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Abstract

One approach for understanding the encoding of information by spike trains is to fit statistical models
and then test their goodness of fit. The time rescaling theorem provides a goodness of fit test consistent
with the point process nature of spike trains. The interspike intervals (1SIs) are rescaled (as a function
of the model’s spike probability) to be independent and exponentially distributed if the model is
accurate. A Kolmogorov Smirnov (KS) test between the rescaled ISIs and the exponential distribution
is then used to check goodness of fit. This rescaling relies upon assumptions of continuously defined
time and instantaneous events. However spikes have finite width and statistical models of spike trains
almost always discretize time into bins. Here we demonstrate that finite temporal resolution of
discrete time models prevents their rescaled 1SIs from being exponentially distributed. Poor goodness
of fit may be erroneously indicated even if the model is exactly correct. We present two adaptations
of the time rescaling theorem to discrete time models. In the first we propose that instead of assuming
the rescaled times to be exponential, the reference distribution be estimated through direct simulation
by the fitted model. In the second, we prove a discrete time version of the time rescaling theorem
which analytically corrects for the effects of finite resolution. This allows us to define a rescaled time
which is exponentially distributed, even at arbitrary temporal discretizations. We demonstrate the
efficacy of both techniques by fitting Generalized Linear Models (GLMs) to both simulated spike
trains and spike trains recorded experimentally in monkey V1 cortex. Both techniques give nearly
identical results, reducing the false positive rate of the KS test and greatly increasing the reliability
of model evaluation based upon the time rescaling theorem.
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1 Introduction

One strategy for understanding the encoding and maintenance of information by neural activity
is to fit statistical models of the temporally varying and spike history dependent spike
probability (conditional intensity function) to experimental data. Such models can then be used
to deduce the influence of stimuli and other covariates on the spiking. Numerous model types
and techniques for fitting them exist, but all require a test of model goodness of fit as it is
crucial to determine a model’s accuracy before making inferences from it. Any measure of
goodness of fit to spike train data must take the binary nature of such data into account. E.g.
discretized in time, a spike train is a series of zeros and ones. This makes standard goodness
of fit tests, which often rely on assumptions of asymptotic normality, problematic. Further,
typical distance measures such as the average sum of squared deviations between recorded
data values and estimated values from the model can often not be computed for point process
data.

One technique, proposed by Brown and collaborators, for checking the goodness of fit of
statistical models of neural spiking makes use of the time rescaling theorem (Brown, 2001).
This theorem states that if the conditional intensity function is known, then the interspike
intervals (ISIs) of any spike train (or indeed any point process) can be rescaled so that they are
Poisson with unit rate, e.g. independent and exponentially distributed. Checking goodness of
fit is then easily accomplished by comparing the rescaled ISI distribution to the exponential
distribution using a Kolmogorov Smirnov (KS) test. (Press, 2007; Massey, 1951). The beauty
of this approach is not only its theoretical rigor, but also its simplicity, as the rescaling requires
only the calculation of a single integral. Further, a second transformation takes the
exponentially distributed rescaled times to a uniform distribution and the KS test can then be
performed graphically using a simple plot of the cumulative density function (CDF) of the
rescaled times versus the CDF of the uniform distribution to determine if the rescaled times
lie within analytically defined confidence bounds. Due to its many appeals, the time rescaling
theorem has been extensively used to test model goodness of fit to spike train data (Frank,
2002; Truccolo, 2005; Czanner, 2008; Song, 2006).

There are however certain neurophysiological situations in which in which the standard time
rescaling approach can give misleading results, indicating poor goodness of fit when model fit
may in fact be very good. This is a consequence of the practical numerical consideration that
when a statistical model is fit to spike data one almost always discretizes time into bins. The
time rescaling theorem applies exactly to a continuous time point process, e.g. if we have
infinite temporal precision and if the events (spikes) are instantaneous. In a practical
neuroscience setting however we usually do not have infinite temporal precision. Firstly, a
spike is an event that lasts for a finite (~ 1 msec) period of time and any temporal resolution
which is far below this lacks physical relevance.! Secondly, from a computational perspective,
the fitting of statistical models requires much less computer time when the temporal
discretization is coarser. Temporal discretization therefore imposes both physical and practical
numerical constraints on the problem.

Often the probability per bin of a spike is always small and the distinction between continuous
and discrete time of no concern because the width of a spike is very short compared to the
average interspike interval. On the other hand, there are cases for which firing rates can be very
high due to strong stimuli and ISIs short due to burst type dynamics and here the the per bin
spike probability can be large even at 1 msec resolution or less. Such situations can arise in,

1This statement applies if one considers the spike as a event as we do here. If one instead is interested in the shape and timing of the
spike waveform, for example the exact time of the waveform peak, then temporal resolutions of << 1 msec may indeed be physically

relevant.
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for example, primate visual experiments where neurons can be extremely active (De Valois,
1982; MacEvoy, 2007, and also see the Results section of this paper) exhibiting firing rates of
up to 100 Hz or more. In such situations, it is important to ensure that the the rescaled ISIs are
still (approximately) exponentially distributed and if not, to determine the correct distribution
before performing the KS test.

Our aim in this paper is to develop simple and easily applied goodness of fit tests for the discrete
time case. We first restate the standard, continuous time form of the time rescaling theorem
for point processes and then demonstrate the discretization problem using a simple
homogeneous Bernoulli (discretized homogeneous Poisson) process. We show theoretically
that the discrete nature of the Bernoulli process results in first a lower bound upon the smallest
possible rescaled ISI and second, because there can be only one spike per bin, a spike
probability less than that which would be estimated by a continuous time model. These
differences lead to biases in the KS plot, biases which are caused by fundamental differences
in the shapes of the geometric and exponential distributions, not by poor spike sampling or
poor numerical integration technique. We demonstrate further that these biases persist for more
complicated simulated neural data with inhomogeneous firing rates and burst type spike history
effects. Interestingly we show that the biases increase when spike history effects are present.

We then propose two computationally tractable modifications to the time rescaling theorem
applicable to discrete time data. The first is similar in spirit to a bootstrap and involves direct
simulation of confidence bounds on the rescaled ISI distribution using the statistical model
being tested. In the second method, by randomly choosing exact spike times within each bin
and introducing a correction to the fitted discrete spike probabilities, we define an analytic
rescaled time which is exponentially distributed at arbitrary temporal discretizations. Use of
this analytical method gives results nearly identical to the numerical approach. In this paper
we use Generalized Linear Models (GLMs) with logistic link functions (McCullagh, 1989;
Wasserman, 2004). However we emphasize that both procedures will apply to any discrete
time statistical model of the time varying spike probability, not only GLMs. We demonstrate
both approaches using simulated data and also data recorded from real V1 neurons during
monkey vision experiments. In all our examples, the KS plot biases are eliminated. Models for
which the original KS plots originally lay outside 95% confidence bounds are demonstrated
to in fact be very well fit to the data, with the with modified KS plots lying well within the
bounds. In addition to providing more accurate statistical tests for discrete time spiking models,
our approaches allow for the use of larger time bin sizes and therefore can substantially decrease
the computation time required for model fitting.

The time rescaling theorem states that the interspike intervals (ISls) of a continuous time point
process can be transformed, or rescaled, so that the rescaled process is Poisson with unit rate,
e.g. the rescaled ISls are independent and exponentially distributed. This variable transform
takes the form

1
=] . AH)dr (1)

{t;} is the set of spike times and A(t|H;) is the conditional intensity function: temporally varying
and history dependent spike probability. Although we will henceforth drop the Hy in our

notation, such conditioning on the previous spiking history is always implied. Intuitively, the
ISls are stretched or shrunk as a function of total spike probability over the IS interval so that
the rescaled ISIs are centered about a mean of 1. Several proofs of this theorem exist, (Brown,
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2001). Here we present a simple proof of the exponential distribution of the rescaled ISls. A
proof of their independence is located in Appendix A.

The proof proceeds by discretizing time into bins of width A, writing down the probability for
each discrete ISI, and then taking the continuous time limit, e.g. A — dt. The discrete time bins
are indexed as k and the bins within which the spikes occur are denoted as k;. Further we define
px as the discrete probability mass of a spike in bin k and like A(t) it should be taken as
conditionally dependent on the previous spiking history.

The probability of the i-th 1S is the probability that there is a spike in bin k;j given that the
preceding spikes were located in bins ky, kp,... Kj-1.

Li—1
PUSI)=P(kilk. ka..... ki1)= []—[u - pki_l+z>] Pron

=1 (2)

where L is defined such that kj—_; + Lj = kj. This is simply the product of the probabilities that
there are no spikes in bins k = {ki—1 + 1, ki—1 + 2,...kj — 1} multiplied by the probability that
there is a spike in bin k = k;. For simplicity we now drop the i subscripts.

In preparation for taking the small bin size limit we note that when A becomes small, so does
p e.g. p << 1 for all bins. This implies that 1 — p = e P allowing the above to be rewritten as

L
_ZPkH

=1

P(IS)=P(k+L) ~ exp

Dier

(3)

Note that the upper limit of the sum has been changed from L — 1 to L with the justification
that we are in a regime where all the p’s are very small. We define the lower and upper
spiketimes as t, = kA and t = iy = (k + L)A, define A(tis) such that prs; = Atesr)A 2 and also
define the ISI probability density P(t) such that P(k + L) = P(t)A. After substituting these into
the above equation and converting the sum to an integral we obtain

1
-[, At

P(t)dt=e A(t)dt (4)

Consulting equation 1 we note that the integral in the exponent is by definition t. Further,
applying the Fundamental Theorem of Calculus to this integral gives dt = A(t)dt 3 Changing
variables from t to t we finally obtain

P(n)dt=e "dr ()

2}»(tk+|) =< Mt) >k+| where the average is taken over the time bin k. This definition holds only when the bin size is very small. We will
soon show that for moderately sized bins pk+] # M(tk+])A and that this leads to biases in the KS plot.

3Specifically,

dr

_8 (t e
o=/, A=A

(5)

and therefore dt = A(t)dt.
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which is now exponentially distributed and completes the proof.

Although the tj can be compared to the exponential distribution, it is useful to note that a second
variable transform will make the rescaled ISIs uniformly distributed.
Ti

zi=l-e" (7)

General practice is to sort the rescaled ISls z; into ascending order and plot them along the y
axis versus the the uniform grid of values bFQ where N is the number of ISIsand i = 1,
..., N. If the rescaled ISls z; are indeed uniformly distributed then this plot should lie along the
45 degree line. Essentially, the cumulative density function (CDF) of the rescaled ISls z; is
being plotted against the CDF of the uniform distribution (the bj’s). We show an example of
such a plot in Figure 1. Such a plot can be thought of as a visualization of a Kolmogovov
Smirnov (KS) test which compares two CDFs and is usually referred to asa “KS plot.” Formally
we can state the null hypothesis Hg of this test as follows:

Hp : Given a model of the conditional intensity function which is statistically adequate, the
experimentally recorded ISIs can be rescaled so that they are distributed in the same manner
as a Poisson process (exponentially distributed) with unit rate.

Under the null hypothesis the maximum distance between the two CDFs will, in 95% of cases,

1.36
be less than ﬁwhere N is the number of rescaled ISIs (Brown, 2001; Johnson and Kotz,
1.36
1970). Equivalently, the plotted line of rescaled ISIs will lie within the bounds bic = W in

95% of cases under the null hypothesis. It should be kept in mind that this is not equivalent to
saying that the line of rescaled ISls lying within these bounds implies a 95% chance of the
model being correct.

2.1 Temporal Discretization Imposes KS Plot Bias

The time rescaling theorem applies exactly to a point process with instantaneous events (spikes)
and infinite temporal precision, e.g. continuous time. As a practical matter when fitting a
statistical model one generally discretizes time. For discrete time the integral of equation 1 is
naively replaced by a sum

Ti= Z Pk

k=ki—1+1 (8)

If px << 1 VK, e.g. in situations where either the bin size is very small A — 0 or the firing rate
is very low, the time rescaling theorem will apply approximately even if a discrete time model
is used. However, it often happens that py is in fact large. For example 50 Hz spiking sampled
at 1 msec implies p = 0.05, and under many conditions the firing rate can be much higher, at
least over some subset of the recording, e.g. during bursting. In such cases, the rescaled times
7j will not be exponentially distributed and the KS plot will exhibit significant biases
(divergences from the 45% line) even if the discrete time model for py is exactly correct. We
this demonstrate in Figure 1 where two KS plots generated using the exact same spikes and
time varying firing rate are shown, but a temporal discretization was imposed for one of the
plots.
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These biases originate in two distinct consequences of discretizing a continuous process. First,
there is a lower bound upon the smallest possible 1SI (one bin) which leads to a lower bound
on the smallest possible rescaled time z. Second because only a single spike per bin is allowed,
using a discrete time model to estimate the firing rate of a continuous time process results in
an underestimation of the firing rate. To demonstrate these issues fully we now consider the
simple case of a homogeneous Bernoulli process with a constant spike probability py = p per
bin for which the the CDF of the z’s can be calculated analytically and the KS plot determined
exactly.

For a discrete time process only a discrete set of ISls are possible. Specifically {nA} where n
is an integer greater than zero and A is the bin width. In the case of a homogeneous Bernoulli
process the rescaled ISls are t(n) = pn and

z(n)=1—-e*" (9)

and the discrete probability distribution of interspike interval times (and rescaled times) is

P,m=(1-p)"'p (10)

As inequation 2, this is merely the product of the probability of no spike for n — 1 bins followed
by the probability of a spike in the last (nth) bin. The B’ subscript indicates the Bernoulli
process. Pg(n) is not an exponential distribution, as would be expected for a homogeneous
Poisson process. It is a geometric distribution, although in the limit of small p, it reduces to an
exponential distribution. 4 The CDF of this ISI distribution is easily calculated by summing
the geometric series and combining terms.

n n
CDF,(m=) P,(j)) =15> (1 -p)
j=1 j=1
=1-(1-p) (11

_ log(l —z(m))
To finally get the CDF of the rescaled ISls z, equation 9 is inverted to get '~ ~ D

and substituted into equation 11.

log(1-z(n))

CDFy(2)=1-(1-p) * wn—1)<z<z2n) (12)

In Figure 2 we use equation 12 to generate the KS plot for various spike per bin probabilities
p. Even at p = 0.04 which would correspond to 40 Hz firing at 1 msec discretization the CDF
is highly non-uniform with a step like structure caused by the discrete values which the rescaled
ISIs can take. Such “steps” will be smoothed out if a inhomogeneous Bernoulli process is used
instead. (see below) There is, however, another more serious divergence from uniformity,

4Setting p=AAandt=nA

AA
Py (n=(1 - p)" ' p= (= ANE — AeMdi=P ,(1)dt

when the limit A — dt is taken.
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namely a distinct positive bias at low (close to 0) rescaled ISls and a distinct negative bias at
high (close to 1) rescaled ISIs. This bias will not disappear if an inhomogeneous Poisson
process is used.

The grey band, which is barely visible, is the 95% confidence region of the KS plot assuming
10 minutes of 40 Hz spiking, which translates into 24000 spikes on average. Since the
confidence bounds are so close to the 45 degree line, and will be for any spike train with a long
recording time and appreciable firing rate, we introduce a new type of plot in Figure 2 that we
term a “Differential KS Plot”. This is simply a plot of the difference between the distribution
we hypothesize that the CDF of rescaled times should follow (in this case uniform) and the
CDF of the “experimentally recorded” rescaled ISlIs (in this case the rescaled ISls of the
Bernoulli process). E.g.

CDthp(Z) - CDFe.\'p(Z) (13)

It should be emphasized that the Differential KS plot displays the same information as the KS
plot, but does so in a different and more visually accessible manner. The confidence bounds

1.36
(horizontal dashed lines) are now simply given by iﬁ where N is again the number of
rescaled ISls. Plotted this way one can clearly see the positive bias at low values of the rescaled
ISIs and the negative bias at high values of the rescaled 1SIs. We emphasize that since these
KS and Differential KS plots are calculated using the exact homogeneous Bernoulli
distribution, the biases are not finite sampling effects.

The positive bias at low ISls is easily understood by noting that the smallest possible rescaled
time is not zero but

2

- 14
- — P—
zZ(D)=1-¢eP=p +...>0 (14)

What about the negative bias at large (z close to 1) rescaled ISls ? Consider a homogeneous
Poisson process with a firing rate . Upon discretizing time into bins of width A one might
naively expect the probability of a spike per bin to be p = AA. However it is in fact slightly less
than this as we now show. Assume that there is a spike at time t = 0. Then for a homogeneous
Poisson process the probability density for the waiting time t,, until the next spike is p(ty) =
AeMw_ Integrating, the probability that the next spike lies within any interval t < t,, <t + A can
be obtained.

1+A

/
. /le*/lf dt/:e*/ll(l _ e*/lA)

P(t<t,, < t+A)=[ (15)

Defining the bin index n such that t = (n — 1)A and discretizing we get

P(I‘lW:I’l) :e—/lA(n—l)(l _ e/lA)
=[1— (1= )" (1= 12y
=(1-p)"'p (16)

where we have defined p = 1 — e in the last line. Discretizing time transforms the
homogeneous Poisson process into a homogeneous Bernoulli process, but with a per bin
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probability of a spike p # AA. In fact, by expanding the exponential as a Taylor series it can be
seen that

AA)?
( )+...</1A

=1-e"=0A-
P ¢ 2 (17)

The continuous Poisson process still has an expected number of spikes per interval of width

A of fﬁxldl:dA, but such an interval could have more than one spike in it. In contrast, the
discrete Bernoulli process can only have either O or 1 spikes per bin. Therefore the per bin
“spike probability” p calculated above is not the expected number of spikes of the continuous
point process within an interval A. It is the expected number of first spikes in an interval A,
which is of course less than the total number of expected spikes. By discretizing into bins any
chance of there being more than one spike in a time window A has been eliminated.

The breakdown of the first order expansion of the exponent is the source of the negative KS
plot bias at high (z close to 1) rescaled ISlIs. It is a fundamental consequence of discretizing a
continuous time point process and is closely connected how the conditional intensity function
is generally defined, that is, as the small bin size limit of a counting process (see (Snyder,
1975) cf. Chapter 5). More specifically the conditional intensity function is the probability
density of single spike in an infitesimal interval [t, t+A). As shown above, this probability
density is actually p/A = (1-e4)/A < A and the equality only holds in the limit. Thus p/A is
not a good approximation for A when the bin size is too large, and this causes the time rescaling
theorem to break down.

2.2 Inhomogeneous Bernoulli Processes

The same positive (negative) bias in the KS plot at low (high) rescaled 1SIs remains when the
spiking process is not homogeneous Bernoulli. We now we define three inhomogeneous
spiking models in continuous time and subsequently discretize them. We use these
inhomogeneous discrete time models to simulate spikes and then calculate the rescaled ISls
using the exact discrete time model used to generate the spikes in the first place. The goal is
to show that even if the exact discrete time generative model is known, the continuous time
rescaling theorem can fail for sufficiently coarse discretizations.

The first model is an inhomogeneous Bernoulli process. One second of the inhomogeneous
firing probability is shown in Figure 3 A. The specific functional form was spline based with
knots spaced every 50 msec and the spline basis function coefficients chosen randomly. This
model firing probability was repeated 600 times for a total of 10 minutes of simulated time.
The second and third models were the homogeneous and inhomogeneous Bernoulli models
respectively but with the addition of a spike history dependent renewal process shown in Figure
3 B. We used a multiplicative model for the history dependent firing probabilities of the form

AD)=A0(1) Anisi (1 — 115) (18)
where Lq(t) is the time dependent firing probability independent of spike history effects and
Anist is the spike history dependent term which is a function of the time since the last spike (t’

=t —t)5). The functional form of the spike history dependent term was a renewal process,
specifically
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1+3¢~0 /5

Apise (V)= ————
1+e40-2) (19)

where t' =t — t|5 is in msec. This form was chosen to mimic a brief refractory period and
subsequent rebound. For comparison purposes, all three of these models were constructed so
that the mean firing rate remained approximately 40 Hz. Thus the inhomogeneous Bernoulli
firing probability had a 40 Hz mean. In the spike history dependent cases, the history
independent firing probabilities Ag(t) were adjusted downwards so that when history effects
were included the mean firing rate remained approximately 40 Hz. Specifically the history
independent firing probability of the homogeneous Bernoulli process was reduced to 29 Hz
and a similar reduction was made for the inhomogeneous Bernoulli model.

In Figure 3 we demonstrate the effect on the KS and Differential KS plots when these models
are subjected to various temporal discretizations. Specifically we discretized the models at 1,
0.5, and 0.1 msec resolution by averaging Ag(t) over these bin widths, e.g. px g =< Ao(t) >k. The
spike history dependent term is a function of t' = t — tj; which was also partitioned into bins.
Similar averaging was then employed so that py: hist =< Anist(t’) =K. The full discrete conditional
spike probability is then px = py oPk—k,nist Where ks is defined as the most recent bin prior to
bin k that has a spike in it. We then simulated 10 minutes worth of spikes for each model and
discretization. ® After generating the spikes we then calculated the rescaled times and CDF
difference plots according to

2
- Dk
lel —e k:ki—l

(20)

Figures 3 C and D show the results for the inhomogeneous Bernoulli model. Comparison with
Figure 2 reveals that the main effect of inhomogeneity is to smooth out the “steps”. The positive
(negative) biases at low (high) rescaled times remain, and as expected they are smaller for finer
temporal discretizations. Figures 3 E — H show the results when the spike history dependent
term is added to both the homogeneous and inhomogeneous Bernoulli models. The important
point is that the biases are worse for both models when spike history effects are included, even
though the models are constructed so that the mean firing rate remains 40 Hz. The reason for
this is that the history dependent term is constructed so that the spike train exhibits burst like
behavior. Specifically, after a short (2 msec) refractory period there is an increased probability
of a spike. This increases the number of short ISls. It also increases the smallest possible
rescaled ISI z because the probability of a spike goes up immediately following a prior spike,
and this ends up shifting distributional weight to short ISls. This is an important point because
it implies that in real experimentally recorded spike trains, which may exhibit burst type
behavior, the bias in the KS plot will be worse than would be expected by a simple estimate
based upon the mean firing rate, as given in equation 14.

2.3 Unbiased Discrete Time Rescaling Test Using Model Simulation

In a previous section we showed analytically that when discrete time models are used, the
rescaled ISIs may not be exponentially distributed even if the model is exactly correct and that
this manifests in the KS plot as systematic biases. Our first proposed solution (we present a

SFor the spike history dependent models the generation of a spike in bin k modifies the firing probabilities in bins k' > k. Thus the
simulation proceeded bin by bin and upon generation of a spike, the firing probabilities in the following bins were updated according to
equation 19 before generating the next observation (spike or no spike) in bink + 1.
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second in the following section) to the bias problem is to not assume that the rescaled ISIs are
exponentially (or uniformly) distributed, but to instead use a procedure similar to
bootstrapping. This proceeds by noting that if a candidate model accurately describes the
recorded spikes, then the rescaled ISI distribution of the spikes and the rescaled ISI distribution
expected by the fitted model should be statistically indistinguishable. If instead the model form
is inappropriate to describe the spiking data, then the rescaled ISI distribution expected by the
candidate model will not match that of the experimentally recorded spikes, because the model
does not describe the recorded spikes accurately. Although the expected distribution of rescaled
ISIs is implicitly defined by the fitted model, in practice an explicit analytic form for this
distribution may be hard to come by. It can however be sampled numerically using the fitted
model to generate spikes and rescaling the resulting ISIs as a function of the model used to
generate them. ©

Specifically, after a candidate model is proposed and fit to the recorded spike train data (any
type of candidate model may be used as long as it provides an estimate of the conditional
intensity function 1) we use the model to simulate spikes, rescale the resulting simulated 1Sls
and then use a two sample Kolmororov Smirnov test to determine if the sample of estimated
rescaled ISIs {zest} and the sample of experimentally recorded rescaled ISIs {zgyp} are
consistent with being drawn from the same underlying distribution (Press, 2007). Formally,
the null hypothesis of the KS test has been changed from that stated in section 2 and adapted
to the case of discrete time data using a model based approach.

Ho(estimated) : Given a model of the conditional intensity function which is statistically
adequate, the set of experimentally recorded ISls can be rescaled so that they are distributed
in the same manner as a sample of rescaled ISIs generated by the statistical model itself.

To determine the number of spikes (or length of time) which must be simulated we use the
analytical expression for the confidence bounds of the two sample KS test. These bounds are
a function of the sample sizes of the distributions being compared, in our case the size of the
empirical distribution Neyp dictated by experiment and the size of the simulated distribution
Nsim which we can chose. The two sample KS test determines the maximum difference between
the CDFs of the experimentally recorded rescaled 1SIs {zgp} and the set of rescaled ISls
simulated using the model {zsjm}. If the maximum difference between the two CDFs is less
than a certain value, specifically

N, exp + N&'im

ax|CDFy;,,(z) — CDF,,,(z)|<1.36
max| 5im(2) exp(2 )l NexpNsim

1)

then the null hypothesis is confirmed at the o = 0.05 significance level (Press, 2007).
Alternatively a Differential KS plot (as discussed in the prior subsection) will have 95%
confidence bounds of

i136 Ne.\'p"'Ns‘im - 136 H‘_’}’
N, e,\'[;Ns‘im N, exp Y (22)

6Most generally the conditional intensity function will have the form A(tk) = A(X(tk)|H(tk)) where x(tk) is the set of time varying external
covariates and H(tk) is the previous spiking history. As the originally recorded spike train was of length T and the external covariates
were defined over this time interval, it is simplest to simulate multiple spike trains the length of the original recording time T. For each
spike train simulation x(t) remains the same, but H(t) will differ depending upon the exact spike times.
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where we have written Ngjm = YNexp-

Since Neyp is fixed by experiment, the test will be most strict (tightest confidence bounds) when
Nsim — oo, or equivalently as y increases. Formally, increasing Ngjm, increases the power of the
KS test and reduces the number of false positives, e.g. false rejections of the Null Hypothesis.
Fortunately Ngjm need not be overly large. Already at y = 20 the confidence bounds are only a

factor of 1.02 wider than they would be in the infinite limit (+1.36/ y/N,y,) in which the exact
distribution would be known. This implies that a simulated spike train 20 times longer than
the original, experimentally recorded, spike train provides a test power close to optimal and is
sufficient to approximate the confidence bounds extremely well. In the results section of this
paper we use simulated spike trains 100 times the original “experimental” length (y = 100)
which widens the confidence bounds by a factor of only 1.0005.

Specifically then, this technique proceeds as follows:

Procedure for Numerical Correction
1. Discretize the spike train into bins of width A and fit a discrete time statistical model.

2. Rescale the experimentally recorded ISIs using equation 8 to obtain the set of rescaled
ISIs {Zexp}-

3. Use the statistical model to estimate the rescaled 1Sl distribution. Simulate y > 20
spike trains of the same length as the original experimentally recorded spike train,
and rescale the simulated ISIs {zgim}

4. Construct the CDFs of both z¢yp and zsim, take the difference, and plot it on the interval

1.36 1+y
[0,1] with the confidence bounds * VNew \ 7 -

2.4 Discrete Time Version of Time Rescaling Theorem

We now prove a discrete time version of the time rescaling theorem which corrects for both
sources of KS plot bias. Specifically, we demonstrate how to write a new rescaled time & which
is exponentially distributed at for arbitrary temporal discretization. The proof given here
assumes that an underlying continuous time point process A(t|Hy) is sampled at finite resolution
A.

Proposition—Suppose a continuous time point process A(t|H;) is sampled at finite resolution
so that the observation interval from (0|T] is partitioned into bins of width A. Denote the bin
in which the i’th spike is located as kj and that of the next spike as bin ki+1 = kj + Lj. Let py;+|

= p(ki + I[Hk;+1) be the discrete time conditional spike probabilities evaluated in bins ki for |
= 1...L;. Define the random variable

Li—1 5
&= Z q/\'i+/+qk,-—L,- K[
=1 (23)

where

Gi;+1= — log(1 = pr.+1) (24)
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and 6; € [0, A] is a random variable determined by first drawing a uniform random variable
ri € [0, 1] and then calculating

A _
8i= — —log[ 1 — ri(1 — & %ti)]
/. (25)

Then &; has an exponential PDF with unit rate. For clarity of notation we drop the subscript i
in the following proof. It should be taken as implicit.

Proof—Assume the last spike was located in bin k and the next spike in bin k + L. If we knew
the underlying continuous time conditional intensity function A(t|H;) and the exact spike time
ts=(k+L—-1)A+3dinbink+L (5 € [0, A]) then using the continuous time version of the time
rescaling theorem we could write the probability of this event as

" A(u)du

P(t5)dt=e ka Ats)di=e "dr (26)

which is exponentially distributed in t. Since we know neither A(t|H;) nor ts precisely we must
recast t in terms of what we do know, the discrete bin-wise probabilities py.

The pg+1’s can be written in terms of the underlying continuous process A(t|H;). Consider any
bin k + 1. Since discretizaton enforces at most one spike per bin, px+| does not equal the integral
of A(t|Hy) over the bin, but rather the probability (measured from the start of the bin) that the
first spike waiting time is less than A.

3
_ kDA f o A/l(u)du
Pkel = (k+1—l)A(fI;A+ .
c+
A Au)du

A(t)dt

=l-e 27)

Partitioning the integral in the exponent of equation 26 into a sum of integrals over each bin
allows P(tg) to be written as.

L-1

P(td)dt:exp[—ZqH/ - ::‘I_I)A/l(u)a’u 1A(ts)dt
=1 ) (28)

. (k+DA . . .
where we’ve introduced k+1= | ;- 1)aA(#)dut as a shorthand. By inverting equation 27 g+ can

be written directly in terms of py4j.

Giv1= — log(1 = pryp) (29)

Since we have no information about how A(t|H;) varies over bin k + L we can pick any functional
form, as long as it obeys the constraint that its integral over the bin equals qy+ = —log(1 —

.. i1
Pr+L). One choice is AH)= X' 71t then follows that

7In fact any form for A within bin k + L could be chosen. Choosing it to be constant merely allows for easier random sampling.
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L-1
T
P(ts)di=expl — Y st — Tt ) ek et
=1 (30)

P(ts)dt has now been rewritten in terms of what we know, the gy+’s (implicitly the py4|’s). We
have defined the rescaled time as

L-1
_ 9L
f—;[ﬂwl"‘ A 0

(31)

qk+L

(where dé=—=d0) to distinguish it from the rescaled time of the continuous time version of
the theorem which directly sums the py+ and does not require random sampling of the exact
spike time 3.

qk+L

Random sampling of & € [0, A] must respect the choice of A(/lH;)=——= and the fact that we
know the spike is in the bin somewhere. For our choice of A, the pro@ability density of &
conditioned upon there being a spike in the bin is a truncated exponential.

sl s

. e A Qs
P(6| spike )do=————=d0.
(0l spike ) 1—e %L A (32)

The numerator is simply the event time probability measured from the start of bin k + L. The
denominator is a normalization obtained by integrating the numerator between 0 and A. 8To
draw from this distribution we integrate it to obtain its CDF

C K 1 — e %1 9/A
DF(d| spike )=————
(6] spike ) =" (33)

set this cdf equal to a uniform random variable r and then solve for &

A
6=— —-Ilog[1 —r(1 — e %L)]
qM-L (34)

This completes the proof.

There are two differences between the discrete and continuous time versions of the theorem.

The first, and most fundamental, difference is that p=1 — exp| —féxl(t)drl not fﬁ/i(t)dt. The
latter is only true when A is small. Expanding the logarithm of equation 29 we obtain

8or Bayes rule could be used. E.g.

P(6| spike )=P(6)/ P( spike )={exp[ —¢,.,0/Al

p.;
A

/P
A

} pi.,=lexpl—q,,,6/Al==}/(1—€ Y1)
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w3,

2
g= [ Adi= —log(1 — p)=p — [% ]

(35)

To properly rescale the ISIs when A is large, all the terms in the Taylor series must be kept.
This can be thought of as introducing a correction term (in the brackets) for the finite bin size.
Equivalently the approximation 1 — p = e™P used in the continuous time version of the proof is
not valid for large p (or A). The second difference is that we randomly choose an exact spike
time t5 = (k + L—1)A+3 according to the distribution given in equation 32. This is done because
there is simply no information about where exactly in bin k + L the spike is located and for the
rescaled time & to be exponentially distributed it must be continuously valued. In the continuous
time limit, both of these distinctions vanish.

The hypothesis for testing goodness of fit is now exactly the same as that of the original time
rescaling theorem, except that the rescaling is modified to take into account the discretization.
Reintroducing the subscript i to denote the individual spike times k;, the procedure for
performing the KS test is simply described.

Procedure for Analytic Correction

1. Discretize the spike train into bins of width A with the spikes in bins {k;} and fit a
discrete time statistical model resulting in the spike per bin probabilities py.

2. Generate a new time series of discrete values g according to

qi=—log(1 — py) (36)

3. For each interspike interval calculate the rescaled ISI & according to

Li—1

5:
ff: Z CII(,~+1+(1A‘._L‘. K[
I=1 (37)

where 3 is a random variable determined by first drawing a uniform random variable
rj € [0, 1] and then calculating

A _
5= — log[1 — ri(1 — ¢ %k+ti)]
Gy;+1; (38)

4. Make a final transform to the random variables y;

yi=1—e (39)

If the discrete time statistical model is accurate the y; will be uniformly distributed.
Therefore the y; can be used to make a KS or Differential KS plot.

In this section we fit Generalized Linear Models (GLMs) to spike trains both simulated and
experimentally recorded in awake monkey V1 cortex during visual stimulation. We then check
goodness of fit using both the standard KS test and our methods. We demonstrate dramatic
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and nearly identical improvement in KS test accuracy for both techniques. Although we
emphasize that any discrete time statistical model may be used, we chose a GLM, specifically
the logistic regression (logit link function) form, because of the discrete binary nature of spike
train data. Standard linear regression assumes continuous variables, and is therefore
inappropriate for the problem. Further reasons for using GLMs are their already wide
application to the analysis of neural spiking activity (Frank, 2002; Truccolo, 2005; Czanner,
2008; Paninski, 2004a; Kass and Ventura, 2001), their optimality properties (Pawitan, 2001)
and the ease of fitting them via maximum likelihood. Methods for fitting GLMs exist in most
statistical packages including Matlab and R.

3.1 Simulated Data

Using the three continuous time point process models of the previous section (inhomogeneous
Poisson, homogeneous Poisson with spike history dependence, inhomogeneous Poisson with
spike history dependence) we simulated 10 minutes of spikes from each model at very fine
10710 msec discretization, essentially continuous time. These spike trains are the
“experimental” data. We emphasize that all of our simulated data used a realistic mean firing
rate of 40 Hz, and that many experimental situations exist for which the mean firing rates are
much higher (De Valois, 1982; MacEvoy, 2007). The spikes were then discretized into 1 msec
bins and a GLM was fit to each simulated spike train. This procedure mimics the usual approach
taken in fitting a GLM to real data. We used a logistic regression type GLM (logit link function)
appropriate for discrete time binary data. Each model’s spike train was fit using one of the
following GLM forms:

* Inhomogeneous Bernoulli GLM:

A(k)
Tl Z‘ﬁ (k)

(40)
»  Homogeneous Bernoulli With Spike History GLM:
A(k)
logl 1= 51 /30+Z€),g(k -7) "
e Inhomogeneous Bernoulli With Spike History GLM:
A(k)
i Zﬁ B (k)+Ze,g<k— r) o

the &j(k) are periodic B-spline basis functions with knots spaced 50 msec apart. These are
continuously defined (even though we use discrete time bins) temporally localized basis
functions, similar in shape to Gaussians which can be computed recursively (Wasserman,
2004). Their use allows for a “PSTH like” fit, but one which is cubic polynomial smooth. The
g(k — r) are indicator functions equal to 1 if the most recent spike is r bins prior to k and 0
otherwise. This functional form of Ay is standard (Truccolo, 2005; Czanner, 2008). The B's
and 0’s are parameters to be fit via maximum likelihood.

Next, following the first procedure described in the Methods, we used the fitted GLM to
simulate 100 ten minute spike trains, rescaled both the “experimental” and simulated 1Sls and
constructed both the KS and CDF difference plots. The results are shown in Figure 4 where
the blue lines correspond to the comparison of the experimental CDF with the uniform CDF
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and the red lines to the comparison of the experimental CDF with the CDF estimated from the
GLM as was described in section 2.3. For all three models, the Differential KS plots reveal
strong biases when the “experimental” rescaled 1SIs are compared with the uniform
distribution, and a complete elimination of the bias when the distribution simulated from the
GLM is used. Further, use of the GLM simulated distribution makes the difference between
the Differential KS plot lying within or outside the 95% confidence bounds. This was true even
when spike history effects were included and KS plot biases much worse than in their absence.
Finally we applied the analytic discrete time rescaling theorem described in section 2.4 and
plotted the results in green. The analytically corrected Differential KS plot is nearly identical
to the numerically simulated one. This indicates that the analytical correction, which is simpler
to apply, is sufficient to test model goodness of fit.

3.2 Monkey V1 Receptive Field Data

Next we used spiking data recorded in V1 of two adult female rhesus monkeys (Macaca
mulatta during a fixation task. See Appendix B for details on the experimental procedure. The
visual stimuli consisted of a high contrast light bar (50 cd/m?; bar width, 0.2° or 5 pixels)
moving with a constant velocity (v = 14.9°/s or 425 pixels/s). The bar was presented in a square
aperture of size (21.8° x 21.8° or 600x600 pixels centered over the receptive fields of the
neurons being recorded. During stimulus presentation the monkey was required to maintain
fixation within a virtual window (window size, 1°) centered on the fixation point.

In this paper we show data from two monkeys. For each monkey we selected two examples in
which the recorded cells exhibited high average firing rates (first column of Figure 5). The data
shown was recorded over 9 trials, each of which lasted 2 seconds, during which the bar moved
inasingle direction. As with the simulated data we used a GLM based logistic regression form
(logit link function) for the conditional intensity function, with a temporal discretization of A
=1 msec.

J R
logl {451 = ijxj(knze,.g(k -7
Jj=1 r=1

d:ef wslim(k)"'lphisl(k) (43)

where Xj represents the jth covariate that encodes the stimulus input (which may be in a form
of either a feature of the visual stimulus, or a PSTH profile, or a specific basis function). The
g(k—r) is, as in the previous section, an indicator function representing whether the most recent
spike was in the past rth temporal window, and 0, represents the associated weight coefficient
(a negative 6, implies an inhibitory effect that might account for the refractory period of
neuronal firing, while a positive 8, implies an excitatory effect). The first term of right-hand
side of equation (1) are summarized by a stimulus-dependent response factor denoted by
Wstim and the last term represents a spiking history-dependent factor denoted by st

Similarly to the simulated inhomogeneous Bernoulli process data in the last section, we used
semi-parametric cubic B-spline functions (piecewise smooth polynomials) to model the
stimulus-induced spiking activity yggim.

J
Usim()= ) "£,(K)
Jj=1 (44)
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where J denotes the number of knots or control points. Note that the values of control points
only affect the shape of ygim locally due to the piecewise definition. For the data shown here
12 control points are non-evenly placed on the 2-s time interval

As with our simulated data, we see in Figure 5 that the when the standard KS test was used,
the KS and Differential KS plots lay outside the 95% confidence bounds. However when
temporal discretization was taken into account and our two techniques were used, the plots lay
well within confidence bounds and the GLM model was shown to be very well fit to the data.
Thus again the simple analytic method is found to be sufficient to account for discretization
induced KS plot bias.

4 Discussion

Itis vital to check a model’s goodness of fit before making inferences from it. The time rescaling
theorem provides a powerful, yet simple to implement, statistical test applicable to a spike
train, or other point process, for which the data is binary rather than continuously valued. The
theorem states that the 1SIs of a continuous time point process can be rescaled (through a
variable transformation) so that they are independent and exponentially distributed. The
rescaled ISls can then be compared to the exponential distribution using a Kolmogorov
Smirnov test, or further rescaled to a uniform distribution and the KS test performed graphically
Brown (2001). Each ISl is rescaled as a function of the time varying spike probability over that
particular 1SI. Thus time rescaling considers the probabilities of individual 1Sls and provides
amuch stronger statistical test than, for example, tests based upon the unscaled IS distribution.
Practical numerical considerations dictate that the fitting of a statistical model usually requires
the discretization of time into bins. For the purposes of the time rescaling theorem, if the spike
rate is low, ISls long and the probability per bin of a spike small, the distinction between discrete
and continuous time will often not be important. In this paper we addressed the case where the
spike rate is high, I1Sls short and the probability per bin of a spike large so that the distinction
between discrete and continuous time matters.

When the probability per time bin of a spike is not sufficiently small, the standard, continuous
time KS plot exhibits biases at both low and high rescaled ISls. The source of these biases is
twofold and originates in the consequences of discretizing a continuous time point process.
First, the uncertainty as to where exactly in a bin a spike is located causes discrete time models
place a lower bound on the size of the smallest rescaled ISI z This leads to positive KS plot
bias at low z. Second, because discrete binary models only allow for a single spike per bin,

they estimate per bin spike probabilities py which are less than f (?/l(f)dr with the integral over
bin k. We demonstrated both of these points theoretically using ahomogeneous Poisson process
which we discretized into a homogeneous Bernoulli process, and also in our proof of the
discrete time version of the theorem. These biases can be numerically relevant even at moderate
spike rates and reasonable temporal discretizations. In this paper we considered mainly 40 Hz
spiking at 1 msec discretization, (p = 0.04) but under some neurophysiological conditions, the
spike rate can be much higher. For example, the awake monkey data presented in the Results
exhibited firing rates which at times exceeded 100 Hz.

Under such conditions KS plots will exhibit biases at both low and high rescaled 1SIs which
can not be removed through more accurate numerical integration techniques or increased data
sampling. In fact, sampling a longer spike train will make the issue more critical because the

95% confidence bounds on the KS plot scale as 1/ \/IT\,, where Neyp is the number of
experimentally recorded ISls. In cases of long recording times the confidence bounds can be
quite tight and it can be difficult to see variations in the fit using the standard KS plot even if
those variations are statistically significant. We therefore introduced a new type of plot, the
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“Differential KS plot” in which we plot the difference between the CDFs of the empirical and
simulated ISI distributions along with analytical 95% confidence bounds. This new type of
plot displays the same information as the original KS plot, but in a more visually accessible
manner.

To handle KS plot bias we proposed and implemented two different procedures, both of which
are capable of testing the statistical sufficiency of any model which provides a measure of the
discrete time conditional intensity function. The first procedure operates purely in discrete time
and uses numerical simulation, in a manner similar in spirit to a bootstrap, to estimate the
distribution of rescaled ISIs directly from a fitted statistical model. Model goodness of fit is
tested by comparing the estimated and experimentally recorded rescaled ISl distributions using
a KS test. The confidence bounds on this two sample KS test scale as

\/ NexpNsim/(Nexp+Nsim) This procedure is therefore computationally tractable because a
simulated spike train twenty times longer than the original experimentally recorded spike train
will result in a KS test with confidence bounds only 1.02 times as wide as if the exact rescaled
ISI distribution were known. For the second technique we presented and proved a discrete time
version of the time rescaling theorem. This presumes an underlying continuous time point
process which is sampled at finite resolution A, analytically corrects for the discretization and
defines a rescaled time & which is exponentially distributed at arbitrary temporal
discretizations. We applied these two techniques to both simulated spike trains and also to
spike trains recorded in awake monkey V1 cortex and demonstrated an elimination of KS plot
bias when our techniques were used. The performance of both techniques was nearly identical,
revealing high goodness of fit even when the fitted model failed the standard continuous time
application of the KS test. Therefore either method might be used, although the analytical
method is perhaps preferable, if only because it is quicker to compute.

The discrete time rescaling theorem is appropriate for point process type data such as spike
trains which are equally well described by either their spike times or their interspike intervals.
It is, however, a test of model sufficiency, namely whether a proposed statistical model is
sufficient to describe the data. It does not, in and of itself, address issues of model complexity
(over fitting) or whether the model form chosen is appropriate for describing the data in the
first place. 9 Over fitting can be guarded against by splitting one’s data into training and test
data. After fitting the model parameters using the training data, the fitted model and the discrete
time rescaling theorem can be applied to the test data. Of course we do not mean to imply that
the discrete time rescaling theorem is the only statistical test which should be employed for
selecting and validating an appropriate model. Other other statistical tests and criteria, for
example log likelihood ratio tests, the Akaike and Bayesian Information Criteria and so forth,
should also be employed to rigorously judge goodness of fit and model complexity.

One might reasonably ask why not simply fit a statistical model with extremely fine temporal
discretization so that the time rescaling theorem applies in its standard form. There are several
issues. First, spikes are not instantaneous events but spread out in time on the order of a msec
or slightly less. Secondly, experimenters often exclude apparent spikes which occur less than
a msec (or thereabouts) apart in a recording as it is difficult to distinguish spike wave forms
which essentially lie on top of each other. For both these reasons defining spikes as
instantaneous events is physically problematic. Although the continuous time point process
framework is theoretical appealing, there is usually no reason not to consider the data in discrete
time, fit a discrete time model and perform a discrete time goodness of fit test. Finally there is

9n this paper we used GLMs. Such models are widely applied to the analysis of spike train data. It is also interesting to note that they
have an interpretation as a sort of integrate and fire neuron, see for example Paninski (2004b). However nothing in the discrete time
rescaling theorem precludes its use for testing the fit of a statistical model of the spiking probability which is not a GLM.
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the important issue of computation time and computer memory. When recording times are long
and the number of spikes large, confidence bounds on the KS test will be very very tight.
Extremely fine temporal discretization will then be required for the biases to be less than the
width of the confidence bounds. The amount of memory and computation time required under
these conditions can rapidly become prohibitive. Further, since using the discrete time rescaling
theorem is almost as quick and simple a procedure as the standard KS test, the authors can see
no reason not to use it. In closing, a failure of the standard KS test does not immediately imply
poor model fit. Biases induced by temporal discretization may be a factor, and should be
considered before rejecting the model.
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Appendix A: Independence of Rescaled Times

In this appendix we prove that the rescaled times &; (and in the continuous time limit t;) are
not only exponentially distributed, but also independent. To establish this result it suffices to
show that the joint CDF of the &;’s can be written as the product of the individual CDF’s and
that these CDF’s are those of independent exponential random variables with rate 1. The CDF
of an exponential random variable with rate 1 is

F)=1-¢* (45)

We recall that the rescaled times &; are defined as

ki—1
qk;
&= Z qk+X6i
k=ki_1+1 (46)

where 8; € [0, A] is a random variable determined by first drawing a uniform random variable

ri € [0, 1] and then calculating

A
6i=— —log[1 - ri(1 —e )]
Gk; (47)

This definition of the rescaled times &; implicitly defines a spike time t; = (kj—1)A+6;. Because
the transformation from the spike times t; (or the spike bins k;) to the &;’s is one-to-one we have
that the following two events are equivalent

(E1<€1,Bn<ér, .. By <& 1=T1<t1, Ta<ty, . .., Ty <tp} (48)

Therefore the joint CDF of the &;’s is
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F(§1,6,...,&) =P{E1<&,E2<b, .. Ey<éy)
=P({T\<t1,Ta<ty,..., T, <ty}
=F(ti,1,...,1y)

N
=[ [Fain,....60F@10)
i=2 (49)
The last line follows from the multiplication rule of probability (Miller, 2001).

The conditional CDFs F(tjlty,..., ti—1) can be calculated by noting that the probability of any
given ISl is equal to 1 minus the probability that there was at least one spike within the epoch
defined by the ISI. Formally this can be written as

P(no spike in (ki_1 A, (ki — 1)A+06;)) =1 — P(at least one spike in (k;_| A, (k; — 1)A+0;))

1i

=1 [ Pk Ko, kids;
=1 - F(tilky, k2, . . . s ki-1) (50)

The right hand side has the CDF we wish to calculate. It remains to determine the LHS. But
this is simply the ISI probability of equation 30

P(t=(k; = DA+6ilky, ka, . . ., ki1 )d6i=P(&))déi=e 5 dé; (51)

Thus

F(tiky, ko, . .. ki1)=F(&)=1 - &% (52)

Inserting this result into equation 49 we get
N
F(¢1,60,...&y) :1_[1 _
i=1

N
=[ [Fe&
i-1

(53)

which establishes the proof. A similar argument can be made for the continuous time rescaled
time ;. An intuitive way to understand the independence of the rescaled ISIs is that these were
calculated using either A(t|H;) or p(k|H;) which are conditioned upon the previous spiking
history. This *pre’-conditioning before calculation of the rescaled times enforces the
independence of & and/or t. This independence of the rescaled times is useful because testing
for independence provides an additional statistical significance test beyond the testing for
exponentiallity by a KS or CDF difference plot. The test is identical to the continuous time
case and we refer the reader to (Czanner, 2008) for a discussion.

Appendix B: Experimental Procedures

Experimental procedures were approved by the National Committee on Animal Welfare
(Regierungspraesidium Hessen, Darmstadt) in compliance with the guidelines of the European
Community for the care and use of laboratory animals (European Union directive 86/609/EEC).
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Neuronal spiking activities were recorded in awake and head-fixed monkeys in opercular
region of V1 (RFs centers, 2-5° of eccentricity) and, on some occasions, from the superior
bank of the calcarine sulcus (8-12° of eccentricity).

Quartz-insulated tungsten-platinum electrodes (diameter 80 um, 0.3-1.0 MQ impedance;
Thomas Recording) were used to record the extracellular activities from 3 to 5 sites in both
superficial and deep layers of the striate cortex (digitally band-pass filtered, 0.7-6.0 kHz;
Plexon Inc.). Spikes were detected by amplitude thresholding, which was set interactively
based on online visualization of the spike waveforms (typically, 2-3 s.d. above the noise level).
Trials with artifacts were rejected during which either monkey did not maintain fixation or
monkey showed no response or incorrect behavior.
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Kolmogorov Smirnov (KS) Plot
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Figure 1.

Example of two simple KS plots demonstrating that temporal discretization induces biases
even if the conditional intensity function used to calculate the rescaled times is exactly correct.
CDF of the rescaled times z is plotted along the x-axis versus the CDF of the uniform (reference)
distribution along the y-axis. Spikes were generated from an inhomogeneous Poisson process
with a maximum firing rate of 50 Hz. Thick grey dashed line: KS plot of rescaled ISIs generated
by a continuous time model. Thick grey line: KS plot of rescaled ISIs calculated from the same
model discretized at 5 msec resolution. The discretization was deliberately enhanced to
emphasize the effect. Thin black 45 degree lines are 95% confidence bounds upon the KS plots.
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Figure 2.

Iustration of KS plot bias induced when a homogeneous Poisson process is discretized to a
homogeneous Bernoulli process. (A) KS plot for various spike per bin probabilities p. Blue:
p=0.2, green: p= 0.1, red: p = 0.04 (40 Hz at 1 msec discretization). The rescaled times are
not uniformly distributed but have positive bias at rescaled ISls close to 0 and negative bias at
rescaled ISls close to 1. (B) Differential KS Plot: CDFnitorm — CDF(2)pernoutii- Biases are
easier to see if the difference between the expected CDF (uniform) and the actual CDF of the
rescaled times is plotted. The colors indicate the same spike per bin probabilities p as in A).
The horizontal dashed lines are the 95% confidence region assuming a 10 minutes of a 40 Hz

Bernoulli process (24000 spikes).
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Figure 3.

KS and Differential KS plots for 10 minute long 40 Hz mean firing rate simulated spike trains.
Three continuous time models of the conditional intensity function were used for simulation.
1) inhomogeneous Poisson process 2) homogeneous Poisson with a renewal spike history
process 3) inhomogeneous Poisson with a renewal spike history process. (See text) The
continuously defined processes were discretized at various values A and used to simulate
spikes. (A) 40 Hz mean inhomogeneous Bernoulli firing rate. (B) Spike history term Ayjst as a
function of time since the most recent spike. (C) and (D) KS and Differential KS plots for
inhomogeneous Bernoulli process. Blue: A =1 msec, green: A = 0.5 msec, red: A = 0.1 msec.
Horizontal dashed lines are 95% confidence bounds. (E) and (F) Homogeneous Bernoulli
process with spike renewal history term. (G) and (H) Inhomogeneous Bernoulli process with
spike renewal history term. Note that when spike history effects are present the biases are larger
both at short and long rescaled ISls.
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Comparison of standard KS test, KS test using simulated rescaled ISI distribution, and KS test
using the analytically corrected rescaled time. Spike trains were simulated using the same three
models as in Figure 2 at fine 10710 msec temporal precision and then discretized at A = 1 msec
resolution. Logistic GLM models were fit and used to estimate the rescaled ISI distributions
(See text.) (A), (C) and (E) KS plots for inhomogeneous Bernoulli, homogeneous Bernoulli
with spike history and inhomogeneous Bernoulli with spike history respectively. (B), (D) and
(F) Differential KS plots for the same. Blue lines correspond to the standard KS test which
plots the CDF of the rescaled time z versus the CDF of the uniform distribution, red lines to
the numerical simulation method which plots the CDF of the rescaled time z versus the CDF
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of the numerically simulated reference distribution, and green lines to the analytical method

which plots the CDF of the analytically corrected rescaled time y versus the CDF of the uniform
distribution. The red and green lines essentially overlap in the plots. For all three spike train

models, strong KS and Differential KS plot bias was eliminated when either the numerically
estimated distribution or the analytical correction were used.
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Differential KS Plot
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Four examples of neurons from two different monkeys (top two rows: monkey 1, bottom two
rows: monkey 2) for which goodness of fit appears to be poor when the standard KS test is
used but revealed to be good when either the numerically estimated reference distribution or
the analytically corrected rescaled time y are used. First Column: firing rate, second column:
KS plot, third column: Differential KS plots. Blue: standard KS test. Red: KS test with
numerical simulation of reference distribution. Green: KS test with analytically corrected
rescaled time y. As with the simulated spike trains of Figure 4, the KS and Differential KS plot
biases are eliminated when either the rescaled ISl distribution (z) is simulated using the fitted
model, or the analytically corrected rescaled time y is used.
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