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Abstract

Sparse coding is an important approach for the unsuperigseading
of sensory features. In this contribution we present two methods
which extend the traditional sparse coding approach wigesuised
components. Our goal is to increase the suitability of treered
features for classification tasks while keeping most ofrtigeneral
representation capability. We analyze the effect of the methods
using a visualization on artificial data and discuss theltesum two
object test sets with regard to the properties of the fouatlufe rep-
resentation.

1 Introduction

Most approaches to object recognition employ two kinds ofhod@s — methods
that learn features and methods that learn object repaggam. While the second
group of methods can directly be used for classification Igmaring a test image
with the learned representation, the first group has a stipgdunction in finding
subspaces in the data in which more robust object reprégerg@an be obtained.
For the object representation learning methods there isthaeiudistinction
between probabilistic generative and discriminative apphes, depending on
whether they model the distribution of samples in the datecsmr not (Ulusoy
& Bishop 2005). In recent years a stronger interest arose nmbating the ad-
vantages of both approaches (Raina, Shen, Ng, & McCallum 20§&; Jordan
2002). Following (Ulusoy & Bishop 2005), discriminative appches are faster
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and more reliable in predicting class labels, since theyrareed to do so rather
than to model the joint distribution of input vectors andsskes. Because of this
specialization in a certain classification task these aggres suffer the drawback
that they have to be retrained whenever the scenario is eldaegy. by adding a
new class.

Probabilistic generative methods, e.g. Gaussian mixtuweats GMMs (Mc-
Lachlan & Peel 2000), learn independent models for eacls.cleserefore a new
class simply adds a new model but does not influence themxisties. Also they
are able to deal with missing information and unlabeled.d&tee disadvantage
of generative methods is that they model details of a datdkition that may be
irrelevant or even disturbing in classification tasks.

Also for the feature learning methods a distinction existémMeen genera-
tive and discriminative approaches, depending on whetherdarned feature
subspace supports reconstruction of the data or classficat/sually both ap-
proaches train one global feature basis for the whole datalalition. The dis-
criminative approaches are trained in a supervised andethergtive approaches
normally in an unsupervised manner. Although the term geiveris often used
in this context, it is misleading because the feature Iearmethods do not spec-
ify how new data could be generated from a learned basis, lanmef learning
priors on how to combine the features. The probabilisticegative models do so
explicitly.

There is a group of generative feature learning methodscaéitiear genera-
tive methods. These methods search for subspaces thatfal@good recon-
struction of the data vectors in terms of linear combinatiofthe basis functions.
This means each data vector is associated with a set of cesficdhat deter-
mines how the features (basis functions, weights) have tsbéd to yield the best
reconstruction. The linear generative models differ indtvestraints on how to re-
construct the data. Principal component analysis PCA (Diddg, & Stork 2000)
finds dimensions of highest variance in the data, which aléow a reconstruc-
tion with minimal information loss when using fewer featsithan dimensions in
the data. Non-negative matrix factorization NMF (Lee & Sgu®99) employs
purely positive weights and coefficients, and was shownadmlécalized patterns
that often have a direct interpretation as object partsrsgpaoding (Olshausen &
Field 1996) puts constraints on the coefficients, enforamegfficient usage of the
basis functions. The principle of efficient coding resembleceptive field prop-
erties in primary visual cortex when applied to small pascbenatural scenes.

As mentioned in the beginning, linear generative methodsoften used to
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facilitate classification. So e.g., PCA was successfullyliaggo face recogni-

tion (Turk & Pentland 1991) and sparse coding features weee as intermedi-
ate layer in a feature hierarchy related to the ventral Vipathway (Wersing &

Korner 2003), that yields robust classification performdocelifferent recogni-

tion problems. However, linear generative methods foriealkearning suffer the
same drawback as the probabilistic generative methodseglgathat they spend
resources for modeling certain dimensions in the data thghtbe irrelevant or

disturbing for classification tasks. On the other hand, tiseroshinative feature

learning methods concentrate on dimensions in the datarthatlevant for classi-
fication but do not offer the possibility to learn featureatthave an interpretation
as object parts. Instead, they generate very holisticyrdoking features. An

example for those methods is the Fisher linear discrimi{antla, Hart, & Stork

2000), which finds subspaces in the data where the classegpaeated best in
terms of Euclidean distance. This subspace is very speoifithe trained sce-
nario, which may decrease the ability to generalize to ne@naaos.

The mixture of advantages and disadvantages suggests anetio of dis-
criminative and generative properties as an attractivecgmh for feature learn-
ing. We decided to use the non-negative sparse coding agpfbtoyer 2002)
as basis for our investigations. The non-negative spardmgas a linear gen-
erative method that adopts the positivity constraints ftbemNMF. As outlined
above, this property facilitates the learning of featureg have an interpretation
as object parts. But because the linear generative methedsaanly based on the
principle of reconstruction of the data, the obtained fesgtumight not be useful
for building a classifier. So the non-negative sparse codifigocus its resources
to reconstruct common parts of the classes in the first, ard dot concentrate
on discriminative ones. By adding class-specific, supedvisemponents to the
cost function we hope to prevent this behavior and to leaglitgtively different
features that are more discriminative while keeping thaernpretation as object
parts.

After reviewing related work in Sect. 2 the new methods ate@tuced in
Sect. 3 and analyzed using a visualization of their reptasien properties de-
pendent on the cost function parameters. In Sect. 4 we anahe obtained
feature representations for two object test sets and gi8eat. 5 our conclusions.



2 Related Work

The standard approach to sparse coding (Olshausen & Fiél) 19formulated
as a linear code representing the data. Its target is to ca@fiicient reconstruc-
tion with a sparse usage of the representing basis, regiuttithe following cost
function:
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where the samples; = (xil,xiQ,...,miK)T, i = 1,...,1, and the weights
W, = (Wp1, Wy, ..., wpx) , p = 1,..., P, have the same dimensids. In
the left reconstruction term each is approximated by a linear combination
r, = Ep cipW,, Wherer; is referred to as the reconstruction of the correspond-
ing x;. The coefficients;, specify how much the-th weight is involved in the
reconstruction of théth data vector. The squared Euclidean ndjrif¢ of the dif-
ference vector between &n and its reconstruction; contributes to the cost. The
right sparsity term sums up thg,. The non-linear functio® (e.g. () = | - |)
increases the cost, the more the activation is spread dieratitc;,, and so many
of them become zero while few are highly activated. The imftgeof the spar-
sity term is scaled with the positive constantThe sparsity forces the weights to
align more directly to the data, and to reconstructkamost sparsely, if multi-
ple possibilities exist. This enables the sparse codin@talle an over-complete
representation.

Principal component analysis PCA (Duda, Hart, & Stork 2006) aon-
negative matrix factorization NMF (Lee & Seung 1999) aredobsn the same
measure of reconstruction as the sparse coding model deddoy (1), but do
not put sparsity constraints on the coefficients. Using Vesights than dimen-
sions in the datak < K), PCA forces the weights to align to the directions with
the biggest variance in data space. Therefore PCA is ofteth taseeduce the
dimensionality of data, with a minimal loss of information.

NMF differs from PCA in the fact that it puts positivity conatnts on both
the weights and the coefficients. Therefore, the contiwioutif each weight to a
certain reconstruction is purely positive and cannot be&eka out by the contri-
bution of another weight. This limitation makes it econoahito reconstruct an
image with non-overlapping weights, where each single tagalready a good
reconstruction of an image part. This is often referred ta parts-based repre-
sentation. Later Hoyer (2004) added to the NMF an optionreatly control the
sparseness of the weights and the coefficients. He disabteae for achieving
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a parts-based representation with standard NMF, the sarteehzave to occur at
the same position in the training samples. By adding spassec@nstraints on
the weights, a parts-based representation can be morklyghieduced. In other
cases the NMF produces weights that are too parts-based.méans they con-
tain only single pixels or small blobs, and do not reveal amamngful statistical
background of the data. Adding sparseness constraintgtmntmefficients forces
the weights to reveal more holistic dependencies.

Non-negative sparse coding (Hoyer 2002) adopts the idepaifta-based rep-
resentation for sparse coding, by also putting positivitystraints on the weights
and the coefficients. It differs from NMF in the fact that tipassity of the coeffi-
cients is enforced explicitly, and so non-negative spaosing is similar to NMF
with sparseness constraints. The remaining differenosdsst both approaches
is, that sparse coding methods often use simple gradieoédefor the optimiza-
tion of the cost function, whereas NMF methods apply mutigilve update rules
that do not require the definition of a learning rate.

In the algorithms described above, each weight contribatég once to a
reconstruction of a certain image, and the position of attw in the weight
determines directly the position of activation in the restomction. Therefore, a
single weight cannot represent or learn a part that occudsfferent images at
different locations (or in other transformations). Thiads to redundancies in the
coding scheme by representing transformations of one prtifferent weights.
To overcome this limitation, in (Grimes & Rao 2005) an extensef the sparse
coding is proposed that factors an image into object featanel transformations
using a bilinear function. In this way the weights can cdntteé several times to
the same reconstruction, each time undergoing anothesftnamation beforehand
(e.g. shifts to different locations). Currently the apptobandles only translation,
but in general it is able to deal with arbitrary transforroat, as e.g. rotation,
scaling and view changes. The concept of bilinearity impdbkat for a certain
image all features use the same transformations. Thisautiots the notion of
features as independent parts. Therefore, further extesnsn (Grimes & Rao
2005) go into the direction to allow for independent transfations of features
per image. This is then a similar method to the translatieariant adaptation
of the non-negative sparse coding proposed in (Wersingdénkr 2003) and the
translation invariant adaptation of the NMF introduced Hggert, Wersing, &
Korner 2004).

The unsupervised methods mentioned above produce featiiheggconstruc-
tive qualities. The features are not specialized in solamgrtain task and, there-
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Figure 1. Example views of the three-class problem.

fore, could be transfered to other scenarios than thosefasedining. The draw-
back is that the extraction of statistically significanttpain high-dimensional data
with unsupervised methods requires large training setso thlere is no guarantee
that the obtained parts are useful in object recognitiokstas

Another group of methods only concentrates on discrimiegbroperties of
the features. One example of such an approach is the Fistear [discriminant
(Duda, Hart, & Stork 2000). It searches for a low-dimensioraresentation of
the data, that unlike PCA does not favor the directions of ésgjgyariance, but
the directions allowing the best separation of the clagsésa data. This is done
by generating a transformation matrix that minimizes th@raf within-class
scatter to between-class scatter. Thus in some sense rtifgegppon maximizes
the signal-to-noise ratio. When is the number of classes in the data, the feature
space has dimensiap — 1. This allows a linear separation of the classes only if
each one has a very peaked, unimodal Gaussian distributieature space.

Discriminative features are very efficient in solving thekidhey are trained
for, but normally lack the property of being reusable in addpscenarios. Meth-
ods combining the advantages of unsupervised and supenvisthods are rare.
One is the MRDF approach (Talukder & Casasent 1998). It corsldt@A and
an adaptation of the Fisher linear discriminant, which daalso handle multi-
modal distributions, and introduces a parameter that ohées to which degree
reconstruction or discrimination are desired. Since théhotehas no positivity
constraints the generated features are holistic and doavetédirect interpreta-
tion as object parts.

We propose two new methods to combine unsupervised andvsgefeature
learning on the basis of a non-negative, parts-based emedon.

3 Class-specific Sparse Coding

Class-specificity should denote the property of a featurev® @ strong clue on
the class-membership of an image the feature is detectéolilowing this defini-



tion, in the three-class problem shown in Fig. 1 the handies/sa high specificity

for the cups with handle class, because whenever you rexmgriiandle you can
be sure that you see a view of this class. In the same way thie whps are

specific for the closed container class.

The standard sparse coding model in (1) does not care abmekistence of
different classes and produces features that are usefglefoeral image recon-
struction but lack the property of being class-specific.

Our two new approaches extend non-negative sparse codthgupervised
components. Suppose that the data samples are splipistdsets (classes],,
with ¢ = 1,..., Q. Each subset has, elements labeled as clags In the first
approach this class information has direct effect on théficentsc;, and it will
therefore be referred to as coefficient coding:

Ec = Z X; — Z czpvvp + Z Cip + a Z Z S (2)

nq(z
( #q(l)

We assume;, andw,; > 0. For the sparsity term we used the functibfr;,) =
cip,» Which corresponds in the non-negative case to the absedlite. The right
coefficient term causes cost if coefficients belonging tostwme weightw, are
active for differently labeled samples andx;, whereq(i) is the label ofx; and
nge) 1S the number of samples in the classxef n,;) is used to normalize the
effect of classes with different cardinality. The influerdehe coefficient term is
scaled with the positive constamt

In the second approach the class information has a moret éffect on the
weights and it will therefore be referred to as weight coding

By = Z X; — chwp —|—’ch@+ 5ZZqu(>?quxz, 3)

[ 2,7

q(i)#4(¥)

The right weight term causes cost ifg has a large inner product with differently
labeled samples; andx;. Again (i) denotes the label ot; andn, is the
number of samples in the classxf The influence of the weight term is scaled
with the positive constarn.

The minimization of the cost functions of coefficient and g¥gicoding is
done by alternately applying coefficient and weight stepteasribed in (Wersing
& K orner 2003). In the coefficient step the cost function is mined with respect
to thec;, using an asynchronous fixed-point search, while keepingjlenstant.
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Figure 2: (a) Artificial setting used in our visualization. The artiicsetting
is two-dimensional and contains ten data samglesThe x; are randomly dis-
tributed on the unit circle and assigned to two classes (syizdgd with star and
diamond. The optimization employs two normalized two-dimensiomaights
w,. For a certain parameter setting the optimization resnltee shown position
of weights and reconstructioms (b) Schematic description of visualization. The
actual visualization shows for each symbol in (a) the angtevben a ray from the
origin to that symbol and the x-axis (see héwn (a) is represented in (b)). The
angles of weights and reconstructions are shown at the sdowde 0f0.2 because
the resultin (a) was produced with a cost function paranaéter. Visualizingr;
andw;, for different values of the same parameter will reveal italgjative effect
on the cost function.

The weight step is a single gradient step with a fixed stepisi#ee w,, keeping
the ¢;, constant. A more detailed description of the optimizatioacedure is
given in the appendix.

To give an instructive visualization of sparse coding andhow the qualita-
tively different behavior of our new approaches we perfatmgtimizations for an
artificial two-dimensional setting. The conlcusions wevdfeom this toy-setting
hold in principle also for more complex and higher dimenaigoroblems. The
artificial setting contains ten samples which were distedwn the positive part
of the unit circle and then assigned to two classes (see Fjy. These samples
are reconstructed using two normalized weights. The aefigahlization shows
the resulting weightsv, and reconstructions; for different values of a control
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Figure 3: Influence of certain parameters on different cost functigiag Non-
negative sparse codindSC): The results of optimization are plotted figr dif-
ferent influence factors of the sparsity tesm(b) Coefficient coding(CC): The
influence factor of the coefficient term is varied whilev is set t00.05. (c)
Weight coding (WC): The influence factor of the sparsity terms varied while
the influence factor of the weight termis set t00.3. (d) Accumulated results.
The angular positions of the weights, are visualized for typical parameter set-
tings of the different approaches. A detailed descript®given in the running
text.

parameter of the cost function, e.g. the influence of thes#iyaerm~ (see Fig.
2b). The relative position aof, andw, allows conclusions on the sparsity of the
reconstructions, whereas the course ofithés a direct indicator for their discrim-



inative properties. The optimally discriminating weighte those that maximize
the gradient of their dot product with samples near the lrdsdveen the classes.
This corresponds to the property of a linear separator.dgnZa the best discrim-
inating features would point into the directions of the acboate axes. Hence, in
the visualization of the angles (see Fig. 2b) these weighest(° and90°.

In Fig. 3 the visualization is used to compare non-negatpase coding,
coefficient coding, and weight coding. Fig. 3a shows thedgibehavior of the
non-negative sparse coding for an increasing influencerfatthe sparsity term
~. Each reconstruction lies between the weights or on oneeshttdue to the
non-negativity constraints. For— 0 the reconstruction is perfect (when using at
least as many weights as dimensions in the data) and the wweighaligned with
the outermosk;. If anr; lies on top of a weight symbol, then this reconstruction
is very sparse, because it does not use the other weight &vaH increasingy
eachr; gives up the use of the less suitable weight and therefore;theite to
two main paths. At the same time eaef aligns to the 'center’ of the; which
are assigned to it. For high values-othe result is therefore comparable to that
of a cluster approach.

The coefficient term restricts the use of features by diffedasses. When
increasing its influence factor for the coefficient codinge(§ig. 3b) the recon-
structions of each class are forced to use the same disteightbasis (here only
a single weight). So the reconstruction of the lowermostaraf thestar class
aligns with increasingy to the upper weight, due to its class membership, while
for the non-negative sparse coding (see Fig. 3a) the sam@gns to the lower
weight with increasing,, due to a better sparseness. Note that the outermost two
reconstructions at both sides are equal from the beginrkiinghigh values oty
each feature is dedicated to a single class, and changé@®iti@h independently
of other classes. Therefore, an increase in discriminafiwadity is impossible,
because this would require a strong influence of differem¢s#s onto the same
weight.

For the weight coding (see Fig. 3c) there is a complex inégrpketween spar-
sity term and weight term. When the weight term dominatespasdry small
values ofy, it removes activation from the lower weight that it sharethwnem-
bers of the upper class (the same applies for the upper wéigghtersa). So one
weight moves to the top and the other one to the bottom. Thanmeachw,
aligns to the direction which is most specific for the clags representing. In the
non-negative case this can be referred to as a gain in disaiive power. The
weight term also dominates for very high valuesyotn this case the reconstruc-
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tion cost is near its maximum and the algorithm tries to mimérihe weight cost
at least. Only for a certain range of parameters there is aimgfal combination
of discriminative and reconstructive properties.

Fig. 3d shows some typical weights obtained with the difiegpproaches.
The features of non-negative sparse coding lie relatiMelsecto the borders of the
data distribution, offering a good compromise betweenmstraction and sparse-
ness. For the coefficient coding it is expensive to reconsthe samples near the
class border using both weights strongly. Therefore, th&ufes move closer to
the class centers. Only the weight coding finds out that @b in y is specific
or diagnostic for thestar class and activation in x for thrdiamondclass.

The results on the toy setting showed that non-negativesspanding limits
the use of features globally. So each data sample is recotestrusing a small
subset of features. To reduce the reconstruction cost,eideires model parts
that occur most frequently among the samples. But those peetsisually not
specific for certain classes. In the extreme case sparsegaarks like a cluster
approach, using a single weight per sample. The coefficaing penalizes the
use of a feature for different classes. So each class tendseta distinct feature
subset to reconstruct its samples. In this way coefficiedtngpcan not avoid
that parts that occur frequently in different classes ettngeights. These weights
are therefore not discriminative or class-specific. Momntkhis, the approach
may waste resources by modeling those parts for each cldspendently. The
weight coding directly penalizes if a feature reflects a traat occurs in different
classes. As a result of this, the presence of a certain gatuan image gives a
good indication for one or only a few classes.

By enforcing the use of a distinct set of features for recaositng each class
the coefficient coding mimics the behavior of probabiligienerative methods
like a Gaussian mixture model GMM. A GMM models a data disifiitn with
the help of a finite number of Gaussians. When using the GMM dvaonk to
build a classifier, it also trains a separate GMM for eachsclafherefore, GMM
and coefficient coding represent or reconstruct detaileefiata distribution that
may be irrelevant for determining the class label (Ulusoy &Hgip 2005).

The weight coding, instead, punishes directly if a weighttams activation
that is shared among different classes and thereforevamreidor determining the
class label. The cost function of the weight coding can beitem as

1 _ _ . _ 1
EW:ES+§ﬁZZ(WpTXq) (WpTXq) with: Xq:n—qZX, (4)
P qq;;qq_ xeXy
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wherex, is the K-dimensional mean of the samples with labelin this form
the weight coding shows some relation to the Fisher linesecroninant, when
neglecting that the weight coding is non-negative in aliredats while the Fisher
linear discriminant is not: The Fisher linear discriminamhimizes in the two-
class case the following cost function with respecito

Sen, (Whx = wIK1)" + ey, (Whx - W)’

EF = 3
(wh (X1 — %))

(5)

The numerator prefers directions where the variance wehih class is minimal
and the denominator tries to separate the means of the lasdar as possible
from each other. By multiplying the denominator out you get:

(W' (%1 —%2))" = (WI'z)” = 2 (w'x)) (WI'sy) + (W)’ (6)

The second term is equivalent to the weight term. The firsttaedthird term
force the weight to align to the input pattern. In the weighdliag this is done
by the interplay of reconstruction term and sparsity termasuining a unimodal,
peaked distribution for each class in data space the nuanerithe Fisher linear
discriminant plays no significant role, and hence both agghies put comparable
forces on the features.

The weight coding is also similar to the MRDF approach (Taar& Casasent
1998), that combines supervised and unsupervised feaameaithg by combining
an adaptation of the Fisher linear discriminant with PCA. adeantage of the
weight coding is that it can produce a parts-based, ovepteta representation
while the number of features in the Fisher linear discrimtna limited by the
number of classes and in the MRDF by the number of dimensicineidata. The
discriminative component of the MRDF approach tries to iaseethe distance of
the individual members of different classes in the featpaeces. On the contrary,
the weight term only handles the means of the class membérs limits its
suitability on classes with unimodal data distributionsiofher disadvantage of
the weight coding is that the two parameters have to be claasefully. When the
influence of the sparsity term is too weak, the weight termfoare the features
to point to meaningless dimensions, i.e. dimensions wheass has activation.

4 Results on Two Scenarios

To further analyze the qualitative and quantitative ddfeses between coefficient
coding and weight coding both approaches have been applidot scenarios.
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Figure 4: Features trained on first scenario with different approscAde fea-
tures for each approach are arranged from top-left to betight by decreasing
mutual information. The features of tinen-negative sparse codingnd theco-
efficient codingare very similar to each other. The features ofwleght coding
are less view-specific but much more parts-based and gbessfis. In some of
the features there is a focus on the handles of the cups. 3e tteses also the part
of the cup opposite to the handle is pronounced, since tleepee of the handle
at one side shifts the cup to the other side of the image fravhere otherwise
no activation is present. In the cup-related features tlemimg is not highlighted,
since activation in this part of the image is more typicaltfe containers with the
white caps. Therefore, there are features containing cafpsdocup-related fea-

tures like a handle. ThEMF features are also parts-based but not class-specific
and so lie visually somewhere in between.

The first scenario is the three-class problem shown in FigCups with visible
handle, cups with no or occluded handle, and some round ioensawith caps
from the COIL-100 database (Nayar, Nene, & Murase 1996) wenebined to
three classes, each containing 140 views. The gray-scalgeswere resized to a
resolution of 3% 32 pixels in advance. Forty features were trained usingahmees
influencey = 0.1 of the sparsity term and relatively high values for the cogdfit
terma = 4.0 and for the weight terng = 0.1.

Fig. 4 shows the resulting features sorted by their indi@idautual infor-
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Table 1: The table shows the values of the different terms of the aosttions
for the first scenario. The terms do not include their inflemn€, «, and3) to
the total cost. Note that values in brackets were not useddtmization, but are
shown to highlight qualitative differences between feasur

Reconstruction Sparsity Coefficient Weight

NNSC  7.718-10? 6.039 - 103 (19.98)  (5.357 - 10%)
cC 8.146 - 10? 5.909 - 103 9.505 (5.607 - 10%)
WC 8.138 - 10? 8.952 - 103 (65.95) 2.215 - 10%
NMF 6.866 - 102 (7.489-10%)  (46.76)  (3.464-10%)

mation, the calculation of which is described later. Theuess of non-negative
sparse coding and coefficient coding are very holistic aedgpecific. The fea-
tures of weight coding and NMF are both sparser and more-pasgsd, but the
weight coding clearly emphasizes class-specific partsh&e tis a group of fea-
tures highlighting handles, while in all NMF features thantain handles the
whole cup is recognizable. The first NMF feature represdrgsathite cap of a
container while following features show the opening andritmeof a cup. These
both feature types have a strong overlap at the top of thearfragne and there-
fore the cap features will also respond to cups and the rieminyg features to
the containers. The weight coding does not tolerate thisnaakkes the features
sparser to better work out the differences of cups and quertsi

Table 1 lists the values of the terms of the cost functionsrafptimization.
These values are useful to interpret the effect of our twoaygevoaches compared
to the non-negative sparse coding: The coefficient term gpinalty on the use
of features across different classes, which leads to a eedteature basis for
reconstructing each class. As a result, there is an inci&abe reconstruction
cost and a decrease of the sparsity cost. The demand foitgpédithe coefficients
in the non-negative sparse coding has an opposite effedteoweights, forcing
them to become very view-specific and leading to a higherngcoction cost.
In the weight coding the weight term removes activation fittva features. They
become less view-specific, which causes an increase of #usigpcost.

To evaluate the discriminative power of the trained featwre chose to cal-
culate the mutual information between the features andlt#sses. The mutual
information is a measure for the dependency between two oe namdom vari-
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Table 2: Mutual information for first scenario. The table lists thetoal infor-

mation conveyed by the pool of features about the 3 classes (diman & Bart
2004). Also some error rates are given performing 100 neaetghbor classifi-
cations per approach.

NNSC CC WC NMF
Mutual Information 1.7831 1.7314 3.4068 2.5708
Mean Error Rate 0.2839 0.2950 0.2045 0.2695

Standard Deviation 0.0809 0.0814 0.0840 0.0820

ables. In our case these variables are the detection of tleeedit features and
the class label, both varying over the set of samples. Theahurtformation tells

how much the detection of certain features in a sample céstithe possibility

of different class hypotheses. Therefore a high mutuakmétion is a measure
of discriminative power and a desired feature property.dduhately, the direct
optimization of mutual information conveyed by a set of teas about a class
demands the continuous probability density function PDEhefdata. For low-

dimensional data the PDF can be estimated from the trairangpkes using the
Parzen window technique (Kwak & Choi 2002). However, in hdiimensional

data the approach is computationally too expensive andre=ga huge set of
samples.

For the results in Table 2 we used a calculation which is sintd the method
applied in (Ullman & Bart 2004) to select informative imagagments: First for
each feature an optimal threshold is determined. For it digorbduct with each
sample is calculated. By applying a threshold to the restltsis calculation a
binary 'detection-variable’ over the set of samples is gategl. The class label is
also a discrete 'class-variable’ over the set of sample® dptimal threshold is
the one that maximizes the mutual information between tlas&evariable’ and
the 'detection-variable’. Now there are different ways étcalate the information
between the classes and the set of features. Simply talersyith of the individual
mutual information the features convey would totally negtéeir dependencies.
Another way is to join the single values of the 'detectiomiailes’ to a binary
feature vector per sample and then calculate the mutuahnaton between this
vector and the classes. This approach is the mathematwadigct one, but a
perfect result only tells that no binary feature vector isdug different classes
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and not how well the information is distributed over the ddeatures. Therefore
we adopted the iterative process proposed by (Ullman & Bad#p€ calculate
the values in Table 2. First the feature conveying the mostatunformation is
chosen, and later the features with the most additional ahunéormation. Be-
cause the calculation of the additional mutual informatjoren a set of already
selected features is impractical, we also adopted the steuof (Ullman & Bart
2004). In this heuristic the additional mutual informatmirone candidate feature
is calculated with respect to each single selected feafthie.minimum of these
values is assigned to the candidate feature. The candektieé with the highest
assigned value is selected. This heuristic guaranteeshbaelected feature is
informative and differs from the already selected featufé® sum of the mutual
information of the first feature and additional informatiointhe other features is
the given value. Because of the heuristic approach this wanebe higher than
the entropy of the class distribution. The weight codingthasighest value, and
the sparse coding and the coefficient coding the lowest ofke.NMF has an
intermediate value. Furthermore, in the sparse coding laaddaefficient coding
already the26th selected feature of the 40 existing ones has an additooalal
information of less tham.0005. In the NMF it is the34nd, and in the weight
coding the39th. So in some sense the information is best distributedamight
coding approach.

Table 2 also gives some error rates performing nearestbeiglassifications
on the three-class problem. In 100 runs per approach 3 esqedves per class
were chosen randomly out of the 140 views. These represergatere trans-
formed into feature space by calculating the dot produdt tie trained features.
Each of the remaining views was then assigned to the clospstsentative in
feature space. The error rates were calculated on the fagi®ig class assign-
ments. The results strongly depend on the chosen représesteausing a high
standard deviation. Nevertheless, we confirmed with atttes the error rate of
the weight coding is significantly (with = 0.001) lower than that of the other
approaches. This supports the claim for an increased dlis@tive component of
the weight coding features. The coefficient coding showsiérmean the worst
performance because forcing each class to use a distinof festures prevents
the development of discriminative properties. Note thatglojection of the im-
age views on a feature space, which is simply a completeioatat the original,
orthogonal basis system would not influence the result obaast neighbor clas-
sifier. The reason for the shown differences is that the ulggnlitnms produce a
non-orthogonal basis with a reduced dimension.
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To show that the better performance of the weight coding ismoply caused
by the higher degree of sparseness of its features, an@ulitest was performed:
The features of the NMF were trained again putting additieparsity constraints
on them following directly the method proposed in (Hoyer 20050 each NMF
feature was ensured to have the same L2 norm (1.0) as eachtwedjng feature
and the average L1 norm of the weight coding features. Inwiaig the error
rate of the NMF decreased from 0.2695 to 0.2457 but is stiledgent higher
than that of the weight coding. The mutual information irmsed from 2.5708
to 2.9853 compared to 3.4068 of the weight coding. Althoungsé results show
that sparsity of the weights has indeed some influence ondHermance, the
main difference is caused by the supervised component af¢ight coding.

As second scenario we acquired the HRI-10 database thast®oE10 classes.
A single class contains 9 similar objects each made up of i&@svtaken during
a rotation around the yaw-axis (see Fig. 5). Five objectauseel for the training
of the features, and the remaining four objects for testing.

We trained 80 features per approach on the gray-scale imalgies were
scaled to a resolution of 430 pixels. When training on the full rotation we
observed that NMF and weight coding produced very sparsé;like features,
that showed identical classification performance, whigavtieight coding features
had a slightly higher mutual information. Only with such sggafeatures the ap-
proaches were able to reconstruct the wide variety of imadesause of this
problem we reduced the complexity of the problem by only gisirews taken
from —35° to +35° from the first side view. Alternatively we could increase the
number of features, but this would heavily increase the agatpn time and
allow the standard NMF to produce even sparser featuresg Wia sparsity con-
straint on the coefficients could prevent this developmentife weight coding.

The features trained on the simplified database are showigin6k The in-
fluence of the sparsity term was setyite= 0.05, the influence of the coefficient
term wasa = 5, and the influence of the weight term was= 0.4. Again the
features of the non-negative sparse coding and the coefficogling are holistic
and similar to each other. Both NMF and weight coding prodpeeser features.
Although the difference between NMF and weight coding isthat obvious this
time, some qualitative differences can be found. So thedeigicted weight cod-
ing feature shows again a separated handle that cannot beé &aong the NMF
features. The first selected NMF feature is a car featurddbés very box-like.
The weight coding does not tolerate this and therefore malstong distinction
between car and box features. That the weight coding featane not always
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sparser than the NMF features is shown on the example of th@maner (5th
selected feature). Also interesting is the selected NMFfeafure that seems to
be split up into two features by the weight coding. A reasarttiés maybe that
the upper part of the rim is a very specific pattern for all ¢wpsile the bright
opening only occurs in a certain cup and is represented bedhis cup would
otherwise cause very high reconstruction cost.

The evaluation of mutual information and classificatioreratas performed
on the four test objects per class keeping the proceduresdfrét scenario. The
results are shown in Table 3. This time 5 representativeslpss were chosen
randomly out of 240 views that covered the limited rotatidrih@ four objects
as described above. The weight coding has a higher mutuaimiation than
the NMF, while both approaches are superior to non-negapeese coding and
coefficient coding. The error rate in the nearest neighbpeement is for the
weight coding 2 per cent lower than that of NMF and 6 per ceméldhan that of
coefficient coding and non-negative sparse coding. Thedstmidard deviation is
again caused by the random selection of representativegsh8irnproved mean
error rate of weight coding features is significant apphartegtest withp = 0.001.

When adjusting the sparsity of each NMF feature to the avespagssity of the
weight coding features the error rate decreased from 0.200£2032. This is still
significantly higher than the 0.1896 of the weight codinge fiutual information
increased from 8.8732 to 9.6584 compared to the 10.76950fvdight coding.
So again the performance is improved to some degree by tihgtydaut does not
reach the weight coding results. Also the arrangement ofdhtires in Fig. 6
indicates that very sparse features normally provide lomfermation gain. This
was also observed by Ullman & Bart (2004) who discovered thpesarity of
features with intermediate complexity.

Despite the simplicity of using segmented views of objetis two classifica-
tion problems are suitable to show that the features of thghweoding are more
class-specific and diagnostic than the object templatetipen by sparse coding.
More complex scenarios would have increased the compo#timst drastically
(e.g. by requiring to make the approaches invariant to jposdnd size of the
objects), while we would expect the same qualitative daffiees.
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Figure 5: HRI-10 database. The HRI-10 database consists of 10 classks ea
containing 9 similar objects. The first 5 objects per clagswsed for training
and the remaining 4 objects for testing. Each object is sged by 100 views
covering a full rotation around the yaw-axis.

5 Conclusion

In this paper two new class-specific extensions of the n@atne sparse coding
were introduced. Normally, unsupervised generative fealearning methods
spend resources to model details of the data that are iamidar classification
tasks. The goal of extending the cost function of the noratieg sparse coding
with discriminative components was to shift the focus of samsources from
frequently occurring parts to diagnostic ones, in this wayyeasing the suitability
of the trained features for classification tasks.
It was shown that the coefficient coding does not increaseligwiminative
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Figure 6: Features trained on second scenario with different appesadlhe fea-
tures for each approach are arranged from top-left to betight by decreasing
mutual information. At the bottom some selected featuresaght coding and
NMF are shown, to highlight qualitative differences betwdmth approaches.
Like for the first scenario the featuresmdn-negative sparse codingndcoeffi-
cient codingare very holistic and view-specific and hardly any diffeehetween
them can be revealedVeight coding andNMF again produce parts-based fea-
tures, but this time the difference between both approaishest that obvious as
for the first scenario. But when looking carefully some gadie differences can
be seen, which are discussed in the running text.

quality of the features because it prevents that multidesgs influence the same
weight. This is due to the fact that the coefficient codingrrets the use of
features by different classes, whereas the weight codiregttfy penalizes the
suitability of features for different classes and so successfully coesbrecon-
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Table 3: Mutual information for second scenario. The table listsringual in-
formation conveyed by the pool of features about the 10 etagsee: Ullman
& Bart 2004). Also some error rates are given performing 10frest-neighbor
classifications per approach.

NNSC CC WC NMF
Mutual Information 6.5459 6.2302 10.7695 8.8732
Mean Error Rate 0.2465 0.2537 0.1896 0.2074

Standard Deviation 0.0330 0.0338 0.0325 0.0316

struction and discrimination. The weight coding is relatedhe Fisher linear
discriminant and the MRDF, but does not reduce the intrasclasiance. Its ad-
vantage is that it learns localized, parts-based features.

We used an atrtificial two-dimensional setting to introduparse coding to
somebody new in the field and to visualize the different bairasf the new ap-
proaches. Furthermore we showed for two object scenarabsib weight coding
results in qualitative other features than that produce®by~ or non-negative
sparse coding. This goes along with a higher mutual infaonaif the features
and an increased classification performance.

To test the difficulty of the scenarios, we used our featurgh & nearest
neighbor classifier NNC and compared the performance toothatsingle layer
perceptron SLP. In this way we always get a lower classificatate for our ap-
proaches. When using some categories as clutter for testithg\aluating the
false positive rate by means of a receiver operating chetiatit weight coding
performs slightly better. But those results are more a rédlecif the different
nature of SLP and NNC and not of the quality of the weight cgdeatures.

Mutual information is an unbiased measure for the discrative quality of a
feature learning method, whereas the classification ratdlissnced by the aux-
iliary method used to calculate it, e.9g. a NNC. A comparisodifiérent features
is only fair, when sticking to the same classifier, becauberstise it is not clear
which component caused the difference. For the same reth&NNC results are
not comparable with that of superior, standard classiboasichemes such as an
SLP or a GMM.

However, the question may arise how in principle a discrative method,
like an SLP, could benefit from the combination with a recardtve component.
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Purely discriminative approaches suffer from the drawlbthekt they may over-
specialize on the training scenario, i.e. they perfecidyran which way a class
differs from negative examples present during traininghése examples do not
cover well the expected variations during testing the epeeialization impairs
the classifier in rejecting unseen clutter images, becawsernay not differ in
the learned features from the class. Keeping reconsteuigtiormation means
keeping information on what the class is, regardless of wbtber classes existed
during training. This gives the classifier the chance toctegetest image, based
on the inability to reconstruct it.

Recent studies suggest that generative methods perforer béten training
data s limited (Raina, Shen, Ng, & McCallum 2003), becausgtbaverge much
faster. As more training data is available, discriminativedels take the lead by
reaching a lower asymptotic error (Ng & Jordan 2002). Theralso biological
evidence for this process as outlined in (Logothetis & Sheig 1996). When
learning a new obiject first holistic snapshots are storegikgeas much infor-
mation as possible. With increasing familiarity of the silos prototypes are
generated keeping only meaningful, discriminative patgbling to generalize
over non-meaningful parts. In relation to this weight cadfeatures are useful
for building a representation of objects that are somewhet@een novel and fa-
miliar by going away from a full reconstruction of the stiraslto a prototypical
representation focusing more on the diagnostic objecspa&b, weight coding
can provide a basis for building an efficient object represéon, which is a pre-
requisite for robust and fast object recognition.

Appendix

A Non-negative Sparse Coding

The minimization of the cost function (1) is done by alteatatpplying coeffi-
cient and weight steps as described in (Wersing@&nér 2003). In the coefficient
step the cost function is minimized with respect to ¢heusing an asynchronous
fixed-point search, keeping the, constant. To do that, the derivation Bf with
respect to a certain, is set to zero, leading to the update rule
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Cip =0 | W, X; — g Cip W5 Wy — 7Y (wp Wp) , (7)

p
PFP
whereo (-) = max(0, -) ensures the positivity of the coefficients. This update rule
is applied to randomly choser, until convergence. The weight step is a single

gradient step with a fixed step sigen thew,, keeping the:;, constant:

W, =0 <Wp -1 [Z Z CipWCip — Z Xicz-p] ) . 8)
% p 7
The weight step is executed for eael) at the same time and(-) is applied
component-wise. Before the next coefficient step the weigtgsiormalized us-
ing
Wp

[Woll2

(9)

W, 1=

B Coefficient Coding

The optimization of the cost function (2) is nearly the sas@®athe non-negative
sparse coding. Only the update rule for the coefficients gaaimto

Cip ' =0 WTXZ chpw W, — —az W Wp) - . (10)
P 7 T )nq
PEP q(0)#q(3)

while the update of the weights follows exactly (8) and (9).

C Weight Coding

The weight term of the cost function (3) has only effect onweght step and
so the update rule for the coefficients remains (7), whilegitaglient step in the
weights becomes

W, =0 | W, — Z Z CipWiCip — Z X;Cip + BZ i (w, X;) , (11)

(i) Nq(3)
q(i )75(1(1)
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followed by the normalization of the weights (9).
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