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We model ion channels in silicon by exploiting similarities between the
thermodynamic principles that govern ion channels and those that govern
transistors. Using just eight transistors, we replicate—for the first time in
silicon—the sigmoidal voltage dependence of activation (or inactivation)
and the bell-shaped voltage-dependence of its time constant. We derive
equations describing the dynamics of our silicon analog and explore its
flexibility by varying various parameters. In addition, we validate the
design by implementing a channel with a single activation variable. The
design’s compactness allows tens of thousands of copies to be built on
a single chip, facilitating the study of biologically realistic models of
neural computation at the network level in silicon.

1 Neural Models

A key computational component within the neurons of the brain is the
ion channel. These channels display a wide range of voltage-dependent
responses (Llinas, 1988). Some channels open as the cell depolarizes; others
open as the cell hyperpolarizes; a third kind exhibits transient dynamics,
opening and then closing in response to changes in the membrane voltage.
The voltage dependence of the channel plays a functional role. Cells in
the gerbil medial superior olivary complex possess a potassium channel
that activates on depolarization and helps in phase-locking the response
to incoming auditory information (Svirskis, Kotak, Sanes, & Rinzel, 2002).
Thalamic cells possess a hyperpolarization-activated cation current that
contributes to rhythmic bursting in thalamic neurons during periods of
sleep by depolarizing the cell from hyperpolarized levels (McCormick &
Pape, 1990). More ubiquitously, action potential generation is the result of
voltage-dependent dynamics of a sodium channel and a delayed rectifier
potassium channel (Hodgkin & Huxley, 1952).

Researchers use a variety of techniques to study voltage-dependent
channels, each possessing distinct advantages and disadvantages.
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Neurobiologists perform experiments on real cells, both in vivo and in vitro;
however, while working with real cells eliminates the need for justifying
assumptions within a model, limitations in technology restrict recordings
to tens of neurons. Computational neuroscientists create computer models
of real cells, using simulations to test the function of a channel within a
single cell or a network of cells. While providing a great deal of flexibility,
computational neuroscientists are often limited by the processing power
of the computer and must constantly balance the complexity of the model
with practical simulation times. For instance, a Sun Fire 480R takes 20 min-
utes to simulate 1 second of the 4000-neuron network (M. Shelley, personal
communication, 2004) of Tao, Shelley, McLaughlin, and Shapley (2004), just
1 mm2 (a single hypercolumn) of a sublayer (4Cα) of the primary visual
cortex (V1).

An emerging medium for modeling neural circuits is the silicon chip, a
technique at the heart of neuromorphic engineering. To model the brain,
neuromorphic engineers use the transistor’s physical properties to create
silicon analogs of neural circuits. Rather than build abstractions of neural
processing, which make gross simplifications of brain function, the neuro-
morphic engineer designs circuit components, such as ion channels, from
which silicon neurons are built. Silicon is an attractive medium because a
single chip can have thousands of heterogeneous silicon neurons that oper-
ate in real time. Thus, network phenomena can be studied without waiting
hours, or days, for a simulation to run.

To date, however, neuromorphic models have not captured the voltage
dependence of the ion channel’s temporal dynamics, a problem outstand-
ing since 1991, the year Mahowald and Douglas (1991) published their
seminal work on silicon neurons. Neuromorphic circuits are constrained
by surface area on the silicon die, limiting their complexity, as more com-
plex circuits translate to fewer silicon neurons on a chip. In the face of
this trade-off, previous attempts at designing neuromorphic models of
voltage-dependent ion channels (Mahowald and Douglas, 1991; Simoni,
Cymbalyuk, Sorensen, Calabrese, & DeWeerth, 2004) sacrificed the time
constant’s voltage dependence, keeping the time constant fixed. In some
cases, however, this nonlinear property is critical. An example is the low-
threshold calcium channel in the thalamus’s relay neurons. The time con-
stant for inactivation can vary over an order of magnitude depending on
the membrane voltage. This variation defines the relative lengths of the in-
terburst interval (long) and the burst duration (short) when the cell bursts
rhythmically.

Sodium channels involved in spike generation also possess a voltage-
dependent inactivation time constant that varies from a peak of approxi-
mately 8 ms just below spike threshold to as fast as 1 ms at the peak of the
voltage spike (Hodgkin & Huxley, 1952). Ignoring this variation by fixing
the time constant alters the dynamics that shape the action potential. For
example, lowering the maximum (peak) time constant would reduce the
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size of the voltage spike due to faster inactivation of sodium channels below
threshold. Inactivation of these channels is a factor in the failure of action
potential propagation in Purkinje cells (Monsivais, Clark, Roth, & Hausser,
2005). On the other hand, increasing the minimum time constant at more
depolarized levels—that is, near the peak voltage of the spike—would in-
crease the width of the action potential, as cell repolarization begins once
the potassium channels overcome the inactivating sodium channel. A wider
spike could influence the cell’s behavior through several mechanisms, such
as those triggered by increased calcium entry through voltage-dependent
calcium channels.

In this letter, we present a compact circuit that models the nonlinear
dynamics of the ion channel’s gating particles. Our circuit is based on lin-
ear thermodynamic models of ion channels (Destexhe & Huguenard, 2000),
which apply thermodynamic considerations to the gating particle’s move-
ment, due to conformation of the ion channel protein in an electric field.
Similar considerations of the transistor make clear that both the ion chan-
nel and the transistor operate under similar principles. This observation,
originally recognized by Carver Mead (1989), allows us to implement the
voltage dependence of the ion channel’s temporal dynamics, while at the
same time using fewer transistors than previous neuromorphic models that
do not possess these nonlinear dynamics. With a more compact design, we
can incorporate a larger number of silicon neurons on a chip without sacri-
ficing biological realism.

The next section provides a brief tutorial on the similarities between the
underlying physics of thermodynamic models and that of transistors. In
section 3, we derive a circuit that captures the gating particle’s dynamics.
In section 4, we derive the equations defining the dynamics of our variable
circuit, and section 5 describes the implementation of an ion channel popu-
lation with a single activation variable. Finally, we discuss the ramifications
of this design in the conclusion.

2 Ion Channels and Transistors

Thermodynamic models of ion channels are founded on Hodgkin and
Huxley’s (empirical) model of the ion channel. A channel model consists
of a series of independent gating particles whose binary state—open or
closed—determines the channel permeability. A Hodgkin-Huxley (HH)
variable represents the probability of a particle being in the open state
or, with respect to the channel population, the fraction of gating particles
that are open. The kinetics of the variable are simply described by

α(V)

(1 − u) −→←− u,

β(V)

(2.1)
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where α (V) and β (V) define the voltage-dependent transition rates be-
tween the states (indicated by the arrows), u is the HH variable, and (1 − u)
represents the closed fraction.

α (V) and β (V) define the voltage-dependent dynamics of the two-state
gating particle. At steady state, the total number of gating particles that
are opening—that is, the opening flux, which depends on the number of
channels closed and the opening rate—are balanced by the total number
of gating particles that are closing (the closing flux). Increasing one of the
transition rates—through, for example, a shift in the membrane voltage—
will increase the respective flow of particles changing state; the system will
find a new steady state with new open and closed fractions such that the
fluxes again cancel each other out.

We can describe these dynamics simply using a differential equation:

du
dt

= α (V) (1 − u) − β (V) u. (2.2)

The first term represents the opening flux, the product of the opening tran-
sition rate α (V) and the fraction of particles closed (1 − u). The second
term represents the closing flux. Depending on which flux is larger (open-
ing or closing), the fraction of open channels u will increase or decrease
accordingly.

Equation 2.2 is often expressed in the following form:

du
dt

= − 1
τu (V)

(u − u∞ (V)) , (2.3)

where

u∞ (V) = α (V)
α (V) + β (V)

, (2.4)

τu (V) = 1
α (V) + β (V)

, (2.5)

represent the steady-state level and time constant (respectively) for u. This
form is much more intuitive to use, as it describes, for a given membrane
voltage, where u will settle and how fast. In addition, these quantities are
much easier for neuroscientists to extract from real cells through voltage-
clamp experiments. We will come back to the form of equation 2.3 in
section 4. For now, we will focus on the dynamics of the gating particle
in terms of transition rates.

In thermodynamic models, state changes of a gating particle are related
to changes in the conformation of the ion channel protein (Hill & Chen, 1972;
Destexhe & Huguenard, 2000, 2001). Each state possesses a certain energy
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Figure 1: Energy diagram of a reaction. The transition rates between two states
are dependent on the heights of the energy barriers (�GC and �GO), the dif-
ferences in energy between the activated state (G∗) and the initial states (GC or
GO). Thus, the time constant depends on the height of the energy barriers, and
the steady state depends on the difference in energy between the closed and
open states (�G).

(see Figure 1), dependent on the interactions of the protein molecule with
the electric field across the membrane. For a state transition to occur, the
molecule must overcome an energy barrier (see Figure 1), defined as the
difference in energy between the initial state and an intermediate activated
state. The size of the barrier controls the rate of transition between states
(Hille, 1992):

α (V ) =α0 e−�GC(V )/R T (2.6)

β (V ) =β0 e−�GO(V )/R T , (2.7)

where α0 and β0 are constants representing base transition rates (at zero
barrier height), �GC (V ) and �GO (V ) are the voltage-dependent energy
barriers, R is the gas constant, and T is the temperature in Kelvin.

Changes in the membrane voltage of the cell, and thus the electric field
across the membrane, influence the energies of the protein’s conformations
differently, changing the sizes of the barriers and altering the transition
rates between states. Increasing a barrier decreases the respective transition
rate, slowing the dynamics, since fewer proteins will have sufficient energy.
The steady state depends on the energy difference between the two states.
For a difference of zero and equivalent base transition rates, particles are
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equally distributed between the two states. Otherwise, the state with lower
energy is the preferred one.

The voltage dependence of an energy barrier has many components, both
linear and nonlinear. Linear thermodynamic models, as the name implies,
assume that the linear voltage dependence dominates. This dependence
may be produced by the movement of a monopole or dipole through an
electric field (Hill & Chen, 1972; Stevens, 1978). In this situation, the above
rate equations simplify to

α (V ) = A e−b1 (V −VH)/R T (2.8)

β (V ) = A e−b2 (V −VH)/R T , (2.9)

where VH and Arepresent the half-activation voltage and rate, while b1 and
b2 define the linear relationship between each barrier and the membrane
voltage. The magnitude of the linear term depends on such factors as the
net movement of charge or net change in charge due to the conformation of
the channel protein. Thus, ion channels use structural differences to define
different membrane voltage dependencies.

While linear thermodynamic models have simple governing equations,
they possess a significant flaw: time constants can reach extremely small
values at voltages where either α (V) and β (V) become large (see equa-
tion 2.5), which is unrealistic since it does not occur in biology. Adding
nonlinear terms in the energy expansion of α (V) and β (V) can counter this
effect (Destexhe & Huguenard, 2000). Other solutions involve either satu-
rating the transition rate (Willms, Baro, Harris-Warrick, & Guckenheimer,
1999) or using a three-state model (Destexhe & Huguenard, 2001), where
the forward and reverse transition rates between two of the states are fixed,
effectively setting the maximum transition rate. Linear models, however,
bear the closest resemblance to the MOS transistor, which operates under
similar thermodynamic principles.

Short for metal oxide semiconductor, the MOS transistor is named for its
structure: a metallic gate (today, a polysilicon gate) atop a thin oxide, which
insulates the gate from a semiconductor channel. The channel, part of the
body or substrate of the transistor, lies between two heavily doped regions
called the source and the drain (see Figure 2). There are two types of MOS
transistors: negative or n-type (NMOS) and positive or p-type (PMOS).
NMOS transistors possess a drain and a source that are negatively doped—
areas where the charge carriers are negatively charged electrons. These two
areas exist within a p-type substrate, a positively doped area, where the
charge carriers are positively charged holes. A PMOS transistor consists
of a p-type source and drain within an n-type well. While the rest of this
discussion focuses on NMOS transistor operation, the same principles apply
to PMOS transistors, except that the charge carrier is of the opposite sign.
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Figure 2: MOS transistor. (a) Cross-section of an n-type MOS transistor. The
transistor has four terminals: source (S), drain (D), gate (G) and bulk (B), some-
times referred to as the back-gate. (b), Symbols for the two transistor types:
NMOS (left) and PMOS (right). The transistor is a symmetric device, and thus the
direction of its current—by convention, the flow of positive charges—indicates
the drain and the source. In an NMOS, current flows from drain to source, as
indicated by the arrow. Conversely, current flows from source to drain in a
PMOS.

In the subthreshold regime, charge flows across the channel by diffusion
from the source end of the channel, where the density is high, to the drain,
where the density is low. Governed by the same laws of thermodynam-
ics that govern protein conformations, the density of charge carriers at the
source and drain ends of the channel depends exponentially on the size of
the energy barriers there (see Figure 3). These energy barriers exist due to a
built-in potential difference, and thus an electric field, between the channel
and the source or the drain. Adjusting the voltage at the source, or the drain,
changes the charge carriers’ energy level. For the NMOS transistor’s nega-
tively charged electrons, increasing the source voltage decreases the energy
level; hence, the barrier height increases. This decreases the charge density
at that end of the channel, as fewer electrons have the energy required to
overcome the barrier. The voltage applied to the gate, which influences the
potential at the surface of the channel, has the opposite effect: increasing it
(e.g., from VG to VG1 in Figure 3) decreases the barrier height—at both ends
of the channel.

Factoring in the exponential charge density dependence on barrier height
yields the relationship between an NMOS transistor’s channel current and
its terminal voltages (Mead, 1989):

Ids = Ids0

(
e

κVGB−VSB
UT − e

κVGB−VDB
UT

)
, (2.10)

where κ describes the relationship between the gate voltage and the po-
tential at the channel surface. UT is called the thermal voltage (25.4 mV
at room temperature), and Ids0 is the baseline diffusion current, defined
by the barrier introduced when the oppositely doped regions (p-type and
n-type) were fabricated. Note that, for clarity, UT will not appear in the
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Figure 3: Energy diagram of a transistor. The vertical dimension represents the
energy of negative charge carriers (electrons) within an NMOS transistor, while
the horizontal dimension represents location within the transistor. φS and φD

are the energy barriers faced by electrons attempting to enter the channel from
the source and drain, respectively. VD, VS, and VG are the terminal voltages,
designated by their subscripts. During transistor operation, VD > VS, and thus
φS < φD. VG1 represents another scenario with a higher gate voltage. (Adapted
from Mead, 1989.)

remaining transistor current equations, as all transistor voltages from here
on are given in units of UT. When VDB exceeds VSB by 4 UT or more, the
drain term becomes negligible and is ignored; the transistor is then said to
be in saturation.

The similarities in the underlying physics of ion channels and transistors
allow us to use transistors as thermodynamic isomorphs of ion channels.
In both, there is a linear relationship between the energy barrier and the
controlling voltage. For the ion channel, either isolated charges or dipoles
of the channel protein have to overcome the electric field created by the
voltage across the membrane. For the transistor, electrons, or holes, have
to overcome the electric field created by the voltage difference between the
source, or drain, and the transistor channel. In both instances, the transport
of charge across the energy barrier is governed by a Boltzman distribution,
which results in an exponential voltage dependence. In the next section, we
use these similarities to design an efficient transistor representation of the
gating particle dynamics.

3 Variable Circuit

Based on the discussion from the previous section, it is tempting to think
we may be able to use a single transistor to model the gating dynamics
of a channel particle completely. However, obtaining the transition rates
solves only part of the problem. We still need to multiply the rates with the
number of gating particles in each state to obtain the opening and closing
fluxes, and then integrate the flux difference to update the particle counts
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Figure 4: Channel variable circuit. (a) The voltage uV represents the logarithm
of the channel variable u. VO and VC are linearly related to the membrane
voltage, with slopes of opposite sign. uH and uL are adjustable bias voltages.
(b) Two transistors (N3 and N4) are added to saturate the variable’s opening
and closing rates; the bias voltages uτH and uτL set the saturation level.

(see equation 2.2). A capacitor can perform the integration if we use charge
to represent particle count and current to represent flux. The voltage on the
capacitor, which is linearly proportional to its charge, yields the result.

The first sign of trouble appears when we attempt to connect a capacitor
to the transistor’s source (or drain) terminal to perform the integration.
As the capacitor integrates the current, the voltage changes, and hence the
transistor’s barrier height changes. Thus, the barrier height depends on the
particle count, which is not the case in biology; gating particles do not (di-
rectly) affect the barrier height when they switch state. Our only remaining
option, the gate voltage, is unsuitable for defining the barrier height, as it in-
fluences the barrier at both ends of the channel identically. α (V) and β (V),
however, demonstrate opposite dependencies on the membrane voltage;
that is, one increases while the other decreases.

We can resolve this conundrum by connecting two transistors to a sin-
gle capacitor (see Figure 4a). Each transistor defines an energy barrier for
one of the transition rates: transistor N1 uses its source and gate volt-
ages (uL and VC , respectively) to define the closing rate, and transistor
N2 uses its drain and gate voltages (uH and VO) to define the opening
rate (where uH > uL). We integerate the difference in transistor currents on
the capacitor Cu to update the particle count. Notice that neither barrier
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depends on the capacitor voltage uV . Thus, uV becomes representative of
the fraction of open channels; it increases as particles switch to the open
state.

How do we compute the fluxes from the transition rates? If uV directly
represented the particle count, we would take the product of uV and the
transition rates. However, we can avoid multiplying altogether if uV repre-
sents the logarithm of the open fraction rather than the open fraction itself.
uV’s dynamics are described by the differential equation

Cu
duV

dt
= Ids0 eκ VO

(
e−uV − e−uH

) − Ids0 eκ VC e−uL ,

= Ids0 eκ VO−uH
(

e−(uV−uH) − 1
) − Ids0 eκ VC −uL , (3.1)

where Ids0 and κ are transistor parameters (defined in equation 2.10), and
VO, VC , uH, uL, and uV are voltages (defined in Figure 4a). We assume N1
remains in saturation during the channel’s operation; that is, uV > uL +
4 UT, making the drain voltage’s influence negligible.

The analogies between equation 3.1 and equation 2.2 become clear when
we divide the latter by u. Our barriers—N1’s source-gate for the closing
rate and N2’s drain-gate for the opening rate—correspond to α (V) and
β (V), while e−(uV−uH) corresponds to u−1. Thus, our circuit computes (and
integrates) the net flux divided by u, the open fraction. Fortuitously, the
net flux scaled by the open fraction is exactly what we need to update
the fraction’s logarithm, since d log(u)/dt = (du/dt)/u. Indeed, substituting
uV = log u + uH—our log-domain representation of u—into equation 3.1
yields

Qu

u
du
dt

= Ids0 eκ VO−uH

(
1
u

− 1
)

− Ids0 eκ VC −uL

. ..
du
dt

= Ids0

Qu
eκ VO−uH (1 − u) − Ids0

Qu
eκ VC −uL u, (3.2)

where Qu = Cu UT. If we design VC and VO to be functions of the membrane
voltage V, equation 3.2 becomes directly analogous to equation 2.2.

In linear thermodynamic models, the transition rates depend exponen-
tially on the membrane voltage. We can realize this by designing VC and
VO to be linear functions of V, albeit with slopes of opposite sign. The op-
posite slopes ensure that as the membrane voltage shifts in one direction,
the opening and closing rates will change in opposite directions relative to
each other.

Thus far in our circuit design, we have not specified whether the variable
activates or inactivates as the membrane voltage increases. Recall that for
activation, the gating particle opens as the cell depolarizes, whereas for
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inactivation, the gating particle opens as the cell hyperpolarizes. In our
circuit, whether activation or inactivation occurs depends on how we define
VO and VC with respect to V. Increasing VO, and decreasing VC , with V
defines an activation variable, as at depolarized levels this results in α (V) >

β (V). Conversely, increasing VC , and decreasing VO, with V defines an
inactivation variable, as now at depolarized voltages, β (V) > α (V), and
the variable will equilibrate in a closed state.

Naturally, our circuit has the same limitation that all two-state linear
thermodynamic models have: its time constant approaches zero when ei-
ther VO or VC grows large, as the transition rates α (V) and β (V) become
unrealistically large. This shortcoming is easily rectified by imposing an
upper limit on the transition rates, as has been done for other thermody-
namic models (Willms et al., 1999). We realize this saturation by placing two
additional transistors in series with the original two (see Figure 4b). With
these transistors, the transition rates become

α (V) = Ids0

Qu

eκ VO−uH

1 + eκ(VO−uτH)
(3.3)

β (V) = Ids0

Qu

eκ VC −uL

1 + eκ(VC −uτL)
, (3.4)

where the single exponentials in equation 3.2 are now scaled by an ad-
ditional exponential term. The voltages uτH and uτL (fixed biases) set the
maximum transition rate for opening and closing, respectively. That is,
when VO < uτH − 4 UT, α (V) ∝ eκVO , a rate function exponentially depen-
dent on the membrane voltage. But when VO > uτH + 4 UT, α (V) ∝ eκuτH ,
limiting the transition rate and fixing the minimum time constant for chan-
nel opening. The behavior of β (V) is similarly defined by VC ’s value relative
to uτL.

In the following section, we explore how the channel variable computed
by our circuit changes with the membrane voltage and how quickly it
approaches steady state. To do so, we must relate the steady state and time
constant to the opening and closing rates and specify how the circuit’s
opening and closing voltages depend on the membrane voltage.

4 Circuit Operation

To help understand the operation of the channel circuit and the influence of
various circuit parameters, we will derive u∞ (V) and τu (V) for the circuit
in Figure 4b using equations 2.4 and 2.5 and the transistor rate equations
(equations 3.3 and 3.4), limiting our presentation to the activation version.
The derivation, and the influence of various parameters, is similar for the
inactivation version.
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For the activation version of the channel circuit (see Figure 4b), we define
the opening and closing voltages’ dependence on the membrane voltage as:

VO =φo + γo V (4.1)

VC =φc − γc V, (4.2)

where φo, γo, φc, and γc are positive constants representing the offsets and
slopes for the opening and closing voltages. Additional circuitry is required
to define these constants; one example is described in the next section. In
this section, however, we will leave the definition as such while we derive
the equations for the circuit.

Under certain restrictions (see appendix A), u’s steady-state level has a
sigmoidal voltage dependence:

u∞ (V) = 1

1 + exp
[
− V−Vmid

u
V∗

u

] , (4.3)

where

Vmid
u = 1

γo + γc
(φc − φo + (uH − uL)/κ) (4.4)

V∗
u = 1

γo + γc

UT

κ
. (4.5)

Figure 5a shows how the sigmoid arises from the transition rates and,
through them, its relationship to the voltage biases. The midpoint of the sig-
moid, where the open probability equals half, occurs when α (V) = β (V);
it will thus shift with any voltage biases (φo, φc, uH, or uL) that scale ei-
ther of the transition rate currents. For example, increasing uH reduces
α (V), shifting the midpoint to higher voltages. The slope of the sigmoid
around the midpoint is defined by the slopes γo and γc of VO (V) and
VC (V).

To obtain the sigmoid shape, we restricted the effect of saturation. It is
assumed that the bias voltages uτH and uτL are set such that saturation is
negligible in the linear midsegment of the sigmoid (i.e., VO < uτH − 4 UT

and VC < uτL − 4 UT when V ∼ Vmid
u ). That is why α (V) and β (V) ap-

pear to be pure exponentials in Figure 5a. This restriction is reasonable
as saturation is supposed to occur only for large excursions from Vmid

u ,
where it imposes a lower limit on the time constant. Therefore, under
this assumption, the sigmoid lacks any dependence on the biases uτH and
uτL.
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Figure 5: Steady state and time constants for channel circuit. (a) The variable’s
steady-state value (u∞) changes sigmoidally with membrane voltage (V), dic-
tated by the ratio of the opening and closing rates (dashed lines). The midpoint
occurs when the rates are equal, and hence its horizontal location is affected by
the bias voltages (uH and uL) applied to the circuit (see Figure 4b). (b) The vari-
able’s time constant (τu) has a bell-shaped dependence on the membrane voltage
(V), dictated by the reciprocal of the opening and closing rates (dashed lines).
The time constant diverges from these asymptotes at intermediate voltages,
where neither rate dominates; it follows the reciprocal of their sum, peaking
when the sum is minimized.

Under certain further restrictions (see appendix A), u’s time constant has
a bell-shaped voltage dependence:

τu (V) = τmin


1 + 1

exp
(

V−V1u
V∗

1u

)
+ exp

(
− V−V2u

V∗
2u

)

 (4.6)

where

V1u = ( uτH − φo ) /γo

V∗
1u = UT/ (κ γo)

V2u = (φc − uτH + (uH − uL)/κ) /γc

V∗
2u = UT/ (κ γc)

and τmin = (Qu/Ids0) e−(κ uτH−uH). Figure 5b shows how the bell shape arises
from the transition rates and, through them, its relationship to the voltage
biases. For large excursions of the membrane voltage, one transition rate
dominates, and the time constant closely follows its inverse. For small
excursions, neither rate dominates, and the time constant diverges from the
inverses, peaking at the membrane voltage where the sum of the transition
rates is minimized.
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To obtain the bell shape, we saturated the opening and closing rates
at the same level by setting κ uτH − uH = κ uτL − uL. Though not strictly
necessary, this assumption simplifies the expression for τu (V) by matching
the minimum time constants at hyperpolarized and depolarized voltages,
yielding the result given in equation 4.6. The bell shape also requires this
so-called minimum time constant to be smaller than the peak time constant
in the absence of saturation.

The free parameters within the circuit—φo, γo, φc, φo, uH, uL, uτH, and
uτL—allow for much flexibility in designing a channel. Appendix B provides
an expanded discussion on the influence of the various parameters in the
equations above. In the following section, we present measurements from a
simple activation channel designed using this circuit, which was fabricated
in a standard 0.25 µm CMOS process.

5 A Simple Activation Channel

Our goal here is to implement an activating channel to serve as a concrete
example and examine its behavior through experiment. We start with the
channel variable circuit, which computes the logarithm of the channel vari-
able, and attach its output voltage to the gate of a transistor, which uses
the subthreshold regime’s exponential current-voltage relationship to in-
vert the logarithm. The current this transistor produces, which is directly
proportional to the variable, can be injected directly into a silicon neuron
(Hynna & Boahen, 2001) or can be used to define a conductance (Simoni
et al., 2004). The actual choice is irrelevant for the purposes of this article,
which demonstrates only the channel variable.

In addition to the output transistor, we also need circuitry to compute the
opening and closing voltages from the membrane voltage. For the opening
voltage (VO), we simply use a wire to tie it to the membrane voltage (V),
which yields a slope of unity (γo = 1) and an intercept of zero (φo = 0). For
the closing voltage (VC ), we use four transistors to invert the membrane
voltage. The end result is shown in Figure 6. For the voltage inverter circuit
we chose, the closing voltage’s intercept φc = κ VC0 (set by a bias voltage
VC0) and its slope γc = κ2/(κ + 1) (set by the transistor parameter defined in
equation 2.10). Since κ ≈ 0.7, the closing voltage has a shallower slope than
the opening voltage, which makes the closing rate change more gradually,
skewing the bell curve in the hyperpolarizing direction as intended for the
application in which this circuit was used (Hynna, 2005).

This eight-transistor design captures the ion channel’s nonlinear dy-
namics, which we demonstrated by performing voltage clamp experiments
(see Figure 7). As the command voltage (i.e., step size) increases, the out-
put current’s time course and final amplitude both change. The clustering
and speed at low and high voltages are what we would expect from a
sigmoidal steady-state dependence with a bell-shaped time constant. The
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Figure 6: A simple activating channel. A voltage inverter (N5-8) produces the
closing voltage (VC ); a channel variable circuit (N1-3) implements the variable’s
dynamics in the log domain (uV); and an antilog transistor (N4) produces a
current (IT) proportional to the variable. The opening voltage (VO) is identical
to the membrane voltage (V). The series transistor (N2) sets the minimum time
constant at depolarized levels. The same circuit can be used to implement an
inactivating channel simply by swapping VO and VC .

Figure 7: Channel circuit’s measured voltage-dependent activation. When the
membrane voltage is stepped to increasing levels, from the same starting level,
the output current becomes increasingly larger, approaching its steady-state
amplitudes at varying speeds.

relationship between this output current (IT) and the activation variable,
defined as u = euV−uH , has the form

IT = uκ IT. (5.1)
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Figure 8: Channel circuit’s measured sigmoid and bell curve. (a) Dependence
of activation on membrane voltage in steady state, captured by sweeping
the membrane voltage slowly and recording the normalized current output.
(b), Dependence of time constant on membrane voltage, extracted from the
curves in Figure 7 by fitting exponentials. Fits (solid lines) are of equations 4.3
and 4.6: Vmid

u = 423.0 mV, V∗
u = 28.8 mV, τmin = 0.0425 ms, V1u = 571.3 mV,

V∗
1u = 36.9 mV, V2u = 169.8 mV, V∗

2u = 71.8 mV.

Its maximum value IT = eκ uH−uG and its exponent κ ≈ 0.7 (the same tran-
sistor parameter). It is possible to achieve an exponent of unity, or even a
square or a cube, but this requires a lot more transistors.

We measured the sigmoidal change in activation directly, by sweeping
the membrane voltage slowly, and its bell-shaped time constant indirectly,
by fitting the voltage clamp data in Figure 7 with exponentials. The results
are shown in Figure 8; the relationship above was used to obtain u from
IT. The solid lines are the fits of equations 4.3 and 4.6, which reasonably
capture the behavior in both sets of data. The range in the time constant data
is limited due to the experimental protocol used. Since we modulated only
the step size from a fixed hyperpolarized position, we need a measurable
change in the steady-state output current to be able to measure the temporal
dynamics for opening. However, this worked to our benefit as, given the
range of the fit, there was no need to modify equation 4.6 to allow the time
constant to go to zero at hyperpolarized levels (this circuit omits the second
saturation transistor in Figure 4b).

All of the extracted parameters from the fit are reasonably close to
our expectations—based on equations 4.3 and 4.6 and our applied volt-
age biases—except for V∗

2u. For κ ≈ 0.7 and UT = 25.4 mV, we expected
V∗

2u ≈ 125 mV, but our fit yielded V∗
2u ≈ 71.8 mV. There are two possible

explanations, not mutually exclusive. First, the fact that equation 4.6 as-
sumes the presence of a saturation transistor, in addition to the limited data
along the left side of the bell curve, may have contributed to the underfitting
of that value. Second, κ is not constant within the chip but possesses volt-
age dependence. Overall, however, the analysis matches reasonably well
the performance of the circuit.
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6 Conclusion

We showed that the transistor is a thermodynamic isomorph of a channel
gating particle. The analogy is accomplished by considering the operation
of both within the framework of energy models. Both involve the movement
of charge within an electric field: for the channel, due to conformations of
the ion channel protein; for the transistor, due to charge carriers entering
the transistor channel. Using this analogy, we generated a compact channel
variable circuit.

We demonstrated our variable circuit’s operation by implementing a
simple channel with a single activation variable, showing that the steady
state is sigmoid and the time constant bell shaped. Our measured re-
sults, obtained through voltage clamp experiments, matched our ana-
lytical results, derived from knowledge of transistors. Bias voltages ap-
plied to the circuit allow us to shift the sigmoid and the bell curve
and set the bell curve’s height independently. However, the sigmoid’s
slope, and its location relative to the bell curve, which is determined
by the slope, cannot be changed (it is set by the MOS transistor’s
κ parameter).

Our variable circuit is not limited to activation variables: reversing the
opening and closing voltages’ linear dependence on the membrane voltage
will change the circuit into an inactivation variable. In addition, channels
that activate and inactivate are easily modeled by including additional cir-
cuitry to multiply the variable circuits’ output currents (Simoni et al., 2004;
Delbruck, 1991).

The change in temporal dynamics of gating particles plays a critical
role in some voltage-gated ion channels. As discussed in section 1, the
inactivation time constant of T channels in thalamic relays changes dra-
matically, defining properties of the relay cell burst response, such as the
interburst interval and the length of the burst itself. Activation time con-
stants are also influential: they can modify the delay with which the channel
responds (Zhan, Cox, Rinzel, & Sherman, 1999), an important determinant
of a neuron’s temporal precision. Incorporating these nonlinear tempo-
ral dynamics into silicon models will yield further insights into neural
computation.

Equally important in our design, not only were we able to capture the
nonlinear dynamics of gating particles, we were able to do so using fewer
transistors than previous silicon models. Rather than exploit the parallels
between transistors and ion channels, as we did, previous silicon modelers
attempted to “linearize” the transistor, to make it approximate a resistor.
After designing a circuit to accomplish this, the resistor’s value had to
be adjusted dynamically, so more circuitry was added to filter the mem-
brane voltage. The time constant of this filter was kept constant, sacrific-
ing the ion channel’s voltage-dependent nonlinear dynamics for simplicity.
We avoided all these complications by recognizing that the transistor is a
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thermodynamic isomorph of the ion channel. Thus, we were able to come
up with a compact replica.

The size of the circuit is an important consideration within silicon mod-
els, as smaller circuits translate to more neurons on a silicon die. To illus-
trate, a simple silicon neuron (Zaghloul & Boahen, 2004), with a single input
synapse, possessing the activation channel from section 5, requires about
330 µm2 of area. This corresponds to around 30,000 neurons on a silicon
die, 10 mm2 in area.

Adding additional circuits, such as inactivation to the channel, increases
the area of the cell design, reducing the size of the population on the
chip (assuming, of course, that the total area of the die remains con-
stant). To compensate for larger cell footprints, we can either increase
the size of the whole silicon die (which costs money), or we can simply
incorporate multiple chips into the system, easily doubling or tripling
the network size. And unlike computer simulations, the increase in net-
work sizes comes with minimal cost in performance or “simulation”
time.

Of course, like all other modeling media, silicon has its own draw-
backs. For one, silicon is not forgiving with respect to design flaws.
Once the chip has been fabricated, we are limited to manipulating
our models using only external voltage biases within our design. This
places a great deal of importance on verification of the final design
before submitting it for fabrication; the total time from starting the
design to receiving the fabricated chip can be on the order of 6 to
12 months.

An additional characteristic of the silicon fabrication process is mis-
match, a term referring to the variability among fabricated copies of the
same design within a silicon chip (Pavasovic, Andreou, & Westgate, 1994).
Within an array of silicon neurons, this translates into heterogeneity within
the population. While we can take steps to reduce the variability within an
array, generally at the expense of area, this mismatch can be considered a
feature, since biology also needs to deal with variability. When we build
silicon models that reproduce biological phenomena, being able to do so
lends credence to our models, given their robustness to parameter variabil-
ity. And when we discover network phenomena within our chips, these are
likely to be found in biology as well, as they will be robust to biological
heterogeneity.

With the ion channel design described in this article and our ability to
expand our networks without much cost, we have a great deal of potential
in building many of the neural systems within the brain, which consists of
numerous layers of cells, each possessing its own distinct characteristics.
Not only do we have the opportunity to study the role of an ion chan-
nel within an individual cell, we have the potential to study its influence
within the dynamics of a population of cells, and hence its role in neural
computation.
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Appendix A: Derivations

We can use the transition rates for our channel circuit (see equations 3.3
and 3.4) to calculate the voltage dependence of its steady state and time
constant. Starting with the steady-state equation, equation 2.4,

u∞ (V) = α (V)
α (V) + β (V)

=
Ids0
Qu

e−uH

e−κVO +e−κuτH

Ids0
Qu

e−uH

e−κVO +e−κuτH
+ Ids0

Qu

e−uL

e−κVC +e−κuτL

= 1

1 + e−κVO +e−κuτH

e−κVC +e−κuτL
euH−uL

.

Throughout the linear segment of the sigmoid, we set the voltage biases such
that uτH > VO + 4 UT and uτL > VC + 4 UT. These restrictions essentially
marginalize uτH and uτL. By the time either of the terms with these two
biases becomes significant, the steady state will be sufficiently close to
either unity or zero, so that their influence is negligible. Therefore, we drop
the exponential terms with uτH and uτL; substituting equations 4.1 and 4.2
yields the desired result of equation 4.3.

For the time constant, we substitute equations 3.3 and 3.4 into
equation 4.1:

τu (V) = 1
α (V) + β (V)

= Qu

Ids0

1
e−uH

e−κVO +e−κuτH
+ e−uL

e−κVC +e−κuτL

= Qu

Ids0

1
1

e−(κ VO−uH)+e−(κ uτH−uH) + 1
e−(κ VC −uL)+e−(κ uτL−uL)

.

To equalize the minimum time constant at hyperpolarized and depolarized
levels, we establish the following relationship: κ uτH − uH = κ uτL − uL.
After additional algebraic manipulation, the time constant becomes

τu (V) = τmin

(
1 + e−κ (VO−uτH) e−κ (VC −uτL)

e−κ (VO−uτH) + e−κ (VC −uτL) + 2

− 1
e−κ (VO−uτH) + e−κ (VC −uτL) + 2

)
,
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where τmin = (Qu/Ids0) e−(κ uτH−uH) is the minimum time constant. To reduce
the expression further, we need to understand the relative magnitudes of
the various terms.

We can drop the constant in both denominators, as one of the expo-
nentials there will always be significantly larger. Since VO and VC have
opposite signs for their slopes with respect to V, the sum of the exponen-
tials in the denominator peaks at a membrane voltage somewhere within
the middle section of its operational voltage range. As it happens, this peak
is close to the midpoint of the sigmoid (see below), where we have defined
uτH > VO + 4 UT and uτL > VC + 4 UT. Thus, at the peak, we know the con-
stant is negligible. As the membrane voltage moves away from the peak, in
either direction, one of the exponentials will continue to increase while the
other decreases. Thus, with the restriction on the bias voltage uτH and uτL,
the sum of the exponentials will always be much larger than the constant
in the denominator.

By the same logic, we can disregard the final term, since the sum of
the exponentials will always be substantially larger than the numerator,
making the fraction negligible over the whole membrane voltage.

With these assumptions, and substituting the dependence of VO and
VC on V (see Equations 4.1 and 4.2), we obtain the desired result,
equation 4.6.

Appendix B: Circuit Flexibility

This section is more theoretical in nature, using the steady-state and time-
constant equations derived in appendix A to provide insight into how the
various parameters influence the two voltage dependencies (steady state
and time constant). This section is likely of interest only to those who wish
to use our approach for modeling ion channels.

An important consideration in generating these models is defining the
location (i.e., the membrane voltage) and magnitude of the peak time con-
stant. Unlike the minimum time constant, which is determined simply by
the difference between the bias voltages uτH and uH (or uτL and uL), no bias
directly controls the maximum time constant, since it is the point at which
the sum of the transition rates is minimized (see Figure 5b). The voltage at
which it occurs, however, is easily determined from equation 4.6:

Vτpk = Vmid
u + UT

κ (γo + γc)
log [γc/γo] . (B.1)

Thus, where the bell curve lies relative to the sigmoid, whose midpoint
lies at Vmid

u , is determined by the opening and closing voltages’ slopes
(γo and γc). Consequently, changing these slopes is the only way to displace
the bell curve relative to the sigmoid. Shifting the bell curve by changing



Voltage-Dependent Silicon Ion Channel Models 347

a
200 300 400 500 600 700 800

V

0

0.5

1.

u
∞

b
200 300 400 500 600 700 800

V

0

1.

2.

3.

L
og

10
τ/

τ m
in

]
[

c
200 300 400 500 600 700 800

V

0

0.5

1.

u
∞

d
200 300 400 500 600 700 800

V

0

2

4

6

8

10

τ/
τ m

in

Figure 9: Varying the closing voltage’s slope (γc). (a) Changing γc adjusts both
the slope and midpoint of the steady-state sigmoid. (b) γc also affects the location
and height (relative to the minimum) of the time constant’s bell curve; the
change in height (plotted logarithmically) is dramatic. (c, d) Same as in a and
b, except that we adjusted the bias voltage uL to compensate for the change in
γc, so the sigmoid’s midpoint and the bell curve’s height remain the same. The
sigmoid’s slope does change, as it did before, and the bell curve’s location shifts
as well, though much less than before. In these plots, φo = 400 mV, uH = 400 mV,
uL = 50 mV, uτH = 700 mV, and γo = 1.0. γc’s values are 0.5 (thin, solid line),
0.75 (short, dashed line), 1.0 (long, dashed line), and 1.25 (thick, solid line).

a parameter other than γo or γc will automatically shift the sigmoid by the
same amount.

As we change the opening and closing voltages’ slopes (γo and γc), two
things happen. First, due to Vmid

u ’s dependence on these parameters (see
equation 4.4), the sigmoid and the bell curve shift together. Two, due to
the dependence we just described (see equation B.1), the bell curve shifts
relative to the sigmoid. These effects are illustrated in Figures 9a and 9b
for γc (γo behaves similarly). To eliminate the first effect while preserving
the second, we can compensate for the sigmoid’s shift by adjusting the bias
voltage uL, which scales the closing rate (see equation 4.2). Consequently,
uL also rescales the left part of the bell curve, where the closing rate is
dominant, reducing its height relative to the minimum and canceling its
shift due to the first effect.

This is demonstrated in Figures 9c and 9d. The sigmoid remains fixed,
while the bell curve shifts (slightly) due to the second effect. Although the
bias voltage uL cancels the shift γc produces in the sigmoid, it does not
compensate for the change in the sigmoid’s slope. We can shift the sigmoid
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Figure 10: Varying the closing voltage’s intercept (φc). (a) Changing φc shifts the
steady-state sigmoid’s midpoint, leaving its slope unaffected. (b) φc also affects
the time constant bell curve’s location and height (relative to the minimum). In
these plots, φo = 0 mV, uH = 400 mV, uL = 50 mV, uτH = 700 mV, γo = 1.0, and
γc = 0.5. φc’s values are 400 mV (thin, solid line), 425 mV (short, dashed line),
450 mV (long, dashed line), and 475 mV (thick, solid line).
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Figure 11: Setting the bell curve’s location and height independently. (a) Chang-
ing the opening and closing voltages’ intercepts (φo and φc) together shifts the
bell curve’s location without affecting its height. The steady-state sigmoid (not
shown) moves with the bell curve (see equation B.1). (b) Changing φo and φc in
opposite ways increases the height (relative to the minimum) without affecting
the location. The steady-state sigmoid (not shown) stays put as well. In these
plots, uH = 400 mV, uL = 50 mV, uτH = 700 mV, γo = 1.0, and γc = 0.5. In both
a and b, φc = 400 mV and φo = 0 mV for the thin, solid line. In a, both φc and
φo increment by 25 mV from the thin, solid line to the short, dashed line, to
the long, dashed line and to the thick, solid line. In b, φc increments and φo

decrements by 25 mV from the thin, solid line to the short, dashed line, to the
long, dashed line, and to the thick, solid line.

and leave its slope unaffected by changing the opening and closing voltages’
intercepts, as shown in Figure 10 for φc (φo behaves similarly). However, the
bell curve shifts by the same amount, and its height changes as well, since
φc rescales the closing rate. Thus, it is not possible to shift the bell curve
relative to the sigmoid without changing the latter’s slope; this is evident
from equations 4.5 and B.1.
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We can set the bell curve’s location and height independently if we
change the opening and closing voltages’ intercepts by the same amount or
by equal and opposite amounts, respectively. Equal changes in the intercepts
(φo and φc) shift the opening and closing rate curves by the same amount,
thus shifting the bell curve (and the sigmoid) without affecting its height
(see Figure 11a), whereas equal and opposite changes shift the opening and
closing rate curves apart, leaving the point where they cross at the same
location while rescaling the value of the rate there. As a result, the bell
curve’s height is changed without affecting its location (see Figure 11b).

Choosing values for γo and γc, however, presents a trade-off. These two
parameters define the dependence of VO and VC on V and are not external
biases like the other parameters; rather, they are defined by the fabrication
process through the transistor parameter κ . We can define their relationships
with κ through the use of different circuits; in our simple activation channel
(see section 5), γc = κ2/(κ + 1), as defined by the four transistors that invert
the membrane voltage.

There are a couple of drawbacks. First, not all values for γo or γc are
possible using only a few transistors. Expressed another way, a trade-off
needs to be made between achieving more precise values for γo or γc and
using fewer transistors within the design. The other drawback is that after
fabrication, γo and γc can no longer be modified, as they are defined as func-
tions of the transistor parameter κ . These issues merit special consideration
before submitting the chip for fabrication.
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