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Abstract

The firing rate of individual neurons depends on the firing frequency of their distributed synaptic 

inputs, with linear and non-linear relations subserving different computational functions. This 

paper explores the relationship between the degree of synchrony among excitatory synapses and 

the linearity of the response using detailed compartmental models of cortical pyramidal cells. 

Synchronous input resulted in a linear input/output releationship, while asynchronous stimulation 

yielded sub- and supra-proportional outputs at low and high frequencies, respectively. The 

dependence of input/output linearity on synchrony was sigmoidal and considerably robust with 

respect to dendritic location, stimulus irregularity, and alteration of active and synaptic properties. 

Moreover, synchrony affected firing rate differently at lower and higher input frequencies. A 

reduced integrate-and-fire model suggested a mechanism explaining these results based on spatio-

temporal integration, with fundamental implications relating synchrony to memory encoding.
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1. Introduction

A key aspect of neuronal computation consists of the integration of thousands of synaptic 

signals on the dendrites into a spiking pattern in the axon. Since the activity of each synapse 

in turn derives from the firing output of the afferent cell, neuronal integration can be 

expressed in terms of the output firing frequency as a function of the mean input synaptic 

frequency. If such input/output (I/O) relationship is linear, or proportional, the neuron works 

as an information relay, possibly amplifying or reducing the firing rate throughout the whole 

frequency range. If the I/O relationship is not proportional (e.g. sigmoidal, or logarithmic), 

the neuron can perform operations of pattern completion or discrimination depending on the 

input frequency (Guzowski et al., 2004; Leutgeb et al., 2004). In the typical non-linear I/O 

relation, as the rate of synaptic excitation increases, the neuron remains silent until a critical 

threshold is reached. Additional increase of input frequency results in a sharp rise of the 
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output frequency up to a saturation level (Gerstner and Kistler, 2002). Further increases of 

input frequency do not significantly alter this output plateau. Both proportional and non-

proportional I/O integration modes have been observed in the nervous system (Cash and 

Yuste, 1999; Polsky et al., 2004; Liang, 2006), highlighting the ability to perform different 

computational functions.

Network synchrony is also known to occur in the central nervous system at variable levels. 

Neural synchronization has been proposed to underlie sensory integration or “binding” in 

the visual system (Singer and Gray, 1995), and has been similarly investigated in the 

sensorimotor cortex (Fetz et al., 2000), olfactory system (Laurent et al., 1996), and 

hippocampus Harris et al., 2003), with a variety of putative mechanisms and functions (Ritz 

and Sejnowski, 1997). The balance between synchronous and asynchronous activity also 

plays an important role in several pathological conditions, most noticeably seizure-related 

(Netoff and Schiff, 2002; Dominguez et al., 2005). Cortical synchrony also changes with 

different phases of rhythmic oscillations (Buzsaki and Draguhn, 2004), which have been 

associated with distinct stages of memory encoding and retrieval in the hippocampus 

(Wallenstein et al., 1998). At the same time, converging evidence points to proportional and 

non-proportional input/output relationships as substrates of alternative modes of 

hippocampal information processing (Lee et al., 2004; Vazdarjanova and Guzowski, 2004). 

Thus, the effect of afferent synchrony on the proportionality of the I/O relationship can be 

an important coding principle in the network mechanisms underlying learning and memory.

It is experimentally challenging to measure synchrony accurately from large neuronal 

assemblies (Buzsaki, 2004; Guevara et al., 2005). The question as to how synchronous 

inputs act differently on a target neuron, however, has been explored computationally in 

several seminal studies. Most notably, Bernander et al. (1994) investigated the role of 

synaptic synchronization as a function of the number of inputs and the threshold to trigger 

an action potential in neocortical cells. Their findings were consistent with a balanced 

influence of the low-pass filter nature of dendritic membranes and the refractory period of 

voltage-dependent channels. Softky and Koch (1993) employed both simplified integrate-

and-fire models and more detailed, anatomically and biophysically realistic simulations to 

explore the potential mechanisms underlying the discharge patterns recorded from the visual 

cortex of awake monkeys. They concluded that temporal integration over distributed 

synaptic inputs implies regular firing, and fast active conductances or strong synchronization 

are necessary to match the experimental degree of firing variability.

Other studies used somatic injections of current patterns mimicking integrated synaptic 

barrages to examine the effect of synchrony on the output temporal variability (Stevens and 

Zador, 1998) and vice versa (Reyes, 2003). Nevertheless, systematically controlling synaptic 

synchronization over thousands of inputs on an individual neuron far exceeds current 

experimental techniques.

In our own simulations, we observed that fully synchrounous and asynchronous stimuli 

tended to elicit linear and logarithmic response curves, respectively (Li and Ascoli, 2006). 

However, this relation remains unexplored in more realistic conditions of intermediate and 

variable network synchronization. In order to investigate the effects of afferent synchrony on 
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the neuronal I/O relationship quantitatively, we employed computational modeling of 

membrane biophysics using compartmental simulations of anatomically detailed 

hippocampal pyramidal cells. Different patterns of excitation through one thousand synaptic 

inputs distributed on the dendritic trees elicited a broad span of axonal firing frequencies, 

corresponding to input/output relationships ranging from highly proportional to considerably 

non-proportional. Synchronization systematically lowered the threshold and reduced the 

gain of the response. This effect depended on the method of synchronization, but was robust 

with respect to several stimulation details and model parameters. These features have 

potential implications regarding the computational function of network synchrony. We 

further validated the generality of these findings and explore the possible mechanisms by 

using a simplified integrate-and-fire model.

2. Methods

The computational model of the hippocampal pyramidal neuron was the same as previously 

reported (Li and Ascoli, 2006). In particular, eight three-dimensional reconstructions of rat 

CA1 pyramidal cells (Ishizuka et al., 1995), freely available at http://NeuroMorpho.Org 

(Ascoli, 2006), were imported into the NEURON (v.5.7) simulation environment (Hines and 

Carnevale, 2001). The model scripts are publicly posted on ModelDB (http://

senselab.yale.med.edu). Membrane and synaptic properties were distributed without 

modification (Li and Ascoli, 2006), and are thus only briefly described here.

Passive parameters and the density of the sodium and delayed rectifier potassium 

conductances were uniform, with the exception of the somatic compartments, in which INa 

was doubled. The slow potassium and non-specific hyperpolarizing cation conductances 

were distributed non-uniformly in the soma, axon, and dendrites. In particular, their 

densities increased linearly with the distance from the soma along the main apical trunk. In 

most simulations, the same linear increase extended to the whole dendritic arborization, 

including basal, oblique, and distal tuft (“Type I” in Li and Ascoli, 2006). In a variation of 

the model (“Type C” in Li and Ascoli, 2006), these conductances only increased in the main 

apical trunk, but were kept constant in all other dendritic compartments, at the value of the 

corresponding point of attachment on the main trunk (or soma for the basal trees). A subset 

of simulations were based on a completely different model (Poirazi et al., 2003), which 

includes calcium conductances and a more comprehensive set of active channels. The 

corresponding NEURON scripts were also obtained from ModelDB and employed as 

previously described (Li and Ascoli, 2006).

In most simulations, 1000 excitatory synapses were randomly distributed within the first two 

thirds of the apical dendrites, corresponding to the stratum radiatum. When noted, synapses 

were located in the basal dendrites, corresponding to the stratum oriens. These dendritic 

regions receive excitatory input from the Schaffer collaterals originating in CA3 and the 

associational fibers from other CA1 neurons, respectively (Witter and Amaral, 2004). 

Synaptic kinetics were constant and corresponded in most simulations to the characteristics 

of AMPA channels. Synaptic conductances were increased quadratically with the distance 

from the soma, so to evoke a constant somatic EPSP upon stimulation of the main apical 

trunk. In the standard Type I model the same function was used throughout the dendritic 
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trees, while in the Type C model the synaptic conductances were kept constant outside of 

the main apical trunk (Li and Ascoli, 2006). Synaptic stimuli were generally delivered at 

regular intervals dictated by the input frequency. When noted as “irregular”, stimuli were 

temporally spread according to a Poisson distribution with the average interval 

corresponding to the input frequency. In a subset of simulations, slow synaptic conductances 

mimicking NMDA-like receptors were also included (Poirazi et al., 2003; Li and Ascoli, 

2006), with contributions of NMDA and AMPA currents in each synapse distributed 

according to a 4:1 ratio (Wei et al., 2000).

In fully asynchronous stimulation, each synapse was connected to an independent 

presynaptic neuron (implemented as a NetStim function in NEURON). The opposite extreme 

of fully synchronous configuration was obtained by simultaneously activating all synapses 

in locked phase (with one and the same NetStim call). We used two methods to create 

intermediate synchrony levels, even grouping and dominant recruiting. In the grouping 

method (Fig. 1C), the 1000 synapses are divided in equal groups that are asynchronous 

among themselves, but with synchronous synapses within each group. The grouping value 

signifies the size of the group, i.e. grouping of 1 and 1000 correspond to fully asynchronous 

and synchronous modes, while grouping of k entails 1000/k asynchronous groups (separate 

NetStim calls) of k synchronous synapses each.

In the recruiting method (Fig. 1D) a variable number of synapses is synchronized in one and 

the same master group, while all others remain independent. Recruiting values of 1 and 1000 

again correspond to fully asynchronous and synchronous modes, while recruiting of k entails 

one group of k synchronous synapses and 1000-k asynchronous individuals (1001-k NetStim 

calls). In both grouping and recruiting methods the selection of synapses within the dendrite 

is random, i.e. with no spatial clustering bias. Synaptic cross-correlation (Reyes, 2003) was 

measured at zero lag to compare the synchronization resulting from the same grouping and 

recruiting values.

The following method was used to characterize the proportionality of the input/output 

relationship at different levels of synaptic synchrony. The I/O functions in the fully 

synchronous and asynchronous conditions intersect at a unique input frequency (e.g. Fig. 

1A), which typically varies on a neuron-by-neuron basis. Input frequencies were evenly 

selected along a range corresponding to twice the cross-over value, so to yield an equal 

number of points (generally 8) on either side. The resulting activity rates (typically up to ~3 

Hz) are consistent with experimental observations (Barnes et al., 1990), which demonstrate 

considerably sparser firing in the hippocampus compared to other brain regions. The scatter 

of points relating input and output frequencies for a given level of synchrony was fitted with 

a line passing through the origin (Fig 1E). The absolute deviations of all data point from the 

linear regression, each normalized by the corresponding fitted value, were averaged. 

Proportionality was defined as the complement to unity of this average, and ranged between 

0 and 1 (1 being the perfectly proportional relationship): Proportionality = 1-(Σ|d-f|/f)/n, 

where d and f represent the measured and fitted output frequencies, respectively, and the 

sum is taken over all n input frequencies.
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Each cell was divided into isopotential compartments shorter than one tenth of the space 

constant at 100 Hz. Each compartment was further divided in three to ensure numerical 

convergence (Lazarewicz et al., 2002). All simulations were run with variable time step on a 

1.7 GHz Athlon under Linux (Red Hat 7.3). Finally, a single-compartment integrate-and-fire 

model was built with the same number of input synapses, a threshold of 50 active inputs, 

and an integration window of 20 ms. The bin size of 20 ms was found empirically among 

round values, but is consistent with the upper bound given by the time constant (28 ms). The 

threshold number of (50) synaptic inputs corresponded to the optimal model value (see e.g. 

Figure 2D), and is consistent with experimental estimates (Barnes et al., 1990) considering 

that synaptic background is included in this count. Fitting and statistical analyses were 

carried out with the freeware software Grace (http://plasma-gate.weizmann.ac.il/Grace).

3. Results

In the basic simulation setup, 1000 excitatory synapses randomly distributed on the apical 

dendrites of CA1 pyramidal cells (Fig. 1A inset) were activated at various frequencies and 

synchrony levels. Consistently with recent reports (Li and Ascoli, 2006), the dependence of 

output firing frequency on the stimulus rate was essentially a linear function through the 

origin when all synapses were activated synchronously, while the input/output relationship 

was considerably non-proportional in the fully asynchronous mode (Fig. 1A). In particular, 

at low input frequencies synchronous stimuli elicited a stronger response than asynchronous 

ones, but the inequality was reversed at higher input rates. This situation is illustrated by 

representative output voltage traces corresponding to two synchronous and asynchronous 

excitation frequencies (Fig. 1B). In the asynchronous mode, the response transitions from 

quiescence to intense spiking, whereas a more moderate change is observed with full 

synchrony. Note that output frequencies upon synchronous stimulation, resulting from bursts 

of spikes, are averaged over multiple cells and are not necessarily reflected by individual 

neuronal traces.

In order to quantify the proportionality of the I/O relationship at intermediate levels of 

synchrony (Fig. 1C, D), we computed the deviation of the output firing rate from the linear 

regression (through the origin) of the input frequency (Fig. 1E), as described in the Methods. 

Proportionality, or “linearity”, followed a sigmoidal trend when plotted against a logarithmic 

grouping axis, with similar behavior if irregular excitation patterns were used instead of 

constant inter-stimulus intervals. The variability across different neuronal reconstructions 

was extremely small, and the average over eight neurons was well fitted by an analytical 

function (Fig. 1F). The results remained almost identical when switching the distributions of 

active and synaptic conductances from Type I to Type C (see Methods) and/or when moving 

the synaptic location from the apical to the basal trees (Table 1).

Using the dominant synaptic recruiting protocol to increase synchrony (see Methods and 

Fig. 1C, D) also gradually linearized the I/O relationship. Similarly to the grouping method, 

recruiting results changed only minimally among neurons and model types, and with respect 

to synaptic location and stimulus regularity (not shown). However, the dependence of I/O 

proportionality on recruiting differed from that on grouping (Table 1). In order to carry out a 

quantitative comparison, the amount of synchronization was computed as function of both 
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grouping and recruiting by measuring synaptic input cross-correlation. Synchrony was 

linearly dependent on grouping but sub-linearly on recruiting (Fig. 2A). As shown in Fig. 

2B, a greater amount of synchrony was typically necessary with dominant recruiting than 

with even grouping to achieve the same level of I/O proportionality. In particular, synaptic 

grouping attained full proportionality with 10% synchrony, compared to 35% with the 

recruiting method.

The effect of synchrony on neuronal response was further investigated as a function of both 

grouping and recruiting. At low input frequencies, the dependence of output firing rate on 

grouping was bell-shaped with a clear maximum for most neurons around a grouping value 

of 50 (Fig. 2C). At higher input frequencies, the output firing rate tended to decrease across 

the whole range of grouping values. The transition is particularly clear when normalizing 

data at the value corresponding to the optimal low-frequency grouping value (Fig. 2D). The 

effect of recruiting on output firing also switched with synaptic frequency. At low input 

frequencies, the output firing rate increased to a plateau, whereas at high input frequencies it 

decreased with recruiting (Fig. 2E). As a consequence, there was one input frequency at 

which the output firing rate was essentially independent of recruiting value. This effect is 

highlighted by normalizing data to the high-recruiting plateau values (Fig. 2F). The input 

frequency that made firing rate constant with respect to recruiting was the same at which a 

clear output frequency maximum and optimal grouping value disappeared (~1.8 Hz). On a 

neuron-by-neuron basis, this frequency corresponded to the cross-over value between 

proportional and non-proportional I/O curves in response to fully synchronous and 

asynchronous stimulation (Fig. 1A).

The optimal grouping value at low input frequencies could be interpreted as a firing 

threshold for the neuron. Spatial summation of synaptic inputs progressively increases with 

synchrony up to the threshold. Any further increase in synaptic synchrony beyond this point 

reduces the opportunity for temporal summation. In order to test this simple mechanism, we 

built a reduced integrate-and-fire model consisting of a single compartment receiving the 

same 1000 synapses. Both theory (Gerstner and Kistler, 2002) and experiments under 

physiological conditions (Shadlen and Newsome, 1994) set an upper limit to the temporal 

integration window in the passive membrane time constant. In our multi-compartment Type 

I and Type C models this parameter (computed from the passive properties, which are the 

same for all the eight cells) is 28 ms, in good agreement with empirical data for hippocampal 

pyramidal cells (Li and Ascoli, 2006). Therefore we chose a value of 20 ms as the temporal 

summation window in the reduced integrate-and-fire model. In other words, we directly 

computed output frequency as the number of 20 ms time bins with at least 50 active synaptic 

inputs in a 1 s period.

This simple framework nicely reproduced the firing rate trends as a function of grouping at 

various input frequencies (similar to Fig. 2D). The main features of the dependence of 

output firing rate on recruiting were also captured, namely the increase at low input 

frequencies, decrease at high frequencies, and the plateau reached with the recruitment of 

400 or more synapses (similar to Fig. 2F). Moreover, the behavior of the integrate-and-fire 

model also reflected the effect of synchrony on proportionality, with the greater efficiency 
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of even grouping compared to dominant recruiting in linearizing the I/O relationship (similar 

to Fig. 2B).

Finally, we checked the robustness of the main distinction between the effects of 

synchronous and asynchronous excitation on the I/O relationship in light of known dendritic 

non-linearities in CA1 pyramidal neurons and over a broader stimulus range (not shown). In 

particular, slower NMDA and calcium conductances can contribute substantially to post-

synaptic response. In one additional set of simulations, synaptic response was modeled with 

an excess of NMDA-like conductance relative to the faster AMPA contribution (Wei et al., 

2000). Moreover, a further suite of simulations was based on an alternative model of CA1 

pyramidal cell biophysics, which included calcium and a more comprehensive collection of 

active channels (Poirazi et al., 2003). The results obtained with the main model were 

essentially unchanged by the adoption of this altered compendium of membrane properties 

and were qualitatively consistent with the addition of NMDA currents in both the fully 

asynchronous and synchronous cases (Li and Ascoli, 2006). These sets of simulations were 

also extended to a higher input frequency, confirming the non-proportional, saturating I/O 

relation in response to asynchronous stimuli as opposed to the proportional, non-saturating 

response to synchronous excitation. In particular, the data points for all three models were 

better fitted by logarithmic than by linear functions in the asynchronous case, while the 

opposed relation held in the synchronous case (Li and Ascoli, 2006).

4. Discussion

A major distinction of our results from previous investigations consists of the detailed 

analysis of how the input/output relation gradually shifts from non-proportional to 

proportional as the synchrony of the stimulation increases. In particular, we show that this 

sigmoidal dependence is quantitatively robust with respect to dendritic and synaptic 

conductances as well as to synaptic regularity and location (Fig. 1F and Table 1), but clearly 

varies with the mechanism of synchronization (grouping vs. recruiting: Fig. 2A,B). 

Additional novel findings include the existence of a “resonant” intermediate grouping 

synchrony that maximizes output rate (Fig. 2C) and of a “cross-over” input frequency at 

which output rate is independent of recruiting synchrony (Fig. 2F).

With asynchronous stimulation, the input-output function is flatter than a proportional 

response (a line through the origin) at low excitation levels, but steeper at high excitation 

levels. When all stimuli are synchronized, the input-output function is fully proportional. 

The intersection point between the linear and non-linear I/O relationships occurs at a 

transition frequency above which output firing rate decreases with synchrony. Below this 

input frequency, output firing rate increases with dominant recruiting of synapses and 

reaches a maximum at an optimal level of even grouping. Noticeably, the size of individual 

assemblies in vivo varies broadly, encompassing the entire range used in this study (Eytan 

and Marom, 2006).

That even an integrate-and-fire model qualitatively reproduced the main features of the 

dependence of output frequency on synaptic rate and synchrony suggests an intuitive 

mechanistic explanation based on spatio-temporal integration and a firing threshold. Over a 
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large number of synapses, synchronous inputs guarantee suprathreshold summation, but also 

imply lack of output between successive stimuli. This deterministic response results in a 

flatter I/O curve than in the asynchronous case, whereas a higher level of synaptic activity is 

required to reach threshold, but a steeper rate of increase (up to saturation) is ensured by the 

uniform temporal distribution of the inputs. This simple framework also directly accounts 

for the coincidence of the crossover point between the proportional and non-proportional I/O 

relations and the critical input frequency described above. This coincidence is due to the 

sub-proportional (flatter) and supra-proportional (steeper) responses to lower and higher 

asynchronous stimuli. At the cross-over point, the asynchronous response is essentially 

proportional and corresponds to the output in the synchronous case. The constant output 

frequency at all intermediate levels of synchrony is a direct extension of the two extremes.

In the rodent hippocampus, network synchrony decreases by an order of magnitude during 

theta rhythms (Harris et al., 2003), when the animal is engaged in active exploration, 

involving both encoding and retrieval of spatial and episodic memories (Wallenstein et al., 

1998). These two functions might occur in separate phases of each theta oscillation, namely 

information encoding during the trough and retrieval during the peak (Hasselmo, 2005). Our 

findings offer an elegant cellular mechanism for such separation. The theta trough 

corresponds to reduced firing and thus low input frequency for individual cells. In the 

asynchronous activity characterizing theta, this implies a regime of sub-linear integration, 

which is consistently with a function of pattern completion (Guzowski et al., 2004). 

Conversely, the theta peak, corresponding to higher input frequencies, is linked by our 

results to a supra-linear response of pyramidal cells, a condition sufficient and necessary for 

pattern discrimination (Treves, 2004). A key aspect of sub- and supra-linear regimes is the 

slower or faster growth than the proportional response (line through the origin), as in the 

asynchronous curves.Thus, pattern completion and separation, entailing the distinct 

encoding and retrieval elements of memory processing, could be subserved at the single-cell 

level by the non-linear input/output relationship resulting from asynchronous excitation.

Highly synchronous activity is characteristic of the irregular, large amplitude oscillations 

observed during non-theta behavioral states, such as grooming, rest, and non-REM sleep. It 

has long been noted that these “sharp waves” are ideally suited to underlie long term 

potentiation (Buzsaki, 1989), providing an exquisite mechanism for memory consolidation if 

the firing probability of each neuron is proportional to its recent activity (Samsonovich and 

Ascoli, 2005). Thus, the I/O relationship resulting from synchronous excitation could 

provide a cellular correlate for both spatial and episodic learning. Moreover, while we only 

considered absolute synchronization (i.e., zero-lag synaptic cross-correlation), temporal 

phase-locking can also change gradually, implying an added dimension of control (Svirskis 

and Rinzel, 2000). In particular, ~10ms lags could be functionally significant, because of the 

AMPA time constant. An important element of neuronal complexity missing in our 

simulations is synaptic inhibition. This omission is apparent upon comparison of the input 

and output frequency ranges, which differ by an order of magnitude (Fig. 1A).

The simultaneous use of somatic and dendritic recording and multisite glutamate uncaging 

has recently shown that dendritic integration in CA1 pyramidal cells is linear in response to 

asynchronous or spatially distributed synaptic excitation (Gasparini and Magee, 2006). 
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Conversely, temporally and spatially converging synaptic activity is integrated non-linearly 

by the dendrite on which the synapses are clustered, resulting in a precisely timed somatic 

action potential. On the surface such results may appear to contradict our findings. However, 

these observations involve the subthreshold-to-single-spike regime of neuronal activity, and 

relate to the fundamental non-linearity (all-or-none-behavior) of action potentials. In 

contrast, our excitation range, corresponding to a realistic but experimentally 

unapproachable number of inputs, reflects the “steady-state” activity measured by average 

firing frequency (Li and Ascoli, 2006). Moreover, the constraint of synaptic clustering 

necessary for non-linearity in the above study constitutes an opposite condition to our spatial 

distribution of synapses throughout the dendritic tree, implying an additional layer of local 

computation (Migliore et al., 2005).

Interestingly, feedforward excitation in vitro increases network synchrony in successive 

neuronal layers (Reyes, 2003). Our results predict a gradual reduction of threshold and gain 

of response as activity progresses in these architectures. When suitable experimental data 

become available for a direct comparison, our simulations could be extended to the more 

natural condition of nonuniform input frequencies across synapses. In addition, synchrony in 

vivo is likely to reflect a combination of dominant synaptic recruiting and even grouping. 

The ability of the computational approach to separately analyze these “pure” 

synchronization modes uncovered their different capacity to linearize the I/O relation while 

suggesting a general and fundamental link between network synchrony and neuronal 

response.
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Fig. 1. 
A) Input-output relation of one neuron with fully synchronous or asynchronous inputs. Inset: 

neuronal morphology and the synaptic distribution area on the apical tree (scale bar: 100 

μm). B) Axonal voltage recordings with asynchronous and synchronous inputs at two 

representative frequencies. C) Raster plots showing 1000 synapses activated with the 

grouping synchronization method at the value of 50 (i.e., 20 groups of 50 synapses each). D) 
Recruiting method with recruiting value of 400. E) Proportionality is expressed as a function 

of the deviation of the output firing rate from the linear regression (through the origin) of the 
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input frequency (see Methods). F) Increase of I/O proportionality with the grouping value 

(apical stimulation, Type I model). Mean and standard error over 8 cells fitted by a 

sigmoidal function (see Table 1 for formula and parameter values).
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Fig. 2. 
Effect of synaptic synchrony on I/O (apical synapses, regular stimulation). A) Amount of 

synchronization (measured by synaptic cross-correlation) as a function of grouping and 

recruiting values. B) Proportionality with intermediate levels of grouping and recruiting 

(Type I model) replotted versus synchrony values obtained from Fig. 2A. C) Representative 

single-neuron data relating output firing rate to synchrony: output frequency vs. grouping at 

various synaptic input levels. D) Data from panel C normalized to unity at grouping value of 
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50. E) Output frequency vs. recruiting at various synaptic input levels. F) Data from E 

normalized to unity at recruiting value of 800.
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Table 1

Parameters of the best fitting sigmoid function y=A+B/[1+10(C-xD)] relating the 8-neuron average of 

proportionality (y) to the logarithm of grouping or recruiting (x) with different models, (Type C and Type I), 

synaptic distributions (apical and basal dendrites), and stimulus patterns (regular and irregular). No 

statistically significant differences are found within a given synchronization method.

Parameter → Model ↓ A B C D

Apical, Grouping Type C, Regular 0.57 0.42 1.84 1.63

Apical, Grouping Type I, Regular 0.56 0.43 1.80 1.58

Basal, Grouping Type C, Regular 0.59 0.40 1.27 1.30

Basal, Grouping Type I, Regular 0.58 0.40 1.85 1.71

Apical, Grouping Type I, Irregular 0.60 0.38 1.79 1.60

Apical, Recruiting Type C, Regular 0.48 0.83 2.96 1.08

Apical, Recruiting Type I, Regular 0.49 0.83 2.96 1.07
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