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Abstract
Population rate or activity equations are the foundation of a common approach to modeling for neural
networks. These equations provide mean field dynamics for the firing rate or activity of neurons
within a network given some connectivity. The shortcoming of these equations is that they take into
account only the average firing rate while leaving out higher order statistics like correlations between
firing. A stochastic theory of neural networks which includes statistics at all orders was recently
formulated. We describe how this theory yields a systematic extension to population rate equations
by introducing equations for correlations and appropriate coupling terms. Each level of the
approximation yields closed equations, i.e. they depend only upon the mean and specific correlations
of interest, without an ad hoc criterion for doing so. We show in an example of an all-to-all connected
network how our system of generalized activity equations captures phenomena missed by the mean
field rate equations alone.

1 Introduction
Modeling the brain is confounded by the fact that there are a very large number of neurons and
the neurons are heterogeneous and individually complex. Given current analytical and
computational capabilities, we can either study neuronal dynamics in some biophysical detail
for a small or medium set of neurons or consider a large population of abstract simplified neural
units. We then can only extrapolate to the desired regime of large numbers of biophysical
neurons. In particular, there is a dichotomy between network models that incorporate Hodgkin-
Huxley or integrate-and-fire spiking dynamics and models that only include the rate or activity
of neural units. While the rate description has yielded valuable insights into many neural
phenomena it cannot describe physiological phenomena thought to be important for neural
processing such as synchronization, spike-time dependent plasticity or any correlated activity
at the spike level. Likewise, it is difficult to analyze or simulate a large network of spiking
neurons. Our goal is to derive an intermediate description of neural activity that is complex
enough to account for spike level correlations yet simple enough to be amenable to analysis
and numerical computation for large networks.
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Rate or activity equations have been a standard tool of computational and theoretical
neuroscience, early important examples being the work of Wilson and Cowan, Cohen and
Grossberg, Amari and Hopfield [Wilson and Cowan, 1972, Wilson and Cowan, 1973, Amari,
1975, Amari, 1977, Hopfield, 1984, Cohen and Grossberg, 1983]. Models of this type have
been used to investigate pattern formation, visual hallucinations, content addressable memory
and many other questions [Ermentrout and Cowan, 1979, Hopfield, 1984, Ermentrout, 1998,
Bressloff et al., 2002, Coombes, 2005]. Naturally, these equations are so called because they
describe the evolution of a neural activity variable often ascribed to the firing rate or synaptic
drive of a population of interacting neurons [Ermentrout, 1998, Gerstner, 2000]. These
equations are considered to represent the neural dynamics averaged over time or population of
a more complicated underlying process. In general, these activity equations make an implicit
assumption that correlated firing is unimportant. They are a “mean field theory” which capture
the dynamics of the mean firing rate or activity that is independent of the influence of
correlations, which in some cases may alter the dynamics considerably. As an example, the
effects of synchrony, which have been proposed to be important for neural processing [Gray
and Singer, 1989, Beshel et al., 2007] are not included. Here, we give a systematic prescription
to extend rate models to account for these effects.

An analogy for our problem and approach can be made to the field of equilibrium statistical
mechanics. The statistics of such systems (e.g. the Ising model) in thermal equilibrium are
described by a partition function, which is an integration over all configurations available to
the system. For the Ising model this refers to all possible configurations of the individual spins.
The partition function is akin to the generating function for a statistical distribution from which
the moments or cumulants can be obtained. For the Ising model the first moment corresponds
to the mean magnetization and the second moment describes the mean correlation between the
spins. The linear response of the system is the magnetic susceptibility, which describes the
reaction of the system to an external input. In general the partition function cannot be summed
or integrated explicitly. However, these moments can be obtained perturbatively by using the
method of steepest descents to approximate the partition function. This then yields a systematic
expansion and the lowest order is called mean field theory, since all higher cumulants are zero.
By computing the expansion to higher order, the effects of correlations and fluctuations can
be included.

This procedure requires full knowledge of the underlying microscopic theory that is to be
averaged over. In neuroscience, the underlying model is not completely known; it would
require full knowledge of the different types of neurons, their membrane and synaptic kinetics,
and their synaptic connectivity. However, given a particular mean field theory, one can ask
about the minimal constraints this theory places upon the microscopic theory and its asymptotic
expansion. Thus, although the full microscopic theory cannot be reconstructed, by constraining
the expansion, the mean field theory can dictate the minimal structure of any extension of a
set of rate equations. In this paper, we consider a well known neural rate equation and deduce
the minimal structure we expect for a consistent extension which includes correlations.

Buice and Cowan [Buice and Cowan, 2007] previously adapted a path integral formalism used
in nonequilibrium statistical mechanics [Doi, 1976a, Doi, 1976b, Peliti, 1985] to analyze the
dynamics of a Markov model for neural firing. They derived a generating functional (expressed
as an infinite dimensional path integral), which is specified by an “action” for the complete
dynamical distribution of the model and showed that the mean field theory for that system
corresponded to a Wilson-Cowan-type rate equation. They then analyzed the scaling properties
for the correlations near criticality. They also showed how mean field theory could be corrected
by using steepest descents to generate a systematic expansion that describes the effect of
correlations. Here, we show that by taking explicit averages of the Markov model a moment
hierarchy can be constructed. Each equation in the moment hierarchy is coupled to higher
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moments in the hierarchy. The hierarchy can be made useful as a calculational tool for the
statistics of the dynamics if it can be truncated. We show that the moment hierarchy and the
generating functional are equivalent and that the equations of the hierarchy are the “equations
of motion” of the action in the generating functional. The truncation condition for the
perturbation series of the path integral is also a truncation condition for the hierarchy. This
provides for both a compact description of network statistics and a natural truncation or closure
condition for a moment hierarchy. We can also show using the path integral formalism that the
Markov model is a natural minimal extension of the Wilson-Cowan rate equation.

Approaches to neural network modeling using statistical mechanics are not new [Hopfield,
1982, Hopfield, 1984, Peretto, 1984, Amit et al., 1985]. Those works were largely concerned
with models adhering to detailed balance, whereas we make the explicit assumption that neural
dynamics admits an absorbing state that violates detailed balance. In the absence of internal
activity and external stimulation, there will be no activity in the network. Other studies using
a stochastic description of neural dynamics have considered the neurons in a background of
Poisson activity with disorder in the connectivity [Amit and Brunel, 1997a, Amit and Brunel,
1997b], or considered neural activity as a renewal process [Gerstner, 1995, Gerstner, 2000,
Gerstner and Kistler, 2002]. Van Vreeswijk and Sompolinsky [1996,1998] demonstrated that
disorder in network activity can arise purely as a result of disorder in the connectivity, without
stochastic input. Kinetic theory and density approaches are investigated in [Nykamp and
Tranchina, 2000, Cai et al., 2004, Ly and Tranchina, 2007] and mean field density approaches
to the asynchronous state appear in [Abbott and van Vreeswijk, 1993, Treves, 1993]. [Golomb
and Hansel, 2000] study synchrony in sparse networks via a reduction to a phase model. Fokker-
Planck approaches for networks appear in [Fusi and Mattia, 1999, Brunel and Hakim, 1999,
N., 2000, Brunel and Hansel, 2006]. Responses of single neurons driven by noise appear in
[Plesser and Gerstner, 2000, Salinas and Sejnowski, 2002, Fourcaud and Brunel, 2002, Soula
et al., 2006]. Approaches to correlated neural activity including finite size effects appear in
[Ginzburg and Sompolinsky, 1994, Mattia and Del Giudice, 2002, Soula and Chow, 2007, El
Boustani and In [El Boustani and Destexhe, 2009], the authors develop a moment hierarchy
for a Markov model of asynchronous irregular states of neural networks which is truncated
through a combination of finite size and a scaling condition. Our work extends the results of
[Ginzburg and Sompolinsky, 1994] by providing the systematic higher order expansion without
explicitly requiring the consideration of the rest of the hierarchy. We also provide conditions
for the truncation of the expansion and consider the network response to correlated input. Our
expansion is not a finite size expansion, although it can reduce to a finite size expansion under
certain conditions (such as normalized all-to-all connectivity in the network).

In section 2, we revisit the original Wilson-Cowan framework and propose a Markov model
that has the minimal stochastic dynamics to produce the Wilson-Cowan equations. This will
be more rigorously justified in section 4. Section 3 presents the derivation of a moment
hierarchy for this Markov model. After truncating, we provide a posteriori justification for the
truncation. It will be seen in section 4 that the validity of this truncation was in fact natural and
did not require ad hoc assumptions. The truncation conditions turn out to be related to the
proximity to a bifurcation point as well as the extent of connectivity in the network. We also
make more precise the sense in which our Markov model is “minimal” by introducing the path
integral formulation. The field theory formalism which appears in this paper arose in the context
of reaction-diffusion problems. See [Janssen and Tauber, 2005, Tauber et al., 2005] for reviews
of this formalism applied to reaction-diffusion and percolation processes. We demonstrate a
simple example all-to-all system in Section 5 and show some simulation results.

2 Rate equations reconsidered
We consider a population rate equation of the form
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(1)

where a(x, t) is a measure of local neural “activity” at location x ∈ ℝd, α is a decay constant
(often equated with the membrane time constant or a synaptic time constant), f(s) is the firing
rate or gain function describing how input affects the activity, I(x, t) is a time dependent external
input to location x, and w(x, y) is a weight function describing how a neuron at location y affects
neurons at location x. Equation (1) is the standard form of rate equation seen in the Wilson-
Cowan equations [Wilson and Cowan, 1972, Wilson and Cowan, 1973]. While we use this
form in our paper, our results can be adapted to any other type of rate or activity equation. The
exact nature of the activity a(x, t) is open to interpretation [Gerstner, 1995, Ermentrout,
1998]. It could be envisioned as the time average, population average or ensemble average of
neural firing or synaptic activity. In any case, the picture is that of some underlying process
whose degrees of freedom have been marginalized to generate an effective theory with simpler
variables.

We imagine that the typical rate equation is produced by some marginalization process over
both disorder and extra degrees of freedom. Hence, it may be possible to derive a generating
function for the statistics of the marginalized process. The lowest order in the steepest descent
expansion of the generating function describes “mean field theory”, which gives the rate
equation. Since the operation of marginalization is dissipative, we cannot recreate the
underlying microscopic process exactly with only the rate equation alone. However, the mean
field theory places constraints upon the structure of the dynamics, enabling us to investigate
the structure of higher order statistics implied by the structure of mean field theory. In the
original derivation by Wilson and Cowan [Wilson and Cowan, 1972, Wilson and Cowan,
1973], the activity variable was presumed to describe the fraction of neurons firing per unit
time within some region of the brain. There are two main features of this interpretation which
bear emphasizing. First, the rate equations were originally understood to be equations providing
the dynamics of the probability that a neuron at x will fire at time t. There is therefore an implied
underlying probabilistic model. Second, the probability a(x, t) applies to all neurons within
some region of the brain, not just a single neuron. Thus, there is a spatial averaging component
implicit in the equations. The original Wilson-Cowan rate equations thus described the
dynamics of the probability for a neural aggregate in the brain. Another feature implicit in the
Wilson-Cowan equations is that these probabilities are independent for each neuron. This
implies that the Wilson-Cowan picture is one in which neurons fire with Poisson statistics with
firing rate determined by a(x, t), a picture supported by neural recordings [Softky and Koch,
1993].

Given this perspective, one might consider what processes may underly rate equations. One
route is to treat the fundamental, small-scale dynamics as a probabilistic process, for example
a Markov process. In this case, the basic description for neural activity will be provided by a
master equation governing the evolution of probabilities for different neural configurations.
This route obscures the source of uncertainty in neural activity in favor of directly modeling
the probabilistic activity. This tactic has been used to model the so-called asynchronous
irregular states seen in some neural models [Van Vreeswijk and Sompolinsky, 1996, El
Boustani and Destexhe, 2009]. Another route would be to employ the strategy of kinetic theory
[Nicholson, 1992, Ichimaru, 1973] and define a continuity (i.e. Klimontovich) equation for the
probability density of a network of deterministic neurons. For an example of this approach
applied to coupled oscillators, see [Hildebrand et al., 2006, Buice and Chow, 2007]. In that
work, the probabilistic aspects of the model arise from the distribution of driving frequencies
and initial conditions. Ultimately, the difference in the two approaches is the origin of
stochasticity, i.e. whether it is implicit in the dynamics of the neurons or an emergent property
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of the interaction of deterministic neurons (e.g. chaos). In either case, the final product is an
effective stochastic dynamical system. In this paper, we will follow the approach of assuming
an underlying probabilistic model given by a master equation, so that any emergent chaos has
already been absorbed into the dynamics. We then seek a minimal stochastic model that will
produce the Wilson-Cowan rate equation at the mean field level. We can then formulate
equations governing the fluctuations of this model. In this section we motivate such a minimal
model qualitatively, leaving a more rigorous approach for section 4.

Our primary interest is in tracking the statistics of active neurons. A simple master equation
whose mean field statistics for neural activity is represented by the Wilson-Cowan rate
equations is given by

(2)

where P(n⃗, t) is the probability of the network having the configuration described by n⃗ = {n1,
n2, ⋯} at time t, and ni is the number of active neurons at location i. Neurons relax back to the
inactive or quiescent state with rate α, which appears as a decaying transition in the master
equation. Configurations n⃗i+ and n⃗i− denote the configuration n⃗ where the ith component is
ni ± 1, respectively. The rate at which a neuron at location i becomes active is given by the
firing rate or gain function Fi(n⃗), which is an implicit function of the weight function wij and
external inputs Ii. One of the crucial elements of the ensuing calculation is making the
connection between the gain function Fi(n⃗), which appears in (2) and f(Ii(t) + Σj wijnj), which
appears in (1).

In general, we cannot solve for P(n⃗, t) in (2) explicitly. One strategy is to derive an expansion
of P(n⃗, t) in terms of its moments 〈ni(t)nj(t′)nk(t″) ⋯〉 where the expectation value is over all
statistical realizations of the Markov process. The first moment

(3)

is a measure of the mean activity in the network. We obtain an equation for ai(t) by multiplying
equation (2) by ni and taking the sum over all configurations n⃗. However, this equation is not
closed (i.e. it depends upon the second and possibly higher moments). An equation for the
second moment can be similarly constructed by multiplying (2) by ninj and summing over all
configurations. The resulting equation will depend on the third and higher moments.
Continuing this process will result in a moment hierarchy with as many equations as there are
locations, which could be infinite. In general no finite subset of this hierarchy is closed. This
means that if we wish to have a closed set of equations then we need to make some
approximation which allows us to truncate the hierarchy.

The simplest way to close or truncate the moment hierarchy is to assume that all the higher
order moments factorize into products of ai(t). This is the naive mean field assumption where
all cumulants are zero. For example, the second cumulant (i.e. variance) 〈ni(t)nj(t′)〉 − ai(t)
aj(t′) is set to zero. For our master equation (2), this assumption yields (see the computation in
the next section)
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(4)

which is similar in form to the rate equation (1) for a discrete domain and with the firing rate
function given by Fi(a→). However, the fact that statistics in the brain are observed to be near
Poisson is devastating for this naive mean field assumption because every cumulant is
comparable to the mean, implying any such truncation of the resulting hierarchy is not
justifiable.

Here, we describe an alternative means of truncating the hierarchy consistent with near Poisson
firing statistics. In this case, we observe that the equation for ai(t) can be written as

(5)

where g is some functional dependent upon the higher moments in the hierarchy. In order to
choose a reasonable approximation and get a finite system of closed equations, we must identify
a finite set of higher moments in terms of which we can express the remaining moments. We
are guided by the indication that neuron firing statistics are near Poisson. Not coincidentally,
the solution to the master equation in the case where the gain function Fi is constant or linear
is exactly Poisson with mean rate (i.e. stochastic intensity) determined by the Wilson-Cowan
rate equation. In order to truncate the hierarchy, we perform a change of variables to measure
the deviations of each cumulant from the value under Poisson statistics. This new hierarchy is
truncatable, as will be demonstrated a posteriori. From the perspective of solving the master
equation, this new hierarchy is the natural one because the underlying statistical model is a
point process.

The moment hierarchy approach does not make any approximation. It is a change of variables
from the distribution P(n⃗, t) to moments of that distribution. The approximation arises when
we truncate this hierarchy in order to render the equations tractable. The simplest truncation
is mean field theory. The first order corrections to mean field theory are given by truncating
at the next order. Truncation of the moment hierarchy requires some justification. We will
demonstrate below that this justification in the neural case may be provided by the large spatial
extent of neural connectivity and the distance of the system from a bifurcation.

3 Truncation of the Moment Hierarchy
We will derive a moment hierarchy from our master equation (2) and then show how it can be
truncated. To get an equation for the first moment ai(t), we multiply the master equation (2)
by ni and sum over all configurations n⃗:

(6)

The first two terms on the right hand side simplify to
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(7)

The first equality results from re-indexing the summation over nk from (0, ∞) to (1, ∞). We
leave the summation indicated as over all configurations n⃗ because the factor of nk prevents
the 0 term from contributing. We have also separated out the terms where i = k; the only term
which survives is one of these. Note that we have made no approximations thus far. The terms
involving the function Fi(n⃗) take the form

(8)

Unlike the first term, we cannot directly represent this term as a function only of ai(t), due to
its nonlinear nature. The equation for the mean is therefore:

(9)

where 〈Fi(n⃗)〉 will include higher order moments.

We continue by constructing an equation for the second moment

(10)

and third moment

(11)

to obtain

(12)
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(13)

(14)

Since we expect solutions to be near Poisson, we transform the hierarchy to describe the
departure of moments from Poisson statistics. For a Poisson distribution, the cumulants are all
equal to the mean of the distribution. Hence, we introduce what are called “normal ordered
cumulants”, which measure the “deviations” of the cumulants from Poisson values. The first
normal ordered cumulant is the same as the first moment ai(t). The next two are given by

(15)

and

(16)

The normal ordered cumulants can be computed using a recursive algorithm. The algorithm
involves replacing all moments Nijk⋯ with “normal-order-corrected” moments recursively by
subtracting terms with coincident or “contracted” indices which reduce the order of the
moment. For example, the ordinary second cumulant is simply Nij −aiaj. To compute the normal
ordered version, we replace the moments appearing in the expression with the normal-ordered-
corrected forms, i.e. set Nij →Nij −aiδij. The term subtracted results from the contraction of the
i, j indices, i.e. Nij →Niδij = aiδij. The third cumulant is more complicated but follows the same
strategy. The important thing to note here is that the higher moments must be independently
corrected for each group of contracted indices. The ordinary third cumulant is given by

(17)

To obtain the normal ordered cumulant, we first make the replacement Nijk → Nijk −Nijδjk
−Nikδij −Njkδik −aiδijδjk. We then must correct for all appearances of the second moment Nlm
resulting in (16). This algorithm systematically removes the underlying Poisson contributions
(at all tensor ranks) and leaves us with the normal ordered cumulants. For a Poisson distribution,
all Cijk⋯ = 0 except the first, ai. An alternative rationale for normal ordering will appear in Sec.
4.

Transforming the first three equations of the hierarchy (9), (12), and (13) yields

(18)
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(19)

(20)

where we must re-express the expectation values involving Fi in terms of the normal ordered
cumulants.

Since Fi(n⃗) is defined in terms of the vector of active neuron numbers, n⃗, its expectation value
will be naturally expressed in terms of the moments, Nijk⋯, as given by the Taylor expansion
of F(n⃗).

(21)

We have implicitly defined the notation that  is the derivative of Fi with respect to nj, nk,
⋯. Note that this expansion only applies to the expectation value of Fi(n⃗). We need to re-express
this series as an expansion in terms of the normal ordered cumulants. This transformation of
variables will rearrange the terms and result in a new series with new coefficients that sums to
the same result as the original series. For example every term proportional to Nijk⋯ will
contribute a term proportional to aiajak⋯ to the normal ordered cumulant expansion. This
means that we can write the expansion in the form

(22)

as we would expect. However, there are also contributions from the normal ordering
corrections. The simplest are those which arise due to every index being coincident or
contracted at each order. This produces a term linear in ai. These corrections form the series

(23)

where by Fjm we mean the mth derivative of F(n⃗) with respect to nj. Were Fi(n⃗) a polynomial
this procedure would truncate at the highest order of the function. However, for an arbitrary
general function these corrections quickly become unwieldy as one proceeds through the orders
of the expansion to include corrections to the terms that go as aiaj, aiajak⋯.

Our perspective has been to interpret the Wilson-Cowan equation as describing the mean field
of some Poisson process with activating and decaying transitions. Hence, the Wilson-Cowan
equation should be the mean field solution of the normal-ordered cumulant hierarchy (18).
However, the gain function in the Markov equation is not the same as the gain function in the
Wilson-Cowan equation. The Wilson-Cowan gain function is the normal ordered version of
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the Markov gain function. Thus, in order for the Wilson-Cowan gain function to have the form
of f(si), where si = Σiwijaj+ Ii(t) we assume that this re-summation produces

(24)

where and the higher order terms (h.o.t.) are dependent upon the higher normal ordered
cumulants according to the Taylor series expansion of f(s). It will be seen in Sec. 4 that there
always exists a Master equation gain function F such that f is expressible in this form and the
resummation works to produce the same f(s) (and derivatives thereof) at every order in this
expansion.

We now return to the series (23) to consider terms with precisely one factor of Cij(t). At each
order m in the series (i.e. the order which contains the mth moment), there are m(m −1)/2 terms
which have one factor of Cij(t). These terms sum to give

(25)

which can be rewritten as

(26)

Other terms are at least second order in Cij, higher normal ordered cumulants, or corrections
from normal ordering. Our first generalized activity equation excluding terms dependent on
third and higher normal ordered cumulants is therefore

(27)

We can take this same approach in order to compute an equation for Cij(t) and obtain

(28)

Equations (27) and (28) constitute a closed set of equations for the mean and variance of a
Wilson-Cowan network of neurons. ai(t) represents the Poisson rate and Cij(t) measures the
deviation of the variance from Poisson statistics. These equations are the minimal consistent
extension of the Wilson-Cowan rate equations to include the effects of higher order statistics.
Higher order corrections can be incorporated by adding terms involving higher order cumulants
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into (27) and (28) and including equations for these higher order cumulants. We also note that
the gain function need not be analytic everywhere for this expansion to work. It can contain a
countable number of non-continuous or non-differentiable points. The equation would be
corrected with the inclusion of impulse function terms at these singular points.

An immediate noteworthy consequence is that Cij(t) will only have substantial input when the
activity is such that f′(s) is large. As an example suppose f(s) is a simple sigmoid function. In
this case, f′(s) is peaked at threshold (where we define threshold to be the central point of half
maximum) and zero far away from threshold. Reasonably, we have the result that correlated
activity will only increase when the input to a neuron is near threshold. If the slope of the
sigmoid is such that f(s) is a step function, or near to a step function, then Cij(t) will receive
input only when the activity is precisely near threshold. Also notice that the strength of the
input to Cij(t) is proportional to the weight wij between the neurons in question as well as the
mean activity. An initial check on the equations is that Cij decouples from ai in the case where
f(s) is linear or constant.

To consider the dynamics of large scale neural activity, we can take the continuum limit of
these equations to get equations for the mean activity a(x, t) and correlation C(x, y, t).

(29)

and

(30)

These are the generalized activity equations. Had we wished to include even higher moments
we could have continued through the hierarchy. For simplicity of illustration, we truncate the
hierarchy at this level.

3.1 Criticality and truncation of the hierarchy
Although we have derived equations for the mean activity and equal-time correlation, there
are some outstanding issues. The primary concern which must be addressed is that we require
some justification for the truncation of the hierarchy at the level of the two-point correlation
function Cij(t) instead of allowing higher moments to interact with the mean activity.

Consider the mean field equation without the correction due to correlated activity (4). Define
 to be some steady state solution to this equation and linearize equation (4) around this

solution. The perturbations δai(t), from this steady state solution obey the equation

(31)
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We rewrite this equation as

(32)

where the matrix Γij is defined by

(33)

If all of the eigenvalues of Γij are positive, then the solution  is stable. Likewise, negative
eigenvalues indicate instability. Criticality is the condition of marginal stability, in which one
or more of the eigenvalues are 0.

Returning to the equation for Cij(t), we see

(34)

We assume that the mean field solution  is stable. In addition, we assume, per the truncation
hypothesis, that the steady state value of Cij(t) does not appreciably alter either ai or, therefore,
the matrix Γij. In this case, Γij has all positive eigenvalues and is diagonalizable. Define

(35)

to be the diagonalization of Γij. We also define the shorthand

(36)

for the driving terms in equation (28). The steady state solution is given by

(37)

Notice that each term contributing to the magnitude of  is attenuated by a sum of eigen-
values. The magnitude of the eigenvalues λi determines the distance of the system from a
bifurcation or criticality, i.e. it is the distance from the onset of an instability. Thus, the further
the system is from criticality the more attenuated the fluctuations and the more justified we are
in truncating the hierarchy. Conversely, the closer the system is to criticality the more the
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approximation breaks down. At criticality, this solution (37) becomes singular. This is an
indication that criticality is a fluctuation dominated, as opposed to mean field dominated,
regime. A similar argument will extend to any equation in the hierarchy and we are left with
an intuitively satisfying result: stability smooths out fluctuations. This argument is what allows
us to disregard the effects of still higher moments upon the mean activity and truncate by
considering only the two-point correlation function’s effect on the mean.

It is also worth noting that the eigenvalues relevant for the dynamics of the two point correlation
Cij are the sums of the eigenvalues of the mean field equation, λi + λj. In the case that  is
stable, not only will Cij be stable but it will relax to equilibrium faster in general than the mean
field solution. In kinetic theory, this is akin to the Bogoliubov approximation, in which the
collision term is computed by solving for the steady state of the two point correlation on the
assumption that the correlation function reaches steady state on a time scale shorter than the
mean field. In our case, this approximation leads to

(38)

Note immediately that the input from correlated activity decouples in the case that the firing
rate function is in a linear or constant region, since the coupling is proportional to the second
derivative of f(s).

The extent of neural interconnections also has an effect on the size of correlations and the
ability to truncate the hierarchy. Consider that neuron i has Ni pre-synaptic neurons (i.e. neurons
for which wij ≠ 0). Further, let the average connectivity weight over all inputs be w0. In this
case we can approximate wij ≈ w0/Ni. The steady state value of Cij(t), which is determined by
the driving term Aij(t), is seen to be inversely proportional to the number of pre-synaptic
neurons due to the linear dependence on wij of Aij. In the most extreme case the number of pre-
synaptic neurons is the entire network, so Ni = N, and the correlation function Cij(t) becomes
simply a finite size effect, going as 1/N. Smaller system sizes in general will have larger
correlations, which is intuitively sound. More generally, as long as we can bound the total input
to any given neuron, we can define Nm = minNi and scale all weights so that they can be written

(39)

where wM is the maximum total input to any given neuron. This allows us to treat Nm as an
effective system size. Larger Nm reduces the effects of fluctuations at a given distance to a
bifurcation.

We have two competing effects. On one hand, we have the system size governing the magnitude
of correlations. On the other, the distance of the system to a bifurcation likewise affects the

size of fluctuations. The relative tradeoff of the two, from the definition of  is given by the
product of the smallest eigenvalue of Γij and the number of pre-synaptic neurons Ni. We will
demonstrate this relationship more precisely when considering the all-to-all network in section
5.
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Finally, it is worth pointing out the effect of input upon the hierarchy. If the input is another
Poisson process then the only equation which is affected is the equation for ai(t). The higher
equations in the hierarchy are only affected by this input through its effect on the mean activity
ai(t) and the firing rate function f(s). In general, this suggests that large external inputs will
actually reduce fluctuations, depending on the form of f(s), in the sense of driving the system
towards Poisson-like behavior, a reasonable result. In particular, if f(s) is a saturating function,
then the correlations will decouple from the equation for ai(t) and the source terms for higher
correlations will be driven to zero, leaving the system described completely by the rate
equations. The analogous situation for a ferromagnet is driving the system with a large external
magnetic field.

4 Path Integral Solution of the Master Equation
We have thus far demonstrated how a minimal Markov model consistent with the Wilson-
Cowan rate equation can be used to derive generalized equations in a hierarchy of moments.
Although we truncated this hierarchy at second order, one can in principle truncate at any
desired cumulant, although the calculations become successively more cumbersome. Here we
show that the moment hierarchy is equivalent to a path integral or field theoretic approach,
which systematizes the perturbation theory for the statistics of the network by providing rules
for the construction and evaluation of the cumulants. Another major benefit is that it provides
a systematic means for obtaining moment truncations or closures. The path integral
representation of the master equation (2) was derived by Buice and Cowan [Buice and Cowan,
2007] by modifying a method originally developed for reaction diffusion systems [Doi,
1976a, Doi, 1976b, Peliti, 1985]. We quickly review the representation and then detail how
the generalized equations can be derived from this representation.

The moment generating function for the probability density P(n⃗, t) is given by

(40)

where the sum is over all configurations of n⃗. Moments of P are obtained by taking derivatives
of the generating function with respect to Ji. For example 〈ninj〉= ∂2Z/∂Ji∂Jj|J⃗=0. The cumulants
can be obtained by taking the derivatives of W[J] = ln Z. Field theory generalizes the generating
function over a set of discrete variables to a generating functional over functions or fields. The
result is a functional or path integral over all possible paths of time evolution for the system,
weighted by the probability of that particular evolution. While it is sometimes possible and
desirable to take the spatial continuum limit of the neural system, this is not necessary for the
path integral approach. Here we use continuum spatial notation, although the results carry
through in the case where x indexes a discrete variable. Buice and Cowan [Buice and Cowan,
2007] showed that the generating functional for the master equation (2) is given by

(41)

where
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(42)

is called the action and we use the notation u·v = ∫ddxdt u(x, t)v(x, t). The fields φ and φ̃, which
are obtained from the configuration variables n⃗, are defined below [Janssen and Tauber,
2005, Tauber et al., 2005]. The asterisk denotes convolution of the weight function with the
inputs and the term W[φ̃(x, 0)] is the cumulant generating functional of the initial distribution
and takes into account arbitrary distributions in the initial condition. For example, if the initial
state is described by Poisson statistics, we have W[φ̃(x, 0)] = ∫ddx a0(x)φ̃(x, 0), where a0(x) is
the mean of the Poisson distribution at x. Analogous to the generating function for discrete
variables, functional derivatives with respect to J̃(x, t) yield the normal ordered cumulants,
such as

(43)

and

(44)

Within this formalism [Doi, 1976a, Doi, 1976b, Peliti, 1985, Buice and Cowan, 2007],
expectation values of products of φ are the normal ordered cumulants found in the moment
hierarchy. The normal ordered cumulant C(x, y, t) from (15) results from setting t = t′ in C(x,
t; x′, t′). The field φ̃(x, t) is a “response” field and expectation over functions of it yield Green’s
functions or response functions for the dynamics [Martin et al., 1973]. The Ito convention is
taken for the Langevin equation (45) so that moments that involve combinations of φ̃ and φ
that are evaluated at the same time are zero. More specifically, the convention taken is such
that 〈φ̃(x, t′)φ(x, t)〉 = 0 if t ≤ t′.

We can heuristically derive the action (42), which was derived explicitly in [Buice and Cowan,
2007], and show that it represents a minimal model of the Wilson-Cowan equation where the
activity is to be interpreted as a stochastic intensity or rate of a Poisson process. Consider an
effective Wilson-Cowan Langevin equation

(45)

where n(x, t) is the neural activity at location x and time t, ξ(x, t) is an effective stochastic
forcing with probability density functional P[ξ] and the firing rate function F is not necessarily
that which appears in equation (1), but rather is that in the master equation (2). We will show
that Poisson noise is necessary to match the Buice and Cowan action (42). The probability
density functional for n(x, t) can be written formally as
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(46)

where δ[·] is the functional generalization of the Dirac delta function. The probability density
(46) constrains the field n(x, t) to obey the Langevin equation (45) with initial condition
n0(x). The delta functional is defined by the generalized Fourier transform

(47)

and ñ is integrated along the imaginary axis. We can now integrate over the stochastic variable
ξ to obtain a noise generating functional defined by

(48)

We choose ξ such that

(49)

which is consistent with a Poisson activation at rate F and a Poisson decay at rate α. We next
transform to the new variables

(50)

The transformation (50) to the new fields serves to simplify the noise generating functional
and results in an action that has the form of (42) but with a different gain function. This new
action is reconciled with (42) by the normal ordering operation. The reason this is necessary
is because the Ito convention used to interpret the action would not hold uniformly for the
transformed fields since in performing the transformation (50), the φ̃ and φ fields inside the
gain function are evaluated at the same time and moments between these particular instances
of the fields would not necessarily be zero. This inconsistency can be corrected by redefining
(i.e. normal ordering) the terms in the gain function. As an example, consider the firing rate
function to be F(n) = (w · n)2. After transforming, it becomes F = (w · (φ̃φ + φ))2, which mixes
response and configuration operators at the same time point. To restore Ito convention, we
normal order so that response and configuration variables are no longer mixed. We do this by
considering the n(x, t) operators at separate times t, t′ and computing how the operators
approach each other as t → t′. The properties of the response field provide limt→t′+ 〈φ(x, t)φ̃(x
′, t′)〉 = δ(x −x′) and limt→t′− 〈φ(x, t)φ̃(x′, t′)〉 = 0 so that F becomes
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(51)

Hence, restoring the Ito convention requires the replacement n2 →n2 + n (albeit in the variables
φ, φ̃ and similarly for higher powers of n). This normal ordering will adjust the gain function
to be f(w * (φ̃φ + φ)), leaving us with the action (42). From the perspective of the original
master equation (2), the transformation to φ, φ̃ is equivalent to expanding solutions to the master
equation around a Poisson solution.

4.1 Closed activity equations from the path integral
We derive the generalized activity equations for the normal ordered cumulants directly from
the generating functional by Legendre transforming to an effective action and then calculating
the extrema of the effective action [Zinn-Justin, 2002, Cornwall et al., 1974, Buice and Cowan,
2007]. We first perform the computation for the mean activity a(x, t) and then show how to
generalize to arbitrary numbers of cumulants. The generating functional (41) can be written
more compactly as

(52)

where we define Φμ(x, t), where μ ∈{1, −1} such that Φ1(x, t) = φ(x, t) and Φ−1(x, t) = φ̃(x, t).
We use Einstein summation convention (i.e. when the same index appears twice (one upper,
one lower) in equations, summation will be implied). Similarly we define Jμ(x, t) via J1 = J
and J−1 = J̃. We can “raise” an index μ via multiplication with the matrix

(53)

so that J1 = J̃ and J−1 = J. Thus we have JμΦμ = J1Φ1 + J−1Φ−1 = J̃φ + Jφ̃. In order to streamline
our notation, we will also define the dot product as the integral

(54)

For functions of more than one spatial variable, this inner product notation will generalize to
the trace of the matrix product, i.e.

(55)

We will also write the action as S[Φμ] = ∫ddx dt L[Φμ], where L is the integrand of the action
in (42).

Define aμ = 〈Φμ〉. The “effective action” Γ[aμ] for aμ is derived by a Legendre transformation
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(56)

where the conditions

(57)

(58)

are enforced. In analogy with classical mechanics, the extrema of the effective action

(59)

give the equations of motion or the activity equations for aμ(x, t).

In general, we will not be able to compute the equation of motion exactly since the path integral
in (52) cannot be computed exactly. However, we can perform a steepest descent asymptotic
expansion of (52) and compute the activity equation perturbatively. In field theory, this is
known as the loop expansion because the terms in the expansion can be represented by Feynman
diagrams whose order is given by the number of loops that diagram possesses. Substituting for
W[Jμ] using the Legendre transformation (56) gives

(60)

where we have suppressed the x and t arguments. Defining a new variable Ψμ = Φμ − aμ and
using (58) gives

(61)

where we define Γμ[aμ] ≡ δΓ/δaμ. We now expand S[Ψμ + aμ] in a functional Taylor series to
obtain

(62)

where Lμ represents the functional derivative of L[aμ] with respect to aμ and similarly for
Lμν and higher derivatives. V [Ψμ, aμ] represents the remaining terms in the Taylor expansion.
By definition, these are at least cubic in Ψμ. Hence

Buice et al. Page 18

Neural Comput. Author manuscript; available in PMC 2010 February 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



(63)

We introduce a scaling parameter for the action, h, (which we will set equal to one) via

(64)

We will show that an expansion in powers of h is consistent with the truncation used in deriving
the moment hierarchy in section 3. The reason is that it organizes the terms in the expansion
so that the true small parameters in the system, namely inverse distance from criticality and
inverse number of inputs, are manifested. We thus consider an asymptotic expansion Γ = Γ0 +
hΓ1 + h2Γ2 + ⋯. If we set Γ0 = S we obtain

(65)

Computing the corrections involves taking expectation values of the operator e−V/h as well as
other operators with respect to the Gaussian functional with covariance (L−1)μν, which can be
expanded as an infinite series of Gaussian moments. Fortunately, we can describe the terms in
this series graphically using Feynman diagrams. A result of this analysis is that we can arrange
the corrections to the effective action according to the number of loops in the Feynman
diagrams, the order in h being given by the number of loops. [Zinn-Justin, 2002]. S[aμ] provides
the no loop, or “tree” level computation. The lowest order correction that these terms can
produce is O(1), which would be an O(h) correction to the effective action (i.e. 1 loop
correction). This is because the corrections will be given by moments of operators which go
as 1/h under a Gaussian functional distribution whose covariance goes as h. The terms Γ1 and
higher produce still higher order corrections. We discuss in the appendix the connection
between the h expansion, which is an artificial parameter, and the effective small parameters
in the system, (i.e. the inverse of the distance to criticality and the inverse of the extent of
connectivity within the network, as addressed in Sec 3.1).

To lowest order we obtain Γ[aμ] = S[aμ] which implies from (42) that the equations of motion
to lowest order are given by

from which we obtain ã = 0 (because there is no initial condition “source” term for ã) and the
mean field Wilson-Cowan equation (1). We can go to higher order by performing a loop
expansion on the path integral in (65) and this next correction was computed in [Buice and
Cowan, 2007].
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The importance of this approach is that as we consider successive orders in the loop expansion,
the effective action closes the system automatically. If we could calculate Γ[aμ] for our model
of interest, then we would have the exact equation of motion for the true mean of the theory.
In essence, we are trading a closure problem for an approximation problem. The advantage
gained is that we do not have to worry about the contributions of higher moments explicitly
and we can consider explicitly the criteria allowing us to truncate the expansion. If there is an
explicit loop expansion parameter, this truncation is straightforward. If not, as in our case, we
must explicitly assess the regimes in which any truncation is valid. Even in the case where a
truncation fails, the loop expansion can provide guidance in terms of identifying classes of
diagrams (i.e. terms in the expansion) that are relevant in appropriate limits, which could be
summed.

We can now generalize this procedure for equations of motion for an arbitrary number of
cumulants by considering a generating functional for an arbitrary number of “composite
operators” [Cornwall et al., 1974]. In the case of the first and second cumulants, a(x, t) and C
(x, y, t), we define the composite cumulant generating functional

(66)

We now perform a double Legendre transform to obtain the effective composite action

(67)

with conditions

(68)

(69)

and

(70)

(71)

Buice et al. Page 20

Neural Comput. Author manuscript; available in PMC 2010 February 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



The equations of motion are obtained by setting Jμ = 0 and Kμν = 0 in (70) and (71). We calculate
the equations of motion to lowest order for this system in the appendix. The results are

(72)

and for Cμν, we get:

(73)

(74)

(75)

together with the conditions

(76)

(77)

The 2-point correlation designated as Cμν (x, t; x′, t′) generalizes the cumulant C(x, y, t) in (15)
to include both the unequal time 2-point correlation (C11) and the linear response (C1,−1). The
equation for C(x, y, t) is obtained by taking the equation for limt→t0C11(x, t; x0, t0) + C11(x0,
t0; x, t) which results in (30). Note that we have also produced an equation for the Green’s
function of the theory C1, −1 as well as its time reversed counterpart. Time reversal involves
swapping the fields φ and φ̃. In the time reversed theory, φ̃ plays the role of activity. Time
reversal does not give an equivalent theory since our Markov process is not time reversal
invariant in general. In field theory language, this system of equations is known as the 2PI
equations and we adopt this moniker for convenience1. We can then analogously derive nPI
equations for any number of normal ordered cumulants.

With the moment hierarchy approach, in order to produce better approximations we are
required to truncate further in the hierarchy. This can quickly produce unwieldy equations. The
loop expansion provides an alternative in that corrections to the generalized equations can be

1 “2PI” stands for 2 Particle Irreducible. The effective action Γ[aμ] is the generating functional of 1PI graphs, which means that the
graphs which determine Γ[aμ] cannot be disconnected by cutting any single line of the graph. Similarly, Γ[aμ, Cμν] is 2PI is the sense
that graphs contributing to it cannot be disconnected by cutting two lines.
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produced with a diagrammatic expansion, namely the one which calculates Γ2[aμ, Cμν], from
which the corrections to the equations can be calculated.

5 All-to-All Networks, Finite Size Effects, and Simulations
We consider the example of an all-to-all system, wherein each neuron connects to the entire
network. Mean field theory should work well in this case because the number of post-synaptic
neurons reduces the coupling of the fluctuations. In this case, the fluctuations reasonably reduce
to corrections due to the finite size of the network, as we would expect. We take the weight
function to be a constant, normalized by the number of neurons in the system wij = w0/N for
some w0. The generalized Wilson-Cowan equations become

(78)

(79)

We can simplify this further by taking the initial conditions ai(0) = a0 and Cij(0) = 0 and
assuming homogeneous external input I. This corresponds to initial conditions in the network
determined by a Poisson distribution with mean a0. Cij(0) = −ai(0) δij would indicate starting
with precisely ai(0) active neurons at i at time t = 0. Then symmetry reduces the equations to

(80)

(81)

where we have defined

(82)

(83)
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Note that as N →∞ the source term for C(t) vanishes, which implies that C(t) decouples from
the equation for a(t), which then reduces to the standard Wilson-Cowan equation. The matrix
Γij in this case is the function

(84)

The steady state value of C(t) is given by

(85)

The relative size of the fluctuations in steady state is determined by the product NΓ [a0]. Large
networks or networks distant from a bifurcation experience reduced correlations.

We now examine the phase plane of this simplified system. For concreteness, consider the
firing rate function f(s) to be

(86)

where Θ is the Heaviside step function. At mean field level (i.e. consider C(t) to be zero)
equilibria are determined by solutions of the equation

(87)

Figure 1 graphically displays the solutions of this equation. From the figure, we see that the
equation exhibits a bifurcation as the value of α (the slope of the straight line in the figure) is
decreased. The critical value for this bifurcation is α = 1.0. We will refer to the non zero stable
equilibrium as the “activated” state. The generalized activity equations (80) and (81) also
exhibit a bifurcation. The phase plane is shown in Figure 2 for α = 0.5, 0.9 and 1.0 with N =
100 and in Figure 3 for N = 10 with the same values of α. As expected, the steady state value
of C is larger for N = 10. Note that the nullclines for C(t) display divergences associated with
Γ approaching zero. In addition note that the location of the bifurcation is different. For N =
100 the bifurcation happens near α = 0.9 and with N = 10 the bifurcation happens for 0.9 < α
< 1.0. Because the generalized equations are a coupled system, it is possible that more
interesting bifurcation structure may be manifested. In addition to the fixed points which exist
in mean field theory there is a new fixed point. Whereas the bifurcation at mean field level is
a pitchfork bifurcation, that of the generalized equations is a saddle node bifurcation, with an
unstable fixed point emerging as the a and C nullclines cross. There is always a fixed point at
a = 0 and C = 0 because it is an absorbing state.

Importantly, we see that we can alter the bifurcation structure by adding a forcing or source
term to the correlation function C(t) equation, linearly shifting the C nullcline. This removes
the stable fixed point for high a (the one associated with the activated state in mean field theory).
Because of this, we see that we can disrupt the activated state by stimulating the system with
an input such that the correlation is sourced more strongly than the mean. We can use this to
“turn off” the activated state by synchronizing the network. These correlations drive the system
to the absorbing state of the full model. To reverse this deactivation, we simply drive the system

Buice et al. Page 23

Neural Comput. Author manuscript; available in PMC 2010 February 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



with Poisson noise (i.e. force the equation for a(t) but not C(t)). Compare this to the effect
demonstrated in [Laing and Chow, 2001] in which synchronized activity associated with fast
synapses led to the destabilization of activity which the Wilson Cowan equation predicts to be
stable. For a saturating firing rate function (more generally a function such that f″(s) < 0 in the
appropriate region) increased correlations inhibit the mean activity ai(t).

We now demonstrate the utility of the generalized activity equations (27) and (28) for
describing the full Markov system (2) away from a bifurcation point. In order to simulate the
Markov model we use a form of the Gillespie algorithm and take expectation values over many
time evolutions of the system. We use the firing rate function (86). It is important to remember
when comparing results with simulations that we use the F(n⃗) whose normal ordered form is
f(s). In this all-to-all case, we need only consider the correction arising from the quadratic
portion of the firing rate function since the corrections will go as powers of the weight function,
which in this all-to-all case means they carry factors of 1/N. In particular, to lowest order we
have

(88)

We plot ai(t) and Cii(t) versus t for various values of α and N in Figures 4 through 7. (Note that
we are numerically evaluating the generalized equations, not the simplified equations in (80)
and (81), and comparing them with Monte Carlo simulations of the Markov system; the plots
overlay data for each of the N neurons.) We initialize the network with Poisson initial
conditions: ai(0) = 2 and Cij(0) = 0. The simulations of the Markov process are averaged over
105 instances. One can see that the equations match the simulations quite well away from the
critical point. As one approaches the bifurcation, however, the simulations begin to deviate.
At α = 0.5, mean field and the generalized equations each match the simulated Markov process.
As one approaches the mean field bifurcation point of α = 0.9, the mean field equations no
longer match well, but the generalized equations account for the deviation. From Figure 5, one
can see that as we approach α = 1.0, the estimate of the correlation from the generalized
equations becomes poorer.

The plots for N = 10 in Figures 6 and 7 demonstrate the breakdown of the generalized equations.
There is already a significant deviation of both mean field and the generalized equations at α
= 0.5. Naturally, the discrepancy is accounted for by the poor estimation of the correlation at
this level. As we near α = 1.0, the estimate of the correlations begins to grow, whereas the
simulated correlation is dropping to zero.

One can see that, even though the theory begins to deviate from the simulations near criticality,
we still capture the loss of stability of the active state, even for N = 10. This is due to the growth
of correlations which negatively feedback on the mean due to the negative second derivative
of f(s). We can use this feature to observe the effect of correlated input directly by adding a
term to the Markov process which provides multiplicative Gaussian noise. In particular, we
add a transition at rate:

(89)

where η is a Gaussian noise source. The purpose of the step function is to prevent an individual
neuron from getting a kick which will drive the activity negative. Note that we are not using
an “input” term as we have defined it. Because the firing rate function is strictly positive, we
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cannot use a stimulus such that the mean transition rate is strictly zero. However, we can use
a stimulus such that the source to the correlation function is much stronger than the mean. For
our example, to maximize the effect, we do not use an input to the firing rate function but
instead add another transition to the Markov process separate from the firing rate function and
the decay transition. This allows us to source only the correlation function. Although this is
artificial, this transition adds terms to the coupled equations which would approximate those
from some input with zero mean and large correlations. In the following simulations we used
α = 0.5, σ = 100 and N = 100. The correlated input was given between t = 20 and t = 30.

In the absence of external correlated input, these parameters result in the active state being
stable, as shown in Figure 4. As can be seen in Figure 8, the use of the global noise source
results in the “switch off” behavior predicted by the generalized equations. If we instead use
a Poisson process to provide this external stimulation, one can also see in Figure 4 that the
network responds and then reverts back to the active state. The reason for the explicit shut off
is that the system has an absorbing state to which it is driven. The more important point is that
the correlated input is acting as a source of inhibition whereas the Poisson input serves as an
excitatory input. A linear system or one in which the firing rate function f(s) is such that f″(s)
> 0 will not exhibit this behavior. We chose this particular example for sourcing Cij(t) in order
to separate the effects of sourcing ai(t) as well. Given a more complicated noise source, one
would need to examine the phase plane or solve the equations, after determining the effects of
the noise source on the normal ordered cumulants.

6 Discussion
We have demonstrated a formalism for constructing a minimal extension of a rate equation to
include correlated activity. We have explicitly computed the lowest order results of this
extension which provide coupled equations for the mean activity, two-point correlations, and
linear responses. These results indicate that correlations can have an important impact on the
dynamics of a rate equation, affecting both stability and the structure of bifurcations. Our
argument relied upon inferring a “minimal” Markov process. Our use of the Doi-Peliti path
integral formalism guides our assertion that our inferred Markov process is the simplest one
compatible with both the rate equations and their interpretation as measuring some stochastic
counting process. Thus, a general extension for any type of rate equation should share the same
basic structure that we have described here. We performed this construction on a Markov
process consistent with the Wilson-Cowan equation but our prescription would work equally
well with any Markov process.

In keeping with this idea, our results have something in common with other approaches to
understanding correlations in neural networks. El Boustani and Destexhe [El Boustani and
Destexhe, 2009] attempt to derive a Markov model for the asynchronous irregular states of an
underlying neural system and explore the moment hierarchy of that Markov model. We take
the opposite approach, beginning with a presumed set of rate equations and asking what
possible restrictions can be placed upon the correlation functions knowing only the dynamics
of the rate model. Their hierarchy is truncated via scaling and finite size, whereas our
hierarchy’s truncation (and the truncation of the loop expansion) arises through the distance
to a bifurcation in the rate equations. Ginzburg and Sompolinsky [Ginzburg and Sompolinsky,
1994] propose a simple Markov model and study its moment hierarchy. For the correlations,
they achieve results similar to the tree level of our loop expansion. An important point of
departure is that we consider the recurrent effects the correlations have upon the mean field,
which we demonstrate can be sufficiently significant to alter the structure of the bifurcation.

As we predict, our theory breaks down sufficiently close to a bifurcation. Examining the
dynamics near the critical point requires a different form of analysis such as a renormalization
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argument. An example was presented in [Buice and Cowan, 2007] where it was argued that a
large class of neural models would exhibit scaling laws near a bifurcation like those of the
Directed Percolation model [Janssen and Tauber, 2005]. The predictions of this scaling
coincide with measurements made in cortical slices of “avalanches” [Beggs and Plenz, 2003].
If criticality is important for neural function [Beggs, 2008], then these sort of approaches will
be more important for future work and our rate model extension will be less applicable.

In contrast, supporting the potential usefulness of our rate model extension is the fact that large
neural connectivity suppresses correlations and aids the truncation of the hierarchy, an
analogous result to the Ginsburg criterion in equilibrium statistical mechanics. In addition, we
demonstrated that Poisson-like input in general pushes the system into configurations in which
the correlations are suppressed relative to the mean. All of this suggests that our extension will
be at least as applicable as the rate models themselves.

Regarding that applicability, both the Markov process and the rate equations assume a large
degree of underlying asynchrony in the network. The expansion we describe should be
appropriate for networks in which a relatively small amount of synchrony at the level of
individual neurons is developing. The coupled correlation function captures this effect. If the
population is being dominated by neuron level synchrony, then the Markov process should no
longer hold as a description of the system. Population level synchrony as captured by the
original rate model, however, should have no effect on our analysis. In other words, there will
be correlation effects acting on oscillating states, for example, such as presumably correlation
induced modulation of the frequency of the oscillation. We will demonstrate this in future
work.

An important outstanding point is that we have posited this Markov process based on the
original interpretation of the Wilson-Cowan equations as dynamical equations for the
probabilistic activity of neurons. Although our Markov process is the most “natural” given the
transitions in the Wilson-Cowan equations, there is no a priori reason to suppose that this
Markov process reflects the probabilistic dynamics of a physiologically based neural model or
of real neurons precisely because there is nothing which mandates this interpretation. Per the
renormalization analysis of [Buice and Cowan, 2007], measuring scaling laws in cortex will
provide a means of identifying classes of models (by identifying the relevant universality class)
but this will in no way distinguish between models within the same class. Distinguishing
models within the same class will require the measurement of non-universal quantities. This
would likely mean some relatively precision measurements of response functions in cortical
activity.

Nonetheless, we feel our approach is a useful starting point for understanding effects beyond
mean field. We have demonstrated a correlation induced loss of stability in an all-to-all
network. This effect should carry over to non-homogeneous solutions such as bump solutions
or traveling waves. Likewise, correlations will modify important aspects of mean field
solutions such as dispersion relations. Our approach enables this dispersion relation to be
calculated. In addition to stability, our equations are a useful starting point towards
understanding the wandering of bump solutions. They also provide a natural means of studying
beyond mean field effects of correlation based learning. A model of visual hallucinations in
cortex based on the Turing mechanism has explained many hallucinatory effects (such as the
various Kluver form constants). Since the Turing mechanism is based upon bifurcations, it is
an interesting question to what extent the coupling with correlations effects the results of the
hallucination analysis. Our approach may provide this model with a means of explaining further
hallucinations not covered by the model in [Bressloff et al., 2002].
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It remains an important question how to connect our Markov and generalized rate model
approach with models of deterministic neurons. While the formalism admits almost any gain
function, there remains the question of connecting this gain function to, for example, the
transfer function for some neural model of which the Markov process is some approximation.
This is of course not a question of the analysis of Markov models but of the applicability of
rate models as high level descriptions of more detailed neural models. Answering this question
will likely involve a kinetic theory formulation of the neural systems, such as the one pursued
in [Hildebrand et al., 2006, Buice and Chow, 2007]. Having derived the generalized equations,
it is also now important to explore their further consequences for phenomena such as pattern
formation. There are also many avenues to extend this model and this approach. The Markov
process can be enlarged to account for synaptic adaptation by adding a synaptic time variable
to the neural configuration. Likewise noise in the transitions themselves, whether spatial or
temporal, is easily incorporated into the action. A reduction of the resulting theory would no
longer satisfy the Markov property, although there may be certain natural assumption (such as
slow dynamics for the auxiliary field) that could allow one to regain Markovicity with an
approximate model. This would allow us to construct extended Wilson-Cowan equations which
incorporate these and other aspects of neural dynamics. These questions will be explored in
future work.
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A Composite Operator Effective Action and the 2PI equations
Here we derive the 2PI equations. We begin with the generating functional:

(90)

where we have introduced a parameter h = 1 for bookkeeping purposes. The generalized
effective action is given by

(91)

with Jμ and Kμν given by
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(92)

(93)

The path integral representation is thus

(94)

which we transform to a new variable Ψμ(x, t) = Φμ(x, t) − aμ(x, t), set

(95)

and expand S[Ψμ+aμ] = S[aμ]+ ∫ ddx dt (Lμ[aμ]Ψμ+(1/2)ΨμLμν[aμ]Ψν)+V [Ψμ, aμ] to obtain

where we use

We consider the expansion Γ = Γ0 + hΓ1 + h2Γ2, where Γ2 contains all terms of order h2 and
higher. Setting Γ0 = S gives

We now fix Kμν according to
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(96)

which gives

(97)

where

(98)

We need to extract the order h contributions from the functional integral. We expect the effect
of Γ0,μν is to replace Lμν with the full inverse two point function (C−1)μν. This in turn will affect
the normalization of the integral. Because of this we expect the order h contribution to the
effective action to be:

(99)

Substituting this into expression (97) gives us

(100)

We can extract the normalization of the functional integral using 
and the identity ln det A = Tr ln A to obtain

(101)

The factor of the determinant serves as a normalization for the functional integral, which is
now in a form that will only contribute to the effective action at order h2. Thus we have
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(102)

Now we can calculate the equations of motion to a given loop order from equations (70) and
(71). Using equation (70), the equations of motion for the mean field are

(103)

The equations for Cμν are

(104)

which we can invert to get

(105)

In particular, if we ignore loop corrections (i.e. only consider first order in h, recalling that
Γ2 is O(h2)), we get

(106)

where  is the inverse of Lμν[aμ]. In the absence of interactions,  is the two-point
function, as expected.

We can use the loop expansion to draw some conclusions about the applicability of perturbation
theory. Since Γ2[aμ, Cμν] is second order and is the sum of vacuum two particle irreducible
graphs, every graph contributing to it must be at least of two loop order. Every internal line
represents a factor of Cμν and so each graph contributing to Γ2[aμ, Cμν] must have at least two
factors of Cμν, each of which will either be equal to 0, or be attenuated (in steady state) by the
same exponents which attenuate the magnitude of C(x, y, t) away from a bifurcation, according
to equations (120–122). Thus the argument that Cμν is small away from the critical point extends
to every term in the expansion for the generalized equations.

The caveat here is that there is a class of diagrams which couple the lowest order expression
for a given moment to the mean field. Although these graphs are suppressed by the distance
to criticality, each of these is of the same order. We are assisted by two facts. The first is that
the source terms for each of these moments at lowest order will be proportional to derivatives
of the firing rate function. If f(s) is sufficiently smooth, this will suppress higher order
contributions. In addition, each coupling will go as an additional factor of  where Nm was
defined in section 3.1 as the smallest number of inputs to any given neuron. Thus the
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connectivity in cortex will serve to “average out” sources to the mean from higher moments.
This will be the case as long as we can bound the total input to any given neuron.

B Tree level equations of motion
In order to calculate the expansion for the equations of motion, we need to compute the value
of both Lμν and Γ2. We compute the lowest order correction here.

First we find the intermediate results (which give us the classical equations of motion for a and
ã):

(107)

(108)

from which follows

(109)

(110)

(111)

(112)

The terms f(n)(x, t) indicate the nth derivative of f. Note that we have suppressed the argument,
so that f(n)(x, t) = f(n) (w★[ã (x, t)a(x, t) + a(x, t)])

We can now write down the equations of motion from (105), minus the loop corrections. The
first “diagonal” equation (for (−1, −1)) is:
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(113)

The second “diagonal” equation (for 11):

(114)

The “off-diagonal” equations are (starting with −1, 1):

(115)

and the other (1, −1):

(116)

The “mean field” portion of the equations of motion (103) are obtained from equations (107)
and (109) (by setting the LHS to zero). The remainder of the equations of motion are “classical”
terms dependent on the correlation functions, and loop corrections. The latter are given by the
term  in equation (103). The term in the trace is, of course, the sum of the
LHS of equations 113 and 114.

We can simplify the equations for the mean field by realizing that any term involving C−1,1 or
C1, −1 can be ignored because they will only appear in the form C−1,1(x′, t; x, t), i.e. at equal
initial and final times. These will be zero. This can be seen as either the “initial condition” for
the linear response terms or as a manifestation of the “ε(0)” problem in quantum field theory.
[Zinn-Justin, 2002]
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Furthermore, we can use some results from the full theory. In particular, we have

(117)

(118)

because causality enforces that φ̃ operators can’t contract with anything “in the past”.

The equation for a(x, t) is then:

(119)

Applying these same simplifications to the equations for Cμν, we get:

(120)

(121)

(122)

together with the conditions

(123)

(124)
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Figure 1.
Graphical depiction of solutions to equation (87) for various values of α.
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Figure 2.
Phase planes for the all-to-all generalized equations with a) α = 0.5, b) α = 0.9, and c) α = 1.0.
N = 100. Solid (black) lines are a nullclines; dotted (blue) lines are C nullclines.
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Figure 3.
Phase planes for the all-to-all generalized equations with α = 0.5 on the left, α = 0.9 in the
center, and α = 1.0 on the right. N = 10. Solid (black) lines are a nullclines; dotted (blue) lines
are C nullclines.
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Figure 4.
a(t) vs. t for a) α = 0.5, b) α = 0.9, and c) α = 1.0. N = 100. Dotted (green) lines are solutions
of mean field theory. Dashed (red) lines are solutions of the generalized equations. Solid (black)
lines are expectations values of data from simulations of the Markov process.
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Figure 5.
C(t) vs. t for a) α = 0.5, b) α = 0.9, and c) α = 1.0. N = 100. Dashed (red) lines are solutions of
the generalized equations. Solid (black) lines are expectations values of data from simulations
of the Markov process.
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Figure 6.
a(t) vs. t for a) α = 0.5, b) α = 0.9, and c) α = 1.0. N = 10. Dotted (green) lines are solutions of
mean field theory. Dashed (red) lines are solutions of the generalized equations. Solid (black)
lines are expectations values of data from simulations of the Markov process.
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Figure 7.
C(t) vs. t for a) α = 0.5, b) α = 0.9, and c) α = 1.0. N = 10. Dashed (red) lines are solutions of
the generalized equations. Solid (black) lines are expectations values of data from simulations
of the Markov process.
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Figure 8.
Response of all-to-all network to correlated input. α = 0.5, N = 100. a) the response to correlated
input with σ = 100. b) the response to a Poisson process with rate λ = 10. Note the change in
scale between the two plots.
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