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A necessary ingredient for a quantitative theory of neural coding is
appropriate “spike kinematics”: a precise description of spike trains.
While summarizing experiments by complete spike time collections is
clearly inefficient and probably unnecessary, the most common prob-
abilistic model used in neurophysiology, the inhomogeneous Poisson
process, often seems too crude. Recently a more general model, the in-
homogeneous Markov interval model (Berry & Meister, 1998; Kass &
Ventura, 2001), was considered, which takes into account both the current
experimental time and the time from the last spike. Several techniques
were proposed to estimate the parameters of these models from data.
Here we propose a direct method of estimation that is easy to implement,
fast, and conceptually simple. The method is illustrated with an analysis
of sample data from the cat’s superior colliculus.

1 Introduction

The problem of information coding in sensory systems is one of the
outstanding problems of neuroscience (Rieke, Warland, de Ruyter van
Steveninck, & Bialek, 1999; van Hemmen & Sejnowski, 2006). It is par-
ticularly striking posing the variability of neural responses against the
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2106 D. Wójcik et al.

stability of our percepts. A natural approach to the problem of coding
is through the theory of probability and information theory (Rieke et al.,
1999). Even if the changes of membrane potential can be considered de-
terministic (Hodgkin & Huxley, 1952) and if we neglect the synaptic noise
(Faisal, Selen, & Wolpert, 2008), the multitude of synaptic contacts never-
theless usually requires a statistical approach in the description of spike
trains.

A natural framework for the description of spiking responses is provided
by point process theory (Cox & Isham, 1980; Daley & Vere-Jones, 2003). It
has been used in neuroscience for a long time (Perkel, Gerstein, & Moore,
1967); however, two simplified approaches were most popular. Renewal
processes, which could account for refractory properties of the membrane,
were used to describe stationary processes. Nonstationarity has usually
been described with inhomogeneous Poisson processes (Tuckwell, 1988).
Only in the past two decades have other models started to come into use to
describe nonstationary spike trains such as inhomogeneous renewal pro-
cesses (Gerstner & Kistler, 2002), inhomogeneous Markov interval (IMI)
processes (Berry & Meister, 1998; Kass & Ventura, 2001), or time-rescaled
renewal processes (Brown, Barbieri, Ventura, Kass, & Frank, 2002).

To estimate models from data requires balancing the flexibility of the
model versus the estimation precision given available data. Two-parameter
processes, in particular, multiplicative IMI models, seem especially suitable
in the neurophysiological context. They are flexible enough to account for
the structure of the receptive fields and membrane properties yet simple
enough to be reasonably estimated from the data that typically are avail-
able. Several approaches were proposed for estimating IMI models (Berry
& Meister, 1998; Kass & Ventura, 2001; Truccolo, Eden, Fellows, Donoghue,
& Brown, 2005). We propose here a simple approach that we found concep-
tually intuitive, easy to implement, and efficient, even if not as general as
the techniques based on the generalized additive models (Kass & Ventura,
2001) or the generalized linear models (Truccolo et al., 2005). It is based
on direct estimation of the part of the model describing history-dependent
properties of spike generation under the assumption of a constant rate,
followed by an estimation of the modulatory part describing the response
properties. While in the long run one wants to move toward more complex
models involving more covariates, for instance, including parametric mod-
els of receptive fields or assumed network topology (Truccolo et al., 2005;
Pillow et al., 2008), the simple models such as those discussed here will
keep their utility for describing experimental results, classification studies,
and generating surrogate data.

In this note, we introduce the formal model to be estimated in the frame-
work of general point processes in section 2. We then discuss our estimation
method and a class of experiments where it is applicable in section 3. The
technique is illustrated with analysis of sample data from cat superior col-
liculus cells in section 4. The results are summarized in section 5.
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2 Multiplicative Inhomogeneous Markov Interval Models

Consider an experiment where a spike train is recorded from a neuron
observed in time t ∈ (0, T]. We can describe the process locally in time with
conditional intensity λ, also called the hazard function (Cox & Isham, 1980;
Johnson, 1996; Gerstner & Kistler, 2002). It describes the probability density
of generating a spike at time t given the whole history of the process up to
t, that is,




Pr[1 event in (t, t + �t] | spikes at t1, t2, . . . , s∗(t)]

= λ(t; t1, t2, . . . , s∗(t)) �t

Pr[more than 1 events in (t, t+�t] | spikes at t1, t2, . . . , s∗(t)] = o(�t).

Here tk are times of consecutive spikes in a single realization of the process,
s∗(t) is the last spike time before t in this realization, and o(�t) denotes
terms of higher order than linear in �t.

To estimate λ from data, one is forced to assume memory of no more than
the last few spikes. In the simplest case of intensity, depending on time only,
λ(t), this is the inhomogeneous Poisson process. If we relax the constraint
and assume the dependence of the hazard function on the current time t and
time from the previous spike τ = t − s∗(t) we obtain the inhomogeneous
Markov interval or inhomogeneous renewal process (Berry & Meister, 1998;
Kass & Ventura, 2001; Gerstner & Kistler, 2002). We further restrict ourselves
to the multiplicative variant of the model of the form

λ(t, τ ) = λ1(t) · λ2(τ ). (2.1)

Berry and Meister (1998) proposed a simple method for estimating these
factors from data. They assumed λ2(τ ) = 0 for τ less than the time of absolute
refraction tabs and λ2(τ ) = 1 for τ greater than the time of relative refraction,
trel. The intermediate values were obtained from the probability distribution
of all interspike intervals (ISI). Having thus obtained λ2(τ ), they used it to
estimate λ1(t) from the mean firing rate. The apparent simplicity of this
approach is hampered by several assumptions, which in general need not
be satisfied. For example, the assumption of the special form of λ2(τ ) = 0
for τ < tabs and 1 for τ > trel, while physiologically very natural, in general
is unjustified. In fact, λ2(τ ) can even be unbounded (cf. the typical hazard
functions; Tuckwell, 1988).

In response, more general alternative procedures were proposed by
Kass and Ventura (2001) and Truccolo et al. (2005) based on, respectively,
generalized additive models and generalized linear models. There, the
idea is to span λ1(t) and λ2(τ ) on a spline basis with appropriately chosen
knots and fit the spline parameters from data. These methods are much
more universal but can be slow for large amounts of data due to substantial
optimization needs.
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In our analysis of data from the cat’s superior colliculus cells, we ob-
served that the data did not satisfy the assumptions of Berry and Meister’s
(1998) procedure, and applying the approaches of Kass and Ventura (2001)
and Truccolo et al. (2005) led to computationally intensive analysis. We
found a simple variant of Berry and Meister’s approach that proved easy
to implement, efficient, and conceptually natural, but it can be applied to
only a class of experiments including recordings of stationary activity. We
discuss it in the next section.

3 Estimation of IMI Process from Data

Consider an experiment where a stimulus s is presented N times during
intervals of length T . Assume also a control recording with no stimulus and
stationary activity during time Tstationary. Thus, we have N spike trains of
duration T and an additional spike train of duration Tstationary. We assume
that the data are described by the multiplicative IMI model, equation 2.1.
There is an undetermined constant in the two factors, and we set it by
requiring λ1 = 1 for stationary activity with no stimulus. An alternative
natural normalization is to require λ1 equal to the mean rate in this region.
Thus, we can easily obtain λ2(τ ) using the standard approach for stationary
renewal processes (Cox & Lewis, 1966; Perkel et al., 1967). We estimate the
probability density of interspike intervals P(τ ) from the control recording
of background activity. From P(τ ), we obtain λ2 as

λ2(τ ) = P(τ )
S(τ )

= P(τ )
1 − ∫ τ

0 dτ ′ P(τ ′)
, (3.1)

where S(τ ) = 1 − ∫ τ

0 dτ ′ P(τ ′) is the survival function. In practice, we used
either nonparametric or parametric methods, which have different advan-
tages and trade-offs (Hastie, Tibshirani, & Friedman, 2001). In the non-
parametric approach, we used gaussian kernel smoothing with optimal or
scaled kernel width and with positive support (Bowman & Azzalini, 1997).1

In the parametric variant, we fitted gamma distribution. The analysis was
done using Matlab.

Having obtained the factor describing refractory properties of the mem-
brane, λ2(τ ), we can evaluate the modulatory factor λ1(t) describing the
cell’s response properties. We divide the time of experiment, (0, T], into
bins of length �t short enough that there would be at most one spike per
bin. The probability of generating a spike in trial j in bin k is approximately
p j

k = λ1(tk)λ2(τ j
k )�t, where tk = (k − 1/2)�t, τ

j
k = tk − s j

∗ (tk), and s j
∗ (t) is the

1We first used ksdensity function with gaussian kernel to evaluate optimal window
width u. Then we used it to calculate the cumulative density function and probability
density function with window width 0.5u, u, and 1.5u.
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time of the last spike before t on j th trial. If no history of spike train is
known before t = 0, we assume τ = t until the first spike, t j

1 . The possible
error introduced by inexact timing was usually negligible for typical spike
statistics. Over N repetitions, the mean probability of observing a spike in
bin k is

pk = 〈
p j

k

〉
j = 1

N

∑
j

p j
k = λ1(tk)�t

1
N

N∑
j=1

λ2
(
τ

j
k

)
.

But pk is essentially time-dependent rate pk = rk�t = Nk/N, where Nk is
the number of trials on which we observed a spike in bin k and the rate
rk = (1/�t)(Nk/N). Since we already know λ2, we obtain an estimate for
λ1 as

λ1(tk) = Nrk∑N
j=1 λ2

(
τ

j
k

) . (3.2)

In practice, we obtained the rate by either smoothing the poststimulus time
histogram with a gaussian kernel or by spreading each individual spike
with a gaussian kernel with σ = 5 or 10 ms and averaging the sum (Nawrot,
Aertsen, & Rotter, 1999). Usually the results were equivalent. Since the mean
λ2(τ ) was rather variable, to stabilize the resulting λ1, we also smoothed the
time-dependent function

∑N
j=1 λ2(τ j

k ) with a Savitzky-Golay filter of order
3 and width 31 ms.

The whole scheme easily generalizes to a situation where a set of stimuli
si , i = 1, . . . , K is presented repeatedly, ni times each. We discuss a simple
example of experimental data analysis in such a case in the next section.

4 Results

To illustrate our estimation method, we used the data of the single unit
recording from the cat’s superior colliculus. Conventional experimental
methods for animal preparation and extracellular single unit recording were
used (Waleszczyk, Wang, Burke, & Dreher, 1999). In the experiment, spike
trains of single neurons were recorded during movements of a bar of light on
a screen with a fixed velocity along one axis of the receptive field and waiting
periods, when the stimulus was held outside the receptive field for 1 second
between the sweeps in both directions. Single cell data consisted of multiple
recordings of responses to stimuli of different velocities. Velocities ranged
from 2 to 1000 degrees per second. For short sweeps with high velocities,
we could see the response extending to the first part of the waiting period.
However, it was never noticeable during the last 0.5 s of the waiting period.
We pooled all the intervals from all such periods following sweeps into a
single collection of ISIs. This procedure was equivalent to the analysis of
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a single long recording of background activity advocated in the previous
section.

The probability distribution of ISIs sampled by this collection was used
to estimate λ2(τ ). Thus, we assumed λ1(t) = 1 in the second half of each
waiting period. We used both parametric and nonparametric methods for
estimating λ2(τ ), as mentioned in the previous section.

Given λ2, we analyzed responses to every stimulus separately using the
procedure detailed in the previous section. Figure 1 shows example results
of such analysis. These data are from a single cell and a single stimulus
(v = 1000 deg/s moving left to right). Figure 1A shows the distribution
of all the ISIs from the background activity (empirical data; bar plot), the
nonparametric estimate (solid line), and the parametric fit (gamma distri-
bution; dashed line) of the probability distribution P(τ ). The main plot in
log-normal coordinates shows the differences in the tails, and the inset in
normal-log coordinates emphasizes the differences for small intervals.

Figure 1B shows the estimate of λ2(τ ) obtained from the data in Figure 1A.
There is a striking difference between the nonparametric and parametric
estimates for τ > 0.1 s, as the hazard function for gamma distribution is
monotonic while the nonparametric estimate is more flexible. To test the
stability of estimates, we calculated λ2 on different parts of data. We sep-
arated waiting periods following stimuli moving left to right from those
following stimuli moving right to left. We also analyzed separately the
intervals from the first half of the recordings and those from the second
half of the recordings. In all cases for these data, the obtained results were
quantitatively very similar to the result obtained from all of the data (not
shown).

In Figure 1C we show λ1(t) estimated from data as described in section 3
using a nonparametric (solid line) and a parametric approach (dashed line).
To compare these results with the inhomogeneous Poisson model (dash-
dotted curve), all have been normalized so that their mean value during the
waiting period is equal to 1. There is an enhancement of the response profile
in both IMI models as compared to the Poisson model, particularly strong
for the nonparametric model, that corroborates the previous findings well
(Berry & Meister, 1998; Kass & Ventura, 2001).

Figure 1D compares the quality of different models using the
Kolmogorov-Smirnov (K-S) plots (Brown et al., 2002). Each curve was ob-
tained by appropriate rescaling of spike times (Brown et al., 2002) using
conditional intensity estimated with the inhomogeneous Poisson model
(dash-dotted curve), the parametric IMI model (dashed curve), or the non-
parametric IMI model (thick solid line). A perfect model of data corresponds
to the diagonal (thin solid line), and two parallel thin dashed lines demark
the 95% confidence bounds. We interpret the distance from the diagonal as
a measure of the quality of the model.

Clearly the inhomogeneous Poisson model is describing the data rather
poorly. The strong deviation observed for short intervals is expected, as
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Figure 1: Estimation of IMI models from sample data: a single cell and a sin-
gle stimulus (v = 1000 deg/s moving left to right). (A) Distribution of all the
ISIs from the background activity (bar plot), the nonparametric estimate (solid
line), and the parametric fit (gamma distribution; dashed line). The main plot
in log-normal coordinates shows the difference in the tails. The inset in normal-
log coordinates emphasizes the differences for small intervals. (B) The estimate
of λ2(τ ) obtained from the distribution shown in A. (C) The modulatory fac-
tor λ1(t) estimated from data as described in section 3 using a nonparametric
(solid line) and a parametric approach (dashed line). To compare these results
with the inhomogeneous Poisson model (dash-dotted curve), they have been
normalized so that their mean value during the waiting period is equal to 1.
(D) The quality of different models using the Kolmogorov-Smirnov plots. Each
curve was obtained by appropriate rescaling of spike times using conditional in-
tensity estimated with an inhomogeneous Poisson model (dash-dotted curve),
parametric IMI model (dashed curve), or nonparametric IMI model (thick solid
line). A perfect model of data corresponds to the diagonal (thin solid line). Two
parallel thin dashed lines demark a 95% confidence bound.
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this model does not take into account the refractory properties of the
membrane. The gamma IMI gives a much better description of the data,
with a good description of short intervals (within 95% confidence bounds).
The relatively poor description of the distribution of longer intervals in
the gamma IMI model is a consequence of the stiffness of the parametric
model (cf. Figure 1B). The best description of these data is provided by
the nonparametric IMI model: the K-S curve obtained with this model lies
entirely within the 95% confidence bound.

5 Summary

The common model of spike trains, the inhomogeneous Poisson process, is
very useful in its simplicity and often adequate for describing experimental
data, especially for relatively low firing rates. To account for the membrane
mechanisms such as refraction, one must go beyond the Poisson processes,
and the inhomogeneous Markov interval models seem good candidates
for modeling spike train data. We proposed a direct method useful in de-
scribing experimental recordings where, apart from responses to repeated
stimuli, background activity was also recorded. Our proposition was to use
the stationary data from the background activity to estimate the factor of
intensity describing the membrane properties, λ2(τ ). An estimate of λ2(τ )
can then be used to extract the modulatory factor, taking into account the
response properties of the cell, λ1(t). We have demonstrated a practical use
of our method on data from an example cell from the cat’s superior collicu-
lus and showed with K-S plots the superiority of the IMI model over the
inhomogeneous Poisson model for these data. A complete physiological
analysis of the full dataset from these experiments is in preparation. We
believe that the simplicity of our estimation method will make it a viable
alternative to other approaches wherever it can be applied.
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