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Abstract

We study the effect of competition between short-term synaptic de-
pression and facilitation on the dynamical properties of attractor neural
networks, using Monte Carlo simulation and a mean field analysis. De-
pending on the balance between depression, facilitation and the noise, the
network displays different behaviours, including associative memory and
switching of the activity between different attractors. We conclude that
synaptic facilitation enhances the attractor instability in a way that (i)
intensifies the system adaptability to external stimuli, which is in agree-
ment with experiments, and (ii) favours the retrieval of information with
less error during short–time intervals.

1 Introduction and model

Recurrent neural networks are a prominent model for information processing
and memory in the brain. (Hopfield, 1982; Amit, 1989). Traditionally, these
models assume synapses that may change on the time scale of learning, but
that can be assumed constant during memory retrieval. However, synapses are
reported to exhibit rapid time variations, and it is likely that this finding has
important implications for our understanding of the way information is pro-
cessed in the brain (Abbott and Regehr, 2004). For instance, Hopfield–like net-
works in which synapses undergo rather generic fluctuations have been shown
to significantly improve the associative process, e.g., (Marro et al., 1998). In
addition, motivated by specific neurobiological observations and their theoret-
ical interpretation (Tsodyks et al., 1998), activity–dependent synaptic changes
which induce depression of the response have been considered (Pantic et al.,
2002; Bibitchkov et al., 2002). It was shown that synaptic depression induces,
in addition to memories as stable attractors, special sensitivity of the network to
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changing stimuli as well as rapid switching of the activity among the stored pat-
terns (Pantic et al., 2002; Cortes et al., 2004; Marro et al., 2005; Torres et al.,
2005; Cortes et al., 2006). This behaviour has been observed experimentally
to occur during the processing of sensory information (Laurent et al., 2001;
Mazor and Laurent, 2005; Marro et al., 2006).

In this paper, we present and study networks that are inspired in the ob-
servation of certain, more complex synaptic changes. That is, we assume that
repeated presynaptic activation induces at short times not only depression but
also facilitation of the postsynaptic potential (Thomson and Deuchars, 1994;
Zucker and Regehr, 2002; Burnashev and Rozov, 2005). The question, which
has not been quite addressed yet, is how a competition between depression and
facilitation will affect the network performance. We here conclude that, as for
the case of only depression (Pantic et al., 2002; Cortes et al., 2006), the system
may exhibit up to three different phases or regimes, namely, one with standard
associative memory, a disordered phase in which the network lacks this property,
and an oscillatory phase in which activity switches between different memories.
Depending on the balance between facilitation and depression, novel intriguing
behavior results in the oscillatory regime. In particular, as the degree of facil-
itation increases, both the sensitivity to external stimuli is enhanced and the
frequency of the oscillations increases. It then follows that facilitation allows for
recovering of information with less error, at least during a short interval of time
and can therefore play an important role in short–term memory processes. We
are concerned in this paper with a network of binary neurons. Previous studies
have shown that the behaviour of such a simple network dynamics agree quali-
tatively with the behaviour that is observed in more realistic networks, such as
integrate and fire neuron models of pyramidal cells (Pantic et al., 2002).

Let us consider N binary neurons, si = {1, 0}, i = 1, ..., N, endowed of a
probabilistic dynamics, namely,

Prob{si (t+ 1) = 1} =
1

2
{1 + tanh [2βhi (t)]} , (1)

which is controlled by a temperature parameter, T ≡ 1/β; see, for instance,
(Marro and Dickman, 2005) for details. The function hi (t) denotes a time–
dependent local field, i.e., the total presynaptic current arriving to the post-
synaptic neuron i. This will be determined in the model following the phe-
nomenological description of nonlinear synapses reported in (Markram et al.,
1998; Tsodyks et al., 1998), which was shown to capture well the experimen-
tally observed properties of neocortical connections. Accordingly, we assume
that

hi (t) =
N
∑

j=1

ωijDj (t)Fj (t) sj (t)− θi, (2)

where θi is a constant threshold associated to the firing of neuron i, and Dj(t)
and Fj(t) are functions —to be determined— which describe the effect on the
neuron activity of short–term synaptic depression and facilitation, respectively.
We further assume that the weight ωij of the connection between the (presy-
naptic) neuron j and the (postsynaptic) neuron i are static and store a set of
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patterns of the network activity, namely, the familiar covariance rule:

ωij =
1

Nf (1− f)

P
∑

ν=1

(ξνi − f)
(

ξνj − f
)

. (3)

Here, ξν = {ξνi } , with ν = 1 . . . , P, are different binary–patterns of average
activity 〈ξνi 〉 ≡ f . The standard Hopfield model is recovered for Fj = Dj = 1,
∀j = 1, . . . , N.

We next implement a dynamics for Fj and Dj after the prescription in
(Markram et al., 1998; Tsodyks et al., 1998). A description of varying synapses
requires, at least, three local variables, say xj (t), yj (t) and zj (t) , to be asso-
ciated to the fractions of neurotransmitters in recovered, active, and inactive
states, respectively. A simpler picture consists in dealing with only the xj (t)
variable. This simplification, which seems to describe accurately both interpyra-
midal and pyramidal interneuron synapses, corresponds to the fact that the time
in which the postsynaptic current decays is much shorter than the recovery time
for synaptic depression, say τrec (Markram and Tsodyks, 1996) (Time intervals
are in milliseconds hereafter). Within this approach, one may write that

xj (t+ 1) = xj (t) +
1− xj (t)

τrec
−Dj (t)Fj (t) sj (t) , (4)

where
Dj (t) = xj (t) (5)

and
Fj (t) = U + (1− U) uj (t) . (6)

The interpretation of this ansatz is as follows. Concerning any presynaptic
neuron j, the product DjFj stands for the total fraction of neurotransmitters
in the recovered state which are activated either by incoming spikes, Ujxj , or
by facilitation mechanisms, (1− Uj)xjuj ; for simplicity, we are assuming that
Uj = U ∈ [0, 1] ∀j. The additional variable uj (t) is assumed to satisfy, as in the
quantal model of transmitter release in (Markram et al., 1998), that

uj (t+ 1) = uj (t)−
uj (t)

τfac
+ U [1− uj (t)] sj (t) , (7)

which describes an increase with each presynaptic spike and a decay to the rest-
ing value with relaxation time τfac (that is given in milliseconds) Consequently,
facilitation washes out (uj → 0, Fj → U) as τfac → 0, and each presynaptic
spike uses a fraction U of the available resources xj (t) . The effect of facilita-
tion increases with decreasing U, because this will leave more neurotransmitters
available to be activated by facilitation. Therefore, facilitation is not controlled
only by τfac but also by U.

The Hopfield case with static synapses is recovered after using xj = 1 in
eq.(5) and uj = 0 in eq.(6) or, equivalently, τrec = τfac = 0 in eqs. (4) and
(7). In fact, the latter imply fields hi (t) =

∑

j ωijUsj (t)− θi, so that one may
simply rescale both β and the threshold.

The above interesting phenomenological description of dynamic changes has
already been implemented in attractor neural networks (Pantic et al., 2002) for
pure depressing synapses between excitatory pyramidal neurons (Tsodyks and Markram,
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1997). We are here interested in the consequences of a competition between
depression and facilitation. Therefore, we shall use T, U, τrec and τfac in the
following as relevant control parameters.

2 Mean–field solution

Let us consider the mean activities associated, respectively, with active and
inert neurons in a given pattern ν, namely,

mν
+(t) ≡

1

Nf

∑

j∈Act(ν)

sj(t), mν
−(t) ≡

1

N(1− f)

∑

j 6∈Act(ν)

sj(t). (8)

It follows for the overlap of the network activity with pattern ν that

mν(t) ≡
1

Nf (1− f)

∑

i

(ξνi − f) si(t) = mν
+(t)−mν

−(t), (9)

∀ν. One may also define the averages of xi and ui over the sites that are active
and inert, respectively, in a given pattern ν, namely,

xν
+(t) ≡

1

Nf

∑

j∈Act(ν) xj(t), xν
−(t) ≡

1

N(1− f)

∑

j 6∈Act(ν) xj(t)

uν
+(t) ≡

1

Nf

∑

j∈Act(ν) uj(t), uν
−(t) ≡

1

N(1− f)

∑

j 6∈Act(ν) uj(t),
(10)

∀ν, which describe depression (the xs) and facilitation (the us), each concerning
a subset of neurons, e.g., N/2 neurons for f = 1/2. The local fields then ensue
as

hi(t) =
P
∑

ν=1

(ξνi − f)Mν (t) , (11)

Mν(t) ≡
[

U + (1− U) uν
+(t)

]

xν
+(t)m

ν
+(t)−

[

U − (1− U) uν
−(t)

]

xν
−(t)m

ν
−(t).

One may solve the model (1)–(7) in the thermodynamic limit N → ∞ under
the standard mean-field assumption that si ≈ 〈si〉. Within this approximation,
we may also substitute xi (ui) by the mean–field values xν

± (uν
±). (Notice

that one expects, and it will be confirmed below by comparisons with direct
simulation results, that the mean–field approximation is accurate away from
any possible critical point.) Assuming further that patterns are random with
mean activity f = 1/2, one obtains the set of dynamic equations:

xν
±(t+ 1) = xν

±(t) +
1− xν

±(t)

τrec
−
[

U + (1− U) uν
±(t)

]

xν
±(t)m

ν
±(t),

uν
±(t+ 1) = uν

±(t)−
uν
±(t)

τfac
+ U [1− uν

±(t)]m
ν
±(t),

mν
±(t+ 1) =

1

N

∑

i







1± tanh



β



Mν (t)±
∑

µ6=ν

ǫµi M
µ (t)















,

mν(t+ 1) =
1

N

∑

i

ǫνi tanh

[

β
∑

µ

ǫµi M
µ (t)

]

, (12)
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where ǫµi ≡ 2ξµi − 1. This is a 6P–dimensional coupled map whose analytical
treatment is difficult for large P, but it may be integrated numerically, at least
for not too large P. One may also find the fixed–point equations for the coupled
dynamics of neurons and synapses; these are

xν
± =

{

1 +
[

U + (1− U) uν
±

]

τrec m
ν
±

}−1
,

uν
± = U τfac mν

±

(

1 + U τfac mν
±

)−1
,

2mν
± = 1±

2

N

∑

i

tanh



β



Mν ±
∑

µ6=ν

ǫµi M
µ







 ,

mν =
1

N

∑

i

ǫνi tanh

(

β
∑

µ

ǫµi M
µ

)

. (13)

The numerical solution of these transcendental equations describes the resulting
order as a function of the relevant parameters. Determining the stability of
these solutions for α = P/N 6= 0 is a more difficult task, because it requires
to linearize (12) and the dimensionality diverges in the thermodynamical limit
(see however (Torres et al., 2002)). In the next section we therefore deal with
the case α → 0.

3 Main results

Consider a finite number of stored patterns P, i.e., α = P/N → 0 in the ther-
modynamic limit. In practice, it is sufficient to deal with P = 1 to illustrate
the main results (therefore, we shall suppress the index ν hereafter).

Let us define the vectors of order parameters ~y ≡ (m+,m−, x+, x−, u+, u−),

its stationary value ~yst that is given by the solution of Eq. 13, and ~F whose
components are the functions on the right hand side of (12). The stability
of (12) around the steady state (13) follows from the first derivative matrix

D ≡
(

∂ ~F�∂~y
)

~yst

. This is

D =

















β̄A+ −β̄A− β̄B+ −β̄B− β̄C+ −β̄C−

−β̄A+ β̄A− −β̄B+ β̄B− −β̄C+ β̄C−

−A+ 0 τ −B+ 0 −C+ 0
0 −A− 0 τ −B− 0 −C−

D+ 0 0 0 τ − E+ 0
0 D− 0 0 0 τ − E−

















(14)

where β̄ ≡ 2βm+m−, A± ≡ [U + (1− U) u±] x±, B± ≡ [U + (1− U) u±] m±,
C± ≡ (1− U) x±m±, D± ≡ U(1 − u±), τ ≡ 1 − τ−1

rec , and E± ≡ Um±. After
noticing that m++m− = 1, one may numerically diagonalize D and obtain the
eigenvalues λn for a given set of control parameters T, U, τrec, τfac. For |λn| < 1
(|λn| > 1), the system is stable (unstable) close to the fixed point yn. The
maximum of |λn| determines the local stability: for |λn|max < 1, the system
(12) is locally stable, while for |λn|max > 1 there is at least one direction of
instability, and the system consequently becomes locally unstable. Therefore,
varying the control parameters one crosses the line |λ|max = 1 that signals the
bifurcation points.
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Figure 1: The three relevant regions, denoted F, O and P, respectively, that
are depicted by the absolute value of the maximum eigenvalue |λn|max of the
stability matrix D in (14) when plotted as a function of the recovering time τrec
for different values of the facilitation time τfac. Here, τfac = 10, 15, 20 and 25 for
different curves from bottom to top, respectively, in the F and P regions. The
stationary solutions lack of any local stability for τ∗rec < τrec < τ∗∗rec (O), and the
network activity then undergoes oscillations. The arrows signal τ∗rec and τ∗∗rec for
τfac = 10. This graph is for U = 0.1 and T = 0.1.

The resulting situation is summarized in figure 1 for specific values of U,
T and τfac,. Eqs. (13) have three solutions, two of which are memory states
corresponding to the pattern and anti-pattern and the other a so-called para-
magnetic state that has no overlap with the memory pattern. The stability of
the two solutions depends on τrec. The region τrec > τ∗∗rec corresponds to the
non-retrieval phase, where the paramagnetic solution is stable and the mem-
ory solutions are unstable. In this phase, the average network behaviour has
no significant overlap with the stored memory pattern. The region τrec < τ∗rec
corresponds to the memory phase, where the paramagnetic solution is unstable
and the memory solutions are stable. The network retrieves one of the stored
memory patterns. For τ∗rec < τrec < τ∗∗rec (denoted “O” in the figure) none of
the solutions is stable. The activity of the network in this regime keeps moving
from one to the other fixed–points neighborhood (the pattern and anti-pattern
in this simple example). This rapid switching behaviour is typical for dynamical
synapses and does not occur for static synapses. A similar oscillatory behavior
was reported in (Pantic et al., 2002; Cortes et al., 2004) for the case of only
synaptic depression. A main novelty is that the inclusion of facilitation impor-
tantly modifies the phase diagram, as discussed below (figure 2). On the other
hand, the phases for τrec < τ∗rec (F) and τrec > τ∗∗rec (P) correspond, respectively,
to a locally–stable regime with associative memory (m 6= 0) and to a disordered
regime without memory (i.e., m ≡ m1 = 0).

The values τ∗rec and τ∗∗rec which, as a function of τfac, U and T, determine the
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Figure 2: This illustrates how the different regimes of the network activity
depend on the balance between depression and facilitation. Top graphs: Phase
diagram (τrec, τfac) for α = 0 and U = 0.1 at temperature T = 0.1 (left) and
0.05 (right). The dashed (solid) line is for τ∗rec (τ∗∗rec) signaling the first–order
(second–order) phase transitions between the O and F(P) phases. The insets
show the resulting width of the oscillatory region, δ ≡ τ∗∗rec − τ∗rec, as a function
of τfac. Bottom graphs: Phase diagram (τrec, U) for α = 0 and T = 0.1, and
γ ≡ τfac/τrec = 1 (left) and 0.25 (right).

limits of the oscillatory phase correspond to the onset of condition |λn|max > 1.
This condition defines lines in the parameter space (τrec, τfac) that are illustrated
in figure 2. This reveals that τ∗rec (separation between the F and O regions) in
general decreases with increasing facilitation, which implies a larger oscillatory
region and consequently a reduction of the memory phase. On the other hand,
τ∗∗rec (separation between O and P regions) in general increases with facilitation,
thus broadening further the width of the oscillatory phase δ ≡ τ∗∗rec − τ∗rec. The
behavior of this quantity under different conditions is illustrated in the insets
of figure 2.

Another interesting consequence of facilitation are the changes in the phase
diagram as one varies the facilitation parameter U which measures the fraction
of neurotransmitter that are not activated by the facilitating mechanism. In
order to discuss this, we define the ratio between the time scales, γ ≡ τfac/τrec,
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and monitor the phase diagram (τrec, U) for varying γ. The result is also in figure
2 —see the bottom graphs for γ = 1 (left) and 0.25 (right) which correspond,
respectively, to a situation in which depression and facilitation occur in the same
time scale and to a situation in which facilitation is four times faster. The two
cases exhibit a similar behavior for large U, but they are qualitatively different
for small U. In the case of faster facilitation, there is a range of U values for which
τ∗rec increases, in such a way that one passes from the oscillatory to the memory
phase by slightly increasing U. This means that facilitation tries to drive the
network activity to one of the attractors (τfac < τrec) and, for weak depression
(U small), the activity will remain there. Decreasing U further has then the
effect of increasing effectively the system temperature, which destabilizes the
attractor. This only requires small U because the dynamics (7) rapidly decreases
the second term in Fj to zero.

1.0

0.5

0.0
951

m

τrec

τfac=10
τfac=20
τfac=30
τfac=10
τfac=30

1.0

0.5

0.0
951

m

τrec

τfac=1
τfac=2
τfac=4
τfac=1
τfac=4

Figure 3: For U = T = 0.1 as in figure 1, these graphs illustrate results from
Monte Carlo simulations (symbols) and mean–field solutions (curves) for the
case of associative memory under competition of depression and facilitation.
This shows m ≡ m1 as a function of τrec (horizontal axis) and τfact (different
curves as indicated) corresponding to regimes in which the limiting value τ∗rec
decreases (left graph) or increases (right graph) with increasing τfac, the two
situations that are discussed in the main text.

Figure 3 shows the variation with both τrec and τfac of the stationary locally–
stable solution with associative memory, m 6= 0, computed this time both in the
mean field approximation and using Monte Carlo simulation. This Monte Carlo
simulation consists of iterating eqs. (1), (4) and (7) using parallel dynamics.
This shows a perfect agreement between our mean–field approach above and
Monte Carlo simulations as long as one is far from the transition, a fact which
is confirmed below (in figure 5). This is because, near τ∗rec, the simulations
describe hops between positive and negative m which do not compare well with
the mean–field absolute value |m| .

The most interesting behavior is perhaps the one revealed by the phase
diagram (T, τfac) in figure 4. Here we depict a case with U = 0.1, in order to
clearly visualize the effect of facilitation —facilitation has practically no effect
for any U > 0.5, as shown above— and τrec = 3ms in order to compare with
the situation of only depression in Pantic et al. (2002). A main result here
is that, for appropriate values of the working temperature T , one may force
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Figure 4: Phase diagram (T, τfac) for U = 0.1 and τrec = 3ms. This illustrates
the potential high adaptability of the network to different tasks, e.g., around
T = 0.22, by simply varying its degree of facilitation.

the system to undergo different types of transitions by simply varying τfac.
First note, that the line τfac = 0 corresponds roughly to the case of static
synapses, since τrec is very small. In this limit the transition between retrieval
(F) and non-retrieval (P) phases is at T = U = 0.1 At low enough T, there is
transition between the non–retrieval (P) and retrieval phases (F) as facilitation
is increased. This reveals a positive effect of facilitation on memory at low
temperature, and suggests improvement of the network storage capacity which
is usually measured at T = 0, a prediction that we have confirmed in preliminary
simulations. At intermediate temperatures, e.g., T ≈ 0.22 for U = 0.1, the
systems shows no memory in the absence of facilitation, but increasing τfac one
may describe consecutive transitions to a retrieval phase (F), to a disordered
phase (P), and then to an oscillatory phase (O). The latter is associated to a
new instability induced by a strong depression effect due to the further increase
of facilitation. At higher T, facilitation may drive the system directly from
complete disorder to an oscillatory regime.

In addition to its influence on the onset and width of the oscillatory region,
τfac determines the frequency of the oscillations of m. In order to study this
effect, we computed the average time between consecutive minimum and maxi-
mum of these oscillations, i.e., a half period. The result is illustrated in the left
graph of figure 5. This shows that the frequency of the oscillations increases with
the facilitation time. This means that the access of the network activity to the
attractors is faster with increasing facilitation, though the system then remains
a shorter time near each attractor due to an stronger depression. On the other
hand, we also computed the maximum of m during oscillations, namely, |m|max.
This, which is depicted in the right graph of figure 5, also increases with τfac.
The overall conclusion is that not only the access to the stored information is
faster under facilitation but that increasing facilitation will also help to retrieve
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Figure 5: Left graph: Half period of oscillations as a function of τfac, for τrec =
10, U = T = 0.1 and P = 1, as obtained from the mean–field solution (solid
curve) and from simulations (symbols). Right graph: For the same conditions
than in the left graph, this shows the maximum of the absolute value of m
during oscillations. The simulation results in both graphs correspond to an
average over 103 peaks of the stationary series for m. The fact the statistical
errors are small confirms a periodic behavior.

information with less error.
In order to deepen further on some aspects of the system behavior, we present

in figures 6 and 7 a detailed study of specific time series. The middle graph in
figure 6 corresponds to a simulation of the system evolution for increasing values
of τfac as one describes the horizontal line for T = 0.22 in figure 4. The system
thus visits consecutively the different regions (separated by vertical lines) as
time goes on. That is, the simulation starts with the system in the stable
paramagnetic phase, denoted P1 in the figure, and then successively moves by
varying τfac into the stable ferromagnetic phase F, into another paramagnetic
phase, P2, and, finally, into the oscillatory phase O.

We interpret that the observed behavior in P2 is due to competition between
the facilitation mechanism, which tries to bring the system to the fixed–point
attractors, and the depression mechanism, which tends to desestabilize the at-
tractors. The result is a sort of intermittent behavior in which oscillations and
convergence to a fixed point alternates, in a way which resembles (but is not)
chaos. The top graph in figure 6, which corresponds to an average over indepen-
dent runs, illustrates the typical behaviour of the system in these simulations;
the middle run depicts an individual run.

Further interesting behavior is shown in the bottom graph of figure 6. This
corresponds to an individual run in the presence of a very small and irregular
external stimulus which is represented by the (green) line around m = 0. This
consist of an irregular series of positive and negative pulses of intensity ±0.03ξ1

and duration of 20 ms. In addition to a great sensibility to weak inputs from
the environment, this reveals that increasing facilitation tends to significantly
enhance the system response.

Figure 7 shows the power spectra of typical time series such as the ones in
figure 6, namely, describing the horizontal line for T = 0.22 in figure 4 to visit
the different regimes. We plot here time series m (t) obtained, respectively, for
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Figure 6: Time series for the overlap function, m, at T = 0.22 (horizontal
dotted line in figure 4) as one increases the value of τfac in order to visit the
different regimes (separated here by vertical lines). The simulations started with
τfac = 1 at t = 1 and τfac was then increased by 10 units every 200 ms. The
bottom graph corresponds to a case in which the system is under the action of
an external stimulus (as described in the main text). The middle graph depicts
an individual run when the system is without any stimulus, and the top graph
corresponds to the average of |m| over 100 independent runs of the unperturbed
system.

τfac = 2, 20, 50 and 100 and, on top of each of them, the corresponding spectra.
This reveals a flat, white–noise spectra for the P1 phase and also for the stable
fixed–point solution in the F regime. However, the case for the intermittent P2
phase depicts a small peak around 65 Hz. The peak is much sharper and it
occurs at 70 Hz in the oscillatory case.

4 Conclusion

We have shown that the dynamical properties of synapses have profound conse-
quences on the behaviour, and the possible functional role, of recurrent neural
networks. Depending on the relative strength of the depression, the facilita-
tion and the noise in the network, one observes attractor dynamics to one of
the stored patterns, non-retrieval where the neurons fire largely at random in a
fashion that is uncorrelated to the stored memory patterns, or switching where
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Figure 7: Spectral analysis of the cases in figure 6. On top of each of the small
panels, which show typical time series for τfac = 2, 20, 50 and 100, respec-
tively, from top to bottom and from left to right, the square panels show the
corresponding power spectra. Details of the simulations as in figure 6.

none of the stored patterns is stable and the network switches rapidly between
(the neighborhoods of) all of them. These three behaviours were also observed
in our previous work where we studied the role of depression.

The particular role of facilitation is the following. The transitions between
these possible phases are controlled by two facilitation parameters, namely, τfac
and U. Analysis of the oscillatory phase reveals that the frequency of the oscil-
lations, as well as the maximum retrieval during oscillations increase when the
degree of facilitation increases. That is, facilitation favours in the model a faster
access to the stored information with a noticeably smaller error. This suggests
that synaptic facilitation might have an important role in short–term memory
processes.

There is increasing evidence in the literature that similar jumping processes
could be at the origin of the animals ability to adapt and rapidly response to the
continuously changing stimuli in their environment. We therefore believe that
the network behaviour that is the consequence of dynamic synapses as presented
in this paper may have important functional implications.
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