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Abstract

A novel formalism for Bayesian learning in the context of com-
plex inference models is proposed. The method is based on the use
of the Stationary Fokker–Planck (SFP) approach to sample from the
posterior density. Stationary Fokker–Planck sampling generalizes the
Gibbs sampler algorithm for arbitrary and unknown conditional den-
sities. By the SFP procedure approximate analytical expressions for
the conditionals and marginals of the posterior can be constructed.
At each stage of SFP, the approximate conditionals are used to define
a Gibbs sampling process, which is convergent to the full joint pos-
terior. By the analytical marginals efficient learning methods in the
context of Artificial Neural Networks are outlined. Off–line and incre-
mental Bayesian inference and Maximum Likelihood Estimation from
the posterior is performed in classification and regression examples. A
comparison of SFP with other Monte Carlo strategies in the general
problem of sampling from arbitrary densities is also presented. It is
shown that SFP is able to jump large low–probabilty regions without
the need of a careful tuning of any step size parameter. In fact, the
SFP method requires only a small set of meaningful parameters which
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can be selected following clear, problem–independent guidelines. The
computation cost of SFP, measured in terms of loss function evalua-
tions, grows linearly with the given model’s dimension.

1 Introduction

Parameter inference from limited and noisy data in complex nonlinear models
is a common and necessary step among many disciplines in modern science
and engineering. A prominent framework to extract nonlinear relations from
data is given by Artificial Neural Networks (ANN’s). These formal con-
structs are flexible enough to learn extremely complicated maps. However,
the potential power of ANN’s is usually limited in practice because the net-
work size must be bounded in order to avoid poor generalization (i.e. out of
sample) performance. Authors like (Neal, 1996) and (MacKay, 1992) have
given strong arguments that favor a Bayesian perspective, in which the so
called overtraining problem is alleviated. This Bayesian approach has proven
its effectiveness in a number of applications (Auld, 2007; Chib et al., 2002;
Jalobeanu et al., 2002). However, Bayesian inference based on the use of
the full posterior density (i.e. not limited to a small subset of the posterior
modes) usually demands very intensive computation (Neal, 1996). Several
techniques oriented to improve efficiency have been proposed. Variational
Bayes (Ghahramani & Beal., 2001; Nakajima & Watanabe, 2007), a method
that has been mainly applied to particular inference procedures like hidden
Markov models and graphical models, is a promising tool where the poste-
rior is approximated by simple distributions. Approaches based on genetic
programming also seem valuable (Marwala, 2007), but their usefulness has
not yet been established for large scale systems. Here is introduced a new
paradigm from which a proper Bayesian estimation for large complex models
can be done in the basis of a Gibbs sampling for the given model’s weights.
This makes the procedure of relatively low computation cost and this cost in-
creases slowly as the inference model’s dimension grows. Moreover, from the
proposed method approximate closed expressions for the posterior marginals
can be derived. As far as the author of the present Letter knows, this is the
first approach that admits the construction of analytic expressions for the
posterior density marginals. This is useful in a number of ways. It permits
the definition of efficient maximum likelihood and incremental learning meth-
ods. Maximum likelihood can be used to drastically reduce the computation
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cost for the trained inference models, making them suitable for chip imple-
mentation, for instance. Incremental learning on the other hand, gives a way
to manage data that dynamically arrives to the inference system, enlarging
the horizons for the applications of Bayesian techniques.
The proposed method admits an arbitrary close approximation to the pos-
terior, with a computational effort that is controlled through a small set
of meaningful parameters. Also, the formalism is directly connected with
equilibrium statistical mechanics. The approach is general, but in this con-
tribution it’s validity is tested on three layered ANN’s of increasing size. A
classification benchmark problem and two regression problems consisting of
real time series with well documented difficulty and experimental interest
are considered. A discussion of the approach in the larger context of Monte
Carlo methods for sampling is also presented.

The proposed method is based on a recently introduced algorithm for den-
sity estimation in stochastic search processes, namely the Stationary Fokker–
Planck sampling (SFP) strategy (Berrones, 2008). This algorithm learns the
stationary density of a general stochastic search in a potential with high di-
mension V (x1, x2, ..., xn, ..., xN), using only one–dimensional linear operators.
Essentialy, SFP consists on projecting the multi–dimensional Fokker–Planck
equation associated to the stochastic search into a one–dimensional equation
for the stationary conditional cumulative distributions, y(xn|{xj 6=n = x∗

j}) =
∫ xn

−∞ p(x
′

n|{xj 6=n = x∗
j})dx

′

n. The starting point is the following stochastic
search defined over L1,n ≤ xn ≤ L2,n,

ẋn = −
∂V

∂xn

+ ε(t), (1)

where ε(t) is an additive noise with zero mean. The model given by Eq.(1) can
be interpreted as an overdamped nonlinear dynamical system composed by
N interacting particles. The temporal evolution of the probability density of
such a system in the presence of an additive Gaussian white noise, is described
by a linear differential equation, the Fokker – Planck equation (Risken, 1984;
Van Kampen, 1992),

ṗ(x) =
N
∑

n=1

∂

∂xn

[ ∂V

∂xn

p(x)
]

+D
N
∑

n=1

N
∑

m=1

∂2p(x)

∂xn∂xm

, (2)

where D is a constant, called diffusion constant, that is proportional to
the noise strength. The direct use of Eq. (2) for optimization or deviate
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generation purposes would imply the calculation of high dimensional inte-
grals. It results numerically much less demanding to perform the follow-
ing one dimensional projection of Eq. (2). Under very general conditions
(e. g., the absence of infinite cost values), the equation (2) has a station-
ary solution over a search space with reflecting boundaries (Risken, 1984;
Grasman & van Herwaarden, 1999). The stationary conditional probability
density satisfy the one dimensional Fokker – Planck equation

D
∂p(xn|{xj 6=n = x∗

j})

∂xn

+ p(xn|{xj 6=n = x∗
j})

∂V

∂xn

= 0. (3)

From Eq. (3) follows a linear second order differential equation for the cu-
mulative distribution y(xn|{xj 6=n = x∗

j}) =
∫ xn

−∞ p(x
′

n|{xj 6=n = x∗
j})dx

′

n,

d2y

dx2
n

+
1

D

∂V

∂xn

dy

dxn

= 0, (4)

y(L1,n) = 0, y(L2,n) = 1.

Random deviates can be drawn from the density p(xn|{xj 6=n = x∗
j}) by the

fact that y is a uniformly distributed random variable in the interval y ∈
[0, 1]. Viewed as a function of the random variable xn, y(xn|{xj 6=n}) can be
approximated through a linear combination of functions from a complete set
that satisfy the boundary conditions in the interval of interest,

ŷ(xn|{xj 6=n}) =
L
∑

l=1

alϕl(xn). (5)

Choosing for instance, a basis in which ϕl(0) = 0, the L coefficients are
uniquely defined by the evaluation of Eq. (4) in L − 1 interior points. In
this way, the approximation of y is performed by solving a set of L linear
algebraic equations, involving L− 1 evaluations of the derivative of V .

The SFP sampling is based on the iteration of the following steps:
1) Fix the variables xj 6=n = x∗

j and approximate y(xn|{xj 6=n}) by the use of
formulas (4) and (5).
2) By the use of ŷ(xn|{xj 6=n}) construct a lookup table in order to generate
a deviate x∗

n drawn from the stationary distribution p(xn|{xj 6=n = x∗
j}).

3) Update xn = x∗
n and repeat the procedure for a new variable xj 6=n.

The fundamental parameters of SFP sampling, L and D, have a clear
meaning, which is very helpful for their selection. The diffusion constant
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“smooth” the density. This is evident by taking the limit D → ∞ in Eq.
(4), which imply a uniform density in the domain. The number of base
functions L, on the other hand, defines the algorithm’s capability to “learn”
more or less complicated density structures. Therefore, for a given D, the
number L should be at least large enough to assure that the estimation
algorithm will generate valid distributions y(xn|{xj 6=n}). A valid distribution
should be a monotone increasing continuos function that satisfy the boundary
conditions. The parameter L ultimately determines the computational cost
of the procedure, because at each iteration a system of size ∝ L of linear
algebraic equations must be solved N times. Therefore, the user is able
to control the computational cost through the interplay of the two basic
parameters: for a larger D a smoother density should be estimated, so a
lesser L can be used.

It should be noticed that SFP is a generalization of Gibbs sampling.
Therefore, the deviates generated by the iterative procedure are in the long
run sampled from the full joint equilibrium density

p(x1, x2, ..., xn, ..., xN) =
(

1

Z

)

exp(−V/D), (6)

where Z is a normalization factor. Additionaly, a convergent representation
for y(xn) is obtained after taking the average of the coefficients a’s in the
expansion (5) over the iterations (Berrones, 2008),

〈ŷ〉 =
L
∑

l=1

〈al〉ϕl(xn) → y(xn), (7)

Under general conditions, the Gibbs sampler converges at a geometric rate
(Roberts & Polson, 1994; Canty, 1999) and there is some evidence that this
fast convergence is shared by SFP (Berrones, 2009). In the next section the
properties of the SFP sampler are studied in the wider context of Monte
Carlo methods. Thereafter the general toolkit for Bayesian inference based
on SFP is developed and tested.

2 SFP sampler

In order to sample a given distribution π(~x), the potential function that
enters into SFP should be given by

V (~x) = − ln π(~x), (8)
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using D = 1. The correct normalization is directly obtained by construction
without explicitly calculating it nor including it in the definition of V . The
advantages of SFP sampling with respect to previous Monte Carlo meth-
ods are first illustrated through an important class of probability densities,
namely the separable probability densities of the form

π(~x) =
N
∏

i=1

f(xi). (9)

In this case SFP converges in a single iteration. This result follows from
the fact that the dynamics (1) associated to the random search decouples
into N independent one dimensional stochastic differential equations, which
makes the Gibbs sampling stage (steps 2 and 3) of SFP unnecessary. Because
D is fixed, SFP requiers a single parameter, L. But L simply refers to
the number of base functions used in expansion (5), so in SFP there is no
need to adjust a step size parameter. Step size parameters are difficult to
tune because their correct selection depends on the actual variance of the
sampled distribution, which in general is unknown. The parameter L on the
other hand, is selected by objective criteria that are independent from any
knowledge about the sampled density. Specifically, L should be large enough
such that the observed marginals are valid probability densities. Consider
the next example, a one dimensional mixture density given by

q(x) =
R
∑

i=1

rifi(x), (10)

where fi(x) are normal densities N(µi, σi). It has been pointed out in the
literature that mixture densities with well separated modes are difficult to
sample by Monte Carlo methods (Celeux et al., 2000; Marin et al., 2005).
Consider a case with three modes, which result from the mixture of normal
densities π(x) = 0.2N(5, 2)+0.2N(20, 2)+0.6N(40, 2). This mixture density
has mean and standard deviation µ = 29 and σ = 14.35 respectively. The
Figure 1 shows the resulting estimation of the density after a single SFP
iteration with L = 1100. In all the numerical experiments discussed in this
Letter, a Fourier basis is used in formula (5) to approximate the distributions
produced by SFP sampling,

ŷ =
L
∑

l=1

al sin

(

(2l − 1)
π(xn − L1,n)

2(L2,n − L1,n)

)

. (11)
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Figure 1: Density estimated by SFP for the mixture density problem.

In the estimation of the mixture density, the parameter L has been cho-
sen by growing it’s size by 200 units per experiment, starting at L = 100.
After each experiment the resulting density is visually inspected and it’s
variance is calculated by direct integration from the formula Eq. (5). It’s
selected the minimum value of L which produce a valid density with posi-
tive variance. Each SFP iteration takes around 4 seconds in the equipment
used (details of which are given in Section 4). Points from this density are
easly drawn by the construction of a lookup table for the cumulative dis-
tribution Eq. (5) to generate each deviate as in step 2 of SFP. Figure 2
shows a sample of 500 points whose generation took a fraction of a second.
The auto–correlation function for the sample is also plotted. No signifi-
cant correlations appear between the points in the sample. The average and
standard deviation estimated from the sample are µ̂ = 27.31 and σ̂ = 14.6
respectively. The same mixture density sampling problem is studied by the
Metropolis and Hybrid Markov–Chain Montecarlo (HMCMC) algorithms.
The implementations provided in the “Software for flexible Bayesian model-
ing and Markov chain sampling” developed by Radford Neal (downloadable
at http://www.cs.toronto.edu/∼radford/) are used. The parameters for the
Metropolis and HMCMC have been carefully tuned in order to have accept-
able rejections rates, which are 0.7 for Metropolis and 0.78 for HMCMC.
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Figure 2: Sample generated by SFP and it’s autocorrelation function for the
mixture density problem.
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Figure 3: Samples generated by Metropolis (first graph) and HMCMC (sec-
ond graph) for the mixture density problem. Both samplings remain trapped
in a local region of the relevant search space.

Samples of 1000 points provided by both methods are presented in Fig. 3.
The estimated average from both samples is around the value of 5. These re-
sults show one of the main drawbacks in many Monte Carlo strategies, namely
the possibility to reach a state of apparent equilibrium which in fact is un-
representative of the whole density. The mixture density example illustrates
what might be one of the most promising features of SFP: it’s capacity to
jump large regions of low probability, reducing the danger of getting trapped
into local high probability regions.

For multidimensional non–separable distributions the Gibbs sampling
stage of SFP is essential. Consider the following example, provided in the
tutorial of the “Software for flexible Bayesian modeling and Markov chain
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E(x) E(y) E(z)
SFP -0.04 -0.5 0.54

HMCMC 0.48 -0.18 -0.31
Metropolis 1.92 -0.61 -1.35

Table 1: Estimations of the mean values by SFP, HMCMC and Metropolis
algorithms in the three–dimensional ring distribution problem. By the sym-
metries of the sampled distribution, the true mean values are equal to zero
for all the three variables. SFP and HMCMC display similar results.

sampling”,

V (~x) =
1

2
(x2 + y2 + z2) + (x+ y + z)2 + 10000/(1 + x2 + y2 + z2), (12)

which gives a three–dimensional ring density. The Table 1 lists the results
of the estimated expectations for each one of the variables from 2000 points
generated by the samplers without rejecting initial points. By symmetry,
the correct expected values are equal to zero. For SFP L = 150 in the
search space defined by the cube [−20, 20]3. The parameters for HMCMC
and Metropolis are the same as discussed in the software’s tutorial.

The SFP and HMCMC methods display similar estimations of the ex-
pected values while the Metropolis algorithm shows a significantly poorer
performance. The power spectrum of the samples generated by the different
methods has been studied. It has turned out that SFP has a power spectrum
which is consistent with a random walk, a behavior shared with Metropolis
and with many other Monte–Carlo approaches. The HMCMC method on the
other hand, shows a power spectrum which indicates exponential decay in the
autocorrelations. However, perfectly independent samples of the marginals
(which might be of interest in several applications) can be generated by the
use of SFP. The estimated analytic forms of the marginal densities of the ring
distribution are shown in Fig. 4. Figure 5 is a plot of the sample generated
by SFP in the x−y plane, which indicates that SFP captures the interactions
among variables.

An additional comparison of SFP with the family of Monte Carlo strate-
gies based on Langevin diffusions is given in the ground of the sampling of
mixture densities in several dimensions. As already pointed out, this is a dif-
ficult task for many samplers, specially when the mixture has well separated
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Figure 4: Marginals estimated by SFP for the three–dimensional ring prob-
lem.

modes. In (Roberts & Stramer, 2002) is proposed a mixture of two bivariate
Gaussians in order to test the performance of different Langevin-diffusion
based algorithms. The mixture is the following, π(~x) = 0.5N(~µ1,Σ) +
0.5N(~µ2,Σ) with ~µ1 = (6,−5)T , ~µ2 = (−2, 3)T and Σ = Ī. The Figure
6 shows the generation of 15000 sample points by SFP with L = 200 in a
search space [−10, 10]2. This graph can be directly compared with the exper-
iments reported in (Roberts & Stramer, 2002). It is clear that SFP is able to
very quickly find the two modes of the mixture. The rapid switching between
modes seems to outperform Langevin diffusions. In the Figure 7 the sample
generated by SFP in the x− y plane is plotted. The straight lines show that
there is a positive probability that during the SFP iterations a conditional
p(x|y) that detect both modes is drawn. This is how SFP eventually mix
over the two modes. In this sense, SFP connects the search space through
the x direction given that there is some overlap of the modes in the y direc-
tion. Some deviates lie on the border of the search space. This effect is a
consequence of the discretization used to solve the stationary Fokker-Planck
equation. With a larger L, the marginals are approximated more closely and
the border effect can be corrected, at the cost of a larger computation effort.
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Figure 5: Plot in the x − y plane of a sample generated by SFP of the
three–dimensional ring problem.
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Figure 6: Sample generated by SFP for a mixture of two bivariate Gaussians.
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Figure 7: Plot in the x−y plane of a sample generated by SFP for a mixture
of two bivariate Gaussians. The straight lines show that there is a positive
probability that during the iterations of a given SFP run a conditional p(x|y)
that detect both modes will be drawn.

A very difficult task occurs when a mixture effectively split a large search
space into several distant unconnected regions. The following case is con-
sidered, π(~x) = 0.2N(~µ1,Σ) + 0.2N(~µ2,Σ) + 0.6N(~µ3,Σ) with ~µ1 = (5, 0)T ,
~µ2 = (20, 10)T , ~µ3 = (40, 20)T and

Σ =

(

2 0.5
0.5 2

)

(13)

For this example SFP is unable to find the three modes in a reasonable
amount of time. It is however possible to easily sample this density if values
D > 1 are allowed. By exploring with diffusion coefficients slightly larger
than D = 1 the user is able to consider approximated densities with extra
noise in which the search space is connected. In the Figure 8 a 500 points
sample with L = 300 and D = 1.1 in the search space [0, 60]2 is plotted,
showing that SFP is capable to detect all of the modes, with the sample
points distributed among them in consistency with the underlying mixture.
A more careful comparison of SFP with several Monte Carlo methods for
sampling is a topic which deserves further research. From the results given

12



0 10 20 30 40 50 60
x

0

5

10

15

20

25

30

y

Figure 8: Plot in the x−y plane of a sample generated by SFP for a mixture
of three bivariate Gaussians.

so far it is however possible to establish a list of general statements about
how SFP relates with other Monte Carlo procedures:

• SFP generalizes the Gibbs sampler for cases in which the conditionals
are not explicitly known. Therefore SFP inherits many of the advan-
tages and drawbacks of the Gibbs sampler.

• There is no need for a step size parameter, which is one of the main
computational advantages of the Gibbs sampler and SFP.

• Like for the Gibbs sampler, the samples generated by SFP display a
random walk behavior. In this regard, the Monte Carlo methods which
include momentum appear to be superior than SFP when almost inde-
pendent samples are required. However, perfectly independent samples
for the marginals can be generated by SFP (a property not shared by
the Gibbs sampler).

• Like the Monte Carlo methods based on Langevin diffusions, SFP re-
quires the numerical evaluation of the gradient of the sampled density.
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• SFP involves the solution of ∝ LN linear algebraic equations (where N
is the problem’s dimension and L is the number of basis functions used
in order to approximate the solution of a one dimensional stationary
Fokker–Planck equation) for the generation of each sample point. This
is a sophisticated operation if compared to what is required by most of
Monte Carlo techniques. The Metropolis-Hastings type algorithms are
particularly much more simple to implement than SFP.

It is of particular interest to more deeply investigate the possible applica-
tions of SFP in mixture models, which offer considerable challanges to Monte
Carlo techniques despite being among the most widely used statistical meth-
ods for the study of complex systems (Marin et al., 2005). It appears to the
author of the present Letter that this line of thought would be worth to be
explored in the future. The next sections discuss the application of SFP in
large dimensional problems in the context of Bayesian inference for neural
networks, which is the main topic of the present Letter.

3 Bayesian inference in complex models

In the Bayesian approach to learning SFP enters naturally by the use of a
potential V such that the Boltzmann–type density (6) reproduce the poste-
rior of interest. Consider the following setup. The relation between a vector
of inputs ~x and a vector of outputs ~y is characterized by the function F (~x, ~w)
where ~w is a set of parameters. A suitable learning task is the estimation of
the predictor E[F (~x)]. In the Bayesian framework, these type of estimations
are carried out by the update of prior probabilities considering the empirical
evidence at hand. Let A be a set of empirical observations. The probability
density of the function parameters ~w given A is written as

p(~w|A) = p(~w)p(A|~w) (14)

It follows from Eq. (6) that the potential function that enters into SFP is
given by

V (~w) = −[ln p(~w) + ln p(A|~w)]. (15)

In the SFP framework proposed here, three schemata naturally arise for the
learning of complex functions from data, which are discussed below.
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3.1 Bayesian inference by sampling from the posterior

The SFP iterations converge to the sampling of the posterior, which fol-
lows from the fact that SFP is a particular form of the Gibbs algorithm, for
which this property holds in general (Roberts & Polson, 1994; Canty, 1999).
Moreover, it has been rigorously demonstrated that under general condi-
tions, Gibbs sampling converges at a geometric rate (Roberts & Polson, 1994;
Canty, 1999). In this way, the deviates generated by τ SFP iterations (per-
haps after rejecting a number of the initial set of iterations) can be used in
order to estimate the integral

〈~y〉 =
∫

F (~x, ~w)p(~w|S)d~w, (16)

by the average

〈~y〉 ≈
1

τ

τ
∑

t=1

F (~x, ~wt). (17)

3.2 Maximum Likelihood Estimation (MLE) from the

posterior marginals

The SFP framework admits the construction of explicit expressions for the
marginals of the posterior, given by equation (7). These marginals can easily
be maximized by one dimensional optimization methods to provide a MLE for
each of the weights. Moreover, the weigth moments give Bayesian corrections
to the MLE, in terms of the expansion

〈F (~x)〉 ≈ F (~x, ~wo) +∇F (~x, ~wo)(〈~w〉 − ~wo) (18)

+
1

2
(〈~w − ~wo〉)

T∇2F (~x, ~wo)(〈~w − ~wo〉) + ...

If the weights are assumed to be independent, all the statistical moments
involved in the expansion (18) can be calculated by solving the correspond-
ing one dimensional integrals that follow from the marginals (7). If weight
independence is not assumed, the cross moments can be estimated through
averages similar to (17). For instance, covariances are estimated by

〈wnwm〉 − 〈wn〉〈wm〉 ≈
1

τ

τ
∑

t=1

wnwm − 〈wn〉〈wm〉. (19)
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The result of MLE is a formula by which there is no need to perform addi-
tional numerical averages in order to evaluate the trained network at a given
input. Therefore MLE may be useful in applications in which the trained
model should run under limited computation resources, like for instance in
embbeded systems.

3.3 Incremental Bayesian inference

To have explicit expressions for the posterior’s marginals turns out to be ad-
vantageous in several respects, as already pointed out for MLE. In particular,
the marginals can be viewed as a way to encode the characteristics learned
by the inference model from the given sample, through the average coeffi-
cients 〈a〉’s. Consider a sample with A observations from which a number of
SFP iterations have been runned. If a new observation arrives, the weigths
should be updated according to Bayes theorem. The marginals learned by
SFP provide quite a natural way to define the necessary priors. The follow-
ing mechanism is proposed. From Eq. (15) the potential function can be
written,

V (~w|A) = −[ln p(~w) + ln p(A|~w)]. (20)

As a result of running SFP with this potential, expressions for the marginals
of the weight’s densities p(wi|A) are obtained by derivation from the esti-
mated marginal distributions (7). When a new observation arrives, it’s pro-
posed to construct a new prior with these learned marginals in the following
way,

p(~w) =
N
∏

i=1

p(wi|A). (21)

Therefore for the sample with A + 1 observations, the potential is updated
like,

V (~w|A+ 1) = −

[

N
∑

i=1

ln p(wi|A) + ln p(A+ 1|~w)

]

, (22)

Incremental learning is useful in a context in which the sample is not com-
pletely known before the training begins, but data arrives in a dynamic fash-
ion. In such settings it is necessary to update an existing inference model
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under the presence of the new data. Clearly the procedure presented here is
able to handle as many previous data as desired, depending in the sample
chosen to enter into the likelihood p(data|~w). In the numerical experiments
considered in this Letter, only the incremental version in which the likelihood
depends on the entire accumulated sample is considered. Other possibilities,
like for instance the on–line version, in which only the last datum enters into
the likelihood, appear to be relevant in the context of strongly unstationary
systems. These aspects are expected to be investigated in a future work.

4 Experiments

In the numerical experiments three–layered ANN’s with hyperbolic tangent
activation functions are considered, except on the output layer, where linear
activation functions are used for regression and soft–max activation functions
are employed in classification. Quadratic loss has been used,

− ln p(A|~w) =
1

D

1

A

A
∑

a=1

‖ ~ya − F (~xa, ~w) ‖
2 . (23)

This choice corresponds to a Gaussian likelihood with an error’s variance of
σ2 = D/2. Notice that the parameter D only affects the likelihood part of
the posterior. Parameter selection for the learning of an appropriate poste-
rior density depends on the desired computational effort per iteration of SFP,
determined by L and on the statistical properties of the resulting posterior,
which are controlled by D. In the following experiments, these parameters
have been selected by running a single SFP iteration and then observing the
learned posterior marginal densities. Keeping L fixed, D is diminished and
chosen to be the lesser D for which the resulting marginal is a valid proba-
bility density. The initial prior densities for the weights are given by uniform
densities in the interval [−1, 1]. This is at some extent an arbitrary and unin-
formative choice, because no distinction is made between the different types
of weights (e. g. biases or input connections). The first 15 iterations of SFP
are rejected for the sampling from the posterior method. In the case of incre-
mental Bayesian inference the weights are updated after each SFP iteration,
performing a single SFP iteration per sample, where each new sample is given
by the previous one plus a single new datum. For MLE the first order of the
expansion (18) is used for network evaluation purposes. The experiments
have been carried on a standard PC with a 3 Ghz processor and 512 MB of
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RAMmemory, running Linux. The SFP method and the necessary classes for
three–layered ANN’s have been programmed in the Java language. The Colt
numerical library (http://acs.lbl.gov/∼hoschek/colt/) has been used for the
solution of linear systems and random number generation required by SFP.

The first example consists on a well known classification task that has al-
ready been used to test Bayesian approaches to learning. Two difficult signal
prediction tasks are also considered. A common problem in nonlinear signal
analysis is the forecast of short and noisy time series (Kantz & Schreiber, 2004).
Data of this kind play a central role in scientific, medical and engineering ap-
plications (Kantz & Schreiber, 2004). A central difficulty that arises in this
context comes from the fact that nonlinear dynamical systems may exhibit
deterministic behavior that is statistically equivalent to noise. In short and
noisy samples this behavior can easily mislead a given predictive model, giv-
ing rise to strong overfitting.

4.1 Classification on the forensic glass data

The “Glass Identification” data set (downloadable at the UC Irvine Ma-
chine Learning Repository, http://archive.ics.uci.edu/ml/), consists on 214
instances of glass fragments found at the scene of a crime. The task is to
identify the origin of each fragment based on refractive index and chemical
composition. Reliable identification can be valuable as evidence in a given
criminological investigation. This data set has been used to test several non-
linear classifiers, including Bayesian approaches (Neal, 1996; Ripley, 1994).
In accordance to previous authors, the following classes have been consid-
ered: float–processed window glass, non–float–processed window glass, vehi-
cle glass, and other. The headlamp glass has been discarded, leaving a total
of 185 instances. The attributes are the refractive index and the percent by
weight of oxides of Na, Mg, Al, Si, K, Ca, Ba and Fe. These values have
been normalized to have zero mean and unit variance. The classifiers stud-
ied here consist on three layered ANN’s with soft–max activation functions
for the output layer. The performance is measured on terms of the fraction
of mis–classification, where the attribute with the largest soft–max value is
interpreted as the output of the ANN. In each experiment, the data has been
splitted on training and test sets in the following manner: Float–processed
window glass: 30 train, 40 test. Non–float–processed window glass: 39 train,
37 test. Vehicle glass: 9 train, 8 test. Other: 11 train, 11 test. Ten ex-
periments for a network with 6 hidden layers have been performed and the
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resulting mis–classification’s average and variablity are reported on Table
2. The compared methods are Maximum Likelihood Estimation based in
the SFP posterior marginals (SFP-MLE), SFP sampling from the full poste-
rior (SFP-S), incremental SFP learning (SFP-I) and two versions of Hybrid
Markov–Chain Montecarlo (HMCMC1 and HMCMC2). An implementation
of HMCMC provided by the original author of the method in his “Software
for flexible Bayesian modeling and Markov chain sampling” is used. The two
HMCM methods differ in the their selected parameters. HMCMC1 follows
the description given in (Neal, 1996) for the “Glass Identification” data set
using non vague priors. According to the author (Neal, 1996) the chosen
parameters are such that the HMCMC procedure converges to the correct
posterior distribution with a very high degree of confidence. In HMCMC2
the parameters provided by the the author for the classification example used
in the description of his software are used. These parameters imply a lesser
number of HMCMC iterations and shorter computation times at the cost of
a higher risk of inadequate convergence.
The SFP parameters for this experiment are: L = 100, D = 5e − 4 with a
number of SFP iterations M = 100. For comparision purposes, some pre-
viously published results (Neal, 1996; Ripley, 1994) over a single experiment
using other approaches are included. SFP-S and HMCMC show the best
performance, but HMCMC1 takes 55.6 minutes in order to complete train-
ing for each experiment, while SFP-S took 5 minutes. For this example it
appears however that the faster version HMCMC2 adequately converges to
the posterior of interest, showing similarly good performance. HMCMC2
took 4.3 minutes of computation time.

4.2 Prediction of human breath rate

The human breath rate signal is part of a well known multichannel physio-
logical data set provided for the Santa Fe Institute time series competition in
1991/92 (Weigend & Gershenfeld (Eds.), 1994)). The data set contains the
instantaneous heart rate, air flow and blood oxygen concentration, recorded
twice a second for one night from a patient that shows sleep apnea (periods
during which he takes a few quick breaths and then stops breathing for up to
45 seconds). The experimental system is clearly non–stationary. Following
(Kantz & Schreiber, 2004) here has been used an approximately stationary
sample of the air flow through the nose of the human subject. Starting
at measurement 12750, 1000 data points have been selected. The first 500
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mis–classification rate
SFP-S 0.32 ± 0.04

SFP-MLE 0.33 ± 0.03
SFP-I 0.33 ± 0.03

HMCMC1 0.32 ± 0.04
HMCMC2 0.32 ± 0.04

From base rates in training set 0.61
Max. penalized likelihood ANN, 6 hidden units 0.38

Table 2: Performance of SFP Bayesian learning in the classification of the
forensic glass data. The reported mis–classification rate for SFP and HM-
CMC is based on 10 independent experiments. For comparision purposes,
previously published results over a single experiment with other methods are
included.

points are used as a training set. The data has been normalized such that it
has unit variance and zero mean.
There is a large amount of evidence indicating that this multichannel phys-
iological data contains nonlinear structure and a strong random component
(Kantz & Schreiber, 2004). These facts are confirmed in our sample (see
Table 3).
Assuming that the data can be represented by a low–dimensional nonlinear
map, a fact which is also supported by evidence (Kantz & Schreiber, 2004),
an embedding dimension of 10 is arbitrarily selected. An ANN with 10 input
units, 20 hidden neurons and one output unit is trained by SFP, HMCMC
and by the Broyden–Fletcher–Goldfarb–Shanno (BFGS) algorithms to ap-
proximate the nonlinear structure. Two specialized methods for univariate
time series are included for comparision: an Autoregressive (AR) model and a
nonlinear predictor based on local approximations introduced by Kantz and
Schreiber (Kantz & Schreiber, 2004), which we will denote here like Local
Nonlinear Predictor (LNP).
In the Table 3 it has been considered the predicted Mean Squared Error
(MSE), for the models in which this statistic can be calculated: the AR,
SFP and HMCMC. This quantity has been estimated from the sample in the
BFGS ANN model. For all the models, the out of sample MSE is evaluated
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In sample MSE Predicted MSE Out of sample MSE
SFP-S – 0.0550 0.0708

SFP-MLE – 0.1000 0.2001
SFP-I – 0.0804 0.0946

HMCMC – 0.2511 0.2379
BFGS 0.0400 – 0.4100
AR(16) – 0.2000 0.3205
LNP – – 0.2400

Table 3: Performance of SFP and HMCMC Bayesian learning in comparision
with a standard training procedure in an ANN with 10 inputs, 20 hidden
units and one output for the prediction of the human breath rate time series.
Linear and nonlinear specialized univariate methods are included.

over the next 500 time series values of the sample, except for the LNP, which
do not needs a systematic parameter optimization so the errors in the training
set can be regarded as out of sample. The LNP method requires to set an
embedding dimension, which has been chosen with a value of ten, and a
parameter that indicates the expected noise level. Following the results with
the LNP reported by Kantz and Schreiber on this data set, a noise variance
between 0.1 and 0.5 may be expected from data. For the experiment reported
in the Table 3, a value of 0.5 has been chosen, but no significant difference
in performance over the forementioned range has been observed. For the AR
model it has been used the Akaike information criterion in order to optimize
the model’s complexity.
The parameters of HMCMC are taken from the regression example given
in the documentation of the software by it’s author and are not intended
to assure convergence but to give reasonable results with short computation
times. The parameters for SFP were chosen in such a way that a comparably
fast training for SFP-S should be expected, using L = 100, D = 0.005 and
M = 100. The computation times of both HMCMC and SFP turn out to be
in the order of 5 minutes.
The BFGS ANN has been trained using the R package “nnet” with the
default setting of a maximum of 100 BFGS iterations for weight optimization.
The resulting weights give an in sample MSE of 0.04, while the out of sample
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MSE is an order of magnitude above, indicating strong overfitting. For SFP
on the other hand, the predicted and observed MSE have the same order
of magnitude, which is far more satisfactory and is what it’s expected from
an adecuate Bayesian inference. From the results for the AR and the LNP
models it seems clear that the time series has indeed nonlinear dependencies
and these are captured by SFP.
For this regression problem appears that the number of iterations for HM-
CMC were insufficient to achieve an adequate convergence to the posterior,
displaying a substantially inferior performance than SFP in a similar com-
putation time.

4.3 Prediction of the output of a NMR–laser

Other well known example of nonlinear data is given by the NMR–laser
dataset (Kantz & Schreiber, 2004; Badii et al., 1994). The dataset consists
on the signal produced by the output power of a nuclear magnetic resonance
laser, which is modulated periodically. The signal is sampled 15 times per pe-
riod of modulation using a stroboscopic view. Here we have chosen the signal
without noise reduction. In this example, there are strong arguments that
indicate that the statistical properties of the observed time series are mainly
due to deterministic behavior, and that the noise component is rather low
(Kantz & Schreiber, 2004). In the experiments presented in Table 4, there
has been used a training set of 200 time series data points and test set based
on 200 time series points. Training and test sets are completely disjoint. The
selected ANN architecture in this case consists on two neurons for the input
layer, which corresponds to an embedding dimension with a size of two. The
hidden layer has been chosen with 20 units and the output layer consists on
a single neuron. Like in the human breath rate example, the BFGS ANN has
been trained with the default setting of a maximum of 100 BFGS iterations
for weight optimization. Following the discussion presented by Kantz and
Schreiber (Kantz & Schreiber, 2004), a noise variance of 0.1 has been chosen
for the LNP. For the AR model it has again been used the Akaike information
criterion in order to optimize the model’s complexity. The parameter values
for SFP are L = 100, M = 100, D = 0.005 and the same setup for HMCMC
in the human breath rate signal example is used. The computation time for
this example is around 3 minutes for HMCMC, 7 minutes for SFP-S and
SFP-MLE and 5 minutes for SFP-I. Again the conventionally trained ANN
shows strong overfitting, displaying a performance comparable with the one
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In sample MSE Predicted MSE Out of sample MSE
SFP-S – 0.0591 0.0660

SFP-MLE – 0.0578 0.0490
SFP-I – 0.0600 0.0745

HMCMC – 0.0545 0.0668
BFGS ANN 0.0012 – 0.1873

AR(8) – 0.1622 0.1657
LNP – – 0.0470

Table 4: Performance of SFP and HMCMC Bayesian learning in comparision
with a standard training procedure in an ANN with 2 inputs, 20 hidden units
and one output for the prediction of the NMR–laser time series. Linear and
nonlinear specialized univariate methods are included.

of the best linear model. The Bayesian ANN’s instead show an out of sample
error that is essentially the same shown by the specialized nonlinear time
series predictor.

4.4 Behavior of large networks

A major advantage of Bayesian inference is that in principle arbitrarily large
models can be used without the danger of “overfitting”. Table 5 presents
the best (in the sense of MLE Bayesian predicted squared error) ANN found
after 20 iterations of SFP for the NMR–laser data, considering architectures
with different sizes. An intensive SFP sampling is used, with L = 300 and
D = 1e − 4. These parameters are selected in order to have a posterior
density as sharp as possible, which is computationally demanding but useful
to check how prone is SFP to overtraining. Is clear that, in accordance
with it should be expected for a correct Bayesian estimation, the overfitting
effect is not present despite the increasing model complexity. This claim
is furtherly supported in Fig. 9, where the out of sample errors for the
different network sizes are plotted. A linear regression on the errors shows
no evidence of an increment of the errors with the ANN size. A standard
F-test for this regression indicates that the null hypotesis of a constant slope
can’t be rejected at a 95% confidence.
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Figure 9: Plot of the observed out of sample MSE for SFP-MLE in the
forecast of the NMR–laser time–series for increasing hidden layer size. The
SFP parameters are selected in order to have a posterior density as sharp as
possible. The out of sample errors appear to be independent of the neural
network complexity.

Number of hidden neurons Predicted MSE Out of sample MSE
20 0.058 0.049
40 0.062 0.053
60 0.047 0.037
80 0.057 0.045
100 0.058 0.035
120 0.060 0.041
140 0.064 0.056

Table 5: The observed out of sample MSE for the SFP ANN in the forecast
of the NMR–laser time–series for increasing hidden layer size.
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Figure 10: Dependence between computation time and ANN size for SFP-
MLE training in the NMR–laser example. The SFP parameters are selected
in order to have a posterior density as sharp as possible, which is computa-
tionally demanding. The dashed line represents the best quadratic fit, given
by T ime = −26.57 + 0.46N − 0.007N2.

The number of loss function evaluations of a SFP sampling grows lin-
early with the potential’s dimension (Berrones, 2008). Therefore, Table 5
indicates that SFP is capable to perform a correct estimation of the pos-
terior density with a total number of loss function evaluations that grows
linearly with system’s size. The evaluations of the potential function gives
the major contribution to the computational cost. In Fig. 10 is presented
the total computation time of each of the runs of Table 5. The computation
time grows slowly with the system’s dimension, which is consistent with the
linear behavior predicted by SFP theory. This experimental result is impor-
tant because it shows the value of SFP sampling for large scale systems. In
the context of global optimization, it appears that SFP should be further
adapted to alleviate at some extent the curse of dimensionality suffered by
any stochastic optimization method in order to be competitive with the cur-
rent best algorithms (Melchert & Hartmann, 2008). However, Table 5 and
Fig. 10 suggest that for density estimation purposes, the correct estimation
of large dimensional densities via SFP sampling is a polynomial time com-
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putational procedure, with a total number of loss function evaluations that
behave linearly. These properties may be valuable in other applications be-
sides Bayesian inference, like for instance Monte–Carlo simulations of large
physical systems.

5 Discussion

The framework for Bayesian learning based on SFP sampling introduced
in this Letter is directly connected to equilibrium statistical mechanics. In
particular, using a dimensionless Boltzmann constant k = 1, it turns out
that an entropy S can be introduced,

S = −
∫

~w
p(~w|A) ln p(~w|A)d~w, (24)

therefore obtaining the thermodynamic relation

〈V (~w|A)〉 = S − 〈ln p(A|~w)〉 . (25)

The exploitation of the link of SFP Bayesian learning with equilibrium sta-
tistical mechanics appears to be promising taking into account that SFP
provides analytic expressions for the marginals, from which mean–field ap-
proximations to the quantities of interest may be derived.
An additional interesting research question is the study of more general forms
of uncertainty affecting the stochastic search in the weight space. In this re-
gard, it should be noticed that the SFP formalism is in principle not limited
to the estimation of the stationary density of a diffusion on a potential under
white Gaussian additive noise. Through the use of generalizations to the
Fokker–Planck equation based on the expansion of the master equation, like
for instance the Van Kampen expansion (Van Kampen, 1992), several other
stochastic search processes may be considered. If the posterior densities re-
sulting from such generalized processes are more adequate in some situations
seems to be an appealing question to further study.
A techical issue in which there may be room for the improvement of the SFP
approach regards the selection of the most appropriate basis function family
for the approximation of the conditionals. In this Letter it has been used the
Fourier basis only because of its simplicity, but in principle any other basis
can be used.
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Other relevant research line that follows from the results presented so far
consists on the application of SFP learning to large and complex systems.
If the observed polynomial behavior of computation time holds in general,
it would be valuable to apply the SFP technique on very large inference
models, taking advantage of the intrinsic parallel nature of the SFP sampling
algorithm.

Acknowledgement

This work was partially supported by the National Council of Science and
Technology of Mexico and by the UANL–PAICYT program.

References

Auld, T., Moore, A. W. & Gull, S. F. (2007). Bayesian Neural Networks for
Internet Traffic Classification IEEE Transactions on neural networks,
18(1), 223–239.

Badii, R., Brun, E., Finardi, M., Flepp, L., Holzner, R., Parisi, J., Reyl,
C., & Simonet, J. (1994). Progress in the analysis of experimental chaos
through periodic orbits. Rev. Mod. Phys. 66, 1389–1415.

Berrones, A. (2008). Stationary probability density of stochastic search pro-
cesses in global optimization. J. Stat. Mech., P01013.

Berrones, A. (2009). Characterization of the convergence of sta-
tionary Fokker–Planck learning. To appear in Neurocomputing.
doi:10.1016/j.neucom.2008.12.042

Canty A. (1999). Hypothesis Tests of Convergence in Markov Chain Monte
Carlo. Journal of Computational and Graphical Statistics, 8, 93–108.

Celeux, G., Hurn, M. & Robert, C. P. (2000). Computational and Infer-
ential Difficulties with Mixture Posterior Distributions. Journal of the
American Statistical Association, 95(451), 957–970.

Chib, S., Nardari, F. & Shephard, N. (2002). Markov chain Monte Carlo
methods for stochastic volatility models. J. Econometrics, 108, 281–316.

27



Ghahramani, Z. & Beal, M. J. (2001). Graphical Models and Variational
Methods. In Advanced Mean Field Methods, 161–177. MIT Press.

Grasman, J. & van Herwaarden, O. A. (1999) Asymptotic Methods for the
Fokker–Planck Equation and the Exit Problem in Applications. Springer.

Jalobeanu, A., Blanc–Feraud, L. & Zerubia, J. (2002). Hyperparameter
estimation for satellite image restoration using a MCMC maximum-
likelihood method. Pattern Recognition, 35, 341–352.

MacKay, D. J. C. (1992). A practical Bayesian framework for backpropaga-
tion networks. Neural Comput., 4(3), 448–472.

Malzahn, D. & Opper, M. (2002). Statistical Mechanics of Learning: A Vari-
ational Approach for Real Data, Phys. Rev. Lett. 89(10), 108302.

Marin, J.M., Mengersen, K. & Robert, C. P. (2005). Bayesian modelling and
inference on mixtures of distributions. In Handbook of Statistics 25, D.
Dey and C.R. Rao (eds). Elsevier-Science.

Marwala, T. (2007). Bayesian training of neural networks using genetic pro-
gramming Pattern Recognition Letters 28, 1452–1458.

Melchert, O. & Hartmann, A. K. (2008). Ground states of 2D ± J Ising spin
glasses obtained via stationary Fokker–Planck sampling J. Stat. Mech.,
P10019.

Nakajima, S. & Watanabe, S. (2007). Variational Bayes Solution of Linear
Neural Networks and Its Generalization Performance Neural Comput.,
19(4), 1112–1153.

Neal, R. M. (1996). Bayesian Learning for Neural Networks. Springer.

Ripley, B. D. (1994). Neural networks and related methods for classification
(with discussion). J. Roy. Statist. Soc. B 56, 409–456.

Risken, H. (1984) The Fokker–Planck Equation. Springer.

Roberts, G. O. & Polson, N. G. (1994). On the Geometric Convergence of
the Gibbs Sampler J. R. Statist. Soc. B 56 2, 377–384.

28



Roberts, G. O. & Stramer, O. (2002). Langevin Diffusions and Metropolis-
Hastings Algorithms Methodology and Computing in Applied Probability
4, 337–357.

Kantz, H. & Schreiber, T. (2004). Nonlinear Time Series Analysis. Cam-
bridge University Press.

Van Kampen, N. G. (1992). Stochastic Processes in Physics and Chemistry.
Elsevier.

Weigend, A. S. & Gershenfeld, N. A. (Eds.) (1994). Time Series Prediction:
Forecasting the Future and Understanding the Past. Santa Fe Institute
Studies in the Sciences of Complexity XV. Addison–Wesley.

29


	Introduction
	SFP sampler
	Bayesian inference in complex models
	Bayesian inference by sampling from the posterior
	Maximum Likelihood Estimation (MLE) from the posterior marginals
	Incremental Bayesian inference

	Experiments
	Classification on the forensic glass data
	Prediction of human breath rate
	Prediction of the output of a NMR–laser
	Behavior of large networks

	Discussion

