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Abstract

We consider a threshold-crossing spiking process as a simple model
for the activity within a population of neurons. Assuming that these
neurons are driven by a common fluctuating input with Gaussian
statistics, we evaluate the cross-correlation of spike trains in pairs
of model neurons with different thresholds. This correlation function
tends to be asymmetric in time, indicating a preference for the neu-
ron with the lower threshold to fire before the one with the higher
threshold, even if their inputs are identical. The relationship between
these results and spike statistics in other models of neural activity are
explored. In particular, we compare our model with an integrate-and-
fire model in which the membrane voltage resets following each spike.
The qualitative properties of spike cross-correlations, emerging from
the threshold-crossing model, are similar to those of bursting events
in the integrate-and-fire model. This is particularly true for general-
ized integrate-and-fire models in which spikes tend to occur in bursts
as observed, for example, in retinal ganglion cells driven by a rapidly
fluctuating visual stimulus. The threshold crossing model thus pro-
vides a simple, analytically tractable description of event onsets in
these neurons.

1 Introduction

Probing the relationship between a stimulus and the spike train, generated
by a population of neurons, is a central theme in the study of neural activity
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(Rieke, Warland, Stevennick, & Bialek, 1996). Correlations in the spike
timing of different neurons are of interest, in this context, for two main
reasons: First, spike correlations are informative about the structure of the
neural code, beyond what could be inferred from the firing properties of
single neurons alone. Second, correlations are often thought to reflect the
structural properties of the neural network (Ginzburg & Sompolinsky, 1994).

Correlated firing in a pair of neurons can arise because of two distinct
reasons: the existence of a connection between the neurons (direct or indi-
rect), and the existence of a common input to the two neurons that is varying
in time. Here we focus on the second possible source for correlated activity.
We consider model neurons that receive an analog, continuous stimulus, and
respond to it by generating a discrete sequence of spiking events. The main
question that we address is how the statistical properties of the fluctuating
stimulus affect the structure of spike correlation functions.

Correlated inputs to neurons were considered theoretically mainly in
context of their effect on single-neuron properties, such as the firing rate
(Tuckwell, 1988b; Salinas & Sejnowski, 2000; Moreno, Rocha, Renart, &
Parga, 2002; Kuhn, Aertsen, & Rotter, 2003), the coefficient of variation
(CV) (Tuckwell, 1988b; Brunel & Sergi, 1998; Salinas & Sejnowski, 2000;
Stroeve & Gielen, 2001; Salinas & Sejnowski, 2002; Schwalger & Schimansky-
Geier, 2008), and the spike-triggered average stimulus (Kanev, Wenning, &
Obermayer, 2003; L., Gerstner, & Richardson, 2006; Paninski, 2006). These
works considered integrate-and-fire model neurons (Tuckwell, 1988a; Gerst-
ner & Kistler, 2002).

The non-leaky integrate-and-fire model is relatively tractable analytically
(Tuckwell, 1988b; Paninski, 2006). In comparison, analytical treatment
of the leaky integrate-and-fire (LIF) neuron is considerably more difficult
(Burkitt, 2006). Some analytical results are available for the firing rate
(Salinas & Sejnowski, 2000; Moreno et al., 2002; Kuhn et al., 2003), whereas
analytical results for the ISI and the CV are available only in particular
limits such as slowly varying (Moreno-Bote & Parga, 2006; Schwalger &
Schimansky-Geier, 2008), or binary (Salinas & Sejnowski, 2002), inputs.
Other results were obtained for the LIF model from computer simulations
(Salinas & Sejnowski, 2000; Stroeve & Gielen, 2001). In particular, Stroeve
and Gielen (2001) included a simulation study of correlations in spiking
of LIF neurons that receive partly overlapping input. Correlations due to
partly overlapping input were also studied analytically, but only in the limit
where the input is slowly fluctuating in time (Moreno-Bote & Parga, 2006).

Here we consider a simpler model of neural response, where neurons
spike whenever a generating potential g(t), linearly related to the neuron’s
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stimulus, crosses a threshold in its rising phase. For sufficiently simple
stimuli this model is analytically tractable, which allows for spike correlation
functions to be evaluated in closed form.

Threshold crossing processes without a reset were previously analyzed
as models for neural firing. The spike auto-correlation function of a neuron
was considered by Jung (1994), while making specific assumptions on the
nature of the fluctuating potential. Here we evaluate the auto- and cross-
correlation in spike timing of neurons with different thresholds, while making
fewer assumptions on the generating potentials eliciting the spikes. These
are assumed to be Gaussian, and may be identical or partially overlapping
in different neurons.

As in the case of Linear-Nonlinear (LN) models (Korenberg & Hunter,
1986; E. Chichilnisky, 2001), we assume that a neuron responds to a tem-
poral convolution of its stimulus with a linear kernel. However, in the LN
model spiking is stochastic, whereas in the threshold-crossing model the
spike timing is precisely determined by the stimulus. This aspect of the
model is motivated by the observation, in various neural assays, of responses
that are precisely repeatable across multiple trials (Mainen & Sejnowski,
1995; Berry, Warland, & M., 1997; R. R. de Ruyter van Steveninck, Lewen,
Strong, Koberle, & Bialek, 1997; Meister & Berry, 1999; Keat, Reinagel,
Reid, & Meister, 2001; Uzzell & Chichilnisky, 2004), much more than can
be described by Poisson statistics, particularly when the stimulus is strongly
fluctuating in time.

The model and our main assumptions are presented in Sec. II. Before
discussing spike correlation functions, we first evaluate the firing rate (Sec.
III), the spike-triggered average stimulus, and the spike-triggered covariance
(Sec. IV). We then evaluate spike auto- and cross-correlation functions
(Sec. V). These results are compared with computer simulations of model
neurons that spike according to several variations of the leaky integrate-and-
fire model (Sec. VI).

2 Formalism and assumptions

We consider one or more neurons that respond to the same generating po-
tential g and elicit a spike whenever g crosses a threshold in its rising phase.
The spike train generated by the neuron i can be written as

χi(t) = δ [g(t)− θi] ġ(t)Θ [ġ(t)] (1)
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where g is the generating potential. The Heaviside step function Θ [ġ(t)]
restricts the firing to the upward crossing events.

We assume that g is stationary, Gaussian, and has zero mean. The
generating potential is thus fully characterized by its correlation function,〈

g(t)g(t′)
〉

= w(|t′ − t|) (2)

where the brackets 〈〉 stand for an ensemble average over all possible real-
izations of the fluctuating generating potential g. Later on, in Sec. V, we
consider a more general situation of a population of neurons, whose gener-
ating potentials gi are jointly Gaussian, characterized by their covariance
functions 〈

gi(t)gj(t′)
〉

= wij(t′ − t). (3)

The properties of a model neuron, responding to a stimulus whose mean dif-
fers from zero, can be obtained from the zero-mean case simply by adjusting
the threshold.

For a single neuron, the behavior of w(∆t) at small ∆t determines the
firing rate and the short-time behavior of the spike auto-correlation (Sec. V).
We assume that an expansion of w(∆t) exists around ∆t = 0,

w(∆t) = W0 +W1|∆t|+
1
2
W2∆t2 +

1
3!
W3|∆t|3 + . . . (4)

We further assume thatW1 vanishes and thatW2 is negative, for reasons that
will become clear later on. As seen below, it is necessary to treat separately
different classes of processes, depending on which other coefficients in the
expansion are non-zero. One important class is the case where W3 6= 0. This
is the typical situation if a causal filter is involved in the generation of g(t).
For comparison we also briefly consider, in Sec. V, the case where all the
coefficients with odd indices vanish; for example, a process with a Gaussian
correlation function, w(t) = σ2exp(−t2/2τ2).

Relationship between g and the stimulus

The generating potential in our model is linearly related to the stimulus s,

g = f ◦ s (5)

where the symbol ‘◦’ stands for convolution. We assume that s is a zero-
mean, uncorrelated Gaussian process:〈

s(t)s(′t)
〉

= σ2
0δ(t

′ − t) (6)
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The correlation function of g is then

w(∆t) = σ2
0

∫
f(t)f(t+ ∆t)dt (7)

Note that W0 = σ2
0

∫∞
−∞ [f(t)]2 dt > 0 and that if f is sufficiently regular,

W2 = −σ2
0

∫∞
−∞ [f ′(t)]2 dt < 0.

The assumption that s is uncorrelated is made for simplicity of the pre-
sentation, and because uncorrelated flickering stimuli are often used exper-
imentally. The results below generalize in a straightforward manner also to
the case where s is a correlated Gaussian process.

Specific forms for f and w

In the following sections we first derive results that are valid generally, for
any w(∆t). We then illustrate these results with a specific example, where
we assume a particular form of f . In these examples the filter f is a causal
filter of the form

f(t) =

 0 t < 0
e−t/τ2 − e−t/τ1

τ2 − τ1
t > 0

(8)

which is a combination of two single-exponential filters with time constants
τ1 and τ2. Using Eq. (7)

w(∆t) = σ2 τ2exp (−|∆t|/τ2)− τ1exp (−|∆t|/τ1)
τ2 − τ1

(9)

where

σ2 =
σ2

0

2(τ1 + τ2)
(10)

is the variance of g.
In the particular case where τ1 = τ2 ≡ τ , f is an ‘alpha’ filter,

f(t) =

{
0 t < 0
t

τ2
e−t/τ t > 0

(11)

and

w(∆t) =
σ2

τ
(|∆t|+ τ) e−|∆t|/τ (12)

The expansion of w(∆t) for small ∆t, Eq. (4), yields W1 = 0 and:

W0 = σ2 , W2 = − σ2

τ1τ2
, W3 =

τ1 + τ2

τ2
1 τ

2
2

σ2 , W4 = −τ
2
1 + τ1τ2 + τ2

2

τ3
1 τ

3
2

σ2 , · · ·

(13)
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3 Firing rate

We begin with the relatively simple problem of evaluating the firing rate of
a single neuron (Rice, 1954),

r = 〈χ(t)〉 (14)

where χ is given by Eq. (1). Although this quantity has been calculated
before, we derive it here in some detail, because the derivation general-
izes to the higher-order moments that are calculated later (whose detailed
derivation is presented in the appendices.) The firing rate r can be written
as

r =
∫ ∞

0
dq q · p(θ, q) (15)

where p(g, q) is the joint probability distribution for the generating potential
to be equal to g and for its derivative, at the same time, to be equal to q.
To evaluate this and similar quantities, we use an identity that holds for a
general Gaussian signal g(t) with correlation function w(∆t): If ζ1 . . . ζn are
all scalar random variables that depend linearly on the process g,

ζi =
∫

dt αi(t)g(t), (16)

then the joint probability distribution of ζ1, · · · , ζn is equal to

p(ζ1, · · · , ζn) =
1
Z

exp
[
−1

2
ζTA−1ζ

]
(17)

where Z = [(2π)ndetA]1/2 and

Aij =
∫

dt
∫

dt′ αi(t)w(t′ − t)αj(t′) (18)

The generating potential and its derivative at time t = 0 correspond to
ζ1 = g(0) and ζ2 = ġ(0), therefore α1 = δ(t) and α2 = −δ̇(t), so that

A =
[
W0 0
0 −W2

]
(19)

The off-diagonal terms are proportional to w′(0), which vanishes if W1 = 0,
as we assumed1. We thus have

p(g, q) =
1
Z

exp
(
− g2

2W0
− q2

−2W2

)
(20)

1If W1 6= 0, w(∆t) does not have a derivative at ∆t = 0, and the derivation performed
here fails. A typical example is given by uncorrelated noise passed through a single-
exponential filter. For this process the firing rate diverges (see below).
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and the integral (15) yields

r =
1

2π

[
−W2

W0

]1/2

exp
(
− θ2

2W0

)
(21)

Hence W2 must be negative for the firing rate to be finite.
For the generating potential of Eqs. (8) and (9),

r =
1

2π (τ1τ2)1/2
exp

(
− θ2

2σ2

)
. (22)

If either τ1 or τ2 vanish, the firing rate diverges. Hence a generating potential
obtained by convolving uncorrelated noise with a single exponential filter
has an infinite rate of threshold crossings. In such a process there are finite
intervals in which the number of crossings is infinite, and others in which no
firing occurs2.

4 Spike triggered average stimulus

The spike triggered averaged stimulus (STA) is the mean stimulus given that
a spike was generated at a particular time. Because the input is assumed to
be stationary, the STA is only a function of the time difference relative to
the spike time,

fSTA(∆t) =
1
r
〈s(∆t) · χ(0)〉 (23)

where r is the firing rate, χ is determined by g, as in Eq. (1), and the
spike time was arbitrarily chosen to be zero. If one assumes that spiking is
described by a LN model with filter f , and if the stimulus is uncorrelated
Gaussian noise, fSTA(∆t) is proportional to f(−∆t) (E. Chichilnisky, 2001;
Paninski, 2003). Hence it is common to probe the spatio-temporal filter
applied by a neuron on its stimulus by measuring fSTA (Schwartz, 2006), in
particular in the visual sensory system (Rieke, 2001; E. J. Chichilnisky &
Kalmar, 2002; Baccus & Meister, 2002; Rust, Scwartz, Movshon, & Simon-
celli, 2005; Hosoya, Baccus, & Meister, 2005).

To compute fSTA for a threshold-crossing spiking neuron we need the
joint probability distribution function p(g1, q1; s2) for g(0) = g1, ġ(0) = q1,
and s(∆t) = s2, evaluated in Appendix A. The STA is then given by

fSTA(∆t) =
θ

A
f(−∆t) + σ0

√
π

2B
f ′(−∆t) (24)

2This is related to the short-time properties of the spike auto-correlation function
(Sec. V) in the limit where τ1 or τ2 → 0.
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where A = W0/σ
2
0 =

∫∞
−∞ f

2(t)dt and B = −W2/σ
2
0 =

∫∞
−∞ f

′2(t)dt.
The first term in Eq. (24) is proportional to the expectation for the STA

in a rate-based linear-nonlinear model (E. Chichilnisky, 2001). However, for
a threshold-crossing spiking neuron it correctly describes the STA only in
the limit of large θ: in contrast, when θ = 0, the STA is proportional to
f ′(∆t).

The result that fSTA is a linear combination of the filter and its derivative
has a simple geometric interpretation, which is most easily seen by thinking
of the stimulus history as an n-dimensional discrete vector. The condition
for spiking at time t = 0 involves g and its derivative, which are the inner
products of the stimulus history with two vectors, f and f ′. Because s is
uncorrelated, its history vector is distributed in a radially symmetric manner
in n-dimensional space. The STA must lie in the two-dimensional sub-space
spanned by the vectors f and f ′.

This result is illustrated in Fig. 1a, for the generating potential of Eqs. (11)
and (12). With the threshold varying from 0 to 2.5σ, the shape of fSTA varies
significantly. The dotted lines in the figure (overlapping with the solid line)
were obtained from a discrete simulation, using a time step dt = τ/100
and averaging over a simulation run T/τ = 106 for θ = 0 and θ = 1, and
T/τ = 108 for θ = 2.5.

It is interesting to compare these results with what is expected from a
leaky integrate-and-fire model neuron (Tuckwell, 1988a; Gerstner & Kistler,
2002). For this case there is no known analytic form for the STA (see,
however, Kanev et al., 2003; L. et al., 2006; Paninski, 2006), but we can
evaluate the STA numerically. We assume that the membrane potential of
the model neuron is related to the input current via

τ1
du
dt

= −u+ I (25)

with a reset of the membrane potential to ur whenever u reaches the thresh-
old θ, whereas the input current is related to the stimulus s by

τ2
dI
dt

= −I + s (26)

The sub-threshold dynamics of u depends on the stimulus in the same way
as the generating potential g depends on stimulus in the threshold-crossing
model. The difference between the two models lies in the existence of a
reset. For simplicity, we set ur = 0 and τ1 = τ2 for the rest of this section
(see also Sec. 6 and Appendix D).
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Figure 1b shows a comparison between fSTA in the integrate-and-fire
model (simulation, dotted line: dt/τ = 0.01 and T/τ = 106) and fSTA in the
threshold-crossing spiking model [Eq. (24), solid line.] The parameters are
as in panel a, with a threshold θ = 2.5σ. The two models agree very well
in their prediction and differ, significantly, from that of a LN model, where
fSTA(∆t) ∝ f(−∆t) (dashed line).

For a lower threshold, θ = 0.25, the threshold-crossing spiking model
and the integrate-and-fire model no longer yield similar predictions for fSTA

(solid and dashed lines, Fig. 1c). The difference between the cases of high
and low threshold is possibly related to the typical inter-spike interval which,
in the case of a high threshold, is longer, allowing the input to decorrelate
between subsequent spikes. The statistics of the input before a spike are
thus less influenced, in the case of high threshold, by whether a reset has
occurred following the previous spike.

Finally, we note that the threshold-crossing model is similar to a two-
dimensional LN model involving two filters, equal to f(−t) and f ′(−t). In
the analogous LN model the nonlinear transfer function must be chosen to
be narrowly peaked at values of the generating potential close to the thresh-
old, and an appropriate dependence on the derivative must be included as
well3. The result that the STA is a linear combination of the filter f and
its derivative thus agrees with the general property of multi-dimensional LN
models, that the STA lies within the subspace spanned by the linear kernels
determining the spiking rate (Paninski, 2003; Schwartz, 2006). Similarly, we
may expect the spike-triggered covariance (R. de Ruyter van Steveninck &
Bialek, 1988; Schwartz, 2006) to reveal the linear filter f and its derivative
f ′ as spanning this sub-space. This is indeed the case (Appendix A.)

5 Spike correlations

We next consider correlations in the spike timing of two neurons, assuming
that they receive identical inputs, but possibly differ in their thresholds
θ1,2. Because the generating potential is assumed to be stationary, the spike
correlation function depends only on the time difference between spikes:

c(∆t) = 〈χ1(0) · χ2(∆t)〉 (27)

From the definition of χ1,2, Eq. (1), the quantity inside the brackets depends
on the generating potential and its derivative at t = 0 and at t = ∆t.

3There is a difference between the two models, however, in that the two-dimensional
LN model produces a variable number of spikes within the narrow spiking event.
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The detailed form of c(∆t) is derived in appendix B, and here we present
the main results. The spike correlation function can be written as

c(∆t) = p(θ1; θ2) ·
∫ ∞

0
dq1

∫ ∞
0

dq2 q1 · q2 (28)

×
(
detm−1

)1/2
2π

exp
[
−1

2
(q− q0)T m−1 (q− q0)

]
where p(θ1; θ2) is the joint probability distribution for g(0) = θ1 and g(∆t) =
θ2 [see Eq. (66)], and qT = (q1, q2). The quantity in the second line of the
equation is the conditional probability distribution function for g′(0) = q1

and g′(∆t) = q2, given that g(0) = θ1 and g(∆t) = θ2. This conditional dis-
tribution is Gaussian and is characterized by its mean q0 and the covariance
matrix m, whose values are derived in the appendix [Eqs. (64) and (65)].

The spike auto-correlation function

We briefly discuss the spike auto-correlation function, corresponding to the
case θ1 = θ2 ≡ θ, and focusing on the behavior at small ∆t. Because the
spike train χ(t) is a point process, its auto-correlation function necessarily
includes a contribution

c(∆t) = rδ(∆t) + . . . (29)

The discussion here concerns nonzero values of ∆t, i.e., the occurrence of
spikes in addition to the one at t = 0. The behavior for small ∆t is remark-
ably different for the two classes of generating-potential statistics discussed
in Sec. II: If W3 6= 0, as in the example of Eq. (13), the spike auto-correlation
function tends to a finite value when ∆t→ 0:

c(∆t)→ W3

4π2(−3W0W2)1/2
exp

(
− θ2

2W0

)
(30)

It is interesting to look at this quantity divided by r, which represents the
firing rate at time t = ∆t after the occurrence of a spike at t = 0:

c(∆t)
r
→ W3

−2π
√

3W2

(31)

This ratio does not depend on θ. By comparing with r itself we see that,
if the threshold is high, the spike-conditioned firing rate is much higher
than the average firing rate. In other words, once the neuron has fired, it
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is likely to soon fire again, compared to its baseline firing rate. When the
threshold is zero, the spike-conditioned firing rate can be larger or smaller
than r, depending on the expansion coefficients W2 and W3. This result is
illustrated in Fig. 2a, where w is given by Eq. (12)4.

We note that when W3 6= 0 as above, the second derivative of the gener-
ating potential is an unbounded random process, and the first derivative of
g is not smooth. This facilitates the generation of successive spikes at short
intervals, since the derivative of g is required to be positive at the interval’s
edges, and negative somewhere in between.

In contrast, when the first derivative of g is a smooth process, we may
expect the occurrence of spikes at vanishingly small intervals to be consid-
erably less likely. Indeed, if w(∆t) has no irregularities at ∆t = 0, so that
all Wi with odd indices vanish, the occurrence of spikes separated by short
intervals is strongly suppressed, c(∆t) ∼ (∆t)4 [Appendix C, Eqs. (84) and
(87)]. This is illustrated in Fig. 2b for a generating potential with a Gaus-
sian correlation function, w(∆t) = σ2exp(−∆t2/2τ2). Note that W0 and
W2 are the same in the two parts of Fig. 2; consequently, the mean firing
rates are identical in these two cases.

Spike cross-correlation

We next consider the spike cross-correlation function of two neurons with
different thresholds, firing in response to the same stimulus. We note, first,
that unless θ1 = θ2 the correlation function is not symmetric with respect
to replacement of ∆t by −∆t or, equivalently, with respect to exchange of
the two neurons (θ1 ↔ θ2). The generating potential is required to have a
positive derivative at t = 0 and at t = ∆t, and therefore we may expect a
higher probability for joint spiking if the higher of the two thresholds is set
at the later time (see Fig. 3). This is indeed the case – as demonstrated in
Fig. 4a for the generating potential described by Eq. (12), and with thresh-
olds set as θ1 = 0.8σ and θ2 = σ. The preference for one neuron to fire after
the other neuron is particularly prominent at short time scales of order τ ,
but it also has a signature at large time scales (Appendix B).

It is instructive to compare the threshold-crossing model with the pre-
diction of a one-dimensional linear-nonlinear (LN) model (E. Chichilnisky,
2001). For this comparison, we assume that the linear filter of the LN model
is the same as the filter f in the threshold-crossing model, and that in both

4Note that the conditional firing rate diverges if τ1 → 0 or if τ2 → 0, which can be
seen from Eq. (13). This is consistent with the divergence of the average firing rate in this
limit, and the existence of finite time intervals in which the number of spikes is infinite.
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models the stimulus is uncorrelated Gaussian noise. In the LN model the
spike correlation function depends also on the choice of the non-linear func-
tion applied to the outcome of the linear filter. Two particular choices are
made in the examples shown in Fig. 4b: The first is linear rectification,
φ(x) ∝ Θ(x − θ) where Θ(x) = x for x > 0 and Θ(x) = 0 for x < 0, with
thresholds θ1, θ2 chosen as in Fig. 1a (solid line).

The second example (dashed line) is the case where φ(x) is non-zero only
in a narrow range around θ, φ(x) ∝ δ(x− θ). Mathematically, this example
compares more directly with the threshold-crossing model, because the LN
model produces spikes only at the threshold crossings. The correspondence
can be seen in the spike cross-correlation function c(∆t) obtained from the
LN model in this case, which is calculated in Appendix E [Eq. (100).] In
the limit of large ∆t, c(∆t)/r1r2 − 1 in the LN model [Eq. (104)] is equal
to the first term in the large ∆t expansion for the threshold-crossing model,
Eq. (74).

We note two important qualitative differences between the LN model
and the threshold-crossing spiking model: First, in the LN model, the spike
correlation function is symmetric under time reversal: c(−∆t) = c(∆t)5. A
second qualitative difference between the two models, seen in Fig. 4, is that
the firing of the two neurons is less correlated in the LN model, compared
to the threshold crossing spiking model, at short time scales.

The limit ∆t→ 0

In the limit of small ∆t the behavior of c(∆t) is substantially different if the
neuron with the higher threshold fires before or after the neuron with the
lower threshold6. To simplify notation we assume here that θ2 > θ1.

∆t > 0: For small ∆t the spike correlation function scales with ∆t as

c(∆t) ∼ (θ2 − θ1)2

∆t3
exp

[
1

2W2

(
θ2 − θ1

∆t

)2

+
γ1

∆t

]
(32)

where
γ1 = − W3

6W 2
2

(θ2 − θ1)2 (33)

5This property arises for the following reason. The spike cross-correlation at any two
times t1, t2 depends on the joint probability distribution of the generating potential values
at these times. Assuming that the generating potential is Gaussian, this joint distribution
function is necessarily symmetric.

6A weak asymmetry between positive and negative ∆t exists also in the limit ∆t→∞.
This limit is considered in Appendix B.
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This approximation, with the appropriate prefactors taken from Eqs. (60),
(76), and (78) is plotted in Fig. 4a (dashed line) for the particular input
considered in this figure.

As ∆t→ 0, the exponential decay in Eq. (32) wins over the ∼ (∆t)−3 di-
vergence for sufficiently small ∆t. At larger values of ∆t the spike correlation
function peaks, and then decays algebraically. Hence the neuron with the
larger threshold tends to fire after the neuron with the lower threshold, with
a typical latency given by the position of the peak. If we ignore the term
γ1/∆t, which is legitimate when the difference in thresholds is sufficiently
small, the maximum is at ∆t = ∆t∗ where

∆t∗ =
θ2 − θ1√
−3W2

(34)

For the generating potential of Eqs. (8) and (9),

∆t∗ =
θ2 − θ1

σ

√
τ1τ2

3
(35)

Equation (34) indicates that the most likely latency increases linearly
with θ2 − θ1. An illustration of this result is shown in Fig. 5, where f and
w are as defined by Eqs. (11) and (12), θ2 = 0.5σ, and c(∆t) is plotted for
three values of θ1: 0.2σ, −0.2σ, and −0.5σ (solid lines). With increase in
θ2− θ1 the peak of the spike correlation function becomes wider, and occurs
at larger latencies. The arrows indicate the prediction for the position of
the peak, Eq. (35), which matches the actual position very well even when
θ2 − θ1 is relatively large.

∆t < 0: In this case the process g is required to have a positive derivative
at t = ∆t < 0, a negative derivative within the interval (∆t, 0) and, again, a
positive derivative at t = 0. Such a trajectory becomes increasingly unlikely
when ∆t→ 0, and the spike correlation function decays to zero. The leading
contribution is of the form

logc(∆t) ' −3(θ1 − θ2)2

W3(∆t)3
+ · · · (36)

if W3 6= 0. If W3 = W5 = 0 the decay is even stronger, logc(∆t) ∝ (∆t)−6

(Appendix C.) Equation (36) introduces a characteristic time scale for the
inhibition, scaling as

(θ1 − θ2)2/3

W
1/3
3

=
(

τ2
1 τ

2
2

τ1 + τ2

)1/3(
θ1 − θ2

σ

)2/3

(37)

where the expression on the right hand side holds if w(∆t) is given by Eq. (9).
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Partly overlapping inputs

We next generalize the analysis to the more realistic case where the inputs
to different neurons are only partially overlapping:

gi = f ◦ (s+ ξi) (38)

The noise inputs ξi are assumed to be zero-mean, jointly Gaussian processes
that are uncorrelated with s and with each other:〈

ξi(t)ξj(t′)
〉

= ασ0δijδ(t′ − t). (39)

Here α is the ratio between the standard deviation of the noise and that of
the common stimulus. The covariance of the generating potentials is then

wij(∆t) = w(∆t)(1 + α2δij) (40)

The spike auto- and cross-correlation functions can be evaluated in a similar
manner as for the noise-free case (Appendix B).

As an example, we consider the ‘alpha’ filter, Eq. (11). In Fig. 6 the
standard deviation σ of the common stimulus is kept fixed, while α is var-
ied. Figure 6a shows the spike correlation function of two model neurons
with the same threshold θ = σ and with weak independent noise, α = 0.1.
The existence of noise increases the correlation in neural firing at non-zero
latencies, compared to the noise-free case (dashed line). To understand this
seemingly counter-intuitive result, note that the spike correlation function
in the noise-free case is identical to the spike auto-correlation function of a
single neuron, and includes a delta-function contribution at ∆t = 0. When
the two neurons receive independent noise, they no longer fire precisely a
the same time, leading to a broadening of the delta function into a peak of
finite width.

Panel b of the figure shows the spike correlation function of two neurons
with different thresholds, θ1 = 0 and θ2 = σ, for several values of α: 0 (no
noise), 0.4, and 1. Increasing α reduces the correlation between the two
neurons. Note, however, that the preference of neuron 2 to fire after neuron
1 is clearly evident at time scales comparable to τ , even when the noise and
signal have the same standard deviation.

The inset shows c(∆t)/r1r2 − 1 in a case where the noise is much larger
than the signal, α = 10. Here c(∆t) is very well approximated using a
linearization with respect to the cross-correlation function (dotted line), as
described in Appendix B, Eq. (63). This approximation works quite well
even if α is of order unity, as can be seen in the main plot (Fig. 6b, dotted
line.)

14



6 Comparison with integrate-and-fire neurons

Having characterized the spike correlation statistics of the threshold crossing
model, we may ask whether the results carry over to other models of neural
firing. In even the most simple leaky integrate-and-fire (LIF) model an
analytical form is not known for the spike correlation functions. Hence the
discussion in this section is based on numerical simulation of model neurons,
using several variations of the LIF model. We focus on the relative timing of
spikes elicited by neurons that receive the same stimulus but differ in their
thresholds.

In the following examples, where we consider pairs of neurons that differ
in θ, we suppose that the neurons are identical, but differ in the mean value
of their fluctuating input currents. Hence, after shifting the membrane po-
tential to compensate for the different baseline currents, the reset potentials
ur in the two neurons differ, but the difference θ − ur is fixed.

Figure 7 a shows the spike correlation function of two such neurons,
evaluated from simulation of model neurons according to the LIF model
of Eqs. (25)–(26), with θ1 = 0.8σ, θ2 = σ, and θ − ur = 0.5σ. The only
difference between the LIF model and the threshold-crossing model is the
existence of a reset in the membrane potential following each spike. Nev-
ertheless, comparing Fig. 7 a with Fig. 4 a reveals that there is very little
resemblance between the spike correlation functions obtained from the two
models. Most notably, in the LIF model there is almost no preference for
one of the neurons to fire later than the other one.

To better understand this discrepancy, Fig. 7 b shows an example of spike
trains generated by the two neurons in the LIF model (top two traces), and
in the threshold crossing model (bottom two traces). Compared to the LIF
model, which tends to produce bursts of spikes, the threshold crossing model
tends to generate much more isolated spikes.

The inset in Fig. 7 b shows an example of bursts of spikes, generated
by the LIF neurons after a relatively long silent period (top two traces).
The first spike generated by the neuron with the smaller threshold (black)
precedes the first spike generated by the neuron with the higher threshold
(gray), preserving the tendency that is observed in the threshold crossing
model. This tendency is typically observed also in other isolated bursts.

Within the bursts, however, there is no clear relative timing of spikes
of the two LIF neurons, because a spike in one neuron can be paired with
a spike in the other neuron that either precedes it or comes after it. This
suggests that the existence of bursts masks the tendency of the neurons
to fire in a particular order. Motivated by these observations, we consider
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several situations in which the LIF model can exhibit a characteristic order of
spike timing, in similarity to the prediction of the threshold-crossing model.

Sparse firing

In situations where the LIF neurons fire isolated spikes, we may expect
a clear order of spike timing to emerge, and to be reflected in the spike
correlation function.

Sparse firing due to a large potential reset, compared to the input vari-
ance. With increase of θ−ur, compared to σ, spikes tend to become more iso-
lated. With fixed biophysical parameters of the cell, an increase in (θ−ur)/σ
corresponds to a decrease in the standard deviation of the fluctuating in-
put current (see, also, Appendix D). Figure 8 a shows that, as (θ − ur)/σ
increases in both neurons, a pronounced asymmetry develops in their spike
cross-correlation function.

Sparse firing due to refractoriness. Sparse firing may result, alterna-
tively, from the existence of an additional refractory mechanism. There
are many possible ways to model refractoriness in a LIF model (Gerstner
& Kistler, 2002), and here we consider one such possibility. After each
spike, the membrane potential u is kept fixed at ur during a waiting period
whose length varies randomly from spike to spike. After the waiting pe-
riod the membrane potential continues to evolve according to Eq. (25), and
the distribution function of waiting times decays exponentially with a time
constant τr . Spike correlation functions, obtained from simulations of this
model with τr = 2τ , are shown in Fig. 8 b for several pairs of thresholds,
exhibiting a clear asymmetry in firing order. Note that in this example, the
membrane time constant is shorter than the typical refractory time τr.

Bursting events

Neurons often generate distinct bursts of spikes, sometimes referred to as
events, when presented with stimuli possessing rapid temporal fluctuations
(Berry et al., 1997; Berry & Meister, 1998b, 1998a). It has been argued that
the timing of events, as marked by their first spike, can convey significant
information about the stimulus (Hopfield, 1995; Gollisch & Meister, 2008).
Hence it is of interest to understand the factors influencing the relative
timing of these spikes. In the following, we consider a model where bursting
events are more clearly separated from each other than in the simple LIF
model. We then interpret the predictions of the threshold-crossing model in
relation to the timing of burst onsets.
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To reproduce well-separated spiking bursts in a neural model, we con-
sider a generalization of the LIF model, introduced by Keat et al. (2001).
This model was shown to reliably predict the structure of spike trains gen-
erated by retinal ganglion cells from several different species, in response to
rapidly flickering stimuli. In a version of this model without noise, a gener-
ating potential g(t) is related to the stimulus by Eq. (5), as in the threshold
crossing model. Spiking occurs when g(t) crosses a time-dependent thresh-
old b(t) that increases following each spike,

b(t) = θ +B

∫ t

−∞
χ(t′)exp

(
− t− t

′

τp

)
dt′ (41)

We refer to this model as the variable-threshold (VT) model.
We may interpret g − b + θ as the neuron’s membrane potential: with

this interpretation the discrete increase in b following a spike corresponds
to a reset of the membrane potential from θ to θ − B. The VT model is
precisely equivalent to the LIF model of equations (25)–(26) if f is a double
exponential filter, as in Eq. (8), and if τp = τ1. For simplicity we take f to
be an ‘alpha’ filter, Eq. (11). However, we choose the time scale of threshold
recovery τp to be larger than the neuron’s membrane time constant, τp = 5τ .
This ratio roughly matches the relation between τp and the shape of filters
that were found in Keat et al. (2001) to provide a good description of spike
trains from retinal ganglion cells.

A spike train generated by this model is shown in Fig. 9b, and consists
of clearly separated events. The red lines in Fig. 9 b represent spikes gener-
ated by a threshold-crossing model with the same generating potential and
threshold as in the VT model. These spikes roughly match the onset of bust-
ing events in the VT model. The threshold-crossing model thus provides a
coarse-grained description of events generated by the VT model.

We next isolate the first spikes of events in the VT model by discard-
ing any spike that occurred within a time delay D = 2τ from a previous
spike7. Fig 9 c shows the cross-correlation function of these specifically
selected spikes in several neurons with thresholds θ/σ = 0.5, 0.2, −0.2,
and −0.5, that were all presented with the same stimulus. These cross-
correlation functions display a strong asymmetry between positive and neg-
ative ∆t, and are qualitatively very similar to the spike cross correlations in
the threshold crossing model, shown in Fig. 5. In contrast the spike cross
correlation functions calculated directly from all the spikes, Fig. 9 a, are very
different from the prediction of the threshold-crossing model.

7Because the events are clearly separated clearly from each other, the results are in-
sensitive to the precise choice of D.
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These results suggest that the onsets of bursting events in neurons that
receive the same stimulus, but differ in their threshold, can exhibit strong
asymmetry in their relative timing, and that the correlation functions of
these event onsets can be qualitatively described by the simplified threshold-
crossing model.

7 Summary

We considered in this work a relatively simple deterministic process that pro-
duces a discrete spike train from an analog, continuous signal. The timing of
spikes in this model is more precisely controlled by the stimulus than typi-
cally predicted by rate-based models. This aspect of the model is motivated
by observations of precisely timed spiking in neural assays, particularly in
response to stimuli that possess strong temporal modulations (Mainen &
Sejnowski, 1995; Berry et al., 1997; R. R. de Ruyter van Steveninck et al.,
1997; Meister & Berry, 1999; Uzzell & Chichilnisky, 2004). Some of the
salient properties of spike correlation functions in this model are summa-
rized below.

Most notably, two neurons receiving identical inputs can show a pref-
erence for one neuron to fire later than the other, although there is no
monosynaptic connectivity between them (Figs. 4a and 5.) This preference
is prominent even if the thresholds of the two neurons are similar (but not
equal), and if there is only partial overlap in their input (Fig. 6.)

Comparison with the leaky integrate-and-fire model shows that bursting
in LIF neurons often masks the preference of neurons to fire in a particu-
lar order (Fig. 7). However, there are several situations in which such a
preference may be observed in LIF neurons. First, LIF neurons can dis-
play a preference to fire in a particular order if they produce sparse spiking,
e.g., due to a large hyperpolarizing step in the membrane potential after
each spike, compared to the standard deviation of the stimulus, or due to
other sources of refractoriness (Fig. 8). Second, when the neurons generate
clearly separated bursting events, the first spikes of these events have cross-
correlation functions that are similar to those predicted by the threshold
crossing model (Fig. 9).

The spike cross-correlation function of neurons that differ only in their
thresholds may be probed experimentally by repeatedly presenting the same
stimulus to a single neuron, while injecting varying amounts of current into
the neuron from trial to trial. Correlations between different trials can then
effectively measure the spike correlation function of two identical neurons
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with different thresholds. This approach was recently taken in (Markowitz,
Collman, Brody, & Hopfield, 2008), where a Gaussian stimulus, mimicking
the spectral properties of Gamma oscillations, was injected into rat pyrami-
dal neurons from the somatosensory cortex. While spike cross-correlation
functions are not shown in (Markowitz et al., 2008), spike trains from differ-
ent trials exhibit a clear modulation of spike timing by the varying injected
current, suggesting that a strong asymmetry exists in the spike-correlation
function of neurons with different thresholds. Furthermore, the characteris-
tic latency between the firing of two neurons appears to increase linearly as
a function of the difference in injected currents. This roughly linear depen-
dence persists over a wide range of current differences, in similarity to our
results from the threshold-crossing model.

We also considered in this work the spike-triggered average stimulus
(STA). The STA in our model is a linear combination of the filter and its
derivative. A simple geometrical argument shows that this result extends
to a larger class of models: it should hold whenever the stimulus is passed
through a linear kernel, if spike decisions are then based strictly on the
output of the kernel and its derivative. Varying the threshold modifies the
relative weight of the filter and its derivative (Fig 1). It will be interesting
to probe for such a dependence of the STA on threshold in real neurons.
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Note added in proof

Tchumatchenko et al. have recently considered a threshold-crossing model,
similar to the one presented in this work. A preprint of their work has been
made available on the arXiv.org e-Print archive while our manuscript was
in review (Tchumatchenko, Malyshev, Geisel, Volgushev, & Wolf, 2008).
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A Spike triggered average stimulus and covariance

To avoid infinities in the calculation we assume first that s is a correlated
Gaussian process with a correlation function ws(∆t). At the end of the
calculation we take the limit

ws(∆t)→ σ2
0δ(t− t′) (42)

The correlation function of g is

w(∆t) =
∫

dt
∫

dt′ f(t)ws(t− t′ + ∆t)f(t′) (43)

To evaluate fSTA we need the joint probability distribution function for
g(0) = θ, ġ(0) = q1, and s(∆t) = s2, in terms of which fSTA is given by

fSTA(∆t) =
1
r

∫ ∞
−∞

ds2

∫ ∞
0

dq1 s2 · q1 · p(θ, q1; s2) (44)

The joint probability distribution of p(θ, q1; s2) is given by

p(θ, q1; s2) =
1
Z

exp
[
−1

2
ζTA−1ζ

]
(45)

where ζT = (θ, q1, s2), Z = [(2π)ndetA]1/2, and

A =

 w(0) 0 (f ◦ ws)(−∆t)
0 −w′′(0) (f ′ ◦ ws)(−∆t)

(f ◦ ws)(−∆t) (f ′ ◦ ws)(−∆t) ws(0)

 (46)

Evaluating the integral (44) yields

fSTA(∆t) =
θ

w(0)
(f ◦ ws)(−∆t) +

√
π

−2w′′(0)
(f ′ ◦ ws)(−∆t) (47)

In the limit where ws is uncorrelated, Eq. (42), we get Eq. (24).
The spike-triggered covariance C(t1, t2) is defined as

C(t1, t2) =
1
r
〈[s(t1)− fSTA(t1)] [s(t2)− fSTA(t2)] · χ(0)〉 (48)

A calculation similar to that outlined for the STA yields

C(t1, t2)
σ2

0

= −f(−t1)f(−t2)
w(0)

+
f ′(−t1)f ′(−t2)
−w′′(0)

(
1− π

2

)
+ δ(t2 − t1) (49)
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The eigenfunctions ψi(t) of the covariance operator and their corresponding
eigenvalues λi are determined by the equation∫

C(t1, t2)ψi(t2)dt2 = λiψi(t1) (50)

From Eq. (49) we see that there are only two eigenfunctions ψ1,2(∆t) with
eigenvalues that differ from σ2

0. (The significance of these eigenfunctions
is that the variance of the stimulus’s projection on ψ1,2, when conditioned
on the occurrence of a spike at t = 0, is different from its nominal value
of σ2

0.) The first eigenfunction ψ1(∆t) is proportional to f(−∆t). Because
the generating potential must be equal to the threshold at t = 0, when a
spike is produced, the variance of the stimulus’s projection on f must be
zero: Indeed, λ1 = 0. The second eigenfunction ψ2(∆t) ∝ f ′(−∆t), and
λ2 = (2− π/2)σ2

0.

B Spike correlations

We consider two model neurons that may differ in their generating potentials
g1,2 and in their thresholds θ1,2. The generating potentials g1,2 are assumed
to be jointly Gaussian and stationary, characterized by correlation functions:

wij(∆t) = 〈gi(0)gj(∆t)〉 (51)

The stationary nature of g1,2 implies that w11(−∆t) = w11(∆t) and that,
similarly, w22(−∆t) = w22(∆t). For the cross-correlation functions it only
implies that w12(−∆t) = w21(∆t). In the rest of this appendix we assume
that, in addition,

w12(∆t) = w21(∆t) (52)

which is correct throughout Sec. V. In this case the expressions for the
joint probability distribution and for the spike correlation function simplify
considerably.

We first need to evaluate the joint probability distribution for g1(0) = θ1,
ġ1(0) = q1, g2(∆t) = θ2, and ġ2(∆t) = q2. This is given by

p(θ1, q1; θ2; q2) =
1
Z

exp
[
−1

2
ζTA−1ζ

]
(53)

where ζT = (θ1, q1, θ2, q2), Z = [(2π)ndetA]1/2, and

A =


w11(0) 0 w12(∆t) w′12(∆t)

0 −w′′11(0) −w′12(∆t) −w′′12(∆t)
w12(∆t) −w′12(∆t) w22(0) 0
w′12(∆t) −w′′12(∆t) 0 −w′′22(0)

 (54)
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Since, in calculating the spike correlation function, θ1 and θ2 are kept
fixed, it is useful to re-express this quantity as a quadratic function of q1

and q2 alone. We know that∫
dq1

∫
dq2 p(θ1, q1; θ2, q2) = p(θ1; θ2) (55)

where p(θ1; θ2) is the joint probability distribution of g1(0) = θ1, g2(∆t) =
θ2,

p(θ1; θ2) =
1

2πD
exp

(
−w11(0)θ2

1 + w22(0)θ2
2 − 2w12(∆t)θ1θ2

2D2

)
, (56)

and
D =

[
w11(0)w22(0)− w2

12(∆t)
]1/2

. (57)

Hence we can rewrite p(θ1, q1; θ2, q2) as

p = p(θ1; θ2)×
(
detm−1

)1/2
2π

exp
[
−1

2
(q− q0)T m−1 (q− q0)

]
The matrix m and q0 are found by collecting the quadratic and linear

terms in q1, q2 in Eq. (53),

m =
[
−w′′11(0) −w′′12(∆t)
−w′′12(∆t) −w′′22(0)

]
− [w′12(∆t)]2

w11(0)w22(0)− w2
12(∆t)

[
w11(0) w12(∆t)
w12(∆t) w22(0)

]
,

(58)
and

q0 =
w′12(∆t)

w11(0)w22(0)− w2
12(∆t)

[
w12(∆t)θ1 − w11(0)θ2

w22(0)θ1 − w12(∆t)θ2

]
(59)

Finally, we can write the spike correlation function as

c(∆t) = p(θ1; θ2) · I (60)

where

I =

(
detm−1

)1/2
2π

∫ ∞
0

dq1

∫ ∞
0

dq2 q1 · q2 · exp
[
−1

2
(q− q0)T m−1 (q− q0)

]
(61)
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Nearly independent inputs

When the cross-correlation w12(∆t) is small compared to the auto-correlations
w11(0), w22(0), I and p can be expanded in powers of w12(∆t) and its
derivatives. If w12(∆t) = 0 the matrix m is diagonal, p(θ1, q1; θ2, q2) =
p(θ1, q1) · p(θ2, q2), and c(∆t) = r1r2. To first order in w12(∆t),

I ' I0−
1
4
w′′12(∆t)+

1
2
√

2π

{
[−w′′11(0)]1/2

w22(0)
θ1 −

[−w′′22(0)]1/2

w11(0)
θ2

}
w′12(∆t)+· · ·

(62)
where I0 = [w′′11(0)w′′22(0)]1/2 /(2π). By similarly expanding p(θ1; θ2) we find
that

c(∆t)− r1r2

r1r2
' θ1θ2

w11(0)w22(0)
w12(∆t)− π

2 [w′′11(0)w′′22(0)]1/2
w′′12(∆t)

+
√
π

2

{
θ1

[−w′′22(0)]1/2w22(0)
− θ2

[−w′′11(0)]1/2w11(0)

}
w′12(∆t)(63)

Identical inputs

Equation (61) can be further simplified in the case where g1 and g2 are
identical. In this case w11 = w12 = w21 = w22 ≡ w. The spike correlation
function involves five parameters: w and its second derivative at zero, w,
its derivative, and its second derivative at ∆t. In Eq. (61), m and q0,
Eqs. (58)–(59), are then

m =
[
−w′′(0) −w′′(∆t)
−w′′(∆t) −w′′(0)

]
− [w′(∆t)]2

w2(0)− w2(∆t)

[
w(0) w(∆t)
w(∆t) w(0)

]
, (64)

q0 =
w′(∆t)

w2(0)− w2(∆t)

[
w(∆t)θ1 − w(0)θ2

w(0)θ1 − w(∆t)θ2

]
, (65)

and

p(θ1; θ2) =
1

2π [w(0)2 − w(∆t)2]1/2
· exp

{
−w(0)(θ2

1 + θ2
2)− 2w(∆t)θ1θ2

2 [w(0)2 − w(∆t)2]

}
(66)

Note that from symmetry under time reversal we must have

p(θ1, q1; θ2, q2) = p(θ2,−q2; θ1,−q1) (67)

This symmetry is reflected in the fact that (q0)1,2(θ1, θ2) = −(q0)2,1(θ2, θ1).
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Because m11 = m22, the eigenvectors of m are

v± =
1√
2

(
1
±1

)
(68)

and the corresponding eigenvalues are

m± = −w′′(0)∓ w′′(∆t) +
[w′(∆t)]2

w2(0)− w2(∆t)
[−w(0)∓ w(∆t)] (69)

It is useful to rewrite I in the coordinates in which m is diagonal

u± =
1√
2

(q1 ± q2) (70)

in terms of which

I =
1
2

∫ ∞
0

du+

∫ u+

−u+

du− (u2
+ − u2

−) (71)

× 1

2πm1/2
+ m

1/2
−

exp
[
−(u+ − u0,+)2

2m+
− (u− − u0,−)2

2m−

]
where

u0,± = − 1√
2

w′(∆t)
w(0)∓ w(∆t)

(θ2 ∓ θ1) (72)

The inner integral can be expressed using the Gauss error function, yielding
an expression for I that involves a single integral,

I =
∫ ∞

0
du+

1

4πm1/2
+

exp
[
−(u+ − u0,+)2

2m+

]
(73)

×
{
m

1/2
− (u+ − u0,−)exp

[
−(u+ + u0,−)2

2m−

]
+m1/2

− (u+ + u0,−)exp
[
−(u+ − u0,−)2

2m−

]
+
√
π

2
(
m− + u2

0,− − u2
+

) [
erf
(
u0,− − u+√

2m−

)
− erf

(
u0,− + u+√

2m−

)]}
The limit ∆t→∞

Assuming that w and all its derivatives at t = ∆t tend to zero when ∆t→∞,
the probability distributions at t = 0 and at t = ∆t decouple, and to leading
order c(∆t)→ r1r2.
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To evaluate the deviation from independent spiking, we can use equation
(63) in the case where w11 = w22 = w12 = w21 ≡ w:

c(∆t)− r1r2

r1r2
' θ1θ2

w(0)2
w(∆t) +

π

2w′′(0)
w′′(∆t) (74)

+
1

w(0)

[
π

−2w′′(0)

]1/2

(θ1 − θ2)w′(∆t)

The third term in this equation is antisymmetric in ∆t and in θ1 − θ2.
Because w′(∆t) is typically negative for positive ∆t, this term represents a
small preference for the neuron with the higher threshold to spike after the
neuron with the lower threshold.

C The limit ∆t→ 0

We consider here the limit ∆t → 0 in the case of identical inputs. In this
limit the matrix m becomes singular, requiring particular analysis in order
to evaluate the correlation matrix.

The argument of the exponential in Eq. (28) is maximal when q = q0

[Eq. (65)] which approaches, when ∆t→ 0,

(q0)1,2 →
θ2 − θ1

∆t
(75)

This is the derivative of g(t) if it follows a linear trajectory from g(0) = θ1

to g(∆t) = θ2. However, this maximum is within the integration range in
Eq. (28) only if (θ2−θ1)/∆t is positive, i.e., only if the neuron with the higher
threshold spikes after the neuron with the lower threshold. Accordingly, the
behavior of c(∆t) is substantially different for positive and negative ∆t.

For simplicity of the notation in this appendix, we assume that ∆t > 0
and that θ2 − θ1 may be either positive, negative, or zero. To relate this to
the presentation in Sec. V, where we assumed that θ2− θ1 is positive, recall
that c(−∆t) is the same as c(∆t) with the two thresholds θ1, θ2 exchanged.

To evaluate the behavior of the integral I at small ∆t we need to expand
the expressions for m+, m−, u+, and u− in this limit, where we use the
representation of I in Eqs. (71)–(72). The leading terms in these expansions
are shown in Table 1 in two cases: (i) W3 6= 0. (ii) All Wi with odd index
vanish.
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W3 6= 0 W3 = W5 = 0

m+
W3

3
∆t

1
72

(
W 2

4

W2
−W6

)
(∆t)4

m− W3∆t
1
2

(
−W

2
2

W0
+W4

)
(∆t)2

√
2u+ (θ2 − θ1)

2
∆t

√
2u− −(θ1 + θ2)

W2

2W0
∆t

Table 1: Leading order terms in the expansion of m± and u± for small ∆t.
If θ1 = θ2, u+ = 0 to all orders.

The case θ2 − θ1 > 0

This case is most simply treated in the original (q) coordinates. As ∆t→ 0
(q0)1,2 ∼ (∆t)−1 whereas the standard deviation of the Gaussian in Eq. (28)
tends to zero as

√
∆t in both of the principal directions (or faster if W3 =

0). We can therefore replace the lower integration limits by −∞ with an
exponentially small error. Furthermore, the integral in Eq. (28) becomes
dominated by the peak of the Gaussian, as it becomes sharper with the
decrease of ∆t.

To leading order in ∆t the integral is thus simply

I ' (q0)1 · (q0)2 =
(θ2 − θ1)2

∆t2
(76)

To evaluate p(θ1; θ2) we note that, in Eq. (66),

w2(0)− w2(∆t) ' −W0W2(∆t)2 (77)

and by expanding the argument of the exponential we obtain

p(θ1; θ2) ' 1
2π(−W0W2)1/2|∆t|

× exp

[
1

2W2

(
θ2 − θ1

∆t

)2

+
γ1

∆t
+ γ0

]
, (78)

where

γ0 =
1

72W 3
2

(4W 2
3 − 3W2W4)(θ2 − θ1)2 − 1

8W0
(θ1 + θ2)2. (79)
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and
γ1 = − W3

6W 2
2

(θ2 − θ1)2. (80)

The leading contribution in Eq. (78) is proportional to the probability den-
sity to have a derivative equal to (θ2 − θ1)/∆t. Combining Eqs. (76) and
(78) we obtain the small ∆t behavior of c(∆t), Eq. (32).

When θ2 − θ1 → 0 the peak in the spike correlation function gradually
becomes the delta-function contribution to the spike auto-correlation func-
tion, Eq. (29): For sufficiently small θ2 − θ1, and for ∆t . −W2/W3, the
spike correlation function is approximately

c(∆t) ' (θ2 − θ1)2

2π(−W0W2)1/2∆t3
× exp

[
− θ2

2W0
+

1
2W2

(
θ2 − θ1

∆t

)2
]
. (81)

The integral of this function from 0 to infinity is equal to r, whereas the
width of the peak and its position both tend to zero when θ2 − θ1 → 0.
Hence the small ∆t behavior of the spike correlation function approaches,
when θ2 − θ1 → 0,

rδ(∆t). (82)

The case θ2 = θ1

The maximum of the Gaussian in Eq. (71) is at u+ = 0 and u− ∼ θ∆t
(where θ ≡ θ1 = θ2,) which lies outside the range of integration [The (+,+)
quadrant in the q coordinates.] However, if W3 6= 0 the distance from the
(+,+) quadrant is small compared to the standard deviation of the Gaussian
(∼
√

∆t). As a result, the integral in (71) can be treated as if u0,± = 0.
The situation is different if W3 = 0, in which case the distance of q from the
origin and the standard deviation in the u− direction are of the same order
of magnitude.
(i) W3 6= 0. In this case we have, to leading order in ∆t,

I ' 1

4πm1/2
+ m

1/2
−

∫ ∞
0

du+

∫ u+

−u+

du+ (u2
+ − u2

−)exp
(
−
u2

+

2m+
−

u2
−

2m−

)
=

1
2π

[
(m+m−)1/2 + (m+ −m−)arctan

√
m+

m−

]
' W3∆t

2π
√

3

[
1− π

3
√

3

]
. (83)

For small ∆t

p(θ; θ) ' 1
2π
√
−W0W2∆t

exp
(
− θ2

2W0

)
(84)
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Hence the spike correlation function tends to a finite value when ∆t → 0,
Eq. (30).
(i i) W3 = W5 = 0. To treat this case we rescale u± by the leading depen-
dence on ∆t in the expansion of (m±)1/2 (this procedure can also be applied
in the case W3 6= 0, in order to derive Eq. (83) in a more formal manner).
We use the following notation,

m+ ' a+(∆t)4 ; m− ' a−(∆t)2

u+ = ũ+ · (∆t)2 ; u− = ũ− ·∆t ; u−,0 ' α∆t (85)

where

a+ =
1
72

(
W 2

4

W2
−W6

)
; a− =

1
2

(
−W

2
2

W0
+W4

)
α = − W2√

2W0

θ (86)

and obtain

I ' 1
4π(a+a−)1/2

∫ ∞
0

dũ+

∫ ũ+∆t

−ũ+∆t
dũ−

[
(∆t)4ũ2

+ − (∆t)2ũ2
−
]

×exp
[
−
ũ2

+

2a+
− (ũ− − α)2

2a−

]

' 2
3π

(∆t)5

√
a3

+

a−
exp

(
− α2

2a−

)
(87)

Using Eq. (84) we see that, in contrast to the case W3 6= 0, the spike
correlation function tends to zero when ∆t→ 0,

c(∆t) ∼ (∆t)4 (88)

The case θ2 − θ1 < 0

In this case, as in the case θ2 > θ1, (q0)1,2 ∼ ∆t−1, but now q0 is outside
the integration region, far from it on the scale of the Gaussian’s standard
deviation. We denote

u+,0 ' −
α

∆t
(89)

where α =
√

2(θ1 − θ2) > 0. It is then seen from Eq. (71) that I decays to
zero exponentially, with a leading contribution of the form

log(I) ' − α2

2m+(∆t)2
= − 1

m+

(
θ1 − θ2

∆t

)2

(90)
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which corresponds, if W3 6= 0 to

log(I) ' −3(θ1 − θ2)2

W3(∆t)3
+ · · · (91)

and, if W3 = W5 = 0, to

log(I) ' −(θ1 − θ2)2

a+(∆t)6
+ · · · (92)

In contrast to I in the case θ2 − θ1 > 0, which diverges when ∆t → 0, in
the case θ2 − θ1 < 0 I strongly decays to zero. A more precise treatment of
this integral requires evaluation of additional terms in the expansion shown
in Table 1.

The probability p(θ1; θ2) is the same as in the case θ2− θ1 > 0. Like I, p
decays exponentially when ∆t→ 0, but the leading power of (∆t)−1 inside
the exponential is smaller, so it becomes relevant only if logI is expanded
beyond the leading order.

D Parameterization of the LIF model

The notation in equations (25)–(26) was chosen for mathematical simplicity.
To see how the parameters in these equations are related to biophysical prop-
erties of the neuron, we start with a standard equation for the membrane
potential dynamics of a LIF neuron (Dayan & Abbott, 2001),

τ1
dv
dt

= E0 − v +RmIc (93)

where E0 is the resting potential of the cell, Rm is the membrane resistance,
and Ic is the input current. Further, the potential v resets to vr whenever
it reaches a threshold vθ.

To reparametrize this equation as in Eq. (25), we first define

I = Rm (Ic − 〈Ic〉) (94)

where 〈Ic〉 is the mean (baseline) value of the fluctuating current Ic. Due to
the multiplication by Rm, I has the same units as the potential u. Second,
we shift the potential v by defining:

u = v − E0 −Rm 〈Ic〉 (95)
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With these definitions we obtain Eq. (25), repeated here,

τ1
du
dt

= −u+ I (96)

where I has zero mean, and θ − ur = vθ − vr.
The properties of the spike train depend on the ratio between θ−ur and

the standard deviation σ. The following example demonstrates what is a
reasonable range of values for this ratio. The standard deviation of I is equal
to
√

2σ (assuming that τ1 = τ2). Suppose that the standard deviation of the
current Ic is 0.1 nA. Assuming that Rm = 100 MΩ (which corresponds to a
neuron with surface area 10−4 cm2 and membrane time constant τ1 = 10 ms),
and that the difference between the threshold membrane potential and the
reset potential is 10 mV we get, using Eq. (94), θ − ur ' 0.7σ.

The ratio (θ−ur)/σ can vary considerably depending on the biophysical
parameters of the cell and, more importantly, depending on the standard
deviation of the fluctuating current. A smaller standard deviation of the
fluctuating current corresponds to a larger value of (θ − ur)/σ.

E Correlations in the LN model

In the LN model the spike times are an inhomogeneous Poisson process,
with a rate given by

r(t) = φ [(f ◦ s)(t)] (97)

where φ may be regarded as the transfer function of the neuron, if we think
of s as a direct input to the neuron (more generally, we may think of Eq. (97)
as a phenomenological relation between stimulus and firing rate.)

If there was no nonlinearity [φ(x) = x] we would have 〈r(t)r(t′)〉 ∼
w(t− t′), where w is the auto-correlation function of f ◦ s. More generally,
we need to take into account the particular form of φ. We focus here on the
case where two neurons, labeled 1 and 2, receive the same input and have the
same filter, but possibly differ in the nonlinear function φ. As in previous
sections we assume that the stimulus s is Gaussian (and so is g = f ◦s). We
then have,

c(∆t) =
∫ ∞
−∞

dg1

∫ ∞
−∞

dg2 φ1(g1)φ2(g2)p(g1; g2) (98)

where p(g1; g2) is given by Eq. (66). The spike correlation function thus
depends on w(0) and on w(∆t): in comparison, in the threshold crossing
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model it depends also on the first and second derivatives of w at these two
points.

For example, if

φ1,2(g) = φ0

{
0 , g < θ1,2

g − θ1,2 , g > θ1,2
(99)

the spike correlation function is

c(∆t) = φ2
0

∫ ∞
θ1

dg1

∫ ∞
θ2

dg2(g1 − θ1)(g2 − θ2)p(g1, g2) (100)

Note that the spike correlation function in the LN model is symmetric in
∆t→ −∆t despite the different offsets for the two neurons.

In the special case where θ1 = θ2 = 0, the spike (auto-)correlation func-
tion can be written in a relatively simple form,

c(∆t) =
1

2π

√
w2(0)− w2(∆t) +

w(∆t)
4

+
|w(∆t)|

2π
arctan

|w(∆t)|√
w2(0)− w2(∆t)

(101)
For any two thresholds, the behavior for large |∆t| can be found from

the expansion of p(g1; g2), from which we obtain

c(∆t) ' r0,1r0,2 +
φ2

0

4
w(∆t)erfc

(
θ1√

2w(0)

)
erfc

(
θ2√

2w(0)

)
(102)

where

r0,i =

√
w(0)
2π

exp
(
− θ2

i

2w(0)

)
− θi

2
erfc

(
θi√

2w(0)

)
(103)

are the firing rates of the two neurons and erfc is the complementary error
function.

For a more direct comparison with the threshold crossing model it is
instructive to consider a transfer function that is concentrated at a particular
value θ: φ(x) = φ0δ(x− θ). We then find that for large |∆t|,

c(∆t)− r1,0r2,0

r1,0r2,0
' w(∆t)
w2(0)

θ1θ2 (104)

which is the same as the first term in Eq. (74). The firing rate in the LN
model, appearing in the left hand side of Eq. (104), is given by

r0,i =
φ0√

2πw(0)
exp

[
− θ2

i

2w(0)

]
(105)
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Figure 1: (a) STA of a model neuron spiking in response to upward threshold
crossing of the generating potential described by Eqs. (5), (11), and (12).
The STA, Eq. (24), is plotted for three values of the threshold: θ = 2.5σ,
σ, and 0, where σ is the standard deviation of g(t) (solid line: analytic
expression, dotted lines: simulation). (b) A comparison of the STA for
θ = 2.5σ (solid line) with simulation results from a leaky integrate-and-fire
neuron with time constants τ1 = τ2 = τ and the same threshold, receiving
s as its input, and resetting its membrane potential to 0 after each spike
(dotted line). The dashed line shows the first term only of Eq. (24). (c) A
similar comparison as in (b), with θ = 0.25σ. (solid line, threshold crossing
model, dashed line, leaky integrate-and-fire model.)
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Figure 2: Spike auto-correlation function, c(∆t), divided by the average
firing rate r, for three values of the threshold: θ = 0, 2σ, and 3σ. The
generating potential is described by Eqs. (5), (11), and (12). (b) A simi-
lar plot for a generating potential having a Gaussian correlation function,
w(t) = σ2exp(−t2/2τ2).
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Figure 3: Spike generation events in the threshold crossing model, for two
neurons with thresholds θ1 (thick circle) and θ2 > θ1 (thin circle). In the
left plot neuron 2 fires after neuron 1, whereas in the right plot neuron1
fires after neuron 2. In the latter case the generating potential must reverse
the sign of its derivative twice within the time interval separating the two
spikes.
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Figure 4: (a) The spike correlation function, c(∆t)/r1r2 (solid line,) of two
model neurons with thresholds θ1 = 0.8σ and θ2 = σ, firing in response
to the same stimulus (same as in Fig. 2a). The dashed line shows the
approximation for small ∆t, Eqs. (76) and (78)–(80). At large |∆t| the two
neurons become decorrelated, and c(∆t)/r1r2 approaches unity. The inset
shows the approximation for weakly correlated neurons, Eq. (74) (dashed
line) compared with the actual correlation function (solid line). (b) The
prediction of a LN model for the spike correlation function, c(∆t)/r1r2,
shown for two different forms of the non-linearity, as described in the text
(linear rectification, solid line; delta function, dashed line).
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Figure 5: Spike correlation function, c(∆t)/r1r2, for two model neurons with
θ2 = 0.5σ and θ1 = 0.5σ (dashed line), 0.2σ, −0.2σ, and −0.5σ (solid lines).
The generating potential is described by Eqs. (5), (8), and (8). Arrows point
to the position of the peak according to the prediction of Eq. (34).
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Figure 6: (a) Spike correlation function, c(∆t)/r1r2, of two model neurons
with identical thresholds θ = σ, receiving an identical stimulus and uncor-
related noise, Eq. (38) (solid line.) The standard deviation of the noise,
divided by that of the common stimulus, is α = 0.1 (other parameters are
described in the text.) This is compared with the case where there is no
noise, α = 0 (dashed line.) (b) Spike correlation function of two neurons
receiving similar input as in (a), but differing in threshold: θ1 = 0 and
θ2 = σ, where σ is the standard deviation of the common stimulus s. The
correlation function is plotted for three different ratios between the noise
standard deviation and the stimulus’s standard deviation: α = 0, 0.4, and
1. The inset shows c(∆t)/r1r2 − 1 in a case where the common stimulus is
weak compared to the noise, α = 10 (solid line). The dotted line in the inset
and in the main plot (for α = 1) is the approximation for the case of weak
correlation, Eq. (63).

40



Figure 7: (a) Spike cross-correlation function of two simulated LIF neurons,
Eqs. (25)–(26) with τ1 = τ2 ≡ τ , and with thresholds 0.8σ and 1.0σ, receiv-
ing an identical stimulus (as described in the text, up to a baseline shift).
In both neurons θ − ur = 0.5σ. (b) Spike trains generated by the two LIF
neurons (top two traces: black, θ1 = 0.8 and gray, θ2 = 1) and by thresh-
old crossing model neurons responding to the same stimulus (bottom two
traces). Inset: blow-up of an interval showing a burst generated by the two
LIF neurons.
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Figure 8: (a) Spike cross correlation functions of LIF neurons with increasing
values θ − ur, the hyperpolarizing jump in potential following each spike
(alternating solid and dashed lines: 0.5σ, 2σ, 4σ, and 6σ. In all traces the
thresholds are θ1 = 0.8 and gray, θ2 = 1. The trace for θ − ur = 0.5σ is
identical to the one in Fig. 7 (a). (b) Spike cross-correlation functions of
pairs of LIF neurons with refractoriness (as described in the main text.)
In all pairs the second neuron has a threshold θ2 = 1.0, whereas the first
neuron has a threshold θ1 = 0.2 (solid line), 0.5 (dashed line), and 0.8 (solid
line), and θ − ur = 0.5σ.
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Figure 9: (a) Spike cross-correlation in the model described in Sec. VI. The
generating potential is described by Eqs. (5), (8), and (9). The thresholds
are θ1 = 0.8σ and θ2 = σ, τp = 5τ and B = 0.1. (b) An example of a
spike train generated by this model (short vertical lines). The threshold
θ = σ. For comparison, the tall vertical lines represent spike times in the
threshold-crossing model. The generating potential, common to both mod-
els, is plotted in gray. Top right: blow-up of a shorter interval, showing
three spiking events. (c) Cross correlation of event times in the same model,
between a model neuron with threshold θ1 = 0.5 and three model neurons
with thresholds θ2 = 0.2, −0.2, and −0.5. Other parameters are as in pan-
els a and b. Event onsets are isolated by discarding any spike that occurs
within a time frame of 2τ from a previous spike.
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