tal (Quinonero-Candela and Winther, 2003) or sparse approximations based
on Assumed Density Filtering (ADF) (Csato and Opper, 2002), Informative
Vector Machines (IVM) (Lawrence, et al 2003) and Expectation Propagation
(EP) (Minka, 2001; Kim, 2005) have been proposed. With the exceptions of
(Williams and Barber, 1998; Gibbs, 2000; Seeger and Jordan, 2004; Kim,
2005) the focus of most recent work has largely been on the binary GP clas-
sification problem. In (Seeger and Jordan, 2004) a multi-class generalisation
of the IVM is developed where the authors employ a multinomial-logit soft-

max likelihood. However, considerable representational effort is required to
ensure that the scaling of computation and storage required of the proposed
method matches that of the original IVM with linear scaling in the number
of classes. In contrast, by adopting the probabilistic representation of (Al-
bert and Chib, 1993) we will see that GP based K-class classification and
efficient sparse approximations (IVM generalisations with scaling linear in
the number of classes) can be realised by optimising a strict lower-bound
of the marginal likelihood of a multinomial probit regression model which

2The likelihood is nonlinear in the parameters due to either the logistic or probit link
functions required in the classification setting
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requires the solution of K computationally independent GP regression prob-
lems whilst still operating jointly (statistically) on the data. We will also
show that the accuracy of this approximation is comparable to that obtained
via MCMC.

The following section now introduces the multinomial-probit regression
model with Gaussian Process priors.

2 Multinomial Probit Regression

Define the data matrix as X = [x1, · · · ,xN ]T which has dimension N × D
and the N × 1 dimensional vector of associated target values as t where each
element tn ∈ {1, · · · , K}. The N × K matrix of GP random variables mnk

is denoted by M. We represent the N × 1 dimensional columns of M by mk

and the corresponding K × 1 dimensional rows by mn. The N ×K matrix
of auxiliary variables ynk is represented as Y, where the N × 1 dimensional
columns are denoted by yk and the corresponding K×1 dimensional rows as
yn. The M × 1 vector of covariance kernel hyper-parameters for each class3

is denoted by ϕk and associated hyper-parameters ψk & αk complete the
model.

The graphical representation of the conditional dependency structure in
the auxiliary variable multinomial probit regression model with GP priors in
the most general case is shown in Figure (1).

PSfrag replacements

ψ ϕ m y t

M N

K

α

Figure 1: Graphical representation of the conditional dependencies within the
general multinomial probit regression model with Gaussian Process priors.

3This is the most general setting, however it is more common to employ a single and
shared GP covariance function across classes.
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3 Prior Probabilities

From the graphical model in Figure (1) a priori we can assume class specific
GP independence and define model priors such that mk|X,ϕk ∼ GP (ϕk) =
Nmk

(0,Cϕk
), where the matrix Cϕk

, of dimension N × N defines the class
specific GP covariance4. Typical examples of such GP covariance functions
are radial basis style functions such that the i, j’th element of each Cϕk

is

defined as exp{−∑M

d=1 ϕkd(xid − xjd)2} where in this case M = D, however
there are many other forms of covariance functions which may be employed
within the GP function prior, see for example (McKay, 2003).

As in (Albert and Chib, 1993) we employ a standardised normal noise
model such that the prior on the auxilliary variables is ynk|mnk ∼ Nynk

(mnk, 1)
to ensure appropriate matching with the probit function. Of course rather
than having this variance fixed it could also be made an additional free pa-
rameter of the model and therefore would yield a scaled probit function. For
the presentation here we restrict ourselves to the standardised model and
consider extensions to a scaled probit model as possible further work. The
relationship between the additional latent variables yn (denoting the n’th row
of Y) and the targets tn as defined in multinomial probit regression (Albert
and Chib, 1993) is adopted here, i.e.

tn = j if ynj = max
1≤k≤K

{ynk} (1)

This has the effect of dividing RK (y space) into K non-overlapping K-
dimensional cones Ck = {y : yk > yi, k 6= i} where RK = ∪kCk and so each
P (tn = i|yn) can be represented as δ(yni > ynk ∀ k 6= i). We then see that
similar to the binary case where the probit function emerges from explicitly
marginalising the auxiliary variable the multinomial probit takes the form
given below, where details are given in Appendix I.

P (tn = i|mn) =

∫
δ(yni > ynk ∀ k 6= i)

K∏

j=1

p(ynj|mnj)dy

=

∫

Ci

K∏

j=1

p(ynj|mnj)dy = Ep(u)

{
∏

j 6=i

Φ(u+mni −mnj)

}

4The model can be defined by employing K − 1 GP functions and an alternative trun-
cation of the Gaussian over the variables ynk however for the multi-class case we define a
GP for each class.
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where the random variable u is standardised normal i.e. p(u) = N (0, 1).
An hierarchic prior on the covariance function hyper-parameters is employed
such that each hyper-parameter has, for example, an independent exponen-
tial distribution ϕkd ∼ Exp(ψkd) and a gamma distribution is placed on the
mean values of the exponential ψkd ∼ Γ(σk, τk) thus forming a conjugate
pair. Of course, as detailed in (Girolami and Rogers, 2005), a more general
form of covariance function can be employed that will allow the integration
of heterogeneous types of data which takes the form of a weighted combi-
nation of base covariance functions. The associated hyper-hyper-parameters
α = {σk=1,··· ,K , τk=1,··· ,K} can be estimated via type-II maximum likelihood
or set to reflect some prior knowledge of the data. Alternatively, vague
priors can be employed such that, for example, each σk = τk = 10−6.
Defining the parameter set as Θ = {Y,M} and the hyper-parameters as
Φ = {ϕk=1,··· ,K ,ψk=1,··· ,K} the joint likelihood takes the form below.

p(t,Θ,Φ|X,α) =
N∏

n=1

{
K∑

i=1

δ(yni > ynk ∀ k 6= i)δ(tn = i)

}
×

K∏

k=1

p(ynk|mnk)p(mk|X,ϕk)p(ϕk|ψk)p(ψk|αk) (2)

4 Gaussian Process Multi-Class Classification

We now consider both exact and approximate Bayesian inference for GP clas-
sification with multiple classes employing the multinomial-probit regression
model.

4.1 Exact Bayesian Inference: The Gibbs Sampler

The representation of the joint likelihood (Equation 2) is particularly con-
venient in that samples can be drawn from the full posterior over the model
parameters (given the hyper-parameter values) p(Θ|t,X,Φ,α) using a Gibbs
sampler in a very straightforward manner with scaling per sample ofO(KN 3).
Full details of the Gibbs sampler are provided in Appendix IV and this sam-
pler will be employed in the experimental section.
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4.2 Approximate Bayesian Inference: The Laplace Ap-

proximation

The Laplace approximation of the posterior over GP variables, p(M|t,X,Φ,α)
(where Y is marginalised), requires finding the mode of the unnormalised pos-
terior. Approximate Bayesian inference for GP classification with multiple-
classes employing a multinomial-logit (softmax) likelihood has been devel-
oped previously in (Williams and Barber, 1998). Due to the form of the
multinomial-logit likelihood a Newton iteration to obtain the posterior mode
will scale at best as O(KN 3). Employing the multinomial-probit likelihood
we find that each Newton step will scale as O(K3N3) and details are provided
in Appendix V.

4.3 Approximate Bayesian Inference: A Variational

and Sparse Approximation

Employing a variational Bayes approximation (Beal, 2003; Jordan, et al 1999;
McKay, 2003) by using an approximating ensemble of factored posteriors
such that p(Θ|t,X,Φ,α) ≈ ∏

i=1Q(Θi) = Q(Y)Q(M) for multinomial-
probit regression is more appealing from a computational perspective as a
sparse representation, with scaling O(KNS2) (where S is the subset of sam-
ples entering the model and S � N), can be obtained in a straightforward
manner as will be shown in the following sections. The lower bound5, see
for example (Beal, 2003; Jordan, et al 1999; McKay, 2003), on the marginal
likelihood log p(t|X,Φ,α) ≥ EQ(Θ) {log p(t,Θ|X,Φ,α)}−EQ(Θ) {logQ(Θ)}
is minimised by distributions which take an unnormalised form of Q(Θi) ∝
exp

(
EQ(Θ\Θi){logP (t,Θ|X,Φ,α)}

)
where Q(Θ\Θi) denotes the ensemble

distribution with the ith component of Θ removed. Details of the required
posterior components are given in the Appendix.

The approximate posterior over the GP random variables takes a factored
form such that

Q(M) =
K∏

k=1

Q(mk) =
K∏

k=1

Nmk
(m̃k,Σk) (3)

5The bound follows from the application of Jensens inequality e.g. log p(t|X) =

log
∫

p(t,Θ|X)
Q(Θ) Q(Θ)dΘ ≥

∫
Q(Θ) log p(t,Θ|X)

Q(Θ) dΘ
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where the shorthand tilde notation denotes posterior expectation i.e. f̃(a) =
EQ(a){f(a)} and so the required posterior mean for each k is given as m̃k =
Σkỹk where Σk = Cϕk

(I + Cϕk
)−1 (see Appendix I for full details). We will

see that each row, ỹn, of Ỹ will have posterior correlation structure induced
ensuring that the appropriate class-conditional posterior dependencies will be
induced in M̃. It should be stressed here that whilst there are K a posteriori

independent GP processes the associated K-dimensional posterior means for
each of N data samples induces posterior dependencies between each of the
K columns of M̃ due to the posterior coupling over each of the auxiliary
variables yn. We will see that this structure is particularly convenient in
obtaining sparse approximations (Lawrence, et al 2003) for the multi-class
GP in particular.

Due to the multinomial probit definition of the dependency between each
element of yn and tn (Equation.1) the posterior for the auxiliary variables
follows as

Q(Y) =

N∏

n=1

Q(yn) =

N∏

n=1

N tn
yn

(m̃n, I) (4)

where N tn
yn

(m̃n, I) denotes a conic truncation of a multivariate Gaussian such
that if tn = i where i ∈ {1, · · · , K} then the i’th dimension has the largest
value. The required posterior expectations ỹnk for all k 6= i and ỹni follow as

ỹnk = m̃nk −
Ep(u)

{
Nu(m̃nk − m̃ni, 1)Φn,i,k

u

}

Ep(u)

{
Φ(u+ m̃ni − m̃nk)Φ

n,i,k
u

} (5)

ỹni = m̃ni −
(
∑

j 6=i

ỹnj − m̃nj

)
(6)

where Φn,i,k
u =

∏
j 6=i,k Φ(u + m̃ni − m̃nj), and p(u) = Nu(0, 1). The expecta-

tions with respect to p(u) which appear in Equation (5) can be obtained by
quadrature or straightforward sampling methods.

If we also consider the set of hyper-parameters, Φ, in this variational
treatment then the approximate posterior for the covariance kernel hyper-
parameters takes the form of

Q(ϕk) ∝ N �

mk
(0,Cϕk

)
∏M

d=1
Exp(ϕkd|ψ̃kd)

and the required posterior expectations can be estimated employing impor-
tance sampling. Expectations can be approximated by drawing S samples
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such that each ϕskd ∼ Exp(ψ̃kd) and so

f̃(ϕk) ≈
S∑

s=1

f(ϕsk)w(ϕsk) where w(ϕsk) =
N �

mk

(
0,Cϕs

k

)

∑S

s′=1N �

mk

(
0,Cϕs′

k

) (7)

This form of importance sampling within a variational Bayes procedure has
been employed previously in (Lawrence, et al 2004). Clearly the scaling of the
above estimator per sample is similar to that required in the gradient based
methods which search for optima of the marginal likelihood as employed in
GP regression and classification e.g. (McKay, 2003).

Finally we have that each Q(ψkd) = Γψkd
(σk + 1, τk + ϕ̃kd) and the asso-

ciated posterior mean is simply ψ̃kd = (σk + 1)/(τk + ϕ̃kd).

4.4 Summarising Variational Multi-Class GP Classifi-

cation

We can summarise what has been presented by the following iterations which,
in the general case, for all k and d, will optimise the bound on the marginal
likelihood (explicit expressions for the bound are provided in Appendix III).

m̃k ← C �

ϕk
(I + C �

ϕk
)−1(m̃k + pk) (8)

ϕ̃k ←
∑

s

ϕskw(ϕsk) (9)

ψ̃kd ←
σk + 1

τk + ϕ̃kd
(10)

where each ϕskd ∼ Exp(ψ̃kd), w(ϕsk) is defined as previously and pk is the
kth column of the N × K matrix P whose elements pnk are defined by the
rightmost terms in Equations (5 & 6) i.e. for tn = i then for all k 6= i

pnk = −Ep(u){Nu(
�

mnk−
�

mni,1)Φ
n,i,k
u }

Ep(u){Φ(u+
�

mni−
�

mnk)Φn,i,k
u } and pni = −∑j 6=i pnj.

These iterations can be viewed as obtaining K One against All binary
classifiers, however, most importantly they are not statistically independent
of each other but are a posteriori coupled via the posterior mean estimates of
each of the auxiliary variables yn. The computational scaling will be linear
in the number of classes and cubic in the number of data points O(KN 3).
It is worth noting that if the covariance function hyper-parameters are fixed
then the costly matrix inversion only requires to be computed once. The
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Laplace approximation will require a matrix inversion for each Newton step
when finding the mode of the posterior (Williams and Barber, 1998).

4.4.1 Binary Classification

Previous variational treatments of GP based binary classification include
(Seeger, 2000; Opper and Winther, 2000; Gibbs, 2000; Csato and Opper,
2002; Csato et al, 2000). It is however interesting to note in passing that for
binary classification, the outer plate in Figure (1) is removed and further sim-
plification follows as only K−1 i.e. one set of posterior mean values requires
to be estimated and as such the posterior expectations m̃ = C �

ϕ(I + C �

ϕ)−1ỹ

now operate on N × 1 dimensional vectors m̃ and ỹ. The posterior Q(y) is
now a product of truncated univariate Gaussians and as such the expectation
for the latent variables yn has an exact analytic form. For a unit-variance
Gaussian truncated below zero if tn = 1 and above zero if tn = −1 the re-
quired posterior mean ỹ has elements which can be obtained by the following
analytic expression derived from straightforward results for corrections to the
mean of a Gaussian due to truncation6 ỹn = m̃n + tnN �

mn
(0, 1)/ Φ(tnm̃n). So

the following iteration will guarantee an increase in the bound of the marginal
likelihood

m̃← C �

ϕ(I + C �

ϕ)−1(m̃ + p) (11)

where each element of theN×1 vector p is defined as pn = tnN �

mn
(0, 1)/Φ(tnm̃n).

4.5 Variational Predictive Distributions

The predictive distribution, P (tnew = k|xnew,X, t)7, for a new sample xnew
follows from results for standard GP regression. The N × 1 vector Cnew

�

ϕk

contains the covariance function values between the new point and those
contained in X, and cnew�

ϕk
denotes the covariance function value for the new

point and itself. So the GP posterior p(mnew|xnew,X, t) is a product of K
Gaussians each with mean and variance

m̃new
k = ỹT

k (I + C �

ϕk
)−1

Cnew
�

ϕk

σ̃2
k,new

= cnew�

ϕk
− (Cnew

�

ϕk
)T (I + C �

ϕk
)−1

Cnew
�

ϕk

6For t = +1 then ỹ =
∫ +∞

0
yNy(m̃, 1)/{1− Φ(−m̃)}dy = m̃ +N �

m(0, 1)/Φ(m̃) and for

t = −1 then ỹ =
∫ 0

−∞ yNy(m̃, 1)/Φ(−m̃)dy = m̃−N �

m(0, 1)/Φ(−m̃).
7Conditioning on Ỹ, ϕ̃, ψ̃, and α is implicit.
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using the following shorthand ν̃newk =
√

1 + σ̃2
k,new

then it is straightforward

(details in Appendix II) to obtain the predictive distribution over possible
target values as

P (tnew = k|xnew,X, t) = Ep(u)

{
∏

j 6=k

Φ

(
1

ν̃newj

[
uν̃newk + m̃new

k − m̃new
j

])
}

where, as before, u ∼ Nu(0, 1). The expectation can be obtained numerically
employing sample estimates from a standardised Gaussian. For the binary
case then the standard result follows

P (tnew = 1|xnew,X, t) =

∫
δ(ynew > 0)Nynew (m̃new, ν̃new) dynew

= 1− Φ

(
−m̃

new

ν̃new

)
= Φ

(
m̃new

ν̃new

)

5 Sparse Variational Multi-Class GP Classi-

fication

The dominant O(N 3) scaling of the matrix inversion required in the posterior
mean updates in GP regression has been the motivation behind a large body
of literature focusing on reducing this cost via reduced rank approximations
(Williams and Seeger, 2001) and sparse online learning (Csato and Opper,
2002; Quinonero-Candela and Winther, 2003) where Assumed Density Fil-
tering (ADF) forms the basis of online learning and sparse approximations
for GP’s. Likewise in (Lawrence, et al 2003) the Informative Vector Ma-
chine (IVM) (refer to (Lawrence, et al 2005) for comprehensive details) is
proposed which employs informative point selection criteria (Seeger, et al
2003) and ADF updating of the approximations of the GP posterior para-
meters. Only binary classification has been considered in (Lawrence, et al
2003; Csato and Opper, 2002; Quinonero-Candela and Winther, 2003) and it
is clear from (Seeger and Jordan, 2004) that extension of ADF based approx-
imations such as IVM to the multi-class problem is not at all straightforward
when a multinomial-logit softmax likelihood is adopted. However, we now
see that sparse GP based classification for multiple classes (multi-class IVM)
emerges as a simple by-product of online ADF approximations to the para-
meters of each Q(mk) (multivariate Gaussian). The ADF approximations
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when adding the nth data sample, selected at the lth of S iterations, for each
of the K GP posteriors, Q(mk), follow simply from details in (Lawrence, et
al 2005) as given below.

Σk,n ← Cn
ϕk
−MT

kMk,n (12)

sk ← sk −
1

1 + skn
diag

(
Σk,nΣ

T
k,n

)
(13)

Ml
k ←

1√
1 + skn

ΣT
k,n (14)

m̃k ← m̃k +
ỹnk − m̃nk

1 + skn
Σk,n (15)

Each ỹnk − m̃nk = pnk as defined in Section (4.4) and can be obtained from
the current stored approximate values of each m̃n1, · · · , m̃nK via equations
(5 & 6), Σk,n, an N × 1 vector, is the nth column of the current estimate
of each Σk, likewise Cn

ϕk
is the nth column of each GP covariance matrix.

All elements of each Mk and mk are initialised to zero whilst each sk has
initial unit values. Of course there is no requirement to explicitly store each
N × N dimensional matrix Σk, only the S × N matrices Mk and N × 1
vectors sk require storage and maintenance. We denote indexing into the lth

row of each Mk by Ml
k, and the nth element of each sk by skn which is the

estimated posterior variance.
The efficient Cholesky factor updating as detailed in (Lawrence, et al

2005) will ensure that for N data samples, K distinct GP priors, and a
maximum of S samples included in the model where S << N then at most
O(KSN) storage and O(KNS2) compute scaling will be realised.

As an alternative to the entropic scoring heuristic of (Seeger, et al 2003;
Lawrence, et al 2003) we suggest that an appropriate criterion for point
inclusion assessment will be the posterior predictive probability of a target
value given the current model parameters for points which are currently not
included in the model i.e. P (tm|xm, {mk}, {Σk}), where the subscript m
indexes such points. From the results of the previous section this is equal to
Pr(ym ∈ Ctm=k) which is expressed as

Ep(u)

{
∏

j 6=k

Φ

(
1

νjm
[uνkm + m̃mk − m̃mj]

)}
(16)

where k is the value of tm, νjm =
√

1 + sjm, and so the data point with the
smallest posterior target probability should be selected for inclusion. This
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scoring criterion requires no additional storage overhead as all m̃k and sk
are already available and it can be computed for all m not currently in
the model in, at most, O(KN) time8. Intuitively points in regions of low
target posterior certainty, i.e. class boundaries, will be the most influential in
updating the approximation of the target posteriors. And so the inclusion of
points with the most uncertain target posteriors will yield the largest possible
translation of each updated mk into the interior of their respective cones Ck.
Experiments in the following section will demonstrate the effectiveness of this
multi-class IVM.

6 Experiments

6.1 Illustrative Multi-Class Toy Example

Ten dimensional data vectors, x, were generated such that if t = 1 then
0.5 > x2

1 + x2
2 > 0.1, for t = 2 then 1.0 > x2

1 + x2
2 > 0.6 and for t = 3 then

[x1, x2]
T ∼ N (0, 0.01I) where I denotes an identity matrix of appropriate

dimension. Finally x3, · · · , x10 are all distributed as N (0, 1). Both the first
two dimensions are required to define the three class labels with the remaining
eight dimensions being irrelevant to the classification task. Each of the three
target values were sampled uniformly thus creating a balance of samples
drawn from the three target classes.

Two hundred and forty draws were made from the above distribution
and the sample was used in the proposed variational inference routine with a
further 4620 points being used to compute a 0-1 loss class prediction error. A
common radial basis covariance function of the form exp{−∑d ϕd|xid−xjd|2}
was employed and vague hyper-parameters, σ = τ = 10−3 were placed on
the length-scale hyper-parameters ψ1, · · · , ψ10. The posterior expectations
of the auxiliary variables ỹ were obtained from Equations 5 & 6 where the
Gaussian integrals were computed using 1000 samples drawn from p(u) =
N (0, 1). The variational importance sampler employed 500 samples drawn

from each Exp(ψ̃d) in estimating the corresponding posterior means ϕ̃d for
the covariance function parameters. Each M and Y were initialised randomly
and ϕ had unit initial values. In this example the variational iterations ran
for fifty steps where each step corresponds to the sequential posterior mean
updates of Equation (8,9,10). The value of the variational lower-bound was

8Assuming constant time to approximate the expectation.
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monitored during each step and as would be expected a steady convergence
in the improvement of the bound can be observed in Figure (2.a).
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Figure 2: (a) Convergence of the Lower Bound on the Marginal-Likelihood
for the toy data set considered. (b) Evolution of estimated posterior means
for the inverse squared length scale parameters (precision parameters) in the
RBF covariance function, (c) Evolution of out-of-sample predictive perfor-
mance on the toy data set.

Likewise the development of the estimated posterior mean values for the
covariance function parameters ϕ̃d, Figure (2.b), shows Automatic Relevance
Detection (ARD) in progress (Neal, 1998) where the eight irrelevant features
are effectively removed from the model.

From Figure (2.c) we can see that the development of the predictive
performance (out of sample) follows that of the lower-bound (Figure 2.a)
achieving a predictive performance of 99.37% at convergence. As a compari-
son to our multi-class GP classifier we use a Directed Acyclic Graph (DAG)
SVM (Platt, et al 2000) (assuming equal class distributions the scaling9 is
O (N3K−1)) on this example. Employing the values of the posterior mean
values of the covariance function length scale parameters (one for each of
the ten dimensions) estimated by the proposed variational procedure in the
RBF kernel of the DAG SVM a predictive performance of 99.33% is obtained.
So, on this dataset, the proposed GP classifier has comparable performance,
under 0-1 loss, to the DAG SVM. However the estimation of the covariance
function parameters is a natural part of the approximate Bayesian inference
routines employed in GP classification. There is no natural method of ob-
taining estimates of the ten kernel parameters for the SVM without resorting

9This assumes the use of standard quadratic optimisation routines.
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to cross-validation (CV), which in the case of a single parameter, is feasible
but rapidly becomes infeasible as the number of parameters increases.

6.2 Comparing Laplace & Variational Approximations

to Exact Inference via Gibbs Sampling

This section provides a brief empirical comparison of the Variational approxi-
mation, developed in previous sections, to a full MCMC treatment employing
the Gibbs sampler detailed in Appendix IV. In addition, a Laplace approxi-
mation is also considered in this short comparative study.

Variational approximations provide a strict lower-bound on the marginal
likelihood and it is this bound which is one of the approximations attractive
characteristics. However it is less well understood how much parameters ob-
tained from such approximations differ from those obtained via exact meth-
ods. Preliminary analysis of the asymptotic properties of variational estima-
tors is provided in (Wang and Titterington, 2004). A recent experimental
study of EP and Laplace approximations to binary GP classifiers has been
undertaken by (Kuss and Rasmussen, 2005) and it is motivating to consider
a similar comparison for the variational approximation in the multiple-class
setting. In (Kuss and Rasmussen, 2005) it was observed that the marginal
and predictive likelihoods, computed over a wide range of covariance kernel
hyper-parameter values, were less well preserved by the Laplace approxi-
mation than the EP approximation when compared to that obtained via
MCMC. We then consider the predictive likelihood obtained via the Gibbs
sampler and compare this to the variational and Laplace approximations of
the GP-based classifiers.

The toy dataset from the previous section is employed and, as in (Kuss
and Rasmussen, 2005), a covariance kernel of the form s exp{−ϕ∑d ‖xid −
xjd‖2} is adopted. Both s & ϕ are varied in the range (log scale) -1 to +5 and
at each pair of hyper-parameter values a multinomial-probit GP classifier is
induced using (a) MCMC via the Gibbs sampler, (b) the proposed variational
approximation, (c) a Laplace approximation of the probit model. For the
Gibbs sampler, after a burn-in of 2000 samples, the following 1000 samples
were used for inference purposes and the predictive likelihood (probability
of target values in the test set) and test error (0-1 error loss) was estimated
from the 1000 post-burn-in samples as detailed in Appendix IV.

We firstly consider a binary classification problem by merging classes 2
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& 3 of the toy data set into one class. The first thing to note from Figure
(3) is that the predictive likelihood response under the variational approxi-
mation preserves, to a rather good degree, the predictive likelihood response
obtained when using Gibbs sampling across the range of hyper-parameter
values. However the Laplace approximation does not do as good a job in
replicating the levels of the response profile obtained via MCMC over the
range of hyper-parameter values considered and this finding is consistent
with the results of (Kuss and Rasmussen, 2005).
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Figure 3: Isocontours of predictive likelihood for binary classification problem
(a) Gibbs Sampler, (b) Variational Approximation, (c) Laplace Approxima-
tion.

The Laplace approximation to the multinomial-probit model hasO(K3N3)
scaling (Appendix V) which limits its application to situations where the
number of classes is small. For this reason, in the following experiments we
instead consider the multinomial-logit Laplace approximation (Williams and
Barber, 1998). In Figure (4) the isocontours of predictive likelihood for the
toy dataset in the multi-class setting under various hyper-parameter settings
are provided.

As with the binary case the variational multinomial-probit approximation
provides predictive likelihood response levels which are good representations
of those obtained from the Gibbs sampler. The Laplace approximation for
the multinomial-logit suffers from the same distortion of the contours as does
the Laplace approximation for the binary probit, in addition the information
in the predictions is lower. We note, as in (Kuss and Rasmussen, 2005), that
for s = 1 (log s = 0) the Laplace approximation compares reasonably with
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Figure 4: Isocontours of predictive likelihood for multi-class classification
problem (a) Gibbs Sampler, (b) Variational Approximation, (c) Laplace Ap-
proximation.

results from both MCMC and variational approximations.
In the following experiment four standard multi-class datasets (Iris, Thy-

roid, Wine and Forensic Glass) from the UCI Machine Learning Data Reposi-
tory10 along with the toy data previously described are used. For each dataset
a random 60% training / 40% testing split was used to assess the performance
of each of the classification methods being considered and 50 random splits
of each data set were used. For the toy dataset 50 random train and test
sets were generated. The hyper-parameters, for an RBF covariance function
taking the form of exp{−∑d ϕd‖xid− xjd‖2}, were estimated employing the
Variational importance sampler and these were then fixed and employed in all
the classification methods considered. The marginal likelihood for the Gibbs
sampler was estimated simply by using 1000 samples from the GP prior.
For each dataset and each method (multinomial-logit Laplace approxima-
tion, Variational approximation & Gibbs sampler) the marginal likelihood
(lower-bound in the case of the variational approximation), predictive error
(0-1 loss) and predictive likelihood were measured. The results, given as the
mean and standard deviation over the 50 data splits, are listed in Table (6.2).

The predictive likelihood obtained from the multinomial logit Laplace
approximation is consistently, across all datasets, lower than that of the
Variational approximation and the Gibbs sampler. This indicates that the

10http://www.ics.uci.edu/∼mlearn/MPRepository.html
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Toy-Data Laplace Variational Gibbs Sampler

Marginal Likelihood -169.27 ± 4.27 -232.00 ± 17.13 -94.07 ± 11.26
Predictive Error 3.97 ± 2.00 3.65 ± 1.95 3.49 ± 1.69

Predictive Likelihood -98.90 ± 8.22 -72.27 ± 9.25 -73.44 ± 7.67

Iris Laplace Variational Gibbs Sampler

Marginal Likelihood -143.87 ± 1.04 -202.98 ± 1.37 -45.27 ± 6.17
Predictive Error 3.88 ± 2.00 4.08 ± 2.16 4.08 ± 2.16

Predictive Likelihood -10.43 ± 1.12 -7.35 ± 1.27 -7.26 ± 1.40

Thyroid Laplace Variational Gibbs Sampler

Marginal Likelihood -158.18 ± 1.94 -246.24 ± 1.63 -68.82 ± 8.29
Predictive Error 4.73 ± 2.36 3.86 ± 2.04 3.94 ± 2.02

Predictive Likelihood -19.01 ± 2.55 -14.62 ± 2.70 -14.47 ± 2.39

Wine Laplace Variational Gibbs Sampler

Marginal Likelihood -152.22 ± 1.29 -253.90 ± 1.52 -68.65 ± 6.19
Predictive Error 2.95 ± 2.16 2.65 ± 1.87 2.78 ± 2.07

Predictive Likelihood -14.57 ± 1.29 -10.16 ± 1.47 -10.47 ± 1.41

Forensic Glass Laplace Variational Gibbs Sampler

Marginal Likelihood -275.11 ± 2.87 -776.79 ± 5.75 -268.21 ± 5.46
Predictive Error 36.54 ± 4.74 32.79 ± 4.57 34.00 ± 4.62

Predictive Likelihood -90.38 ± 3.25 -77.60 ± 3.91 -79.86 ± 4.80

Table 1: Results of comparison of Gibbs sampler, Variational and Laplace
approximations when applied to several UCI datasets. Best results for Pre-
dictive likelihood are highlighted in bold.

predictions from the Laplace approximation are less informative about the
target values than both other methods considered. In addition the Varia-
tional approximation yields predictive distributions which are as informative
as those provided by the Gibbs sampler, however the 0-1 prediction errors
obtained across all methods do not differ as significantly. In (Kuss and Ras-
mussen, 2005) a similar observation was made for the binary GP classification
problem when Laplace and EP approximations were compared to MCMC. It
will then be interesting to further compare EP and Variational approxima-
tions in this setting.

We have observed that the predictions obtained from the variational ap-
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proximation are in close agreement with those of MCMC whilst the Laplace
approximation suffers from some inaccuracy and this has also been reported
for the binary classification setting in (Kuss and Rasmussen, 2005).

6.3 Multi-Class Sparse Approximation

A further 1000 samples were drawn from the toy data generating process
already described and these were used to illustrate the sparse GP multi-class
classifier in operation. The posterior mean values of the shared covariance
kernel parameters estimated in the previous example were employed here
and so the covariance kernel parameters were not estimated. The predictive
posterior scoring criterion proposed in Section (5) was employed in selecting
points for inclusion in the overall model. To assess how effective this criterion
is random sampling was also employed to compare the rates of convergence
of both inclusion strategies in terms of predictive 0-1 loss on a held out test
set of 2385 samples. A maximum of S = 50 samples were to be included in
the model defining a 95% sparsity level.

In Figure (5.a) the first two dimensions of the 1000 samples are plot-
ted with the three different target classes denoted by ×,+, • symbols. The
isocontours of constant target posterior probability at a level of 1/3 (the de-

cision boundaries) for each of the three classes are shown by the solid and
dashed lines. What is interesting is that the 50 included points (circled) all sit
close to, or on, the corresponding decision boundaries as would be expected
given the selection criteria proposed. These can be considered as a proba-
bilistic analogue to the support vectors of an SVM. The rates of 0-1 error
convergence using both random and informative point sampling are shown in
Figure (5.b). The procedure was repeated twenty times, using the same data
samples, and the error bars show one standard deviation over these repeats.
It is clear that, on this example at least, random sampling has the slowest

convergence, and the informative point inclusion strategy achieves less than
1% predictive error after the inclusion of only 30 data points. Of course we
should bridle our enthusiasm by recalling that the estimated covariance ker-
nel parameters are already supplied. Nevertheless, multi-class IVM makes
Bayesian GP inference on large scale problems with multiple classes feasible
as will be demonstrated in the following example.

19



−1 −0.5 0 0.5 1
−1  

−0.5

0   

0.5

1   

(a)

0 10 20 30 40 50
20

30

40

50

60

70

80

90

100

Number Points Included

P
er

ce
nt

ag
e 

P
re

di
ct

io
ns

 C
or

re
ct

(b)

Figure 5: (a) Scatter plot of the first two dimensions of the 1000 available data
sample. Each class is denoted by ×,+, • and the decision boundaries denoted
by the contours of target posterior probability equal to 1/3 are plotted in solid
and dashed line. The fifty points selected based on the proposed criterion
are circled and it is clear that these sit close to the decision boundaries. (b)
The averaged predictive performance (percentage predictions correct) over
twenty random starts (dashed line denotes random sampling and solid line
denotes informative sampling) are shown with the slowest converging plot
characterizing what is achieved under a random sampling strategy.

6.4 Large Scale Example of Sparse GP Multi-Class

Classification

The Isolet11 dataset comprises of 6238 examples of letters from the alphabet
(26) spoken in isolation by 30 individual speakers, and each letter is rep-
resented by 617 features. An independent collection of 1559 spoken letters
is available for classification test purposes. The best reported test perfor-
mance over all 26 classes of letter was 3.27% error achieved using 30-bit
error-correcting codes with an artificial neural network. Here we employ
a single RBF covariance kernel with a common inverse length-scale of 0.001
(further fine tuning is of course possible) and a maximum of 2000 points from

11The dataset is available from http://www.ics.uci.edu/∼mlearn/databases/

isolet
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the available 6238 are to be employed in the sparse multi-class GP classifier.
As in the previous example data is standardized, both random and infor-
mative sampling strategies were employed, with the results given in Figure
(6) illustrating the superior convergence of an informative sampling strategy.
After including 2000 of the available 6238 samples in the model, under the
informative sampling strategy, a test error rate of 3.52% is achieved. We are
unaware of any multi-class GP classification method which has been applied
to such a large scale problem both in terms of data samples available and
the number of classes.
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Figure 6: (a) The predictive likelihood computed on held-out data for both
random sampling (solid line with ’+’ markers) and informative sampling
(solid line with ’�’ markers). The predictive likelihood is computed once
every 50 inclusion steps. (b) The predictive performance (percentage predic-
tions correct) achieved for both random sampling (solid line with ’+’ markers)
and informative sampling (solid line with ’�’ markers)

A recent paper (Qi, et al 2004) has presented an empirical study of ARD
when employed to select basis functions in Relevance Vector Machine (RVM)
(Tipping, 2000) classifiers. It was observed that a reliance on the marginal
likelihood alone as a criterion for model identification ran the risk of overfit-

ting the available data sample by producing an overly sparse representation.
The authors then employ an approximation to the leave-one-out error, which
emerges from the EP iterations, to counteract this problem. For Bayesian
methods which rely on optimising in-sample marginal likelihood (or an appro-
priate bound) then great care has to be taken when setting the convergence
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tolerance which determines when the optimisation routine should halt. How-
ever, in the experiments we have conducted this phenomenon did not appear
to be such a problem with the exception of one dataset as will be discussed
in the following section.

6.5 Comparison with Multi-class SVM

To briefly compare the performance of the proposed approach to multi-class
classification with a number of multi-class SVM methods we consider the
recent study of (Duan and Keerthi, 2005). In that work four forms of multi-
class classifier were considered; WTAS - one-versus-all SVM method with
winner takes all class selection; MWVS - one-versus-one SVM with a maxi-
mum votes class selection strategy; PWCK - one-versus-one SVM with prob-
abilistic outputs employing pairwise coupling (see (Duan and Keerthi, 2005)
for details); PWCK - Kernel logistic regression with pairwise coupling of
binary outputs. Five multi-class datasets from the UCI Machine Learning
Data Repository were employed: ABE (16 dimensions & 3 classes) - a subset
of the Letters dataset using the letters ’A’, ’B’ & ’E’; DNA (180 dimensions
& 3 classes); SAT (36 dimensions & 6 classes) - Satellite Image; SEG (18
dimensions & 7 classes) - Image Segmentation; WAV (21 dimensions & 3
classes) - Waveform. For each of these, (Duan and Keerthi, 2005) created
twenty random partitions into training and test sets for three different sizes of
training set, ranging from small to large. Here we consider only the smallest
training set sizes.

In (Duan and Keerthi, 2005) thorough and extensive cross-validation was
employed to select the length-scale parameters (single) of the Gaussian kernel
and the associated regularisation parameters which were used in each of the
SVM’s. The proposed importance sampler is employed to obtain the poste-
rior mean estimates for both single and multiple length scales (VBGPS - Vari-
ational Bayes Gaussian Process Classification - Single length scale) (VBGPM
- Variational Bayes Gaussian Process Classification - Multiple length scales)
for a common GP covariance shared across all classes. We monitor the bound
on the marginal and consider convergence has been achieved when less than a
1% increase in the bound is observed for all datasets except for ABE where a
10% convergence criterion was employed due to a degree of overfitting being
observed after this point. In all experiments, data was standardised to have
zero mean and unit variance.

The percentage test errors averaged over each of the 20 data splits (mean
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WTAS MWVS PWCP PWCK VBGPM VBGPS

SEG 9.4±0.5 7.9±1.2 7.9±1.2 7.5±1.2 ?7.8±1.5 11.5±1.2
DNA 10.2±1.3 9.9±0.9 8.9±0.8 9.7±0.7 74.0±0.3 13.3±1.3
ABE 1.9±0.8 1.9±0.6 1.8±0.6 1.8±0.6 ?1.8±0.8 2.4±0.8
WAV 17.2±1.4 17.8±1.4 16.4±1.4 15.6±1.1 25.2±1.2 ?15.6±0.7

SAT 11.1±0.6 11.0±0.7 10.9±0.4 11.2±0.6 12.0±0.4 12.1±0.4

Table 2: SVM & Variational Bayes GP Multi-class Classification Comparison

± standard deviation) are reported in Table. 2. For each dataset the clas-
sifiers which obtained the lowest prediction error and whose performances
were indistinguishable from each other at the 1% significance level using a
paired t-test are highlighted in bold. An asterisk, ?, highlights the cases
where the proposed GP-based multi-class classifiers were part of the best
performing set. We see that in three of the five datasets performance equal
to the best performing SVM’s is achieved by one of the GP-based classifiers
without recourse to any cross-validation or in-sample tuning with comparable
performance being achieved for SAT & DNA. The performance of VBGPM
is particularly poor on DNA and this is possibly due to the large number
(180) of binary features.

7 Conclusion & Discussion

The main novelty of this work has been to adopt the data augmentation strat-
egy employed in obtaining an exact Bayesian analysis of binary & multino-
mial probit regression models for GP based multi-class (of which binary is a
specific case) classification. Whilst a full Gibbs sampler can be straightfor-
wardly obtained from the joint likelihood of the model, approximate inference
employing a factored form for the posterior is appealing from the point of
view of computational effort & efficiency. The variational Bayes procedures
developed provide simple iterations due to the inherent decoupling effect of
the auxiliary variable between the GP components related to each class. The
scaling is still of course dominated by an O(N 3) term due to the matrix in-
version required in obtaining the posterior mean for the GP variables and
the repeated computing of multivariate Gaussians required for the weights
in the importance sampler. However with the simple decoupled form of the
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posterior updates we have shown that ADF based online and sparse estima-
tion yields a full multi-class IVM which has linear scaling in the number of
classes and the number of available data points and this is achieved in a most
straightfoward manner. An empirical comparison with full MCMC suggests
that the variational approximation proposed is superior to a Laplace approx-
imation. Further ongoing work includes an investigation into the possible
equivalences between EP and variational based approximate inference for
the multi-class GP classification problem as well as developing a variational
treatment to GP based ordinal regression (Chu and Ghahramani, 2005).
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8 Appendix I

8.1 Q(M)

We employ the shorthand Q(ϕ) =
∏

kQ(ϕk) in the following.
Consider the Q(M) component of the approximate posterior. We have

Q(M) ∝ exp
{
EQ(Y)Q(ϕ)

(∑
n

∑
k
log p(ynk|mnk) + log p(mk|ϕk)

)}

∝ exp
{
EQ(Y)Q(ϕ)

(∑
k
logNyk

(mk, I) + logNmk
(0|Cϕk

)
)}

∝
∏

k
N �

yk
(mk, I)Nmk

(
0,
(
C̃−1
ϕk

)−1
)

and so we have

Q(M) =

K∏

k=1

Q(mk) =

K∏

k=1

Nmk
(m̃k,Σk)

where Σk =
(
I + C̃−1

ϕk

)−1

and m̃k = Σkỹk. Now each element of C−1
ϕk

is

a nonlinear function of ϕk and so, if considered appropriate, a first-order
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approximation can be made to the expectation of the matrix inverse such

that C̃−1
ϕk
≈ C−1

�

ϕk
in which case Σk = C �

ϕk

(
I + C �

ϕk

)−1
.

8.2 Q(Y)

Q(Y) ∝ exp
{
EQ(M)

(∑
n
log p(tn|yn) + log p(yn|mn)

)}

∝ exp
{∑

n
log p(tn|yn) + logNyn

(m̃n|I)
}

∝
∏

n
Nyn

(m̃n, I) δ(yni > ynk ∀ k 6= i)δ(tn = i)

Each yn is then distributed as a truncated multivariate Gaussian such that
for tn = i the ith dimension of yn is always the largest and so we have,

Q(Y) =

N∏

n=1

Q(yn) =

N∏

n=1

N tn
yn

(m̃n, I)

where N tn
yn

(., .) denotes a K-dimensional Gaussian truncated such that the
dimension indicated by the value of tn is always the largest.

The posterior expectation of each yn is now required. Note that

Q(yn) = Z−1
n

∏

k

Nynk
(m̃nk, 1)

where Zn = Pr(yn ∈ C) and C = {yn : ynj < yni, j 6= i}. Now

Zn = Pr(yn ∈ C)

=

∫ +∞

−∞

Nyni
(m̃ni, 1)

∏

j 6=i

∫ yni

−∞

Nynj
(m̃nj, 1)dynidynj

= Ep(u)

{
∏

j 6=i

Φ(u+ m̃ni − m̃nj)

}

Where u is a standardised Gaussian random variable such that p(u) =
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Nu(0, 1). For all k 6= i the posterior expectation follows as

ỹnk = Z−1
n

∫ +∞

−∞

ynk

K∏

j=1

Nynj
(m̃nj, 1)dynj

= Z−1
n

∫ +∞

−∞

∫ yni

−∞

ynkNynk
(m̃nk, 1)

∏

j 6=i,k

Nyni
(m̃ni, 1)Φ(yni − m̃nj)dynidynk

= m̃nk −Z−1
n Ep(u)

{
Nu(m̃nk − m̃ni, 1)

∏

j 6=i,k

Φ(u+ m̃ni − m̃nj)

}

The required expectation for the ith component follows as

ỹni = Z−1
n

∫ +∞

−∞

yniNyni
(m̃ni, 1)

∏

j 6=i

Φ(yni − m̃nj)dyni

= m̃ni + Z−1
n Ep(u)

{
u
∏

j 6=i

Φ(u+ m̃ni − m̃nj)

}

= m̃ni +
∑

k 6=i

(m̃nk − ỹnk)

The final expression in the above follows from noting that for a random
variable u ∼ N (0, 1) and any differentiable function g(u) then E{ug(u)} =
E{g′(u)} in which case

Ep(u)

{
u
∏

j 6=i

Φ(u+ m̃ni − m̃nj)

}
=
∑

k 6=i

Ep(u)

{
Nu(m̃nk − m̃ni, 1)

∏

j 6=i

Φ(u+ m̃ni − m̃nj)

}

8.3 Q(ϕk)

For each k we obtain the posterior component

Q(ϕk) ∝ exp
{
EQ(mk)Q(ψk) (log p(mk|ϕk) + log p(ϕk|ψk))

}

= ZkN �

mk
(0|Cϕk

)
∏

d

Expϕkd
(ψ̃kd)

where Zk is the corresponding normalising constant for each posterior which
is unobtainable in closed form. As such the required expectations can be
obtained by importance sampling.
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8.4 Q(ψk)

The final posterior component required is

Q(ψk) ∝ exp
{
EQ(ϕk) (log p(ϕk|ψk) + log p(ψk|αk))

}

∝
∏

d

Exp �

ϕkd
(ψkd)Γψkd

(σk, τk)

=
∏

d

Γψkd
(σk + 1, τk + ϕ̃kd)

and the required posterior mean values follow as ψ̃kd = σk+1
τk+

�

ϕkd

9 Appendix II

The predictive distribution for a new point xnew can be obtained by firstly
marginalising the associated GP random variables such that

p(ynew|xnew,X, t) =

∫
p(ynew|mnew)p(mnew|xnew,X, t)dmnew

=

K∏

k=1

∫
Nmnew

k
(ynewk , 1)Nmnew

k
(m̃new

k , σ̃newk )dmnew
k

=
K∏

k=1

Nynew
k

(m̃new
k , ν̃newk )

where the shorthand ν̃newk =
√

1 + σ̃2
k,new

is employed. Now that we have

the predictive posterior for the auxilliary variable ynew the appropriate conic
truncation of this spherical Gaussian yields the required distribution P (tnew =
k|xnew,X, t) as follows. Using the following shorthand P (tnew = k|ynew) =
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δ(ynewk > ynewi ∀ i 6= k)δ(tnew = k) ≡ δk,new then

P (tnew = k|xnew,X, t) =

∫
P (tnew = k|ynew)p(ynew|xnew,X, t)dynew

=

∫

Ck

p(ynew|xnew,X, t)dynew

=

∫
δk,new

K∏

k=1

Nynew
k

(m̃new
k , ν̃newk ) dynewk

= Ep(u)

{
∏

j 6=k

Φ

(
1

ν̃newj

[
uν̃newk + m̃new

k − m̃new
j

])
}

This is the probability that the auxiliary variable ynew is in the cone Ck so

∑K

k=1
P (tnew = k|xnew,X, t) =

∑K

k=1

∫

Ck

p(ynew|xnew,X, t)dynew

=

∫

RK

p(ynew|xnew,X, t)dynew = 1

thus yielding a properly normalised posterior distribution over classes 1, · · · K.

10 Appendix III

The variational bound conditioned on the current values of ϕk,ψk,αk (i.e.
assuming these are fixed values) can be obtained in the following manner
using the expansion of the relevant components of the lower-bound.

∑

k

∑

n

EQ(M)Q(Y) {log p(ynk|mnk)}+ (17)

∑

k

EQ(M) {log p(mk|X,ϕk)} − (18)

∑

k

EQ(mk){logQ(mk)} − (19)

∑

n

EQ(yn){logQ(yn)} (20)

expanding each component in turn obtains

−1

2

∑

k

∑

n

{
ỹ2
nk + m̃2

nk − 2ỹnkm̃nk

}
− NK

2
log 2π (21)
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− 1

2

∑

k

log |Cϕk
| − 1

2

∑

k

m̃T
kC

−1
ϕk

m̃k

− 1

2

∑

k

trace
{
C−1
ϕk

Σk

}
− NK

2
log 2π (22)

−NK
2
− NK

2
log 2π − 1

2

∑

k

log |Σk| (23)

−1

2

∑

k

∑

n

{
ỹ2
nk + m̃2

nk − 2ỹnkm̃nk

}
−
∑

n

logZn −
N

2
log 2π (24)

Combining and manipulating (21,22,23, and 24) gives the following ex-
pression for the lower-bound.

−NK
2

log 2π +
N

2
log 2π +

NK

2
− 1

2

∑

k

trace{Σk} −

1

2

∑

k

m̃T
kC

−1
ϕk

m̃k −
1

2

∑

k

trace
{
C−1
ϕk

Σk

}
−

1

2

∑

k

log |Cϕk
|+ 1

2

∑

k

log |Σk|+
∑

n

logZn

where each Zn = Ep(u)

{∏
j 6=i Φ(u+ m̃ni − m̃nj)

}
.

11 Appendix IV

Details of the Gibbs sampler required to obtain samples from the posterior
p(Θ|t,X,Φ,α) now follow. From the definition of the joint likelihood (Equa-
tion 2) it is straightforward to see that the conditional distribution for each
yn | mn will be a truncated Gaussian defined in the cone Ctn , centered at mn

with identity covariance and denoted by N tn
y (mn, I). The distribution for

each mk | yk is multivariate Gaussian with covariance Σk = Cϕk
(I+Cϕk

)−1
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and mean Σkyk. Thus the Gibbs sampler, for each n and k, takes the simple
form below

y(i)
n | m(i−1)

n ∼ N tn
y (m(i−1)

n , I)

m
(i+1)
k | y(i)

k ∼ Nm(Σky
(i)
k ,Σk)

where the superscript (i) denotes the ith sample drawn. The dominant
scaling will be O(KN 3) per sample draw. With the multinomial probit
likelihood for a new data point defined as

P (tnew = k|mnew) = Ep(u)

{
∏

j 6=k

Φ(u+mnew
k −mnew

j )

}

the predictive distribution12 is then obtained from

P (tnew = k|xnew,X, t) =

∫
P (tnew = k|mnew)p(mnew|xnew,X, t) dmnew

A Monte-Carlo estimate of the above required marginal posterior expecta-
tion can be obtained by drawing samples from the full posterior distribu-
tion, p(Θ|t,X,Φ,α), using the above sampler. Then for each Θ(i) sam-
pled an additional set of samples mnew,s

k are drawn, such that for each k,

mnew,s
k | y(i)

k ∼ Nm(µnew,ik , σ2
k,new), where µnew,ik = (y

(i)
k )T (I + Cϕk

)−1
Cnew
ϕk

and the associated variance is σ2
k,new = cnewϕk

− (Cnew
ϕk

)T (I + Cϕk
)−1

Cnew
ϕk

.
The approximate predictive distribution can then be obtained by the follow-
ing Monte-Carlo estimate

1

Nsamps

Nsamps∑

s=1

Ep(u)

{
∏

j 6=k

Φ(u+mnew,s
k −mnew,s

j )

}

An additional Metropolis-Hastings sub-sampler can be employed within the
above Gibbs sampler to draw samples from the posterior p(Θ,Φ|t,X,α) if
the covariance function hyper-parameters are to be integrated out.

12 Appendix V

The Laplace approximation requires the Hessian matrix of second-order deriv-
atives of the joint log-likelihood with respect to each mn. The derivatives of

12Conditioning on Φ and α is implicit.
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the noise component, logP (tn = k|mn) = logEp(u)

{∏
j 6=k Φ(u+ m̃nk − m̃nj)

}
,

follow as below, where we denote expectation with respect to a Gaussian
truncated in the cone Ck as EN k

y
{·}

∂

∂mni

logP (tn = k|mn) =
1

P (tn = k|mn)

∫

Ck

(yni −mni)Nyn
(m, I)dy

= EN k
y
{yni} −mni

and

∂2

∂mnj∂mni

logP (tn = k|mn) = EN k
y
{yniynj} − EN k

y
{yni}EN k

y
{ynj} − δij

This then defines an NK × NK dimensional Hessian matrix which, unlike
the Hessian of the multinomial-logit counterpart, cannot be decomposed into
a diagonal plus multiplicative form (refer to (Williams and Barber, 1998) for
details), due to the cross-diagonal elements EN k

y
{yniynj}, and so the required

matrix inversions of the Newton step and those required to obtain the pre-
dictive covariance will operate on a full NK ×NK matrix.
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