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Abstract

Neural membrane potential data is necessarily conditionadbservation being prior
to a firing time. In a stochastic Leaky Integrate and Fire nhokie corresponds to
conditioning the process on not crossing a boundary. Initemture simulation and
estimation has almost always been done using unconditipresksses. In this paper
we determine the stochastic differential equations of fusibn process conditioned
to stay below a leveb up to a fixed timet; and of a diffusion process conditioned to
cross the boundary for the first timetat This allows simulation of sample paths and
identification of the corresponding mean process. Diffeesrbetween the mean of free
and conditioned processes are illustrated as well as tikeeofdhe noise in increasing

these differences.



1 Introduction

In simulation or estimation for a Leaky Integrate and Firedelpa fact that is com-
monly neglected is that neural membrane data comes fromeaititarval between a
resetting and the occurrence of a spike. Hence each pie@cofded data contains
further information in addition to its value: a spike has get happened on the time
interval since the previous resetting, and all the datardembuntil that time must be
subthreshold. Mathematically this means that data mustdxelad as coming from
a process conditioned to remain below a firing level. The gbdlstic features of the
conditioned process are different from those of an uncand#tl one. Serious errors
may arise from confounding these processes. Analoguousgmng with a variety of
conditioning constraints arise in different applicatiantexts such as finance (cf. for
example Li et al. (2004)).

In this paper we show how to simulate while taking this cdodihg into account.
We also illustrate the significance of errors which may afit@s point is neglected. A
similar situation, regarding the possible confusion betwe(1/7") and1l/E(T'), where
T denotes the spiking time, was clarified iahsk et al. (2004).

Data from the evoked potential of a neural membrane is oftfgarded as coming
from a stochastic Leaky Integrate and Fire model. There exaéy neuronal models
and their complexity ranges from oversimplified to highlglistic biophysical models
(Segev (1992)). The Leaky Integrate and Fire stochasticeimsdconsidered a good
compromise between tractability and realism. It is derifieoin an original model
of membrane depolarization introduced by Stein (Stein $)P6In Stein’s model the
membrane potential evolves due to incoming excitatory aheitory inputs, which
are assumed to be of constant amplitude and to occur in timerdiog to Poisson
processes. Spontaneous decay between inputs is a furttardef this model. A
spike is produced by the neuron when a boundary is attained.

The pioneering work of Stein has motivated a large liteestudying diffusion lim-
its of his model of membrane potential evolution (cf. Burk@@06a), Burkitt (2006b),
Sacerdote et al. (2010) and papers cited therein). Diffugpproximations avoid some
of the mathematical difficulties of the original discontius model. These models

take into account the dynamic and stochastic aspects obndaghaviour. The mem-



brane potential of interest is represented by, and is theisalof, a stochastic differen-
tial equation (SDE) and the spike time corresponds to thediossing of the process
through a boundary. Various diffusion processes can be tasewdel the membrane
potential evolution, depending upon the number of speatfatires one wishes to in-
troduce in the model. The Ornstein-Uhlenbeck process israramn choice (cf. Bnsk/
et al. (1995)).

A fact that has not yet been sufficiently emphasized for Leakggrate and Fire
models is that all data is from observation prior to neurandir The few papers con-
cerning this problem consider the estimation of the pararmseif the model. In Bibbona
et al. (2009) and Bibbona et al. (2010a) it is shown that if gm®res the fact that the
data is produced under the constraint of not crossing a lwynithe resulting estimator
of the input will be biased. The estimation problem is alsogbbject of a recent paper
(Bibbona et al. (2010b)), where samples from intracellidaordings, at discrete times,
of the membrane potential are used for the estimation pmoblEhe authors propose
maximum likehood estimators of the parameters of an Omdtbienbeck and of other
Leaky Integrate and Fire models, taking into account thegaree of the boundary.

In terms of the model, one should describe the membrane tedteehaviour be-
fore a boundary crossing time. Consequently, any apprepmaidel for data must be
conditioned on not having crossed the boundary. We intredbe termconstrained
process for such a process. Alternatively, depending on the questidhand, one may
observe the process until the spike time. In this case theopgpte model must be
conditioned on the boundary, being first crossed at the end of the observation time.
Such a process we callcanstrained bridge to .S, to emphasize the bridge nature of a
process ending &f.

In this paper we compute the SDEs of diffusion processesittoned to stay below
a threshold starting from diffusions defined by particul®ES. Mathematically, the
conditioning can be interpreted as an absolutely contiswbiange of measure. Its ef-
fect on the original SDE is to add a term to the drift coeffitimnd to leave the diffusion
coefficient unchanged. We illustrate the differences betwhe original membrane po-
tential model and its conditioned version with plots of catga sample paths and with
computed mean paths.

These conditioned aronstrained SDEs correspond more closely to real data than



do the unconstrained models currently in use.

Simulated samples are essential for the evaluation obstati procedures. Knowl-
edge of these constrained SDEs is essential for the sironlatithe sample paths deter-
mined by Leaky Integrate and Fire models and by their brid@ée typical approach
to the simulation of subthreshold sample paths up to atimeakes use of the rejection
method: one simulates sample pathg@n,) and rejects paths crossing the boundary
atatimet € (0,t;). This method is computationally expensive and becomesssipie
in the case of the simulation of paths up to the spike time wherSDE for the free
bridge process is not known. Furthermore, in this way one gample paths from a
process which is not normalized. In Section 2 we definesbssrbed process while we
define asconstrained its normalized version. The availability of SDEs for coasted
processes and for the constrained bridgé facilitates the simulation of these samples,
avoiding the computational cost of the rejecton method.

In the next Section we introduce a number of processes delatan initial process
of interest. Our mathematical results are stated in Se@&ionterms of only two of
these, theonstrained process and theconstrained bridgeto S. The remaining processes
appear in computations. The proof of these results is postpto the Appendixes. In
Section 4 we illustrate, through a set of examples, the apreseces of our mathematical

results on the Integrate and Fire and on the Leaky Integraté-ae models.

2 Background and notation

While our primary interest is in processes related to the eimdJhlenbeck process,
it is useful to introduce some ideas and notation in termseokgal diffusions that can
include other Integrate and Fire and Leaky Integrate areltffpe models.

In order to make the meaning of our notation very clear, is Bection we in-
troduce a number of processes, related to a diffusion psoakemiterest. First, let us
describe and motivate these processes informally and amethiteir names to facilitate
the reading of what follows. The first of these is the origim&mbrane potential diffu-
sion process, usually started at 0, altered by excludingetlsample paths which cross
the positive levelS before the observation timte We call this theabsorbed diffusion.

The total probability mass of this process, at any time 0, is less than 1, since the



excluded paths take some probability mass away. The nexegsowe introduce is
the constrained process. This is formed by conditioning on the path not crossing the
level S during the fixed time intervdD, ¢;]. The probability mass of this process up to
each timet < t¢; is 1. Up to this point we have three types of process. Thermlgi
membrane potential process may be cafieg, next theabsorbed process, next the
constrained process. An example of sample paths of the absorbed process and of the
constrained process is shown in Figure 1. Correspondingdo efathe previous pro-
cesses, we introduce a bridge process. The idedofige processis that it begins and
ends at definite given points. In Figure 2 we illustrate sanmalths of the free bridge
process and of the constrained bridge process in S whereitjiead free process is the
Ornstein-Uhlenbeck process.

Since our processes all begin at given points, the correspgitridge process can
be defined by additional conditioning on the given end poitspecial role will be
played by bridge processes which end at the space point wible firing threshold,

S, and at the random firing timé&,. We call thesdridgesto S, even though the ending
time is the random threshold crossing tiffi@nd not a fixed time.

Now we proceed more formally. We consider a time homogeneéifiusion process
X(t)={X (), t >ty|X (to) = x } with values in the interval = (ry 1), 7179 € R.

In the case of the Ornstein-Uhlenbeck processs: —oo,rs = co. The process ()

is the solution of an SDE
dX (t) = a(X(t)dt+o(X(t)dW (1), (1)
X(ty) = mo.

The processX (t) is characterized by its drift and diffusion coefficient ftinas,
a(x) ando(z). Each pair of coefficient functions identifies a specificufbn process.
HerelV (t) is a standard Wiener process. We assume that the drift ardiffirgion co-
efficients are such that equation (1) admits a unique salwtith values in the interval

1. For the processes we work with, the transition probabdéwpsity function

F= Pty s) = LW 2K =)

is the unique solution of the backward Kolmogorov equation
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with the initial condition (cf. Karlin et al. (1981))

lim f (z,t]y,s) = 6 (x —y). 3)

The firing threshold for a stochastic membrane potentialehisdepresented here by a

level S € I, with =y < S. The firing time corresponds to the first passage time (FPT)
T=inf{t: X (t) > S|X (to) =x0}.

We denote the probability density function’Biby g:

ot

g (t]zo,to) =

Now we introduce a number of processes associated with asdiff process limited
by a boundary leveb. Some of them represent the evolving membrane potential data

while others play supporting roles.

Absorbed process The process obtained by restricting the diffusion defined by

(1) not to cross the leved,

X(t) = {X(t): X (), X (s) < S,¥s < t|X (to) = w0},

is called theabsorbed process. Its sample paths are the subset of the sample paths of
X (t) characterized by not having crossed the boundary befoténtlee. The transition
probability density of this procesg?® (z,t |y, s), is, again, the unique solution of (2)

but with the further boundary condition, for eagh< ¢, = < 5,

lim f*(x,t]y,s)=0.
y—S
Generally, the transition probability density, is not known in closed form, and a

numerical procedure is necessary to get its values fromgbat®n (cf. Siegert (1951))

f“(x,t\y>s)=f(x,t|y,s)—/ o(r 19, 8)f (z,£1S,7) dr. ()

The integralP® (St |y,s) of f*(xz,t|y,s), with respect tar, betweenr, and S
is not equal to 1 when > s. The densitiesf* (z,t |y, s) andg (S,t |y, s) are related

through the equation:



S
P(T>tX(s)=y) = Pa<s,th<s>=y>:/ fo (.t y, ) da

= 1= [ gulys)du (5)

When we record the evolving membrane potential of spikingoesiwe are looking
at sample paths of an absorbed process. However, due tbéb)dtal probability mass
is not normalized. It is convenient to introduce the normedi version of the absorbed

process, which we call theonstrained process.

Constrained process The constrained process is of primary importance to our
aim of identifying the membrane potential process prior foiag time. It is defined

fort € [to,11] as
Xc<t) :{Xc(t>X(t),t0 <t<t1|X(t) < S,to <t<t1,X(t0) :Io}

The constrained process is conditioned or constrained to remain under the threshold
level S up to the fixed time,. We denote byf; (x,t [y, s) its transition probability
density, and byPy (X (u),u € (to,t1)|X (to) = xo) the measure of the constrained
process. In our computatiomngwill be fixed, usually at), whereag; will take various

values.

Bridge processes (free, absorbed and constrained) The bridge process that ends
when it attains for the first time the threshold of the membrnaotential is a central ob-
ject of our study. Indeed, it represents an intracelluleaording from a neuron observed
up to the spike time. A step towards its definition is the seriplidge process, which
is conditioned to begin dtry, ty) and end atz, u), z € (r1,72),u € (ty, 00). Thefree

bridge process is denoted by:

) X (1) ={X (1) : X (), to <t <u|X (u) =2 X (tg) =z} .

(zo,to)

The fact that this process, which we describe as obtaineahbgittoning on a set
of measure zero, is indeed defined, is estabilished in Kasatizal. (1991). Its transi-
tion probability density is denoted by (x,t|y, s; z,u). We call this process "free”
since it is not conditioned further. We denote @ZEO)X“ (t) and EZ’“) X¢(t) the

x0,t0)
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bridges of the absorbed and constrained versions of theepsog(t), arising in the
presence of the boundary. Their transition probabilityssgrfunctions will be denoted
asf®(x,tly,s;z,u)and fc(z,t |y, s; z,u ), respectively. Note that for these processes
z < S.

The transition probability densities of the procésg) and that of its bndg{az u) X (t)
are related through (cf. Giraudo et al. (1999)):

o ftlys) f (et
flatlyszu) == s

Similar relationships hold for the transition probabilitgnsities of the absorbed and

the constrained processes.

Bridgesto S (three additional processes: free, absorbed, and constrained) Fi-
nally we come to the case of most importance in connectioh thi¢ sample paths of
membrane potential processes up to the moment of firing, dee when: = S. In

particular we define the bridge process:

(S X (1) = {X(t) : X (), tg < t <u|X(u) =5;X(s) < S,Vs <u; Xo=1p},

(zo,to)

with transition probability density (z,t |y, s; .S, u).

To define its absorbed and constrained versions we setS in the absorbed and
constrained bridges with endpointat timeu, and we denote them %tjso‘ft)o)X“ (t) and
Exo t)o X¢(t), respectively. The corresponding transition probabdigpsities will be de-
notedf* (x,t |y, s; S,u) and f¢ (z,t|y, s; S,u). We give the nameonstrained bridge
to Sto the process conditioned by the event that the crossigi®t the first passage

timeT'. This is the same as the free process stoppé&d ednditioned ori".

Wiener and Ornstein-Uhlenbeck processes Although different diffusion pro-
cesses may be used to describe the membrane potential tohgi@v, the Ornstein-
Uhlenbeck process is surely the best known. A simplificatidhe Ornstein-Uhlenbeck
model can be obtained by disregarding the spontaneous @écagmbrane potential
toward the resting potential, in the absence of incomingtinfhe model correspond-
ing to this case is the Wiener process. This model, also krasithe Integrate and Fire
model, was first proposed by Gerstein and Mandelbrot who gaperimental motiva-

tions for it (cf. Gerstein et al. (1964)). Later it was dished as too simple but it is

8



still considered helpful for intuition about the more coeptlynamics of the Ornstein-
Uhlenbeck model. This last model is generally referred tthad_eaky Integrate and
Fire model. In Section3.1, 3.2 we discuss our results for the Integrate and Fire model,

characterized by:

aly) = u

o(y) = o,

wherey € R,6 > 0 ando > 0. The constant driftz, common to the two models,
specifies the deterministic input to the membrane potentiak diffusion coefficient
specifies the variability of the noise term. The constaquantifies the spontaneous
decay of the membrane potential toward its resting valugnénabsence of external
input. The processes are generally assumed to originatg at 0 because a simple
shift can always translate the biological initial value &v@ A large literature exists on
the role of these models in neural transmission (cf. for gdarBulsara et al. (1994),
Longtin etal. (1991), Shimokawa et al. (1999)). In both msdee spiking time is taken
to be the first passage time of the process through a threshsld. In Appendix 1 we
list well known results about these processes that will lzelus

3 Resaults

In Section 2 we defined and estabilished notation for sewtoahastic processes as-
sociated with the general Leaky Integrate and Fire modek @irthe most central to

this paper is theonstrained process, X¢(¢), which is conditioned to remain under a
threshold levek up to a fixed time;. In this Section we identify the drift and diffusion
coefficients of theconstrained process as well as those of theonstrained bridge pro-

cess and theconstrained bridge to the threshold S and evaluate these for the Integrate

9



and Fire and for the Leaky Integrate and Fire models. We wesé@att that the drift and
diffusion coefficients appearing in the SDE (1) are the sasha functions: (-) and
o (-) appearing in the Kolmogorov backward equation (2).

Consider the joint probability of the procedt) with the indicator of the event
{T > t}. The distribution ofX“(¢) is obtained from this by dividing by’(7" > t,),
where X (¢) starts at(y,s) andt; > t¢. The joint distribution can be factored using
the Markov property ofX (¢) into the joint distribution ofX (¢) with the indicator of
{T > t} and the probability thaf’ > ¢,, starting from(z, ). Hence the transition prob-
ability density functionf? (x,t |y, s) of the process\“(t), t € [to,t1], is related with
the transition probability density functioff (x,t |y, s) of the processX*“ (¢) through

the following equation:

F (@, tly,5) P(T > X (1) = 2)

P(T>t|X(s)=vy) (6)

ftcl (x7t|yas) =

A more formal derivation of (6) is in Appendix 2.

For many purposes it is desirable to simulate paths of cainstl processes. The
method which has been used up to now produces sample patresabsorbed process
by generating a large number of samples from equation (1)tlrdving away any
path which crosses before timet. This is a computationally expensive approach.
We propose the following method for simulating the consedi process. First, we
derive the coefficients appearing in the Kolmogorov equegatisfied by the transition
probability density functionf;, (x,t|y,s) of the processX*(¢) on the time interval

[to, t1], which reads (see Appendix 2)

off
0s
with the initial condition

a a c 2 82 c
+ la(y) +o° (y)a—ylnP“ (Sitily,s) af; - Q(y) a“;? =0

lim ¢ (z,tly,s) = 6 ( — y)
and boundary conditions
lim f7 (2,tly,s) = 0
y—S

S
/ﬁf1 (x,t|y,s)dx = 1. (7)

10



Then the SDE for the constrained procé&gt) can be read from (3),

dXC(Zf) _ CL(XC(t)) + Pj(é)i:jz;))t) or® (55;1 ‘l‘,t) . )] dt
Lo (XE() AW (). ®)

Finally, classical numerical methods (cf. Kloeden et a@9a)) can be used to
simulate X“(¢) from (8). Usually we have no closed form expression for theoed
term in square brackets. A numerical scheme would involyeat® (5). The first
passage time density is involved, and usually must be cddawmerically.

We observe that the drift process f8f(¢), which we denote byA“(z, t),t € [0, 1],
is obtained by adding the second term in square bracketg o (8e drift coefficient
for X (¢), and that the diffusion coefficient fox* is the same as that fof (¢).

The expressions for the drift and the diffusion coefficiehadiffusion process
constrained to remain in a bounded region®¥f n > 1 were determined in Pinsky
(1985) and coincide with (8) whem = 1 and the boundary is a constant. The Proof
in Pinsky (1985) is more sophisticated than ours due to theemeneral frame of that
Theorem.

Next we consider the constrained bridge procgg’oﬁngc (t), t € (0,u), u < ty,

associated with the diffusion proce&st). Its drift coefficient is

o*(x)  Of(zulx,t)

2 (9)
fe(z,ulz,t) Ox

with z € (rq,5), while the diffusion coefficient is unchanged. The compatats in

oA (,8) = a (@) +

(20,0

Appendix2.

As in the case of the constrained procésst), the knowledge of the drift expres-
sion (9) allows the simulation of the proce@(}éé)Xc (t). However, this task requires a
major computational effort to determine the functith(z, « |z, ¢) using relation (4).

Notice that the drift and the diffusion coefficients (9) oétbonstrained bridge do
not depend upon the endpoint, of the interval of constraint.

Finally, we compute the SDE of the bridge ﬂ)processgf’;fg)xc (t). This is the

particular case of the constrained bridge process wheté, is the first passage time,
T, of the bridge througly. We find that fort € (0, «) andz < S, its drift coefficient is

11



related to the drift coefficient of the proce&st) via:

o*(x) Og(ti|z.t)

(t1|z,t) or (10)

St c
A (@) =)+

The diffusion coefficient is unchanged. The computatiomi8ppendix2.

The knowledge of the infinitesimal moment (10) allows therdation ofgfgfg)Xc (t)
by means of its SDE with the classical discretization scle(eé Kloeden et al.
(1992)).

3.1 Integrateand Fire model

Here we use our results to illustrate the problems arisingnadne misunderstands the
membrane potential data and disregards the effect of thditcmmng determined by the
presence of the boundary in Integrate and Fire and in Lealgiate and Fire models.

In the case of the Integrate and Fire model we can write doeatialytical expres-
sion for the drift of its constrained version. This makesasyyto simulate sample paths
of this version, but we do not present here any examples.

In order to illustrate the effect of conditioning with bigfically compatible parame-
ter values, we set S=10 m¥,= 10 ms™?, i ranging from 0.5 mVms! to 1.5 mVms'!
ando? ranging from 0.5 m¥ms~! to 9 mVms-!.

Let W(¢) be a Wiener process startedoatwith drift a () = x> 0 and diffusion
coefficients. The drift of the procesB/“(¢) constrained to remain below the boundary
S up to timet; is:

o? OP* (S, |z,t)
W+
Pa(S,ty |z, t) Oz

A° (2,1) = (11)

where

12



0Pa(5;;;1|m,t) _ di(l—%Erf S(—jm;(z(tjt;t)
o [ e [S=ertac])
0 e
+ Lo l%ﬂ} BErfe S;%”]
N e[“”]eHW” (12)

o+/2m (t; — t)
where Erfc denotes the complementary Error function (cfraédmowitz et al. (1970)).

In Figure 3 we plot the second term of (11), i.e. the diffeeshetween the drift of
the constrained process and the drifif the free one, to illustrate the importance of this
correction ag varies wheru = 1 mVms™t. Different curves in this figure correspond
to different values of2. Note that the importance of the correction, determinechiy t
effect of the boundary on the drift, increases whérincreases while it decreases as
the time grows up. One could simulate the sample paths ofrtheepdi¢(¢) by means
of the discretization procedures in Kloeden et al. (1992) abserve their different
behaviors (Figure not shown).

We compute the mean membrane potential, i.e. the mean ¥lu&(¢)], of the

constrained proces& “(t), by numerical integration of the formula

S
E[We(t)] = /_ ¢ (2,110,0) do

1 s
= PaS.4L10.0) @ (2,£]0,0) P2 (S, t |z,) d
Pa(S7t1 ’070) /_Ool'f (x7 |7 ) ( 5 1|:L" ) T,

which is a simple consequence of (6). Figure 4 illustraig8/(¢)] and E [IW<(¢)| for
two different choices of;, t; = 6 ms andt; = 40 ms. The importance of the correction
increases in the case of absence of spikes for a longer @hterv

When one observes the membrane potential up to the spikettimeprrect model

is the constrained bridge process with coefficient given 18).( It is interesting to

13



look at the behavior of sample paths of the proc%éggwc (t). In this case the drift

coefficient, fory = 0, is given by

o? . S—x
S —x tl —t '
Note that the drift of a bridge t§, in the absence of absorption, is

Sit1) ge
Eo,oi)A (w,t) = —

S—x
ty—t
In this case we do not need a figure to illustrate the effedi@tbnstraint, which is

(St1) _
00y Az, 1) =

more important as? increases.

3.2 Leaky Integrate and Fire model

Let X (¢) be an Ornstein-Uhlenbeck process started, att timet,, solution of

AX(t) = (u— @)dt + o2dW(8).

No closed form expression exists for its first passage tirsgildution across a con-
stant boundary. Hence to simulate the sample paths of thetreamed processes (8)
and (10), one should numerically evaluate their drift teahgach point of the time
discretization scheme. Numerical techniques (cf. Buoremairal. (1987)) can be
employed to evaluate the crossing probability dengity|zo,%,). The numerical in-
tegration of this density gives the crossing probabilitalaations in (8) while their
numerical differentiation gives the necessary quantitig€40).

The mean value of the unconstrained proc&ss), is the solution of the differential
equation

dEIX()] _  EX(@)]

dt 0
and is given byF[X (¢)] = pf(1 — e~ ) in the case wherg, = 0.
For the bridge proce%;’fg)X ¢(t), sample paths can be obtained only by means of
combined numerical and simulation techniques, in the saayeas for the constrained

processX“(t).

14



Many qualitative studies of neuronal dynamics describeduidph the Ornstein-
Uhlenbeck process distinguish two types of behaviors:asapd subthreshold dynam-
ics, characterized by the asymptotic mdanX (oo)] = p6 > S or < S respectively,
where X, is the "free” process (cf. Sacerdote et al. (2010)). The medne of the
processX© (t), obtained as an arithmetic mean of a set of samples of thegspts
illustated in Figure 5. Note that all the examples shown fl@re on are done setting
xo = 0 mV. In the two panels of Figure 5 different choices for thegpaeters of the pro-
cess are made. Panel A illustrates an example of subthcebbbhvior while in Panel
B there is an example of suprathreshold behavior. The effdbie constraint increases
in both cases with the time but it is more remarkable in theahpeshold regime.

The mean value of the constrained bridgeStes represented in Figure 6 together
with the mean value of the free bridge process taking theaglat the same time as the
previous process. The parameters are chosen in the sufmiltesgime, but the same
behavior arises also in the suprathreshold regime.

In Figure 7 we compare the simulated mean values of the @nstt procesX ()
with E [X (¢)] for different values of? to show the effect of the noise on the mean of
the constrained process. The difference between the filetharconstrained processes
is stronger in the suprathreshold regime and the noiseasegethis difference.

As we have pointed out, an important part of the analysis afomal recordings
is to establish whether the observed dynamics arises inuhthreshold or in the
suprathreshold regime. In the subthreshold dynamics iogs®f the boundary may
happen only in the presence of noise. If one disregards thetreont of the boundary
in modelling the data and uses a biased estimator to deciég¢heththe neuron is in
the suprathreshold regime, an error arises and the coanloan be wrong, i.e. one can
classify as subthreshold a case that is suprathresholdidliustrated with an example
in Figure 8, where suprathreshold behavior results can bised with a subthreshold

dynamics if one does not recognize the constrained natuteeaibserved data.

Conclusions

If we ignore the fact that membrane potential data is coowl#i on firing not yet having

occurred, serious errors in model interpretation can tegatticularly when the noise
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is strong. The problem is corrected when we use the coneitigmocesses computed
in this paper to model the membrane potential behavior.

The SDE of the constrained process (8) should be used foraat@mulation of
the sample paths to compare with data recorded up to a fixedatiior to firing. If data
is recorded up to a firing time, simulation of comparable Bgtit data should be done
using the drift coefficient (10) instead of that in the SDE (8)

Our examples of simulations in the case of the constrainegh®&iand Ornstein-
Uhlenbeck processes, and these processes bridged to tigebfmuindarys, illustrate
the striking difference conditioning makes to the natursiofulated paths and hence
the important misunderstanding that can arise confountliege processes for mod-
elling purposes. A typical risk concerns the distinctiotmeen the subthreshold and
suprathreshold regimes for the Ornstein-Uhlenbeck motleis point becomes more
important in the presence of stronger noise intensity.

The results obtained allow to suggest the right choice ofSh& to employ if one
wants to simulate sample paths analoguous to real exparhtata obtained from reg-
istration of neuronal activity. The SDE for the bridge to $g&ss should be used if one
wants to simulate registrations up to the first spike, whike $DE for the constrained
process is suitable to simulate sample paths up to any tistanhbefore the spike

occurs.

Appendix 1

For both the Wiener and the Ornstein-Uhlenbeck processgediffiusion interval coin-
cides with the real line and their transition probabilityndity is the only solution of the
corresponding Kolmogorov equation (2) with the initial ddion (3). The transition

probability density function of the Wiener process is (carkn et al. (1981)):

_ ! ] By —pt—s)l
fw (. tly,s) = = p{ }

2702 202 (t — s)

while that of the Ornstein-Uhlenbeck process is:
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B 1
Vo2 (1 — e=2(t=9))

e (t=5)/0 _ _ o= (t=5)/0)]?
el T o)

fou (x,ty,s)

o2 (1 _ e—2(t—s))

In the case of the Wiener process the first passage time pliopdbnsity for S >

T is:

v _ S—.To ox _[S—xo—u<t—to)]2
9 (Fleo, o) 2mo? (t — to)? p{ 202 (t —to) } '

The analogous expression for the Ornstein-Uhlenbeck psasaot known in closed

form but it can be obtained numerically solving an integrala&ion proposed in Buono-
core et al. (1987).

A closed form expression for the transition probability siénin the presence of an
absorbing boundary &t is known for the Wiener process with drift (cf. Ricciardi et al
(1989)):

. _ 1 (x—y—p(t—s)
Jrw o) = 2m?(t—s){eXp[_ 202 (t — 5) ]
(e+y—25—p(t—s)"  2u(S—y)
ST 202 (t — s) * o? ]}

for y < S. Hence for the Wiener process, whgnr: S, one has:

s
P*(S,tly,s) = / [z, tly,s)de

_ o Y| Sy pt—s)
- Q{Ef o\/2(t—s) ]
21 (S —y) S—y+plt—s)
e e v = ”

Analoguous closed form expressions are not available soQimstein-Uhlenbeck pro-

cess.
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Appendix 2

Proof of (6).
The transition probability density; (x,t |y, s) may be rewritten according to the

following chain of equations:
ol tly, s)dz = P (X (t) € (z,2 + dz) [X°(s) = y)

= P(X(t) € (z,x +dx)|X(u) < S,u € [s, t1]; X(s) =y)
P(X (t) € (v,z+dx); X (u) < S,u € [s,t1] | X(s) =v)
P(X (u) < S,u€ [s,t1]|X (s) =)
P(X (t) € (x,x+dx); X (u) < S;u€ [s,t]; X (u) < S,uelt,ti] | X (s) =y)
P(T>1]X(s) =y)
P(X (t) € (x,x+dx); X (u) < S,u € [s,t]| X (s) =)
P(T'> 11X (s) =y)
x P(X(u)<Suelt,t]|X(t)=2)
[ty s) P(T >t |X(1) = x)

- PT>t X =y)

Proof of (3), (7) and (8).
Since X¢(t) is a diffusion process, its transition probability denssgtisfies the
Kolmogorov equation
afs off, >f;
0s y oy?
Making use of (6) we can relate the drift and the diffusionftoent of equation (13)

+ A (y, s)

+ B (y, s)

— 0. (13)

with the drift a (y) and the diffusion coefficient (y) of the processX(t). To this

purpose we write the derivatives with respect @nd toy of f (z,t|y,s) :

N i G Iy,s>—f”(w7t|y>s>wpa(s tile,t)  (14)
ER [P (S, t1 |y, s)]” o
% P (S,t1|x,t)
By [P (S, t1 [y, 5)]
afa " o GP“(S,t1|y,5)
X {8yp (Svtl |y75> f (x,tly,S) oy
a2ftc (92P“ (S t|y S) 1
—1 = - @ )t ) 7 :
= e TS
Lo 1 L0 0P (St Jy, 5) !
8y2 Pa <57 tl |y, S) ay ay [Pa (S, tl |y7 S)]Q
oP° (S,t |y, s)]* -
+ f“(:v,tly,S){ '
oy [P (S, t ’%5)]3
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Let us now substitute (14) into (2); making use of equatiorf@R f* (z,t |y, s ) we

get:
- 82]0(1 . 02(3/) afa .
0 = ayg B (yvs)_T +a_y[A (y,S)—CL(y)
. apa (Satl |ya8) QBC (ya 8)
dy Pa (St |y, s)
fa ($,t|y,5) apa (Svtl ‘y,S) 02 (y) 82Pa (Satl |y75)
i PCL(Svtl’va)[a(y) dy T dy?
aPa (Satl |y78)
— A°(y,s
(y,s) o
. O?P* (St |y, s) OP* (S, t1 |y, s) 2 B¢ (y, s)
- B T55 +2< By ) P (St [g,5)

Hence by the homogeneity principle we have

o’(y)  OP*(S,tily.s)
Pe (St ]y, s) dy

while the diffusion coefficient is unchanged. This gives ¢Bj)ce the second term of

A(y,s) =al(y) + (15)

(15) can be written as the derivative of the. The second boundary condition in (7)
arises from (6), sincé¢y, (,1 |y, s )dx is normalized to integrate tb. Finally the SDE

(8) for the constrained process immediately follows from dnift (15).

Computation of (9).
Consider the constrained process|@yi, |; according to (8) its drift is given by
o? () 0P (St |z,t)
Pa (St |x,t) Ox ’
while its diffusion coefficient coincides with that of thee& process. It is known that

A (y,s) =a(x)+

the drift of a bridge process is related with that of the cgprnding free process (¢)
through the relationship (cf. Giraudo et al. (2001)):

o’ (x)  Of (z,u|z,t)
f(zulz,t) Ox
and the diffusion coefficient does not change. We substaut®nstrained process

=) A (2,t) = a(z) +

(zo,to)

(16)

for the free one in (16), and hengg (2, u |z,t) as given by (6) forf (2, u|z,t) and
A¢(x,t) as given by (15) ta(x), to obtain

o?(z)  OP*(S,t]|z,t)
Pa (St |x,t) oz

o?(x) Off (z,ulz,t)
ftc1 (Z,U|l’,t) 8'7: 7

oA (@) = a(w)+

z0,t0

u§t1
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Recalling (6), after some algebra, one gets

o*(x)  Off (zulz,t) o?(z)  Of"(z,ulz,t)
If (z,ulx,t) Ox  fe(zulmt) Ox
o?(x)  OP"(S,ty|z,t)
~ Pa(S,t |2, t) ox

and (9) follows.

Remark. Note that to prove (9) we first consider a constrained proapgs time
t; and then its bridge te at timewu < ¢;. One could also introduce another process by
first considering a bridge toat timew, with z < S, and then its constrained version up

to the timet; < w. In the limit whenu — t; (or t; — u) these two processes coincide.

Proof of (10).
Let us take the limit of equation (9) when— S. We use I'Hopital’s rule to compute

this drift coefficient for the constrained bridge$o

o?(x of* (z,ul|x,t
R B CRT)
fe(z,ulz,t) Ox

9 [8f“(z,u|m,t)}
0z ox
of(z,ul|z,t)
0z

0 | 9f(zulzt)
ox 0z

of(zulz,t)
0z

lim
z—S

= lir% a(x) + o*(x)

= a(z) + o*(x) z:Si| (17)

z=S
Taking the derivative of (5) with respect toand using the forward Kolmogorov

equation, gives us

of (y,ulz,t)|
8—y . =g(ulz,t). (18)

We substitute then (18) in the right hand side of (17) to obtlae result.
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Figure Captions

Figure 1 Sample paths of the absorbed process (dashed lines) arel@iriesponding
constrained process with = 30 ms (continuous lines). The paths of the absorbed

process are killed at the time where they first reéich 10 mV.

Figure 2 Sample paths of the free bridge processia= 10 mV with v = 15 ms,
u = 20 ms (continuous lines) and two sample paths of the correspgrmbnstrained

bridge processes ifi (dashed lines).

Figure 3 Additional term in the drift of the constrained Wiener presavithy = 1
mVms !, S = 10 mV, t; = 40 ms, as a function of, for o2 = 1,4,6,9 mV?ms™!
(continuous, dashed, dotted, dashed-dotted lines resplgt

Figure 4 Mean of the constrained (continuous line) and of the fresl{dd line)
Wiener processiy[W (t)] = ut, with p = 0.5 mVms™, 62 = 1 mV?ms™!, S = 10 mV,
t; = 6 ms (inset) and, = 40 ms. HereP(T < 6) = 5x10~° while P(T < 40) = 0.12.

Figure 5 Mean of the constrained (continuous line) and of the fresi{dd line)
Ornstein-Uhlenbeck process with = 2 mV?ms!, § = 10 ms™!, S = 10 mV. Panel
A: sub-threshold regime with = 0.5 mVms™!, ¢, = 6 ms (inset) and; = 20 ms.
Here P(T < 6) = 5% 107 while P(T < 20) = 0.16. Panel B: supra-threshold regime
with 1 = 1.5 mVms™, t; = 5 ms (inset) and; = 20 ms. HereP(T < 5) = 0.09
while P(T < 20) 2 0.96.

Figure 6 Mean of the free (dashed line) and of the constrained (coatis line)
Ornstein-Uhlenbeck bridge process$owith 6 = 10 ms™!, S = 10 mV, u = 0.5

mvVms !, 02 = 2mV?’ms!. Hereu =7 = 9.3 ms.

Figure 7 Mean of the free (dashed line) and of the constrained (coatis lines)
Ornstein-Uhlenbeck process with= 10 ms™!, S = 10 mV. Panel A: sub-threshold
regime withy = 0.5 mVms™, t; = 20 ms, 0? = 0.5,2,6 mV?ms! (from top to
bottom). Panel B: supra-threshold regime with= 1.5 mVms™, ¢t; = 20 ms,o? =

1,2,6 mV?ms~! (from top to bottom).
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Figure 8 Continuous line: mean of a constrained Ornstein-Uhlenbeo&gss with
p=12mvms! o =1mV’ms? 0 =10ms? S =10mV, i.e. possible recorded
data (suprathreshold); dashed-dotted line: mean of asoreling free process; dashed
line: mean of a corresponding free Ornstein-Uhlenbeckgssavithy = 0.8 mVmst,

which is estimated from the continuous curve as originatechfa free process.

22



Acknowledgements

This work was partly supported by MIUR PRIN 2008 and by a Totilaversity local
grant. P. G. thanks INDAM for supporting her visit to Torin®he also acknowledges
SAMSI support during 2009/10 and the support of MCMSC at Ara8tate University.

References

Abramowitz M. & Stegun I.A. (1970). Handbook of MathematiEanctions.Library

of Congress.

Bibbona E. & Ditlevsen S. (2010b). Estimation in discretebserved Markov pro-

cesses killed at a thresholBreprint.

Bibbona E., lansk P., Sacerdote L. & Sirovich R. (2009). Errors in estimatiéthe
input signal for integrate and fire neuronal modé&thys. Rev. E, 78, 011918.

Bibbona E., lansk P. & Sirovich R. (2010a). Estimating input parameters frowna-

cellular recordings in the Feller neuronal modethys. Rev. E, 81, 031916.

Bulsara A.R., Lowen S.B. & Rees C.D. (1994). Cooperative behaviina periodically
modulated Wiener process: Noise-induced complexity in dehieeutronPhys. Rev.
E, 49, 4989.

Buonocore, A., Nobile, A. G. & Ricciardi, L.M. (1987). A new gudral equation for
the evaluation of the first-passage-time probability dessi Adv. Appl. Prob., 19,
784-800.

Burkitt A.N. (2006a). A review of the integrate and fire neurnadel: I. Homogeneous
synaptic input.Biol. Cybern., 95, 1-19.

Burkitt A.N. (2006b). A review of the integrate and fire neurondel: Il. Inhomoge-
neous synaptic input and network propertiBgal. Cybern., 95, 97-112.

23



Gerstein G.L. & Mandelbrot B. (1964). Random walk models fe $pike activity of
a single neuronBiophys. J., 4, 41-68.

Giraudo M.T. & Sacerdote L. (1999). An improved techniquetf@ simulation of first
passage times for diffusion process&somm. Statist. Smulation Comput., 28(4),
1135-1163.

Giraudo M.T., Sacerdote L. & Zucca C. (2001). Evaluation dftfpassage times of
diffusion processes through boundaries by means of aytetiulative algorithm.
Meth. Comp. Appl. Prob., 3, 215-231.

Karatzas I. & Shreve S.E. (1991). Brownian Motion and Stotb&3alculus. Second
Edition. Springer New York.

Karlin S. & Taylor H.E. (1981). A Second Sourse in StochaBtiocessesAcademic

Press.

Kloeden P. & Platen P. (1992). The Numerical Solution of 8&stic Differential Equa-

tions. Soringer.

Lansk P., Sacerdote L. & Tomassetti F. (1995). On the comparidoRetier and
Ornstein-Uhlenbeck models for neural activiBiol. Cybern., 76, 457-465.

Lansk P., Rodriguez R. & Sacerdote L. (2004). Mean instantaneaus firequency
is always higher than the firing ratbleural Comp., 16, 477-489.

Li M., Pearson N.D. & Poteshman A.M. (2004). Conditional mstiion of diffusion
processeslJ. Financ. Econ., 74, 31-66.

Longtin A., Bulsara A. & Moss F. (1991). Time-interval seques in bistable systems
and the noise-induced transmission of information by sgnseurons. Phys. Rev.
Lett., 67, 656.

Pinsky R.G. (1985). On the convergence of diffusion processeditioned to remain
in a bounded region for large time to limiting positive reraunt diffusion processes.
Ann. Prob., 13(2), 363-378.

24



Ricciardi L.M. & Sato S. (1989). Diffusion processes and fpassage-time problems.
Lectures Notes in Biomathematics and Informatics, Ricciardi L.M. ed., Manchester

Univ. Press.

Sacerdote L. & Giraudo M.T. (2010). Leaky Integrate and Ri@dels: a review on

mathematical methods and their applicatioRseprint.

Segev I. (1992). Single neurone models: oversimple, coxgode reducedTrendsin
Neurosc., 15, 414-421.

Shimokawa T., Pakdaman K. and Sato S. (1999). Time-scalehingtin the response
of a leaky integrate-and-fire neuron model to periodic shimuwvith additive noise.
Phys. Rev. E, 59, 3427-3443.

Siegert A.J.F. (1951). On the first passage time probalplioblem. Phys Rev., 81,
617-623.

Stein R.B. (1965). A theoretical analysis of neuronal valigbi Biophys. J., 5, 173-
195.

25



Figure 1

12

10

t (ms)

26

25

30



Figure 2

16

12—

Ap W AN
wv v v

- | |
0 5 10 15 20 25 30
t (ms)
Figure 3
0 T
-0.5 -
- 7
- - ;I
-1+ _-- - |
-7 v
________ K4
P
-
-15 PRt _
-2 L | | | | | |
0 5 10 15 20 25 30 35 40

t (ms)

27



20

15

10

Figure 4

10 15
Panel A
T
25
2
15
1 i
0.5
0
0 2 4
t (ms)
I I
10 15
t (ms)

20

20
t (ms)
Figure 5
14
12

10

28

25

30 35

Panel B

40

20



10

Figure 6

20

1
1
1
U
, _
1
!
1
1
1
1
1
1
!
I _
1
1
1
1
1
1
1
1
Ly |
1
1
1
1
1
1
U
f
| ‘ | | | ‘ L L L
0 2 3 4 5 6 ! 8 9 10
t(ms)
Figure 7
Panel A :
T ) ‘
/.
A
/ i
7
z
/
;
101 7
P
P
P
p
p
’
I i
v
/ |
)
Y,
Y
4 |
’
| i
.
Ak
I 27
1
U
Ui
0 . ‘ ‘ | ‘ ‘ ‘
0 5 10 15 20 0 5 10 15
t(ms) )

29



10

Figure 8

10 15 20
t(ms)

30



