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Abstract
Performance on serial tasks is influenced by first- and higher-order sequential effects, respectively
due to the immediately previous and earlier trials. As response-to-stimulus interval (RSI) increases,
the pattern of reaction times transits from a benefit-only mode, traditionally ascribed to automatic
facilitation (AF), to a cost-benefit mode, due to strategic expectancy (SE). To illuminate the sources
of such effects, we develop a connectionist network of two mutually-inhibiting neural decision units
subject to feedback from previous trials. A study of separate biasing mechanisms shows that residual
decision unit activity can lead only to first-order AF, but higher-order AF can result from strategic
priming mediated by conflict-monitoring, which we instantiate in two distinct versions. A further
mechanism mediates expectation-related biases that grow during RSI toward saturation levels
determined by weighted repetition (or alternation) sequence lengths. Equipped with these
mechanisms, the network, consistent with known neurophysiology, accounts for several sets of
behavioral data over a wide range of RSIs. The results also suggest that practice speeds up all the
mechanisms rather than adjusting their relative strengths.
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1 Introduction
Even when subjects are instructed that stimulus sequences are randomly ordered, their reaction
times (RTs) and error rates (ERs) on serial RT tasks typically depend upon previous trials in
a systematic manner. This sequential effect has been widely tested under different conditions
and with various auditory and visual stimuli Soetens et al. (1985); Sommer et al. (1999); Cho
et al. (2002). Most of the literature on such effects concerns two-alternative forced-choice
(2AFC) tasks, and stimulus sequences are represented using repetition (R) and alternation (A)
to indicate whether a given trial is a repetition or alternation of the previous one. We follow
this convention, denoting the two response choices by “1” and “2.”

† Corresponding author contact information: Juan Gao. Phone:(650)724-9921, juangao@stanford.edu.
*Present address: Department of Psychology, Jordan Hall, Building 420, 450 Serra Mall, Stanford, CA 94305-2130
Action Editor: Gail Carpenter

NIH Public Access
Author Manuscript
Neural Comput. Author manuscript; available in PMC 2009 September 24.

Published in final edited form as:
Neural Comput. 2009 September ; 21(9): 2407–2436. doi:10.1162/neco.2009.09-08-866.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Sequential effects can be categorized as first-order (caused by the immediately previous trial)
or higher-order (caused by trials earlier in the sequence). In 2AFC tasks sequential effects are
also found to vary systematically with response-to-stimulus interval (RSI), the delay between
response and stimulus onset in the following trial (Kirby, 1972; Soetens et al., 1985). For short
RSIs one-sided patterns are observed, in which the response in the current trial is faster
following certain sequences relative to others. For first-order effects repetitions are faster than
alternations, while for higher-order effects, responses after repetitions are faster regardless of
whether the current trial is a repetition or alternation. For example, after the sequence 1-1-1
(or 2-2-2), the response to another 1 or 2 is faster than that after 1-2-1. This one-sided effect,
which reduces mean RTs, is called a benefit-only pattern and is ascribed to automatic
facilitation (AF).

In contrast, for long RSIs, first-order alternations are faster than repetitions, and higher-order
effects are more complicated. For example, after a sequence of 1's, the subject's response to
another 1 is faster while the response to a 2 is slower. Following the alternating sequence
1-2-1-2-1, the response is faster to a 2 and slower to a 1. This cost-benefit phenomenon is
believed to be caused by strategic expectancy (SE, previously called subjective expectancy,
cf. Bertelson (1961); Laming (1968); Kirby (1976)). It implies that RTs tend to be shorter if
the current stimulus confirms the subject's expectation and longer otherwise. Expectation of a
pattern even if the sequence is random is also known as the Gambler's Fallacy (Jarvik, 1951;
Tversky and Kahneman, 1974).

The transition from AF to SE occurs at a critical response-to-stimulus interval (RSI) above 100
ms, although the value differs significantly from experiment to experiment. For example, Cho
et al. (2002) reported sequential effects dominated by first order AF and higher order SE for
RSI = 800 ms. Relative strengths of AF and SE are also affected by practice and stimulus-
response compatibility; specifically, practice weakens AF more than SE (Soetens et al.,
1985) and with an incompatible stimulus-response mapping the transition from AF to SE occurs
later (at 250 – 500 ms RSI) (Soetens et al., 1985; Jentzsch and Sommer, 2002).

Although no SE effect has been explicitly shown in RTs or ERs at short RSIs, some
neurophysiological data do provide evidence of expectancy. An electroencephalogram (EEG)
study (Sommer et al., 1999) shows a clear sequential effect with an SE pattern in the P300
response, an event-related potential (ERP) component peaking at approximately 300 ms after
stimulus onset, under both long (500 ms) and short (40 ms) RSIs (for longer RSIs the amplitude
is much larger). Further studies also identify specific components of P300 that are sensitive to
sequential effects (Jentzsch and Sommer, 2001, 2002), although more detailed studies are
needed to be conclusive.

Sequence-related activity has been observed in the prefrontal cortex (PFC), among other areas.
In particular, Huettel et al. (2005) demonstrated PFC activation after sequence violation and
found that activation levels increase as the sequence preceding violation lengthens. (Subregions
of PFC that are most sensitive to specific sequence patterns were also identified, although the
time resolution is too low to reveal dynamical details.) This provides evidence that “higher
order” brain regions can develop expectancy by accumulating memory of past trials and register
violations when an expected pattern fails to appear.

Previous modeling studies (Squires et al., 1976; Soetens et al., 1984; Cho et al., 2002; Jones
et al., 2002) have succeeded in matching specific experimental observations, but none has
addressed sequential effects over a wide range of RSIs as in the experiment of Soetens et al.
(1985), nor attempted to explain sequential effects in different experiments or elucidate their
neural mechanisms. Building on an established connectionist model of decision-making (Usher
and McClelland, 2001), this article addresses this omission by implementing three biasing
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mechanisms: residual activity from the immediately previous trial that influences the initial
condition in the current trial; expectation-based top down bias, and bias due to conflict
monitoring. Before combining these mechanisms to match various data, we separate them in
order to probe their individual effects and to explore which mechanisms are most critical to
particular observations. We find that varied transitions from AF to SE under different
experimental conditions can be explained by different timescales in decision-layer dynamics,
and that speeding up all the mechanisms can account for changes in RT patterns due to practice.

We follow traditional usage, taking automatic facilitation (AF) to refer to faster responses to
repetitions (in first-order AF) and the benefit-only pattern in RTs (higher-order AF), and
strategic expectancy (SE) to refer to faster responses to alternations (first-order SE) and the
cost-benefit pattern (higher-order SE). Similar terms are used in discussion of sequential effects
in error rates and neural activities.

This article is organized as follows. In Section 2 we introduce the connectionist network and
augment it with a model for residual activity due to previous trials (2.1.2). Sections 2.1.3-2.1.4
develop detailed top-down biasing mechanisms related to expectancy and conflict monitoring,
and two models of the biasing effects are advanced for the latter. Simulation methods and
parameter choices are reviewed in Section 2.2. Predictions of the models are then described in
Section 3, in which we investigate the effects of each mechanism individually. We show that
residual activity alone cannot produce higher order AF (3.1.1), and that higher-order AF and
SE behavioral effects are accounted for by top-down biasing mechanisms (3.1.2-3.1.3). We
focus on sequential effects on reaction times in this article, but we briefly address the effects
of noise on error rates in Section 3.1.4. The effects of the combined biases are presented in
Sections 3.2-3.3, where we also address the effects of practice. In Section 4 we summarize,
note some open questions, and comment on possible neural mechanisms.

2 Methods
In this section we develop a basic mathematical model that encompasses decision dynamics
and propose biasing mechanisms that account for AF and SE effects. We start by briefly
reviewing the leaky competing accumulator model, and then, drawing on preliminary analyses
of its behavior and on prior work, propose adjustments to initial conditions and input currents
to the accumulators based on prior responses.

2.1 A computational model of decision-making with biasing mechanisms
Fig. 1A summarises the overall model architecture. Stimulus inputs feed to a decision layer
containing competing neural units that race toward a decision criterion or threshold (Fig. 1B).
The current trial's status as a repetition or alternation is combined with that of previous trials
in short-term memory modules (green and yellow units). Response conflict over recent trials
is similarly maintained as in the conflict-based mechanism of Botvinick et al. (2001) (brown
unit). We extend that work by incorporating temporal dynamics in the biasing mechanisms
during RSI. These “higher” modules then influence the decision or sensory layers in subsequent
trials via excitatory or inhibitory feedback. We also include the effects of decaying neural
activity after reaching threshold (Fig. 1C), as revealed in both experiments and modeling (e.g.
Roitman and Shadlen (2002); Lo and Wang (2006)).

2.1.1 The decision layer model—We employ the connectionist model of Usher and
McClelland (2001), in which the activaties x1(t), x2(t) of two decision units are described by
stochastic differential equations coupled by mutual inhibition (Fig. 1A). Each unit has overall
time constant τc, a passive leakage term of strength k, an input ρi representing the stimulus, and
an independent identically distributed Gaussian noise process ηi. Inhibition of strength β acts
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via a sigmoidal function f(xi) = 1/[1 + exp(−G(xi − d))], where G is the gain and d is a half-
activity offset:

(1a)

(1b)

This formulation is equivalent to a firing rate model via a linear transformation (Grossberg,
1988; Brown et al., 2005), and reductions to one-dimensional drift diffusion and Ornstein-
Uhlenbeck systems can be made in appropriate parameter ranges (Brown and Holmes, 2001;
Bogacz et al., 2006).

Under the free response protocol a decision is made when either unit first reaches a preset
activity threshold xi = z. The decision time is the time taken for that unit's state to reach threshold
from its initial condition. The model (1) captures a variety of experimental observations, is
neurophysiologically plausible, and offers a framework to which representations of other brain
areas can be added Botvinick et al. (2001). In particular, it has previously been used to model
sequential effects (Cho et al., 2002). Unless otherwise noted we henceforth adopt the
parameters in Cho et al. (2002) and Usher and McClelland (2001): τc = 0.1, k = 0.2, β = 0.75,
G = 4, d = 0.5, ρ0 = 0.35, z = 1.05, setting ρi = 0.5 + ρ0 when stimulus i is shown and ρi = 0.5
− ρ0 when it is not. Here ρ0 is the stimulus sensitivity, which may differ in different situations
even for the same subject and same stimulus. Further comments on τc appear in §2.2.

2.1.2 Post-response residual activity—As mentioned earlier, physiological studies such
as Roitman and Shadlen (2002) show that neurons that accumulate evidence during decision
tasks experience rapid decay, or inhibitory suppression, of activity following responses (see
Lo and Wang (2006) for a related modeling study). The amount by which activities decay in
Eqns. (1) during the RSI can influence the following trial by changing the initial condition
before integration begins (Fig. 1C).

The analysis in Section 3.1.1 and the Supplementary Materials shows that activities xi(t) decay
from their states at the previous response toward a stable fixed point. As shown there, several
manipulations have been tried to match typical RTs in Soetens et al. (1985), one of which is
to increase the leak and inhibition parameters during RSI. This mechanism, consistent with
findings of Roitman and Shadlen (2002), effectively applies global inhibition during RSI to
reset the accumulators more rapidly. Using the values k = 4 and β = 15 throughout the RSI, we
find that, apart from a brief (< 50 ms) post-response transient in which the losing unit on the
last trial decays, the resulting initial conditions can be approximated by

(2)

Here x1 = x2 = x̄ is the inter-trial equilibrium state, unit i is the winner, unit j the loser, z is the
decision threshold and the timescale τx = 50 ms. This provides a simplified description of
residual activity that will be used below, along with biases due to response conflict and
expectation.
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2.1.3 Biases from expectations—We assume that strength of expectation is determined
by memory of previous sequence with more recent trials playing a more important role.
Specifically we define memories of repetition and alternation over trials as follows:

(3a)

(3b)

where

(4a)

(4b)

and S(n − j) is the stimulus in the (n − j)th trial. Similar definitions appeared in Cho et al. (2002)

The discrete linear mapping of Eqns. (3-4) is equivalent to a low-pass filter with time scale 1/
(1 − Δ) where Δ = ΔR or ΔA are constants in the range from 0 to 1. The process mimics decaying
memories of alternation and repetition in the stimulus history and can also be interpreted as
computing time-discounted fractions of alternations and repetitions. Control biases from higher
level units, assumed proportional to the memories of alternation MA and/or repetition MR will
be used to bias the nth trial (cf. Fig. 1A).

Huettel et al. (2002) show that cross-trial dynamics approach saturation after a shorter sequence
of repetitions relative to alternations, implying a faster decay rate for repetitions: ΔR < ΔA. This
is true on both neural and psychometric levels, as confirmed by reanalysis of RTs from Cho et
al. (2002) and Soetens et al. (1985): Fig. 2. Consistent with this, we set ΔR = 0.4 and ΔA = 0.6,
retaining the mean value 0.5 used in Cho et al. (2002).

Fig. 2 illustrates two further facts: (1) mean RTs in Cho et al. (2002) (squares) are longer than
those in Soetens et al. (1985) (triangles); and (2) repetitions are faster in the former although
RSIs are long for both data sets (800 ms and 1000 ms respectively). We believe the first is
because the task in Cho et al. (2002) – discrimination between capital and lowercase “o's” – is
harder than detecting lighted LEDs as in Soetens et al. (1985). The second fact, to be addressed
in Section 3, provides evidence of first-order AF and higher-order SE in the data for an 800
ms RSI, contrary to the prior suggestion of a critical transition at 100 ms RSI (Soetens et al.,
1985).

Short-term memories for repetition and alternation are assumed to work independently and in
parallel as in Cho et al. (2002), and we assume a linear relationship between memory and
biasing strength Bi,n at the nth trial:
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(5)

where MR and MA are the repetition and alternation memories of Eqns. (3) and γB is set to 0.1
throughout. We additionally assume that the biasing strength grows over time before each trial
following the delayed exponential equation:

(6)

This implements the intuition that time is needed for the cortex to initiate top-down control.
The neurophysiological data of Sommer et al. (1999) indicates that SE-related neural activity
occurs for RSIs as low as 40 ms, but with amplitudes smaller than those for long RSIs. Guided
by this, we selected a latency of T0 = 30 ms to allow AF to dominate for very short RSIs. In
the Supplementary Materials, it is shown that the resulting model adequately reproduces
observed P300 neural activity patterns thought to be related to expectation. A sigmoidal rise
in bi,n with RSI could also capture delayed growth and such a smooth function, also specifiable
by two parameters, may derive more naturally from neural dynamics, although we do not expect
the precise form to affect our results.

We further suppose that, after longer sequences of repetitions or alternations, subjects need
less time to develop expectations for the coming trial; hence, PFC activity develops more
rapidly during the RSI in these cases. This is modeled by letting the timescale τ in Eqn. (6)
depend linearly on memory Mi(n), or equivalently on the saturation value Bi,n. Specifically, τ
attains a maximum τ = τ0 ≈ 600 ms for Bi,n = 0 and approaching τ = 0 after an infinite sequence:
τ = τ0(1 − Bi,n/Bˆ), where Bˆ = 0.25 is the maximum values γBMˆi achieved after arbitrarily long
strings of R's or A's. The final update rule is therefore:

(7)

This development of expectation-related bias bi,n during RSI following each trial can be
approximated by a linear leaky integrator equation

and α is a scaling constant. The decrease in τ for larger Bi can result from a saturation factor,
as in

(8)

where τe = τ/(1 + αBiτ), implying smaller τe for larger Bi. Eqn. (8) has the same form as the
dynamical equation for a saturating synaptic gating variable, such as NMDA-mediated
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receptors, which have been used in biophysical modeling of prefrontal cortical microcircuits
(Wang, 1999).

We assume that the biases stop increasing when the next stimulus appears and remain fixed
for its duration, much as short-term memories can be maintained by line attractors (Seung,
1996; Machens et al., 2005). If biases continued increasing regardless of stimulus onset, they
would saturate even for short RSIs and sequence-related neural activities would be similar for
both short and long RSIs, provided that the overall RT plus RSI duration is sufficient. This
conflicts with the finding in Sommer et al. (1999) that P300 activity is significantly lower for
short RSIs. Truncation of the development of neural activity can be understood as occurring
when attention shifts to the stimulus at trial onset, establishing persistent activity in the PFC,
or as due to saturation of synapses (cf. Eqn.(8)).

Finally, the top-down control mechanisms that mediate expectation are assumed to send
excitatory bias +Bi,n to the decision unit that would confirm the expectation, and inhibitory
bias −Bi,n to the one that violates it. Thus, for previous stimulus 1, in the next trial expectation
of repetition sends positive bias to unit 1 and negative bias to unit 2, whereas expectation of
alternation sends positive bias to 2 and negative bias to 1. This is added to the input currents
representing the stimuli, so that the dynamics of the nth trial with expectation-related bias alone
is given by

(9a)

(9b)

2.1.4 Biases due to response conflict monitoring—It has long been recognized that
conflict is an important feature of cognitive processing (e.g. Berlyne (1960)), and
computational modeling work has suggested that response conflict monitoring mechanisms
may play an important role in signaling the need for cognitive control (Botvinick et al.,
2001).1

In connectionist networks conflict is typically quantified as the integrated product of activities
in the competing decision units:

(10)

implying that high conflict follows trials in which both units are active and decision times are
long. This formulation of strategic priming was introduced in Botvinick et al. (2001) and Jones
et al. (2002) via the updating rule

(11)

1Some aspects of this view have recently been questioned (Burle et al., 2005, 2008).
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in which the decay rate λ lies between 0 and 1, α < 0 denotes inhibitory bias. Note that conflict
Cn in the nth trial does not affect that trial, but influences the (n + 1)st trial. Considering residual
activities, it follows from Eqns. (1-2) and (10-11) that if each decision unit is alternately
stimulated (alternating trials) conflict levels will be higher than the case where only one is
active (repetition trials).

Direct calculations using Eqns. (10-11) and the parameters of Botvinick et al. (2001) and Jones
et al. (2002) reveal that strategic priming strengths decrease as RSIs increase, because neural
activities have more time to decay for longer RSIs producing lower conflict levels. Plotting
priming strengths vs different RSI values reveals almost perfect exponential decay during RSI,
the timescale of which depends on priming strength in an approximately linear manner. See
the Supplementary Materials for details.

Motivated by these observations, we simplify the conflict-based biasing mechanism as follows.
Noting that adding the same amount of conflict in all conditions does not change sequential
effect patterns, we assume that conflict monitoring is engaged only following alternations.
Rather than compute the integral (10) after each trial, we parallel the discrete formulation of
Eqn. (5) by modeling inhibition due to strategic priming during the nth trial as

(12)

where minus sign means it is inhibitory and Pn is the pre-decay priming strength at the previous
response whose value is proportional to the prior alternation content in the stimulus sequence:

(13)

with γP = 0.3 throughout and MA(n) being the alternation memory after the (n − 1)st response,
cf. Eqn. (3b). The time constant in Eqn. (12) is allowed to depend linearly on the pre-decay
strategic priming strength Pn via τp = τp0 − κPn, and we take τp0 = 0.5, κ = 0.4, to place τp in
the appropriate range of 200 – 500 ms to yield reasonable RTs.

Summarizing, Eqns. (12-13) imply that conflict-mediated bias during the nth trial is given by

(14)

The Supplementary Materials show that this simplified conflict-monitoring mechanism
resembles the original one of Jones et al. (2002); Botvinick et al. (2001); however, it also
enables the separation of this mechanism from others and allows an explicit examination of its
strengths and effects as RSI varies (see Section 3.1.3). Although several studies (Jones et al.,
2002; Jentzsch and Leuthold, 2005; Soetens and Notebaert, 2005) suggested that higher-order
AF may be due to conflict monitoring following task execution, they did not explicitly address
the effects on reaction times and error rates for different RSI values.

We propose two different implementations for top-down cognitive control. In Model 1 response
conflict decreases the inputs to both decision units by adding equal inhibitory biases to them
(Fig. 1A). As in similar models of conflict-mediated control (Botvinick et al., 2001;Jones et
al., 2002), we include baseline activity by adding a constant pbase (= 0.5 here, as in Jones et al.
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(2002)) so that inputs remain in the same range. With this mechanism alone, the dynamics
during the nth trial are governed by

(15a)

(15b)

Alternatively, in Model 2 we suppose that response conflict decreases the sensitivity to stimuli.
Instead of the symmetric bias ρj ↦ ρj + pn(RSI). we reset stimulus sensitivity ρ0 ↦ ρ0 +
pn(RSI). Since pn(RSI) < 0, this decreases the difference |ρ1 − ρ2| = 2ρ0 between the inputs.
Similar to the addition of baseline activity in the first implementation, we add baseline
sensitivity ρ0 ↦ ρ0 + pn(RSI) + 0.15 such that the resulting new ρ0 values fall into a reasonable
range. With this acting alone, the resulting RTs also exhibit a typical AF pattern. See Fig 5
(bottom). To keep ρ0 positive, we set γP = 0.15.

Testing them in combination with the other mechanisms developed above, we shall see in
Sections 3.1.4 and 3.2 that, while both capture sequential effects on reaction times, Model 2
produces more realistic error rates.

2.2 Parameters, simulation methods, and inclusion of noise
In Table 1 we summarise the complete parameter set introduced above and specify the values
used in the simulations of Section 3. Many of these are taken directly from previous modeling
work, and none are entirely free.

For numerical simulations of Eqns. (1) we employ the Euler-Maruyama method (Higham,
2001). The behavioral RT comprises the decision time (DT) and a non-decision-related latency
(Tsm) that includes sensory processing and motion execution (Usher and McClelland, 2001;
Shadlen and Newsome, 2001). We set RT = DT + Tsm where DT = τcNc and Nc is the number
of steps required to simulate one trial. Note that τc also appears in Eqns. (1): smaller τc implies
quicker decay and larger inhibition. We set τc = 0.1 throughout to be in general agreement with
Cho et al. (2002), and use step size dt = 0.02, so that each simulation step corresponds to 2 ms
in real time. We fix Tsm = 160 ms, putting RTs in the same range as the data of Soetens et al.
(1985), which is consistent with the literature (cf. Usher and McClelland (2001)). The value
of Tsm does not affect the pattern of sequential effects (it simply changes absolute RT values),
and the value of τc does not affect our qualitative conclusions (it uniformly changes the slopes
of the curves in Fig. 7).

Due to the relative lack of data on error rates, we focus on sequential effects on RTs under
changes of RSI, initially ignoring noise by setting σ = 0 in Eqns. (1), and asking how different
deterministic mechanisms individually affect RTs. We show that the resulting reaction time
patterns are unaffected by moderate noise, and then devote a short section to sequential effects
on ERs. In the final simulations Gaussian noise with standard deviations σ = 0.3 for the first
model and σ = 0.4 for the second model are introduced in order to produce appropriate error
rates (see Fig. 7 bottom panels).

Our primary goal is to propose mechanisms that qualitatively reproduce previous data and offer
explanations for the various effects, so we do not perform parameter fits to specific
experiments. Nonetheless, as noted in Table 1, model parameters are adapted from or chosen
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consistent with previous work and to yield reasonable RTs and ERs, and we include
comparisons with data from Soetens et al. (1985),Kirby (1972),Vervaeck and Boer (1980) and
Cho et al. (2002).

3 Results
In this section we repeatedly use two graphical devices that have been developed to display
the influence of sequential effects: RT vs stimulus sequence graphs and repetition-alternation
scattergraphs. The former describe sequential effects on decision performance by plotting
mean RTs and/or ERs for different sequence histories as in Fig. 7 below; cf. Soetens et al.
(1985, Fig. 2). Points on the abscissa denote the 2N possible sequences of length N and the
ordinates are the corresponding mean RTs (or ERs) for the last trial in the sequence (the bottom
entry). The data divides into a repetition curve on the left (the last trial is R) and an alternation
curve on the right (the last trial is A). First-order effects adjust the relative positions of the
repetition and alternation curves; higher-order effects influence their relative slopes.

The repetition-alternation scattergraph or exchange function was introduced in Audley
(1973): see Fig. 8 below (cf. (Soetens et al., 1985, Fig. 1)). Each point represents a given prior
sequence (e.g. ARA), its abscissa being the mean RT of repetition trials following that sequence
(ARAR) and its ordinate the mean RT of subsequent alternation trials (ARAA). Points aligned
at ≈ 45° correspond to a pure AF effect, meaning that certain sequences lead to shorter RTs
and others lead to longer RTs, regardless of how they continue. In contrast, an angle of ≈ −45°
identifies a pure SE pattern, implying that if a sequence leads to shorter RTs under continued
repetition it yields a longer RT for an alternation and vice versa. Thus, plotted vs RSI as in Fig.
9 below, the angle of the repetition-alternation scattergraph changes from positive to negative
as RSI increases and AF transitions to SE; cf. Soetens et al. (1985, Fig. 5).

3.1 The effects of individual biasing mechanisms on mean reaction times
We first examine how the different biasing mechanisms individually influence decision RTs
and ERs, following the order of their introduction in Section 2. We then present simulation
results on reaction times and error rates that combine the three strategies of Sections 2.1.2-2.1.4.

3.1.1 Residual activity does not cause higher-order facilitation—Conventionally,
both first- and higher-order AF are ascribed to residual traces of previous stimuli that
accumulate across trials, leading to facilitation at short RSIs (Soetens et al., 1984, 1985).
Contrary to this, we show here that simulations of the model (1) with only decay of unit
activities during RSI suggest that the characteristic positive slope of the alternation curve
cannot be explained by residual activity in the decision layer alone.

The top panel of Fig. 3 shows residual activities remaining from previous trials that form initial
conditions xi(0) for the current trial. Current stimuli are always assumed to be 1. Thus, in
repetition curves the previous stimulus was also 1, whereas in alternation curves it was 2. Here
we adopt the parameters of Section 2.1.1 during stimulus presentation, but increase leak and
inhibition to k = 4 and β = 15 during RSI, preserving the ratio β/k = 3.75. As explained in the
Supplementary Materials, residual unit activities that remain following the decay of states in
the absence of stimuli during RSI form initial conditions for the next trial. The resulting
dependence of initial conditions on RSI, shown in Supplementary Fig. 4, suggests the
simplified residual activity description of Section 2.1.2.

The repetition RT curves are all flat (left hand side of Fig. 3B), although the residual activities
are not (lowest curve on left hand side of Fig. 3A). By expressing the history sequences in
terms of 1 and 2, one can see that alternation RT curves can only have negative slope, although
this is evident only for the shortest RSIs. For example, RRRA and RAAA correspond to 22221
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and 22121, assuming the current stimulus is 1. Unit 1 is evidently at a greater disadvantage at
the beginning of the current trial for RRRA than for RAAA, leading to a larger RT for RRRA.
The resulting negative slope of the alternation curves implies that higher-order facilitation is
not due to dynamics within the decision layer alone, but rather to top-down mechanisms.

3.1.2 Expectation bias changes slopes of repetition and alternation curves in
opposite ways—Expectation-based biases produce the opposite-sign slopes in repetition
and alternation RT curves characteristic of SE, as shown in Fig. 4. This pattern becomes clearer
as RSI increases due to the development of expectation and bias over time. Since only the
relative bias to the two units influences sequential effects, other strategies can yield similar
results: e.g. if only one unit is biased with parameter γB suitably increased. Note that the
repetition and alternation curves are not horizontal for RSI=50 ms; instead both are kinked: at
AAAR in the repetition curve and at AAAA in the alternation curve. This is because the timescale
of the increasing function is faster after longer sequences, which is important in capturing the
break-through phenomenon, to be explained in Section 3.2 below.

3.1.3 Conflict-based bias can cause higher-order facilitation—Since alternations
result in higher conflict, biasing the decision layer by response conflict from previous trials
leads to greater effects as the proportion of alternations in the sequence grows (see top panel
of Fig. 5), although the overall effect weakens as RSI lengthens, due to decaying bias (Eqn
(14)). The resulting RTs exhibit a parallel slope AF pattern, which becomes less sequence-
dependent as RSIs increase. This trend is similar whether inhibition is sent to the decision layer
(Model 1) or to the sensory layer (Model 2): Fig. 5 (center, bottom). Thus, higher-order
facilitation can derive solely from conflict-based inhibition.

3.1.4 Effects of noise on error rates—When white noise is included in Eqns. (1) the basic
RT patterns described above persist, and each feedback mechanism produces a characteristic
error pattern, as shown in Fig 6. Since less experimental data is available to reveal the
dependence of ERs on RSI, we collapse the five RSI conditions to two: short (RSI=50 and 100
ms) and long (RSI=250, 500 and 1000 ms), as in Soetens et al. (1985).

The major effects are as follows. Residual activities produce approximately uniform ERs for
long RSIs but alternation ERs are notably higher and repetition ERs lower for short RSIs (top
left), and the expectation bias is reflected in the overall positive and negative ER slopes of the
repetition and alternation curves respectively (top right). RT patterns are similar for both
conflict models (Fig. 5), but Model 2 predicts more realistic ER patterns with higher ERs for
short RSIs (bottom right) while Model 1 reverses this and produces lower ERs overall (bottom
left) and the general trends of slopes for short RSIs are also reversed.

3.2 Combined biasing mechanisms account for reaction times and error rates
We now combine the residual activity model of Section 2.1.2, bias derived from the
expectation-mediated top-down control mechanism of Section 2.1.3, and the response conflict
biasing mechanisms (Models 1 and 2) of Section 2.1.4. Both versions of the complete model
can reproduce sequential effects on RTs over the range of RSIs examined in Soetens et al.
(1985). Specifically, the upper panels of Fig. 7 show that: (i) as RSIs increase, the position of
the alternation curve shifts from above to below that of the corresponding repetition curve and,
(ii) its overall slope changes from positive to negative with the transition from AF to SE occurs
when RSI reaches ≈ 100 ms; Finally (iii), break-through occurs. This is signalled by a strong
decrease in mean RT in passing from RAAA to AAAA and a strong increase in RT between
RAAR and AAAR at short RSIs.
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Break-through is robustly observed in almost all experiments (Soetens et al., 1984, 1985;
Sommer et al., 1999), although its size varies, being influenced by factors such as practice and
aging (Vervaeck and Boer, 1980; Melis et al., 2001). If AF alone dominated at short RSIs,
mean RTs should be longer after three than after two alternations, even if the current trial is
also an alternation. However, the fact that RTs for AAAA are shorter than for RAAA implies
that SE operates at very short RSIs in break-through, and that a critical number of alternations
are required for subjects to detect a pattern and form an expectation for the coming trial. The
model produces these effects by allowing the timescales τ and τP to depend on sequence lengths
(Eqns. (6-7) and Eqns. (12) and (14)).

The error rates of Fig. 7 show that both conflict bias models capture the qualitative ER pattern
at long RSIs, but that Model 1 fails for short RSIs, predicting an alternation curve with negative
slope in contrast to the positive slope exhibited in Soetens et al. (1985).

To compare with Fig. 1 of Soetens et al. (1985), we show repetition-alternation scattergraphs
in Fig. 8 and their slopes in Fig. 9. Also compared is data from Kirby (1972) and Vervaeck
and Boer (1980). In computing slopes by linear regression, the break-through points (AAAR
and AAAA) are excluded. As expected, slopes decrease with increasing RSI, passing through
zero around 100 ms, as concluded in Soetens et al. (1985). Slopes derived from the data of
Soetens et al. (1985) using the same regression algorithm are also shown in Fig. 9 for
comparison. Both data and model results exhibit similar negative (positive) slopes for long
(short) RSIs. We emphasize that RTs collected in different experiments can differ substantially
as shown in Fig. 8 (bottom panels); here we focus on general patterns described at the beginning
of Section 3 that hold across different conditions.

3.3 Comparisons with additional data
We end by showing that adjustment of timescales in the model can accomodate effects due to
more complex stimuli, and to practice.

3.3.1 A more complex discrimination task at long RSI—Although the transition from
AF to SE for both first- and higher-order effects occurs for the same RSI in Soetens et al.
(1985) and in the simulation results presented here, this is not necessarily true. In the model,
first-order AF is caused by residual activity, but higher-order AF is due to a mechanism similar
to that of SE, so the corresponding transition RSI values can differ. Specifically, the timescale
of the decision layer dynamics determines the transition for first-order effects, but the
timescales over which conflict and expectation-mediated mechanisms operate determine the
transition for higher-order effects. As noted above, this prediction is confirmed by Cho et al.
(2002), which used an 800 ms RSI (Fig. 10). In that data the first-order effect is dominated by
AF while higher-order SE produces a cost-benefit pattern. This implies that first-order AF
persists through the 800 ms RSI, while the transition RSI value from higher order AF to SE is
shorter than 800 ms.

The task of distinguishing upper- and lower-case “o's” in the experiment of Cho et al. (2002)
differs from that of Soetens et al. (1985), which is simply to respond to one of two lighted
LEDs. The greater task difficulty and longer RTs in Cho et al. (2002) suggest that the decision
units would evolve more slowly, but the intrinsic timescale of expectation-mediated bias should
not change much, implying longer-lasting residual activity and first-order AF that persists for
longer RSIs. We also expect that the visual processing time necessary to decode the case-
sensitive stimulus would exceed that for light detection. We confirmed this by changing two
parameters. Fig. 10 demonstrates that using a slower post-response decay timescale in Eqn.
(2) (τx = 350 ms in place of 50 ms) and a longer non-decision latency (Tsm = 200 ms in place
of 160 ms), the network with either conflict bias model produces the sequential effect patterns
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in the data. In increasing τx from the 50 ms value chosen in §2.1.2 (to match Soetens et al.
(1985)), we are restoring the longer post-decay timescale adopted in Cho et al. (2002).

3.3.2 Practice changes RT-sequence patterns—Soetens et al. (1985) also investigated
the effects of practice (in experiment 3). In addition to an overall speed-up reflected in reduced
RTs that is more marked for short RSIs than for long ones, they find that the slopes and vertical
positions of the alternation curves change more than those of repetition curves at the short RSI,
while they barely change at long RSI. The overall decrease in reaction time can be intuitively
explained by speeding of non-decision sensory-motor processes, the Tsm term in our model.
Changes in slope and relative position of the alternation curve at short RSI, on the other hand,
are often described as the results of a reduction in AF strength (Soetens et al., 1985). With the
different mechanisms separated, we can examine these hypotheses. We find that although the
first intuition is correct the second is not, in the sense that reduction in conflict-based biasing,
the primary mechanism underlying AF, does not produce the observed effects of practice.
According to this hypothesis, the slopes of alternation and repetition curves should both be
flattened by the same amount. Instead we find that reducing the timescales of all biasing
mechanisms can capture the effects.

Specifically, Fig. 11 (left, center) shows simulation results when timescales are systematically
reduced in stages for the three subsets of data (trial numbers 1 – 2000, 2001 – 4000 and 4001
– 7000). For the second and third subsets, the top-down bias timescales τ and τP are reduced
to 60 and 40% of their original values, mimicking a saturating effect of practice; the post-
response decay timescale of the decision layer, τx, is reduced by the square roots of these factors.
Consistent with the intuition about the sensory-motor processes, Tsm drops from 160 to 140
and 130 ms respectively. This concerted change of four parameters shows that practice effects
are consistent with speed-up of all sub-stages of the process. Faster residual decay could point
to more effective resetting of decision units (possibly via basal ganglia Lo and Wang (2006)),
and faster top-down biasing may be due to improved effectiveness of memory or conflict inputs
(cf. Eq. (8)). In addition, since decision layer activity feeds forward to high-layer control units
to produce conflict and expectation, faster decision layer dynamics also speed up top-down
control mechanisms.

4 Discussion
Employing the leaky accumulator model of Usher and McClelland (2001) for decision
dynamics, in this article we develop and analyze a unified model that includes three biasing
mechanisms which account for a wide range of phenomena observed in serial RT tasks. In Fig.
12 we summarize these mechanisms and their effects on reaction times. On the left, residual
activities of the decision units favor repetition over alternation: due to initial condition bias,
the current trial takes less time to reach decision threshold if it is a repetition. In the center,
asymmetrical biases due to expectation-mediated control lead to a cost-benefit pattern in RTs.
At right, both implementations of conflict-induced biases promote a benefit-only pattern in
RTs, although the asymmetrical version of Model 2 provides better estimates of ERs.
Combining these mechanisms, bias due to expectation increases during RSI, while response
conflict bias decays, producing the transition from AF to SE.

Albeit a model with combined mechanisms may be simpler and seem more appealing, the
present decomposition permits examination of each individual mechanism's effect, as in Figs.
3-6, and allows explicit tests of hypotheses and exploration of the influence of different
experimental conditions. Specifically, we demonstrate that post-response decay of neural
activity cannot alone account for higher-order AF, but that this can arise from conflict-based
inhibition. We then combine the mechanisms to qualitatively reproduce the rich data sets of
Soetens et al. (1985),Kirby (1972) and Vervaeck and Boer (1980) in Figs. 7-9. We confirm
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our hypothesis that in a more difficult perceptual task, the dynamics of the decision units is
slower while that of top-down biases remains largely unchanged: Fig. 10. In particular, by
slowing the post-response decay rate, we explain the dominance of first-order AF and high-
order SE at an RSI of 800 ms (Cho et al., 2002). We also find that the overall effects of practice
can be accounted for by speed-up of all the mechanisms, without change in the relative strength
of conflict-based biases: Fig. 11.

Although the full model includes numerous parameters, few are new to the present work, and
most of their values, including those of the connectionist model of Section 2.1.1, are adopted
from the literature (cf. Table 1). Our numerical experiments revealed that only four parameters
require careful tuning to match the data patterns in Figs. (7-9); specifically, the timescale of
the expectancy-mediated control mechanism τ0 in Eqn. (7), the timescale and linear coefficient
τp0 and κ of the conflict-mediated control mechanism in Eqn. (14), and the ratio of bias strengths
due to response conflict and expectation γP/γB in Eqns. (5) and (13). The values of these
parameters were chosen by hand to lie in reasonable ranges.

Our model does not identify specific brain areas, but it is consistent with functional studies of
the anterior cingulate cortex (ACC) and prefrontal cortex (PFC). Specifically, it is known that
conflict monitoring is associated with the ACC (e.g. Carter et al. (1998); Botvinick et al.
(1999, 2001)), and cognitive control is generally thought to involve the PFC (e.g. Botvinick et
al. (2001); Johnston and Everling (2006); Johnston et al. (2007)). While direct experimental
evidence regarding repetition and alternation memories is lacking, we conjecture that they are
also based in the PFC, where rule-encoding neurons are known to exist. Indeed, the fMRI study
of Huettel et al. (2002) found higher PFC activity after pattern violations, with greater
amplitudes when longer sequences precede violation. The low time resolution in Huettel et al.
(2002) precludes study of detailed dynamics, but the time-resolved EEG study of Sommer et
al. (1999) reveals sequential effects in the P300 signal, suggestive of SE for both long (500
ms) and short (40 ms) RSIs, although in the former case amplitudes are stronger and in the
latter case RTs are unaffected by SE. This suggests that expectation begins to build around 40
ms or earlier. Motivated by this, in Section 2.1.3 we adopted a 30 ms delay before onset of
expectation-mediated control.

Several potentially-important effects were neglected in this study. There is evidence that fast
alternations in human subjects could be sensory-based, rather than mediated by top-down
control (Fecteau et al., 2004). This and other effects could also be (partially) due to an
inhibition-of-return phenomenon (Lupianez et al., 2006; Klein, 2000; Fecteau and Munoz,
2003). We did not address these, nor how stimulus-response complexity might modulate
biasing mechanisms (Proctor and Vu, 2006; Soetens et al., 1985). Nor did we investigate
adjustments to decision thresholds, as in Simen et al. (2006), in place of initial conditions and
biases. In principle, threshold adjustments can also produce the sequential effect patterns,
although the underlying mechanism differs from biasing. See Vickers and Lee (1998) and
references therein. We nevertheless hope that our modeling will motivate further behavioral
and imaging studies on humans, as well as electrophysiological primate studies. Sufficiently
long trial sequences will be required (e.g., in Dorris et al. (2000), only sequences of two prior
trials were studied). Conclusive tests of the model will also require new experiments in which
RT distributions are collected for a range of RSIs.

In summary, this work offers, for the first time, a unified model that captures and explains a
variety of sequential effects observed in serial RT tasks over a wide range of RSIs and
experimental conditions. It does so by integrating a mechanistic decision-making model with
three essential biasing mechanisms. The different timescales with which these mechanisms
operate provide windows into how each contributes to the overall behavior. We believe that
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this model lays a foundation for addressing sequential effects in more complex tasks, and that
it offers the opportunity for future experimental assessments.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Schematic diagram of the models and neural dynamics during decision-making
(A) Sensory layer outputs enter a decision-making layer containing competing, mutually-
inhibited units that accumulate evidence for choices 1 and 2. Biasing modules temporarily store
memories of past repetition (MR) or alternation (MA) sequences, and response conflict (C)
during evidence accumulation. Filled triangles (circles): excitatory (inhibitory) connections.
Inhibition on decision units (Model 1) or sensory units (Model 2) depends on conflict level:
see text for details. (B) Time course of neural activities in decision layer after stimulus onset
at time 0: here choice 1 is made, and z denotes decision threshold (dash-dotted). (C)
Representation of neural dynamics on the two-dimensional decision space. Solid black (grey)
curves starting at the circle denote trajectories of neural dynamics with x1 (x2) winning and
dashed lines show post-decision trajectories; thresholds shown in dash-dotted.
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Figure 2. Different decay rates for continuation of repetitions and alternations
Effects of pure repetition (A) saturate after shorter sequences than those of pure alternation
(B), as shown by reanalysis of mean RT data in Cho et al. (2002) and Soetens et al. (1985),
with authors' permissions. Data identified by key.

Gao et al. Page 19

Neural Comput. Author manuscript; available in PMC 2009 September 24.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 3. Residual activity shifts RTs vertically
(A) Initial conditions of units 1 (solid black) and 2 (dashed grey) after sequence histories shown
in abcissa, with current stimulus 1. The previously winning unit starts closer to threshold on
repetition curve and further from threshold on alternation curve for all RSIs (results coincide
at ≈ −0.2 for RSI 500 and 1000 ms). (B) RT curves shift vertically as RSI varies but remain
predominantly horizontal repetitions being faster than alternations for all RSIs. Parameters are
as in Usher and McClelland (2001), except for decay rate k = 4 and inhibition strength β = 15
during RSI. See key for symbols denoting RSIs.
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Figure 4. Expectation biases RT slopes asymmetrically
(A) Biases from expectation-related neural activity to unit 1 (solid black) and 2 (dashed grey),
assuming current stimulus is 1. Since biases to the decision units are opposite in sign, opposite
changes in slope occur for repetition and alternation curves as RSI varies. (B) Mean RTs
resulting from this mechanism alone: as RSI decreases, slopes decrease. See key for symbols
denoting RSIs.
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Figure 5. Conflict bias produces parallel RT slopes
(A) Biases pn(RSI) to neural units 1 and 2 due to response conflict, assuming current stimulus
is 1. Repetition and alternation curves are identical, since both units receive the same bias. (B)
Mean RTs resulting from the first implementation alone: as RSI decreases, slopes increase as
curves rotate counterclockwise about their left hand ends. (C) Mean RTs resulting from the
second implementation alone. See key for symbols denoting RSIs.
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Figure 6. Error rates resulting from added noise
Each panel shows the effect of one mechanism. (A) Residual activity. (B) Expectation bias.
(C) Conflict bias, the first implementation. (D) Conflict bias, the second implementation.
Averages performed over 5000 trials with white noise of standard deviation 0.5. Note
differences in vertical scales.
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Figure 7. Comparison between model predictions and data under varying RSIs
Left: mean RTs (top) and ERs (bottom) for Model 1 with noise SD 0.3; conflict implemented
by symmetrical inhibitory biases. Center: RTs (top) and ERs (bottom) for Model 2 with noise
SD 0.4; conflict acts asymmetrically by decreasing stimulus sensitivity. Averages performed
over last trial of sequence histories shown. Right: mean RTs (top) and ERs (bottom) from
Soetens et al. (1985), reproduced with author's permission.
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Figure 8. Repetition-alternation scattergraphs
Top two rows: Scattergraphs for models 1 and 2 with RSI = 1000 ms (left) and 50 ms (right).
Bottom two rows: scattergraphs for the data of Soetens et al. (1985) (third row), from Kirby
(1972) (bottom left) and from Vervaeck and Boer (1980) (bottom right), presented with authors'
or publishers' permissions. Crosses represent the sequence AAA, pluses represent RRR and solid
circles denote all other sequences. See opening of Section 3 for explanation. Slopes for long
RSIs are negative in both model predictions and data, implying dominance of strategic
expectancy (SE); those for short RSIs are positive, implying automatic facilitation (AF).
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Figure 9. Scattergraph slope dependence on RSI
Slopes (ordinates) decrease from positive, implying dominance of AF, to negative, implying
dominance of SE, as RSI increases (abcissa). Filled circles joined by solid line: predictions of
model 1 (top row in Fig. 8); filled squares joined by solid line: predictions of model 2 (second
row in Fig. 8); open triangles joined by dashed line: re-analysis of the data of (Soetens et al.,
1985, Fig.5) (third row in Fig. 8). Transitions from AF to SE occur at ≈ 100 ms for both models
and data. An analogous curve representing the bottom panels of Fig. 8 cannot be produced due
to the lack of data at intermediate RSIs.
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Figure 10. Model fits to the data of Cho et al. (2002)
Left: mean RTs (top) and ERs (bottom) for Model 1 with noise 0.3. Center: RTs (top) and ERs
(bottom) for Model 2 with noise SD 0.6. Parameters are as for the previous simulations except
for slower post-reponse decay time constant τx = 350 ms and longer non-decision latency
Tsm = 200 ms. Averages performed over last trial of sequence histories shown. Right: mean
RTs (top) and ERs (bottom) from Cho et al. (2002), reproduced with author's permission.
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Figure 11. Model fits to practice effects
Each column shows mean RTs for early, middle and late sets of trials with symbols identified
in key. Top row shows results for 50 ms RSI and bottom row for 500ms RSI. Left: Model 1;
center: Model 2; right, data from Soetens et al. (1985), reproduced with author's permission.
Timescales of the mechanisms of §§2.1.2-2.1.4 are reduced with practice, as described in text.
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Figure 12. Schematic summary of the three biasing mechanisms
Top left: post-response residual activity of decision units. Black curve with unfilled (filled)
arrow shows trajectory during RSI when x1 (x2) won previous trial; dash-dotted lines are
decision thresholds. Top center: asymmetrical bias due to expectation-related priming. Top
right: biases induced by conflict: black arrow: Model 1, symmetrical inhibition; gray arrow:
Model 2, asymmetrical bias due to decreased stimulus sensitivity. Middle row: effects on RT
due to individual mechanisms. Bottom: RT patterns for combined mechanisms: faster
dynamics after long alternation sequences causes breakthrough at short RSIs (kinks in dashed
lines).
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Table 1
Parameter values for the models. Works cited are abbreviated as follows. U01: U
sher and McClelland (2001); C02: Cho et al. (2002); S85: Soetens et al. (1985);
S99: Sommer et al. (1999); J02: Jones et al. (2002); B01: Botvinick et al. (2001).
Asterisks indicate that different values were used to match specific data in Section
3.3; dashes in column 3 of the biasing mechanism parameters indicate that values
are the same for both conflict biasing models.

Decision layer parameters

Parameter Value Notes

k 0.2 Adopted from U01/C02.

β 0.75 Adopted from U01/C02.

ρ0 0.35 Adopted from U01/C02.

z 1.05 Adopted from U01/C02.

G 4 Adopted from U01/C02.

d 0.5 Adopted from U01/C02.

τc 0.1 Consistent with C02.

Tsm 160 ms* Consistent with U01.

Biasing mechanism parameters

Parameter Value
Model 1

Value
Model 2

Notes

τx 50 ms* - Eqn. (2). From connectionist model.

ΔR 0.4 - Fig. 2. Consistent with C02/S85.

ΔA 0.6 - Fig. 2. Consistent with C02/S85.

T0 30 ms - Consistent with S99 and S85.

γB 0.1 - To match S85

τ0 600 ms* - Eqn. (7). To match S85

γp 0.3 0.15 To match S85.

τp0 500 ms * - Eqn. (14). Consistent with

κ 0.4 - J02/B01 and to match S85.

pbase 0.5 0.15 Adopted from J02 for Model 1; to match
S85 for Model 2.
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