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Abstract

One of the central problems in cognitive science is determining the mental representations
that underlie human inferences. Solutions to this problem often rely on the analysis of
subjective similarity judgments, on the assumption that recognizing “likenesses” between
people, objects and events is crucial to everyday inference. One such solution is provided by
the additive clustering model, which is widely used to infer the features of a set of stimuli
from their similarities, on the assumption that similarity is a weighted linear function of
common features. Existing approaches for implementing additive clustering often lack a
complete framework for statistical inference, particularly with respect to choosing the number
of features. To address these problems, this paper develops a fully Bayesian formulation
of the additive clustering model, using methods from nonparametric Bayesian statistics to
allow the number of features to vary. We use this to explore several approaches to parameter
estimation, showing that the nonparametric Bayesian approach provides a straightforward
way to obtain estimates of both the number of features and their importance.
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1 Introduction

One of the central problems in cognitive science is determining the mental representations that
underlie human inferences. A variety of solutions to this problem are based on the analysis of
subjective similarity judgments, on the assumption that recognizing “likenesses” between people,
objects and events is crucial to everyday inference. However, since subjective similarity cannot be
derived from a straightforward analysis of objective stimulus characteristics (Goodman, 1972), it
is important that mental representations be constrained by empirical data (Komatsu, 1992; Lee,
1998). By defining a probabilistic model that accounts for the similarity between stimuli based on
their representation, statistical methods can be used to infer these underlying representations
from human judgments. The particular methods used to infer representions from similarity
judgments depend on the nature of the underlying representations. For stimuli that are assumed
to be represented as points in some psychological space, multidimensional scaling algorithms
(Torgerson, 1958) can be used to translate similarity judgments into stimulus locations. For
stimuli that are assumed to be represented in terms of a set of latent features (Tversky, 1977),
the additive clustering technique developed by Shepard and Arabie (1979) is the method of
choice.

Additive clustering provides a method of assigning a set of latent features to a collection of
objects, based on the observable similarities between those items. The model is related to factor
analysis, multidimensional scaling and latent class models, and shares a number of important
issues. When extracting a set of latent features we need to infer the dimension of the model
(i.e., number of features), determine the best feature allocations, and estimate the saliency
(or importance) weights associated with each feature. Motivated in part by these issues, this
paper develops a fully Bayesian formulation of the additive clustering model, using methods
from nonparametric Bayesian statistics to allow the number of features to vary. We use this to
explore several approaches to parameter estimation, showing that the nonparametric Bayesian
approach provides a straightforward way to obtain estimates of both the number of features and
their importance.

In what follows, we assume that the data take the form of an n x n similarity matrix S = [s;;],
where s;; is the judged similarity between the ith and jth of n objects. The various similarities
are assumed to be symmetric (with s;; = s;;) and non-negative, often constrained to lie on the
interval [0, 1]. It is also typical to assume that self-similarities s;; take on maximal values, and
are generally not explicitly modeled. The source of such data can vary considerably: in psychol-
ogy alone, similarity data have been collected using a number of experimental methodologies,
including rating scales (e.g., Kruschke, 1993), confusion probabilities (e.g., Shepard, 1972), sort-
ing tasks (e.g., Rosenberg & Kim, 1975), or forced-choice tasks (e.g., Navarro & Lee, 2002).
Additionally, in applications outside psychology similarity matrices are often calculated using
aspects of the objective structure of the stimulus items (e.g., Dayhoff, Schwartz, & Orcutt, 1978;
Henikoff & Henikoff, 1992).

2 Latent Variable Models for Similarity Judgment

The analysis of similarities is perhaps best treated as a question of inferring a latent structure
from the observed similarity data, for which a variety of methods have been proposed. For
instance, besides the latent features approach, latent metric spaces have been found using mul-
tidimensional scaling, latent classes found by partitioning, and latent trees constructed using
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hierarchical clustering and related methods. Even the factor analysis model for the analysis
of covariances has been used for this purpose. Since additive clustering has close ties to these
methods, we provide a brief overview.

Multidimensional scaling. The first method to be developed explicitly for the extraction
of latent structure in similarity data was multidimensional scaling (Torgerson, 1958; Attneave,
1950; Shepard, 1962; Kruskal, 1964a, 1964b; Young & Householder, 1938), in which items are
assumed to be represented as points in a low dimensional space, usually equipped with one
of the Minkowski distance metrics (Minkowski, 1891). The motivation behind this approach
comes from measurement theory, with particular reference to psychophysical measurement (e.g.,
Stevens, 1946, 1951). In psychophysical scaling, the goal is to construct a latent scale that trans-
lates a physical measurement (e.g., frequency) into a subjective state (e.g., pitch). Typically,
however, stimuli may vary simultaneously in multiple respects, so the single scale generalizes to a
latent metric space in which observed stimuli are located. Although multidimensional scaling is
not always formalized as a statistical model, it is common to use squared error as a loss function,
which agrees with the Gaussian error model adopted by some authors (e.g., Lee, 2001).

Factor analysis. The well-known factor analysis model (Thurstone, 1947; see also Spearman,
1904, 1927) and the closely-related principal component analysis technique (Pearson, 1901;
Hotelling, 1933; in effect the same model, minus the error theory - see Lawley & Maxwell, 1963)
both predate multidimensional scaling by some years. In these approaches stimulus items are
assumed to “load” on a set of latent variables or “factors”. Since these variables are continuous-
valued, factor analysis is closely related to multidimensional scaling. However, the “common
factors” model makes different assumptions about similarity to the Minkowski distance metrics,
so the two are not equivalent. Historically, neither factor analysis nor principal components
were widely used for modeling similarity (but see Ekman, 1954, 1963). In recent years this
has changed somewhat, with principal components analysis becoming a standard method for
making predictions about document similarities, under the name of “latent semantic analysis”
(Landauer & Dumais, 1997). On occasions, those predictions have been compared to human
similarity judgments (Lee, Pincombe, & Welsh, 2005).

Partitions. A discrete alternative to the continuous methods provided by multidimensional
scaling and factor analysis is clustering. The aim behind clustering is the unsupervised extrac-
tion of a classification system for different items, such that similar items tend to be assigned to
the same class (Sokal, 1974). Clustering methods vary extensively (A. K. Jain, Murty, & Flynn,
1999), with different models imposing different structural constraints on how objects can be
grouped, as illustrated in Figure 1. The partitioning approach, very commonly used as a general
data analysis technique, forces each object to be assigned to exactly one cluster. This approach
can be interpreted as grouping the objects into equivalence classes without specifying how the
clusters relate to each other. For example, if the objects A though H in Figure 1(a) correspond
to people, the partition might indicate which of four different companies employs each person.
Commonly-used methods for extracting partitions include heuristic methods such as k-means
(McQueen, 1967; Hartigan & Wong, 1979), as well as more statistically-motivated approaches
based on mixture models (Wolfe, 1970; McLachlan & Basford, 1988; Kontkanen, Myllymaki,
Buntine, Rissanen, & Tirri, 2005). Partitioning models are rarely used for the representation
of stimulus similarities, though they are quite common for representing the similarities between
people, sometimes in conjunction with the use of other models for representing stimulus simi-
larities (e.g., McAdams, Winsberg, Donnadieu, de Soete, & Krimphoff, 1995).
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Figure 1: Three different representational assumptions for clustering models, showing (a) parti-
tioning, (b) hierarchical, and (c) overlapping structures.

Hierarchies. The major problem with partitioning models is that, in the example above,
the representation does not allow a person to work for more than one company, and does not
convey information about how the companies themselves are related. Other clustering schemes
allow objects to belong to multiple classes. The hierarchical approach (Sneath, 1957; Sokal &
Sneath, 1963; Johnson, 1967; D’ Andrade, 1978) allows for nested clusters, for instance. Thus the
arrangement in Figure 1(b) could show not just the company employing each person, but also
the division they work in within that company, and further subdivisions in the organizational
structure. Useful extensions to this approach are provided by the additive tree (Buneman,
1971; Sattath & Tversky, 1977), extended tree (Corter & Tversky, 1986) and bidirectional tree
(Cunningham, 1978) models.

3 Additive Clustering: A Latent Feature Model

The additive clustering (ADCLUS) model (Shepard & Arabie, 1979) was developed to provide a
discrete alternative to multidimensional scaling, allowing similarity models to encompass a range
of data sets for which spatial models seem inappropriate (Tversky, 1977). It provides a natural
extension of the partitioning and hierarchical clustering models, and has an interpretation as
a form of binary factor analysis. Viewed as a clustering technique, additive clustering is an
example of overlapping clustering (Jardine & Sibson, 1968; Cole & Wishart, 1970), which imposes
no representational restrictions on the clusters, allowing any cluster to include any object and
any object to belong to any cluster (e.g., Hutchinson & Mungale, 1997, p. 88). By removing
these restrictions, overlapping clustering models can be interpreted as assigning features to
objects. For example, in Figure 1(c), the five clusters could correspond to features like the
company a person works for, the division they work in, the football team they support, their
nationality, and so on. It is possible for two people in different companies to support the same
football team, or have the same nationality, or have any other pattern of shared features. This
representational flexibility allows overlapping clustering to be applied far more broadly than
hierarchical clustering or partitioning methods.

Additive clustering relies on the common features measure for item similarities (Tversky,
1977; Navarro & Lee, 2004), in which the empirically observed similarity s;; between items i
and j is assumed to be well-approximated by a weighted linear function j;; of the features shared
by the two items,

m
pij = > wifikfik- (1)
k=1
In this expression, f;; = 1 if the ¢th object possesses the kth feature, and f;; = 0 if it does not,
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Figure 2: The additive clustering decomposition of a similarity matrix. A continuously varying
similarity matrix S may be decomposed into a binary feature matrix F, a diagonal matrix of
non-negative weights W, and a matrix of error terms E.

and wy is the non-negative saliency weight applied to that feature. Under these assumptions,
a representation that uses m common features to describe n objects is defined by the n x m
feature matrix F = [f;x], and the saliency vector w = (wq,...,wy,). Accordingly, additive
clustering techniques aim to uncover a feature matrix and saliency vector that provide a good
approximation to the empirical similarities. In most applications it is assumed that there is a
fixed “additive constant”, a required feature possessed by all objects. It should be noted that the
common features model upon which additive clustering is based has some shortcomings, since
it disregards the influence of characteristics possessed by one item and not by the other (i.e.,
distinctive features), and is unable to accommodate continuously-varying properties. For this
reason, a number of models have been developed that address these shortcomings (e.g. Navarro,
2003; Navarro & Lee, 2003, 2004). Although this paper concentrates on the original additive
clustering model, the approach could be naturally extended to accommodate these richer models.

To formalize additive clustering as a statistical model, it has become standard practice
(Tenenbaum, 1996; Lee, 2002) to assume that the empirically observed similarities are drawn
from a normal distribution with common variance 2, and means described by the common
features model (more detailed suggestions are discussed by Ramsay, 1982). Given the latent
featural model (F,w), we may write

sij | F,w,o0 ~ Gaussian(u;;,o?). (2)

Note that o is a “nuisance parameter” in this model, denoting the amount of noise in the data. It
provides a measure of the degree of precision of the experimental procedure, but does not convey
information regarding the content of the latent mental representations that the experiment seeks
to uncover. The statistical formulation of the model allows us to obtain the additive clustering
decomposition of the similarity matrix,

S = FWF' +E, (3)

where W = diag(w) is a diagonal matrix with nonzero elements corresponding to the saliency
weights, and E = [¢;;] is an n x n matrix with entries drawn from a Gaussian(0, o2) distribution.
This is illustrated in Figure 2, which decomposes a continuously varying similarity matrix S into
the binary feature matrix F, non-negative weights W, and error terms E.

Additive clustering also has a factor analytic interpretation (Shepard & Arabie, 1979; Mirkin,
1987), since Equation 3 has the same form as the factor analysis model, with the “feature load-
ings” f;r constrained to 0 or 1. By imposing this constraint, additive clustering enforces a variant
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of the “simple structure” concept (Thurstone, 1947, ch. 14) that provides the theoretical basis
for many factor rotation methods currently in use (see Browne, 2001). To see this, it suffices
to note that the most important criterion for simple structure is sparsity. In the extreme case,
illustrated in the top row of Figure 3, each item might load only on a single factor, yielding a
partition-like representation (panel a) of the item vectors (shown in panel b). As a consequence,
the factor-loading vectors project onto a very constrained part of the unit sphere (panel c). Al-
though most factor rotation methods seek to approximate this partition-like structure (Browne,
2001, p. 116), Thurstone himself allowed more general patterns of sparse factor loadings. Fig-
ure 3(d) provides an illustration, corresponding to a somewhat different configuration of items
in the factor space (panel e) and on the unit sphere (panel f). The additive clustering model is
similarly general in terms of the pattern of zeros it allows, as illustrated in Figure 4(a). However,
by forcing all “loadings” to be 0 or 1, every feature vector is constrained to lie at one of the
vertices of the unit cube, as shown in Figure 4(b). When these vectors are projected down onto
the unit sphere, they show a different, though clearly constrained pattern. It is in this sense that
the additive clustering model implements the simple structure concept, and is the motivation
behind the “qualitative factor analysis” view of additive clustering (Mirkin, 1987).

4 Existing Approaches to Additive Clustering

Since the introduction of the additive clustering model, a range of algorithms have been used
to infer features, including “subset selection” (Shepard & Arabie, 1979), expectation maximiza-
tion (Tenenbaum, 1996), continuous approximations (Arabie & Carroll, 1980) and stochastic
hillclimbing (Lee, 2002) among others. A review, as well as an effective combinatorial search
algorithm, is given by Ruml (2001). However, in order to provide a context, we present a brief
discussion of some of the existing approaches.

The original additive clustering technique (Shepard & Arabie, 1979) was a combinatorial
optimization algorithm that employed a heuristic method to reduce the space of possible cluster
structures to be searched. Shepard and Arabie observed that a subset of the stimuli in the
domain is most likely to constitute a feature if the pairwise similarities of the stimuli in the
subset are high. They define the s-level of a set of items ¢, to be the lowest pairwise similarity
rating for two stimuli within the subset. Further, the subset c is elevated if and only if every
larger subset that contains c has a lower s-level than ¢. Having done so, they constructed the
algorithm in two stages. In the first step, all elevated subsets are found. In the second step,
the saliency weights are found and the set of included features is reduced. The weight initially
assigned to each potential cluster is proportional to its rise, defined as the difference between
the s-level of the subset and the minimum s-level of any subset containing the original subset.
The weights are then iteratively adjusted by a gradient descent procedure.

The next major development in inference algorithms for the ADCLUS model was the intro-
duction of a mathematical programming approach (Arabie & Carroll, 1980). In this technique,
the discrete optimization problem is recast as a continuous one. The cluster membership matrix
F is initially allowed to assume continuously varying values, rather than the binary membership
values required in the final solution. An error function is defined as the weighted sum of two
parts, the first being the sum squared error and the second being a penalty function designed
to push the elements of F towards 0 or 1.

A statistically motivated approach proposed by Tenenbaum (1996) uses the expectation
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maximization (EM) algorithm (Dempster, Laird, & Rubin, 1977). As with the mathematical
programming formulation, the number of features needs to be specified in advance, and the
discrete problem is (in effect) converted to a continuous one. The EM algorithm for additive
clustering consists of an alternating two-step procedure. In the E-step, the saliency weights are
held constant, the expected sum squared error is estimated, and (conditional on these saliency
weights), the expected values for the elements of F are calculated. Then, using the expected
values for the feature matrix calculated during the E-step, the M-step finds a new set of saliency
weights that minimize the expected sum squared error. As the EM algorithm iterates, the value
of ¢ is reduced, and the expected assignment values converge to 0 or 1, yielding a final feature
matrix F and saliency weights w.

Note that the EM approach treates o as something more akin to a “temperature” parameter
rather than a genuine element of the data-generating process. Moreover, it still requires the
number of features to be fixed in advance. To redress some of these problems, Lee (2002) pro-
posed a simple stochastic hillclimbing algorithm that “grows” an additive clustering model. The
algorithm initially specifies a single-feature representation, which is optimized by “flipping” the
elements of F (i.e., fir — 1 — fir) one at a time, in a random order. Every time a new feature
matrix is generated, best-fitting saliency weights w* are found by solving the corresponding
non-negative least squares problem (see Lawson & Hanson, 1974), and the solution is evaluated.
Whenever a better solution is found, the flipping process restarts. If flipping f;r results in an
inferior solution, it is flipped back. If no element of F can be flipped to provide a better solution,
a local minimum has been reached. Since, as Tenenbaum (1996) observed, additive clustering
tends to be plagued with local minima problems, the algorithm allows the locally optimal solu-
tion to be “shaken”, by randomly flipping several elements of F and restarting, in order to find
a globally optimal solution. Once this process terminates, a new (randomly generated) cluster
is added, and this solution is used as the starting point for a new optimization procedure. Im-
portantly, potential solutions are evaluated using the stochastic complexity measure (Rissanen,
1996), which provides a statistically-principled method for determining the number of features
to include in the representation (and under some situations has a Bayesian interpretation; see
Myung, Balasubramanian, & Pitt, 2000).

5 A Nonparametric Bayesian ADCLUS Model

The additive clustering model provides a method for relating a latent feature set to an observed
similarity matrix. In order to complete the statistical framework, we need to specify a method
for learning a feature set and saliency vector from data. In contrast to the approaches discussed
in the previous section, our solution is to cast the additive clustering model in an explicitly
Bayesian framework, placing priors over both F and w, and then basing subsequent inferences
on the full joint posterior distribution p(F,w|S) over possible representations in light of the
observed similarities. However, since we wish to allow the additive clustering model the flexibility
to extract a range of structures from the empirical similarities S, we want the implied marginal
prior p(S) to have broad support. In short, we have a nonparametric problem, in which the
goal is to learn from data without making any strong prior assumptions about the family of
distributions that might best describe those data.

The rationale for adopting a nonparametric approach is that the generative process for a
particular data set is unlikely to belong to any finite-dimensional parametric family, so it would
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Figure 3: Simple structures in a three-factor solution, adapted from Thurstone’s (1947) origi-
nal examples (p.126-127, 183-186). In the tables, crosses denote non-zero factor loadings. The
middle panels illustrate possible item vectors in the solutions, and the right panels show corre-
sponding projections onto the unit sphere. The partition-style solution shown in the top row
(panels a-c) is the classic example of a simple structure, but more general sparse structures of
the kind illustrated in the lower row (panels d-f) are allowed.
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Figure 4: The variant of simple structure enforced by the ADCLUS model. Any sparse pattern
of binary loadings is allowable (panel a), and the natural way to interpret item vectors is in
terms of the vertices of the unit cube (panel b) on which all feature vectors lie, rather than
project the vectors onto the unit sphere (panel c).

be preferable to avoid making this false assumption at the outset. From a Bayesian perspective,
nonparametric assumptions require us to place a prior distribution that has broad support across
the space of probability distributions. In general, this is a hard problem: thus, to motivate a
nonparametric prior for a latent feature model, it is useful to consider the simpler case of latent
class models. In these models, a common choice relies on the Dirichlet process (Ferguson, 1973).
The Dirichlet process is by far the most widely-used distribution in Bayesian nonparametrics, and
specifies a distribution that has broad support across the discrete probability distributions. The
distributions indexed by the Dirichlet process can be expressed as countably infinite mixtures
of point masses (Sethuraman, 1994), making them ideally suited to act as priors in infinite
mixture models (Escobar & West, 1995; Rasmussen, 2000). For the current paper, however,
it is more important to note that the Dirichlet process also implies a distribution over latent
class assignments: any two observations in the sample that were generated from the same
mixture component may be treated as members of the same class, allowing us to specify priors
over infinite partitions. This implied prior can be useful for data clustering purposes (e.g.,
Navarro, Griffiths, Steyvers, & Lee, 2006), particularly since samples from this prior can be
generated using a simple stochastic process known as the Chinese restaurant process' (Blackwell
& MacQueen, 1973; Aldous, 1985; Pitman, 1996). In a similar manner, it is possible to generate
infinite latent hierarchies using other priors, such as the Pélya tree (Ferguson, 1974; Kraft, 1964)
and Dirichlet diffusion tree (Neal, 2003) distributions. The key insight in all cases is to separate
the prior over the structure (e.g., partition, tree, etc) from the prior over the other parameters
associated with that structure. For instance, most Dirichlet process priors for mixture models
are explicitly constructed by placing a Chinese restaurant process prior over the infinite latent
partition, and using a simple parametric prior for the parameters associated with each element
of that partition.

!The origin of the term is due to Jim Pitman and Lester Dubner, and refers to the Chinese restaurants in
San Francisco that appear to have infinite seating capacity. The term “Indian buffet process” introduced later is
named by analogy to the Chinese restaurant process.



Bayesian Additive Clustering 10

° The Indian Buffet
L pIoloIn

The Diners

‘R’% fu1 | fim
ﬁ%

fo= fo3=

- f=1 | fau=
ORI

(a) (b)

n(n-1)/2

Figure 5: Graphical model representation of the IBP-ADCLUS model. Panel (a) shows the
hierarchical structure of the ADCLUS model, and panel (b) illustrates the method by which a
feature matrix is generated using the Indian buffet process.

This approach is well-suited for application to the additive clustering model. For simplicity,
we assume that the priors for F and w are independent of one another. Moreover, we assume
that feature saliencies are independently generated, and employ a fixed Gamma distribution as
the prior over these weights. This yields the simple model

sij | F,w,o0 ~ Gaussian(u;;,0?) (@)
W ’ )\1,)\2 ~ Gamma()\l,)\g)

The choice of Gamma priors is primarily one of convenience, and it would be straightforward to
extend this to more flexible distributions.? As with Dirichlet process models, the key element
is the prior distribution over model structure: specifically, we need a prior over infinite latent
feature matrices. By specifying such a prior, we obtain the desired nonparametric additive
clustering. Moreover, infinite models have some inherent psychological plausibility here, since it
is commonly assumed that there are an infinite number of features that may be validly assigned
to an object (Goodman, 1972). As a result, we might expect the number of features required
to grow arbitrarily large, providing that a sufficiently large number of stimuli were observed to
elicit the appropriate contrasts.

Our approach to this problem employs the Indian buffet process (IBP; Griffiths & Ghahra-
mani, 2005), a simple stochastic process that generates samples from a distribution over sparse
binary matrices with a fixed number of rows and an unbounded number of columns. This is
particularly useful as a method for placing a prior over F, since there is generally no good reason

2A note on the use of the Gamma prior: the original motivation was to specify a model that would be be
applicable when similarities are not normalized. When similarities are normalized, the natural analogue would
be to use a Beta prior.
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to assume an upper bound on the number of features that might be relevant to a particular sim-
ilarity matrix. The IBP can be understood by imagining an Indian restaurant, in which there
is a buffet table containing an infinite number of dishes. Each customer entering the restaurant
samples a number of dishes from the buffet, with a preference for those dishes that other diners
have tried. For the kth dish sampled by at least one of the first i — 1 customers, the probability
that the ith customer will also try that dish is

plfu = 1Fi1) = =, (5)
where F,;_1 records the choices of the previous customers, and n; denotes the number of previous
customers that have sampled that dish. Being adventurous, the new customer may try some
hitherto untasted meals from the infinite buffet on offer. The number of new dishes taken by
customer i follows a Poisson(a/7) distribution. Importantly, this sequential process generates
exchangeable observations (see Griffiths & Ghahramani, 2005, for a precise treatment). In other
words, the probability of a binary feature matrix F does not depend on the order in which the
customers appear (and is thus invariant under permutation of the rows). As a consequence, it
is always possible to treat a particular observation as if it were the last one seen: much of the
subsequent development in the paper relies on this property. As a consequence, we will often be
interested in the special case of this equation corresponding to the nth customer, in which

P(fur = 1Fu1) = =%, (6)

If we assume that the ordering of the columns in the feature matrix is irrelevant to the
model (which is true for additive clustering), then every binary feature matrix F is a member
of a particular equivalence class [F], and it is at the level of these equivalence classes that we
wish to specify our priors. Accordingly, we are interested in the distribution over equivalence
classes from which the IBP generates samples (Griffiths & Ghahramani, 2005), which assigns
probability to [F] as follows:

exp (—aH,)a™ 1 (n—ng)(ng — 1)!
p(Flle) = ——5mr 5 — 1 | : (7)
[yl 5 "'
where H,, denotes the nth harmonic number, H, = >>7_; 1/j. In this expression, h is an index

variable that refers to one of the 2" — 1 possible assignments of items to a particular feature,
excluding the case where all elements are zero, and my counts the number of features in F
that have that particular pattern of assignments. To summarize, the nonparametric Bayesian
additive clustering model may be written,

sij | F,w,o0 ~ Normal(u;j,o?)
Wi | )\1, )\2 ~ Gamma()\l, )\2) (8)
F | « ~ IBP(«).

With a fully specified statistical model in place, we are now in a position to discuss methods
for performing the required inferences. Specifically, given the observed similarities S, our goal
is to infer the features F and saliencies w that underlie those data. To do so, we fix the
hyperparameters «, o, A1 and A2, and then infer the posterior distribution over possible latent
features. In the next two sections, we first discuss a numerical method for approximating this
posterior distribution, and then move on to a discussion of the kinds of estimators that can be
constructed from this distribution.
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6 A Gibbs-Metropolis Sampling Scheme

Having provided a complete specification of the model, we now turn to the question of how we
can perform inference. As a Bayesian formulation of additive clustering, statistical inference
in Equation 8 is based on the posterior distribution over feature matrices and saliency vectors,
p(F,w|S). Since the priors over F and w are independent, the application of Bayes’ rule yields,

_ P(S[F, w)p(F)p(w)
p(F,W’S) - p(S)

where, for ease of exposition, we omit the dependence on the hyperparameters. Naturally, in
any Bayesian model the ideal approach is to calculate posterior quantities using exact methods.
Unfortunately, this is quite difficult in this case, particularly since the number of features is
unbounded a priori. In view of this difficulty, a natural alternative is to use Markov chain
Monte Carlo (MCMC) methods to repeatedly sample from the posterior distribution: estimates
of posterior quantities can be made using these samples as proxies for the full distribution.
Accordingly, we now describe a simple MCMC scheme for the Bayesian ADCLUS model, which
uses a combination of Gibbs sampling (Geman & Geman, 1984) and more general Metropolis
proposals (Metropolis, Rosenbluth, Rosenbluth, Teller, & Teller, 1953).

The idea behind our procedure, as with all basic MCMC methods, is to start with randomly
chosen values for F and w, and update these values using a simple resampling procedure,
discussed below. In our approach, at each step only a single f;. value or wj value is resampled;
all other variables are held fixed at their pre-existing values. An iteration consists of a single
sweep through all feature assignments and saliency weights. The logic behind the approach
is that, irrespective of the starting point, a properly chosen sampling scheme will converge on
samples from the “target” distribution, in this case the posterior distribution p(F,w|S). A good
introduction to the general approach, along with the conditions upon which MCMC convergence
relies, is given by Gilks, Richardson, and Spiegelhalter (1995). In the remainder of the section,
we describe the sampling procedure that we used. The sampler is broken into three parts: (1)
resampling a saliency wy, for a feature k that is currently non-empty (i.e., possessed by at least
one item), (2) resampling a feature assignment f;x, where k again refers to a non-empty feature,
and (3) resampling all the assignments and saliencies for the (infinite) set features that are
currently empty. We discuss each part in turn.

Saliency Weights (Non-Empty Features). When resampling the saliency of a non-empty
feature, we use a Metropolis scheme with a Gaussian proposal distribution.? In other words, if
the current state saliency is wy, a candidate wj, is first generated by drawing a sample from a
Gaussian(wy, 0.05) distribution. The value of wy, is then reassigned using the Metropolis update
rule. If w_j denotes the set of all saliencies except wy, then this update rule can be written as

9)

where a =

wy itu<a p(S|F,w_j.w;)p(w;)
Wk { wy, otherwise’ p(SIF,w_k,wi)p(wi) (10)

In this expression, u is a uniform random variate on the interval [0,1). Note that, since the
candidates are drawn from a Gaussian distribution, it is quite possible for the Metropolis sampler

3As with the Gamma prior over feature weights, the Gaussian proposal distribution for the sampler is not
motivated by any strong theoretical reasons. It is simply a choice of convenience, and one that operates reasonably
well in practice. In extensions currently under consideration, other choices for sampling schemes are being
explored.
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to propose replacement values wj that are less than zero. However, the Metropolis update rule
will never accept one of these proposals, since p(wj) = 0 for all w} < 0.

Feature Assignments (Non-Empty Features). For features that are currently non-empty (i.e.,
fi = 1 for at least one value of i), the feature assignments are updated using a standard Gibbs
sampler: the value of f; is drawn from the conditional posterior distribution over f;x|S,F_;x, w.
Since feature assignments are discrete, it is easy to find this conditional probability by noting
that

P(fik|S; F i, w) o< p(S|F, w)p(fir|F —ir), (11)

where F_;;. denotes the set of all feature assignments except f;r. The first term in this expression
is just the likelihood function for the ADCLUS model, and is simple to calculate. Moreover,
since feature assignments in the IBP are exchangeable (see Griffiths & Ghahramani, 2005, for
details), we can treat the kth assignment as if it were the last. Given this, Equation 6 indicates
that p(fix|F—_ix) = n_ix/n, where n_;, counts the number of stimuli (besides the ith) that
currently possess the kth feature. This analysis only applies to features for which n_;; > 0.
The remaining “singleton” features (i.e., those for which f; = 1 for ezactly one value of i) are
identified when sweeping through all of the features associated with the ith object, and then
deleted immediately before dealing with the features that are currently empty.

Empty Features. We now turn to how the sampler deals with the infinite set of currently-
empty features. Since the IBP describes a prior over infinite feature matrices, the resampling
procedure really does need to accommodate the remaining (infinite) set of features that are not
currently represented among the manifest (i.e., non-empty) features. At a conceptual level it
is helpful to note that if we were to redraw all these values simultaneously, some finite number
of those currently-latent features would become manifest. In our MCMC procedure, we sample
from the conditional posterior over feature assignments for the ith stimulus, holding all assign-
ments fixed for the non-empty features, and also keeping the infinite set of (empty) feature
assignments fixed for the other items. Now, in this case, if there were no data observed, this
would be exactly equivalent to drawing the “new” features from the IBP. That is, we would
introduce some number of “singleton” features possessed only by the ith object, where (due to
exchangeability) this number is always drawn from a Poisson(a/n) distribution as noted previ-
ously. Fortunately, singleton features do not affect the probability of the data S in the additive
clustering model, so the conditional posterior is exactly equivalent to the prior. In short, a very
simple way to redraw for the infinite set of empty features is to sample Poisson(a/n) new sin-
gleton features for every stimulus. The weights for these singleton features are generated from
the prior once those features are sampled.

When working with this algorithm, we typically run several chains. For each chain, we
initialize the Gibbs-Metropolis sampler more or less arbitrarily. After a “burn-in” period is
allowed for the sampler to converge to a sensible location (i.e., for the state to represent a
sample from the posterior), we make a “draw” by recording the state of the sampler, leaving
a “lag” of several iterations between successive draws to reduce the autocorrelation between
samples. When doing so, it is important to ensure that the Markov chains converge on the
target distribution p(F, w|S). We did so by inspecting the time series plot formed by graphing
the probability of successive samples. To illustrate this, one of the chains used in our simulations
(see Section 5) is displayed in Figure 6, with nine parallel chains used for comparison: the time
series plot shows no long-term trends, and that different chains are visually indistinguishable
from one another. Although elaborations and refinements are possible for both the sampler
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Figure 6: Smoothed time series showing log-posterior probabilities for successive draws from the
Gibbs-Metropolis sampler, for simulated similarity data with n = 16. The bold line shows a
single chain, while the dotted lines show the remaining nine chains. Note that, strictly speaking,
since the normalizing contant for the posterior probability is unknown, the quantity being plotted
differs from the actual log-probabilities by a constant.

(Chen, Shao, & Ibrahim, 2000) and the convergence check (Cowles & Carlin, 1996), we have
found this approach to be reasonably effective for the moderate-sized problems considered in
our applications.*

7 Four Estimators for the ADCLUS Model

One advantage to the IBP-ADCLUS approach is that it allows us to discuss a range of different
estimators within a single framework. This is particularly useful since, in the absence of any
explicit discussion of estimators, authors have adopted several different methods. The difficulty
stems from the fact that there are several slightly different questions that one might wish to
answer, and authors vary in the importance they attach to each. For instance,

How should features be assigned to stimuli?

How much importance attaches to each feature?

How many features should be included in the model?

What predictions should be made about the similarities?

What is the probability that a particular feature is represented?

Gt o=

These are by no means the only questions that one could ask. For instance, question 5 is essen-
tially about obtaining measures of uncertainty associated with the feature set F. Accordingly,
we could also ask for uncertainty estimates for the feature weights and the dimensionality of the
model. However, we omit these questions for now, since all existing estimators can accommodate
those in a natural fashion.

In this section we outline four different estimators that one might employ when using the
additive clustering model, and show how each of the four relates to these different questions.

4One additional detail should be noted: sometimes the sampler proposes feature matrices that contain multiple
copies of the ‘same’ feature. While there are several possible ways to deal with this, for the sake of simplicity we
report this as if only one copy of the feature were present, with a saliency equal to the sum of the copies.
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As indicated, the key difference between the estimators is not the underlying model, nor the
choice of utility function (though there are disagreements regarding these). The main issue here
regards which parameters are “nuisance parameters” and which are “parameters of interest”.
In the Bayesian framework, if the parameter vector @ = (¢, A) can be partitioned into a set of
interesting parameters ¢ and a set of nuisance parameters A, it is typical to draw inferences
about the interesting parameters using the marginal posterior:

p(9la) = [ p(O2)ax = [ p(g. Az)dx (12

(see Bernardo & Smith, 2000, p. 245). In the event that an estimate ¢ has already been obtained
for the interesting parameters, it can be convenient to report estimates of the nuisance param-
eters conditional on the estimated values of the interesting parameters, using the conditional
posterior distribution p()\|q3, x). This is often the case for the additive clustering model.

7.1 Selecting the Posterior Mode

The simplest approach to estimation in the additive clustering model is to report the posterior
mode. This maximum a posteriori (MAP) estimator gives the single most likely set of parameter
values, and is hence optimal under a 0-1 loss function. The MAP estimate is obtained by selecting
the the feature matrix F; and saliency vector wy such that,

Fi,w, = argl%laxp(F,W]S). (13)

However, the MAP estimator is not generally used in additive clustering literature. The main
reason for this is that the saturated model that contains a single two-stimulus feature for every
cell in the similarity matrix can obtain perfect data fit by a judicious choice of weights. Ac-
cordingly, the only way to avoid this representation being chosen every time is to emphasize
parsimony in either the prior or the loss function. In view of this obvious difficulty, the simple
MAP estimator is almost never used. However, since many theoretically-motivated priors (in-
cluding the IBP) allow the researcher to emphasize parsimony, it is possible to use this approach
so long as one chooses the prior with care. Interestingly, this approach is paralleled in the fre-
quentist literature: in order to produce parsimonious representations, some frequentist methods
used in ADCLUS-like models apply penalty functions when obtaining a maximum likelihood
feature model (Frank & Heiser, in press).

When assessed in terms of the questions listed earlier, the simple MAP estimator gives
priority to questions 1 and 2, since it is explicitly constructed to provide the best possible
estimates (under 0-1 loss) for the features and weights. In contrast, it provides answers to the
remaining questions only indirectly. The number of features 1 is implied by the feature matrix,
and similarity predictions S; could be constructed using the reported features and saliencies.
However, while some authors report measures of the uncertainty associated with the modal
saliencies and number of features (e.g., Frank & Heiser, in press), it is not usual to report
uncertainty measures for the specific features.

7.2 Selecting the Most Likely Feature Set

A rather different approach has been adopted by other authors (Lee, 2002; Navarro, 2003),
based on the typical application of the additive clustering model. The idea is that the saliency
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weights are of less psychological importance than the features to which they are applied, since
saliencies often reflect context-specific levels of attention and are subject to frequent change.
In contrast, the feature assignments themselves are usually treated as fixed properties of the
stimulus representation (e.g., Lee & Navarro, 2002). Accordingly, the feature matrix F is taken
to define a model with parameters w. Under this view, the saliencies are treated as nuisance
parameters, on the assumption that the psychologically important question is the identification
of the feature matrix. Again based on a 0-1 loss function, the estimator F5 for the feature matrix
is then taken to be the marginal MAP feature set:

Fy = arg mP@Xp(F\S) = arg max {/p(F,w]S)dw] . (14)

In general, the integral in Equation 14 is not tractable, so previous applications (e.g., Lee, 2002;
Navarro, 2003) have employed asymptotic approximations to p(F|S) for the sake of expediency,
based on the Bayesian information criterion (Schwarz, 1978), Laplacian approximations (de
Bruijn, 1958) or other related methods such as geometric complexity (Balasubramanian, 1997)
and minimum description length (Rissanen, 1996). Given the primacy of the feature matrix, it
is then sensible to estimate the saliencies conditional on this estimate. The corresponding MAP
estimator is thus,

Wo = arg mvgmxp(wmg, S). (15)

In this approach, the number of features 1y emerges as a consequence of the feature selection
process, and similarity predictions S, would be made using the estimated features. Thus, like
the simpler MAP estimator outlined above, this approach considers questions 3 (dimensionality),
4 (prediction) and 5 (model uncertainty) to be of secondary importance. However, it differs in
that it treats quesion 1 (feature selection) as being considerably more important than question
2 (feature weighting).

7.3 Dimensionality Estimation and Conditional Posterior Modes

The most common approach in the additive clustering literature is to divide the estimation
problem into a model selection problem and a parameter estimation problem (Tenenbaum, 1996;
Arabie & Carroll, 1980; Ruml, 2001). In this approach, the number of features m is taken to
define a particular model, with parameters corresponding to the n x m binary matrix F and
the m + 1 length vector w. For the purposes of parameter estimation, neither F nor w are
considered to be nuisance parameters, and so are estimated jointly. Again, assuming that we
have some fixed value for m, we select the conditonally mazimum a posterior (MAP) parameter
values, given by

F3, W3 = arg Ig&\t;{p(F,w|S, m) (16)

In practice, m is rarely if ever known in advance. As a result, we need to solve a model selection
problem in order to arrive at some estimate ms. When solving this problem, the psychologically-
interesting variables F and w actually become the nuisance parameters. Accordingly, under 0-1
loss the (generally implicit) formulation of the model selection problem becomes,

m3 = arg mnaltxp(m\S) = arg max Z /p(F,W|S) dw | . (17)
FeFm
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In this expression, J,, denotes the set of feature matrices containing m unique features. The
logic is that if we are to treat this as a model order selection problem, then the dimension m
defines a model that had parameters F and w. Ideally, then, we would choose the most likely
(or maximum utility) model rhg by integrating over the parameters of that model. Then, having
estimated this model, we would report parameter values f‘g,Wg conditional on this model. In
practice, given the difficulty of working with Equation 17, it is typical to fix m on the basis of
intuition, or via some heuristic method. In terms of the four questions listed earlier, the model
selection problem treats dimensionality (question 3) as the only question of interest, while the
parameter estimation problem treats feature selection (question 1) and saliency (question 2) as
equally important, given that the model selection problem has been solved. Again, the prediction
(question 4) and feature uncertainty (question 5) are considered ancillary.

7.4 Approximating the Posterior Predictive Similarity Matrix

The three methods discussed above have all been applied to some extent in the existing literature.
However, given that none are designed explicitly to address the questions of prediction and
feature uncertainty, we now suggest a fourth possibility that complements the existing three. In
this approach, we seek to uncover a small set of features that best approximates the posterior
predictive similarity matrix. Letting 7, = p(f;|S) denote the posterior probability that feature
f;, is manifest, we obtain

= p(EIS) = 3 p(FIS). (18)

F:f eF

This allows us to construct a vector r = [7] that contains these probabilities for all 2" possible
features. Although this vector discards the covariation between features across the posterior
distribution, it is very useful, since the expected posterior similarities can be written as follows:

8ij = Elsij*IS] = > fuxfinfribn, (19)
fi.

where Wy, = E [wg|fx, S| denotes the expected saliency for feature f; on those occasions when
it is represented. Equation 19 relies on the fact that features combine linearly in the ADCLUS
model, and is straightforward to derive.

In practice, it is impossible to report all 2" features, so although Equation 19 provides the
estimate Sy for the predicted similarities, one would typically report only those features that
make the most substantial contributions to this estimate. While there are obviously several
ways that we can formalize the notion of contribution, for the current purposes it will suffice to
select those features for which 7pwy is largest. Similarly, there are several ways to determine
the number of features to report, but for now we will simply ensure that the number of features
reported for this method are in line with those suggested by the three existing methods.

Obviously, this approach treats prediction (question 4) as primary, but it is worth noting that
since it involves the calculation of 7, the probability that feature fi should be included in the
representation, it gives some fairly explicit consideration to the question of feature uncertainty
(question 5). This can be theoretically useful, since the concept of feature uncertainty is implicit
in more general discussions of mental representation (Medin & Ortony, 1989) that ask whether or
not a specific predicate is likely to be represented. However, unlike the other three estimators,
it treats feature selection, feature saliency and dimensionality estimation (questions 1-3) as
secondary.
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Figure 7: Posterior distributions (a) over the number of features p(m|S,) in simulations con-
taining m; = 6, 8 and 10 features respectively. Variance accounted for (b) by the four similarity
estimators S, where the target is either the observed training data S,, a new test data set S,,,
or the true similarity matrix S;.

8 Recovering Noisy Feature Matrices

By using the IBP-ADCLUS framework, we can compare the performance of the four estimators in
a reasonable fashion. Loosely following Ruml (2001), we generated noisy similarity matrices with
n = 8, 16 and 32 stimuli, based on “true” feature matrices F; in which m; = 2logy(n), where
each object possessed each feature with probability 0.5. Saliency weights w; were generated
uniformly from the interval [1,3], but were subsequently rescaled to ensure that the “true”
similarities S; had variance 1. Two sets of Gaussian noise were injected into the similarities
with fixed ¢ = 0.3, ensuring that the noise accounted for approximately 9% of the variance in
the “observed” data matrix S, and the “new” matrix S,,. We fixed o = 2 for all simulations:
since the number of manifest features in an IBP model follows a Poisson(aH,,) distribution
(Griffiths & Ghahramani, 2005), the prior has a strong bias toward parsimony, since the prior
expected number of features is approximately 5.4, 6.8 and 8.1 (as compared to the true values
of 6, 8 and 10).

We approximated the posterior distribution p(F, w|S,), by drawing samples in the following
manner. For a given similarity matrix, 10 Gibbs-Metropolis chains were run from different start
points, and 1000 samples were drawn from each. The chains were burnt in for 1000 iterations,
and a lag of 10 iterations was used between successive samples. Visual inspection suggested
that five chains in the n = 32 condition did not converge: log-posteriors were low, differed
substantially from one another, and had noticable positive slope. In this case, the estimators
were constructed from the five remaining chains.

Figure 7(a) shows the posterior distributions over the number of features m for each of the
three simulation conditions. There is a tendency to underestimate the number of features when
provided with small similarity matrices, with the modal number being 3, 7 and 10. However,
since the posterior estimate of m is below the prior estimate when n = 8, it seems this effect is
data-driven, as 79% of the variance in the data matrix S, can be accounted for using only three
features.

Since each approach allows the construction of an estimated similarity matrix S, a natural
comparison is to look at the proportion of variance this estimate accounts for in the observed
data S,, the novel data set S,,, and the true matrix S;. In view of the noise model used to
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Figure 8: Posterior distributions over the number of features when the Bayesian ADCLUS model
is applied to (a) the numbers data, (b) the countries data and (c) the letters data.

construct these matrices, the “ideal” answer for these three should be around 91%, 91% and
100% respectively. When n = 32, this profile is observed for all four estimators, suggesting that
in this case all four estimators have converged appropriately. For the smaller matrices, the joint
MAP and conditional MAP estimators (81 and Sg) behave similarly. The MAP feature approach
S, appears to perform slightly better, though the difference is very small. The expectation
method Sy provides the best estimate.

9 Modeling Empirical Similarities

We now turn to the analysis of empirical data. To keep the presentation as brief as possible,
we limit the discussion to the most novel IBP-ADCLUS estimators, namely the direct estimates
of dimensionality provided through Equation 17, and the features extracted via “approximate
expectation”.

9.1 Featural representations of numbers.

A standard data set used in evaluating additive clustering models measures the conceptual
similarity of the numbers 0 through 9 (Shepard, Kilpatric, & Cunningham, 1975). This data
set is often used as a benchmark due to the complex interrelationships between the numbers.
Table 1(a) shows an eight-feature representation of these data, taken from Tenenbaum (1996)
who applied a maximum likelihood approach. This representation explains 90.9% of the variance,
with features corresponding to arithmetic concepts and to numerical magnitude. Fixing ¢ =
0.05, and o = 0.5, we drew 10,000 lagged samples to construct estimates. Although the posterior
probability is spread over a large number of feature matrices, 92.6% of sampled matrices had
between 9 and 13 features. The modal number of represented features was ms=11, with 27.2%
of the posterior mass. The posterior distribution over the number of features is shown in
Figure 8(a). Since none of the existing literature has used the “approximate expectation”
approach to find highly probable features, it is useful to note the strong similarities between
Table 1(a) and Table 1(b), which reports the ten highest-probability features across the entire
posterior distribution. Applying this approach to obtain an estimate of the posterior predictive
similarities S, revealed that this matrix accounts for 97.4% of the variance in the data. Moreover,
unlike the feature set reported by Tenenbaum (1996), even and odd numbers both appear as
distinct features.
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Table 1: Two representations of the numbers data. (a) The representation reported in
(Tenenbaum, 1996), extracted using an EM algorithm with the number of features fixed at
eight. (b) The 10 most probable features extracted using the Bayesian ADCLUS model. The
first column gives the posterior probability that a particular feature belongs in the represen-
tation. The second column displays the average saliency of a feature in the event that it is
included.

(a) FEATURE WEIGHT (b) FEATURE PROB. WEIGHT
2 4 8 0.444 3 6 9 0.79 0.326
2 4 8 0.70 0.385
o1z 0345 012 0.69 0.266
3 6 9 033l 23456 0.59  0.240
6789 0291 6789 057 0.262
23456 0.255 01234 0.42 0.173
1 3 5 7 9 0216 2 4 6 8 0.41  0.387
1234 0.214 1 3 5 7 9 040 0.223

45678 0.34 0.181
789 026 0.293
additive constant 1.00 0.075

45678 0.172
additive constant 0.148

9.2 Featural representations of countries

A second application is to human forced-choice judgments of the similarities between 16 countries
(Navarro & Lee, 2002). In this task, participants were shown lists of four countries and asked
to pick out the two countries most similar to each other. Applying the Bayesian model to these
data with the empirically-estimated value of 0 = 0.1 reveals that only eight features appear in
the representation more than 25% of the time. Given this, it is not surprising that the posterior
distribution over the number of features, shown in Figure 8(b), indicates that the modal number
of features is eight. The eight most probable features are listed in Table 2. The “approximate
expectation” method explains 85.4% of the variance, as compared to the 78.1% found by a
MAP feature approach (Navarro & Lee, 2002). The features are interpretable, corresponding
to a range of geographical, historical, and economic regularities. Moreover, while the features
recovered are very similar to those found by Navarro and Lee (2002), a comparison of the saliency
weights reported in that paper (the “NL-weight” row in Table 2) to the saliencies and inclusion
probabilities found here (the “prob.” and “weight” rows) reveals that there is considerable
uncertainty associated with some features but not others, a fact that was not evident in the
original paper. The first three features have 7 values that are very close to 1, whereas the other
features may or may not form part of the underlying mental representation.

9.3 Featural Representations of Letters

To provide a contrast with the last data set, in which there is considerably uncertainty associated
with several of the features, we analyzed a somewhat larger data set, consisting of kindergarten
children’s assessment of the perceptual similarity of the 26 capital letters (Gibson, Osser, Schiff,
& Smith, 1963). In this case, we used o = 0.05, and the Bayesian model accounted for 89.2% of
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Table 2: Featural representation of the similarity between 16 countries. The table shows the
eight highest-probability features extracted by the Bayesian ADCLUS model. Each column
corresponds to a single feature, with the associated probabilities and saliencies shown below.
The average weight associated with the additive constant is 0.035. The last line (NL-weight)
lists the saliencies for the various features in the representation reported by Navarro and Lee
(2002).

FEATURE
Italy Vietnam Germany Zimbabwe Zimbabwe Iraq Zimbabwe Philippines
Germany  China Russia  Nigeria Nigeria Libya Nigeria Indonesia
Spain Japan USA Cuba Iraq
Philippines  China Jamaica Libya
Indonesia  Japan Iraq
Libya
PROB. 1.00 1.00 0.99 0.62 0.52 0.36 0.33 0.25
WEIGHT 0.593 0.421 0.267 0.467 0.209 0.373  0.299 0.311
NL-WEIGHT  0.641 0.371 0.262 0.742 - 0.613 - 0.414

the variance in the children’s similarity judgments. The posterior distribution over the number
of represented features is shown in Figure 8(c). Table 3 shows the ten features that appeared in
more than 90% of samples from the posterior. The model recovers an extremely intuitive set of
overlapping features. For example, it picks out the long strokes in |, L, and T, and the elliptical
forms of D, O, and Q. Moreover, since the estimation method is sensitive to the full variation
in the posterior distribution, we are able to say with a very high degree of certainty that all 10
features should be included as part of the inferred representation.

10 Discussion

Learning how similarity relations are represented is a difficult modeling problem. Additive
clustering provides a framework for learning featural representations of stimulus similarity, but
remains under-used due to the difficulties associated with the inference. By adopting a Bayesian
approach to additive clustering, we are able to obtain a richer characterization of the structure
behind human similarity judgments. Moreover, by using nonparametric Bayesian techniques to
place a prior distribution over infinite binary feature matrices via the Indian buffet process, we
can allow the data to determine the number of features that the algorithm recovers. This is
theoretically important as well as pragmatically useful. As noted by Medin and Ortony (1989),
people are capable of recognizing that individual stimuli possess an arbitrarily large number of
characteristics, but in any particular context will make judgments using only a finite, usually
small number of properties that form part of our current mental representation. In other words,
by moving to a Bayesian nonparametric form, we are able to bring the ADCLUS model closer
to the kinds of assumptions that are made by psychological theories.

A number of avenues for extending this work present themselves. At a statistical level, placing
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Table 3: Featural representation of the perceptual similarity between 26 capital letters. The
table shows the ten highest-probability features extracted by the Bayesian ADCLUS model.
Each column corresponds to a single feature, with the associated probabilities and saliencies
shown below. The average weight associated with the additive constant is 0.003.

FEATURE
M | C D P E E K B C
N L G (0] R F H X G J
W T Q R u

PROB. 1.00 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.98 0.92
WEIGHT 0.686 0.341 0.623 0.321 0.465 0.653 0.322 0.427 0.226 0.225

hyperpriors over a, ¢ and A would seem to be a good idea, in order to infer their values from
data. It would also be useful to switch to an extended version of the IBP, in which the implied
prior over the number of features is decoupled from the implied prior over the number of objects
that possess a particular feature. It may also be fruitful to consider stochastic featural similarity
models that would allow one to infer whether two apparently-distinct features are simply noisy
versions of one another. In order to scale the approach to larger domains, the MCMC algorithm
could be augmented by using more advanced proposals (e.g., split-merge steps; S. Jain & Neal,
2004). Psychologically, the ability to perform reliable inference in the ADCLUS model suggests
that the model itself be extended to cover some of the more recent theoretical ideas in similarity.
For instance, it would allow explicit testing of the “size principle” (Tenenbaum & Griffiths, 2001),
which proposes on theoretical grounds that small features should be more salient on average. The
underlying model itself could be extended from a pure common features model, to cover broader
featural models (e.g., Tversky, 1977; Navarro & Lee, 2004) and spatial-featural hybrids (e.g.,
Navarro & Lee, 2003). Further extensions could allow more complex, structured representations
to be learned from data, in keeping with more recent theories for similarity and analogy (e.g.,
Gentner, 1983; Goldstone, 1994). In the meantime, however, the adoption of a nonparametric
Bayesian approach goes a long way towards making additive clustering a more reliable technique
for recovering mental representations from human behavior.
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