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We present a variational Bayesian (VB) approach for the state and pa-
rameter inference of a state-space model with point-process observa-
tions, a physiologically plausible model for signal processing of spike
data. We also give the derivation of a variational smoother, as well as
an efficient online filtering algorithm, which can also be used to track
changes in physiological parameters. The methods are assessed on simu-
lated data, and results are compared to expectation-maximization, as well
as Monte Carlo estimation techniques, in order to evaluate the accuracy
of the proposed approach. The VB filter is further assessed on a data
set of taste-response neural cells, showing that the proposed approach
can effectively capture dynamical changes in neural responses in real
time.

Neural Computation 23, 1967–1999 (2011) C© 2011 Massachusetts Institute of Technology



1968 A. Zammit Mangion et al.

1 Introduction

Many biomedical signal processing problems, such as neural spikes and
heartbeats, are concerned with discrete events in time, separated by seem-
ingly random intervals. They are often driven by continuous processes
relating to the organ’s physiology, whose charge-and-fire type of behavior
results in observed discrete events. Conventional approaches to modeling
such signals are largely based on modeling the time intervals between these
discrete events, which, as continuous variables, are amenable to standard
signal processing and system identification approaches (Ivanov et al., 1996;
Jolivet et al., 2008).

An alternative approach is the state-space model with point-process ob-
servations (SSPP) recently proposed by Smith and Brown (2003), which
avoids the somewhat artificial change to interspike times and handles the
discrete events directly. This model assumes a first-order autoregressive
process driven by an exogenous stimulus as state dynamics and a param-
eterized intensity function of an approximate Bernoulli process as its ob-
servation model. For simultaneous estimation of state and parameters of
such a model, Smith and Brown derived an expectation-maximization (EM)
algorithm, along the lines of similar formulations (Roweis & Ghahramani,
1999). In a recent study, Yuan and Niranjan (2010), showed that the ex-
pectation of the log-complete data likelihood (Q-function) of the SSPP is
unimodal and highly nongaussian with respect to each of its parameters.
The high skewness is indicative of parameter posteriors where simple max-
imum likelihood estimates of the parameters may be quite far from the
actual posterior means, motivating a Bayesian treatment of the SSPP.

In this letter, we propose a variational Bayesian (VB) approach to solve
this problem, extending the results of Beal (2003) to the SSPP case to obtain
a variational smoother that offers a good compromise between distribu-
tional accuracy and computational efficiency. The developed techniques
are demonstrated on a synthetic data set, showing good performance when
compared to EM and fully Bayesian approaches based on Gibbs sampling.
The details of a VB filter are also given, using ideas taken from dual filtering
(Wan & Nelson, 2001), whereby parameters are allowed to evolve to track
changes in the system’s mode of operation. A case study based on real data
of neural responses to different taste stimuli (di Lorenzo & Victor, 2003)
is presented, showing that the online filter correctly predicts a change in
the input gain or the background firing rate parameters when the input
stimulus is changed.

2 Preliminaries

This work is concerned with point-process observation models, where
events are recorded on an interval (0, T] from C independent output chan-
nels. The observation length is discretized with a sampling interval � > 0,
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so that the incoming events are represented as a sequence of binary vectors
yk := y(k�) ∈ R

C , where yc(k�) = 1, c = 1, . . . , C indicates that an event
has occurred at the cth output channel in the interval ((k − 1)�, k�] and
is zero otherwise. The sampling interval � is thus chosen small enough so
that at most one event per sample for each output channel is present:

� ∈ {r; yc(kr ) ∈ {0, 1}, k ∈ [1, . . . , T/r ], c ∈ [1, . . . , C]
}
. (2.1)

Given a dynamic latent state xk := x(k�), for the point-process we define
a conditional intensity function (CIF) of the form

λc
k = λ(k�|xk, μ, βc) = exp(μ + βc xk). (2.2)

Through the conditioning on xk , the CIF renders the process an inhomoge-
neous Poisson process (see Smith & Brown, 2003). The parameter μ repre-
sents a background firing rate, which for simplicity is assumed to be the
same for all channels. It can be shown that the observation model (or likeli-
hood) at the kth time interval in the cth channel is given by the approximate
probability mass function defined as

p
(
yc

k | xk, μ, βc) = [�λc
k

]yc
k exp

(−�λc
k

)
. (2.3)

Equation 2.3 can be obtained from first principles by treating the binned
event sequence as a series of correlated Bernoulli trials (Brown, Barbieri,
Eden, & Frank, 2003) and is thus a realistic approximation only if equation
2.1 is ensured and, hence, � is sufficiently small. In practice, constraint 2.1
cannot be guaranteed before data collection, but � may be chosen such that
the probability of expected arrival time within an interval � at the maximum
expected intensity a priori is less than some predefined threshold.

The underlying state follows the standard linear evolution equation,

xk = ρxk−1 + α Ik + εk, (2.4)

where Ik := I (k�) is 1 if an input is present at k� and zero otherwise.
εk := ε(k�) ∈ R is additive white gaussian noise with mean 0 and variance
σ 2

ε ∈ R
+. The initial state x0 is assumed to be normally distributed with

known mean x0|0 and variance σ 2
0|0. The parameters ρ ∈ R and α ∈ R are the

propagation constant and input gain, respectively.
Since the CIF is itself probabilistic and time varying, equations 2.2 and

2.4 define a doubly stochastic process. Despite the simplicity of the under-
lying latent process used to describe the state evolution, this model has
been applied several times in practice to represent the dynamics of a sys-
tem variable, the behavior of which is not fully understood. For instance,
equation 2.4 has been used successfully to model the spatial receptive field
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of a pyramidal neuron in a rat hippocampus (Ergün, Barbieri, Eden, Wilson,
& Brown, 2007), and, more recently, to model the arousal state in subjects
receiving thalamic stimulation (Smith et al., 2009).

In practice, both the parameters governing the firing rate μ and β =
{βc}C

c=1, and the governing state equation parameters α and ρ are unknown.
In this work, the noise variance σ 2

ε is assumed to be fixed, and we are
hence faced with the problem of having to estimate a set of unknown
parameters θ ∈ R

d , d = C + 3 with θ = {α, ρ, μ, β1, β2, . . . , βC } in addition
to an underlying hidden state xk .

3 Batch VBEM for SSPP

The variational framework for the inference in the SSPP is developed in
a similar way to Beal (2003). Let XK ,YK be the set of states and observed
data points, respectively,XK = {xi }K

i=0 andYK = {yi }K
i=1. The problem pivots

on finding an approximation to the true posterior p(XK , θ |YK ) ≈ p̃(XK , θ )
such that the variational free energy (or log marginal likelihood) is maxi-
mized (Attias, 1999). The approximation is carried out by imposing inde-
pendence between partitioned variables in the joint distribution. This is
a well-known drawback when employing variational Bayesian methods;
however, the ensuing factorization is rewarded with significant computa-
tional savings.

In this work, the approximate (joint) posterior is assumed to be a product
of gaussian distributions:

p̃(XK , θ ) = p̃(XK )p̃(θ ) = p̃(XK )p̃(ρ|α)p̃(α)p̃(μ)
C∏

i=1

p̃(β i ).

The dependency between the ρ and α parameters is retained since the
interaction terms between them, which appear when deriving the log pos-
terior distribution, are relatively easy to compute. As a result, α and ρ

are dealt with jointly, and without loss in generality, we redefine the set
θ = {(α, ρ), μ, β1, β2, . . . , βC }. The optimal choice for the variational poste-
riors p̃(XK ) and p̃(θ ) is then given by (Šmı́dl & Quinn, 2005),

p̃(XK ) ∝ exp(〈ln p(XK ,YK , θ )〉p̃(θ )), (3.1a)

p̃(θ i ) ∝ exp(〈ln p(XK ,YK , θ )〉p̃(XK )p̃(θ/ i )), (3.1b)

where θ i is the ith component in θ and θ / i is the set of all θ excluding
θ i . The notation 〈·〉p(x) denotes the expectation operator taken with respect
to p(x). In the standard case of linear-gaussian dynamical systems, the
variational posteriors can be computed exactly (Beal, 2003). For the model
under consideration, because of the form of the observation process, this
is not possible. However, the nongaussian densities that become apparent
in the subsequent derivations are unimodal with respect to the underlying
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states and parameters, and simulation studies have shown that they can
be reasonably approximated by gaussian densities. We take advantage
of this property and introduce approximations in a way similar to Smith
and Brown (2003) (see also Friston, Mattout, Trujillo-Barreto, Ashburner, &
Penny, 2007) to obtain analytically tractable forward and backward passes
for state distribution updates and the subsequent parameter distribution
updates.

3.1 Batch Update of p̃(X K). Evaluating equation 3.1a and linearizing as
in Smith and Brown (2003), one obtains the following equations governing
the forward pass (see section A.1 in appendix A):

xk|k = x̃k + σ̃ 2
k

C∑
c=1

{
〈βc〉p̃(βc ) yc

k − �〈exp μ〉p̃(μ)

× d
dxk

[〈exp xkβ
c〉p̃(βc )

]∣∣
xk=xk|k

}
, (3.2a)

σ 2
k|k =

(
σ̃−2

k +
C∑

c=1

{
�〈exp μ〉p̃(μ)

d2

dx2
k

[〈exp xkβ
c〉p̃(βc )

]∣∣
xk=xk|k

})−1

, (3.2b)

where

x̃k

σ̃ 2
k

= ((
σ−2

k−1|k−1 + 〈ρ2〉σ−2
ε

)−1〈ρ〉σ−2
ε

[
xk−1|k−1σ

−2
k−1|k−1 − 〈ρα〉Ikσ

−2
ε

]
+ 〈α〉Ikσ

−2
ε

)
,

σ̃ 2
k = (

σ−2
ε − 〈ρ〉2(σ−2

k−1|k−1 + 〈ρ2〉σ−2
ε

)−1
σ−4

ε

)−1
. (3.3)

Equation 3.2a is composed of two terms—the first pertaining to the
underlying linear dynamical model and the second to the observation point-
process. Considering the nonlinear form of equation 3.2a, it can be shown
that if each βc > 0 and 〈βc2〉p̃(βc ) ≈ 〈βc〉2

p̃(βc ), the forward estimate tends to
be lowered by a lack of events (indicative of a decreasing intensity). On
the other hand, yc

k = 1 tends to increase the estimated xk|k . The effect of the
number of output channels C is also apparent by evaluating the sum in
equation 3.2b, from which it is easily seen that the precision σ−2

k|k increases
with increasing C (assuming βc is constant across all channels).

The forward state update equations depend not on the actual values of
the parameters, but rather on their first and second moments under the
approximating distribution. This averaging, which will be evident in all
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of the following update equations, is at the core of mean field variational
algorithms, which originated in statistical physics, where the interdepen-
dence between states was replaced by a dependence on the average (mean)
value of the states. For conciseness, in equation 3.3 and in some of the fol-
lowing equations, the distributions with which the expectations are taken
with respect to are omitted. The normal assumption for the variational dis-
tributions allows analytical computation of the expectations involved in
equations 3.2a, 3.2b, and 3.3.

In a similar fashion, a backward recursion on the data is computed in
order to obtain variational smoothed state estimates (see section A.2). The
resulting equations are given as

xk|K = σ 2
k|K
(
xk|kσ−2

k|k + x∗
k σ ∗−2

k

)
, σ 2

k|K = (σ−2
k|k + σ ∗−2

k

)−1
,

where

x∗
k

σ ∗2

k

= (〈ρ〉x′
k+1

(
σ−2

ε + σ
′−2

k+1

)−1
σ−2

ε σ ′−2
k+1

+ (σ−2
ε + σ

′−2

k+1

)−1〈ρ〉〈α〉Ik+1σ
−4
ε − 〈ρα〉Ik+1σ

−2
ε

)
,

σ ∗2

k = (〈ρ2〉σ−2
ε − (σ−2

ε + σ
′−2

k+1

)−1〈ρ〉2σ−4
ε

)−1
,

and

x′
k+1 = xk+1|k+1 + σ ′2

k+1

(
x∗

k+1 − xk+1|k+1

σ 2∗
k+1

+
C∑

c=1

{
〈βc〉p̃(βc ) yc

k+1

− �〈exp μ〉p̃(μ)
d

dxk+1

[〈exp xk+1β
c〉p̃(βc )

]∣∣
xk+1=xk+1|k+1

})
, (3.4a)

σ ′2
k+1 =

(
σ ∗−2

k+1 +
C∑

c=1

{
�〈exp μ〉p̃(μ)

d2

dx2
k+1

×
[
〈exp xk+1β

c〉p̃(βc )

]∣∣∣∣∣
xk+1=xk+1|k+1

})−1

. (3.4b)

In equations 3.4a and 3.4b, the gaussian approximation is carried out
around the filtered estimate to give a closed-form solution. As a conse-
quence, the forward and backward passes need to be carried out sequen-
tially. If the initial state distribution is not known when the backward pass is
completed, it may be updated by setting x0|0 = x0|K and variance σ 2

0|0 = σ 2
0|K

(see Beal, 2003).
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Equation 3.2a is not available in closed form and needs to be solved by
a deterministic optimization method. One can take advantage of the facts
that the equation has a unique solution and that the prior xk|k−1 (obtained
from the predictive density) can be used as a good initialization for xk|k
to solve the optimization method in an efficient manner. In practice it was
found that replacing the state variable on the right-hand side by the prior
(to obtain a closed-form solution) gave very good results and a marked
decrease in computational requirements.

The required statistics needed for updating the parameter variational
posteriors are 〈xk xk+1〉p̃(XK ), 〈x2

k 〉p̃(XK ), and 〈xk〉p̃(XK ) for all time k. The only
quantity that is not readily available from the above is the first of these
expectations. To obtain this, we invert the precision of the approximate
pairwise marginal p(xk, xk+1|YK ) to get

〈xk xk+1〉p̃(XK ) = 〈ρ〉σ−2
ε

((
σ−2

k|k + 〈ρ2〉σ−2
ε

)
σ l−2 − 〈ρ〉2σ−4

ε

)−1

+ xk+1|K xk|K ,

where

σ l2 =
(

σ ∗−2

k+1 + σ−2
ε +

C∑
c=1

{
�〈exp μ〉 d2

dx2
k+1

× [〈exp xk+1β
c〉p̃(βc )

]∣∣
xk+1=xk+1|K

})−1

.

After computing the state-sufficient statistics, one can update the parameter
variational posteriors as described next.

3.2 Batch Update of p̃(θ ). Equation 3.1b gives the updates for the pa-
rameter distributions. As a direct consequence of the underlying linear state
evolution model, the optimal variational estimates for α and ρ become iden-
tical to those in a linear dynamical system, so we refer readers to Beal (2003)
for details. The estimation of μ and βc is somewhat more involved, and we
refer the readers to appendix B for their treatment. Denoting the means and
variances of μ and βc as μ̂, β̂c and σ 2

μ, σ 2
βc , respectively, we have that

β̂c = βc
p + σ 2

βc
p

×
K∑

i=1

(
yc

i 〈xi 〉p̃(XK ) − �〈exp μ〉p̃(μ)
d

dβc

[〈exp xiβ
c〉p̃(XK )

]∣∣
βc=β̂c

)
,
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σ 2
βc =

(
1/σ 2

βc
p
+ �〈exp μ〉p̃(μ)

K∑
i=1

[
d2

dβc2 〈exp xiβ
c〉p̃(XK )

∣∣
βc=β̂c

])−1

,

and

μ̂= μp + σ 2
μp

K∑
i=1

C∑
c=1

(
yc

i − � exp(μ̂)〈exp(βc xi )〉p̃(XK )p̃(βc )
)
,

σ 2
μ =

(
1/σ 2

μp
+ � exp(μ̂)

K∑
i=1

C∑
c=1

〈exp(βc xi )〉p̃(XK )p̃(βc )

)−1

,

where the subscript p denotes prior. For this study, we have taken gaussian
prior distributions over all parameters, with hyperparameters assumed to
be known.

All expectations required to compute p̃(θ ) are standard except for
〈exp(βc xi )〉p̃(XK )p̃(βc ), which can be calculated using moment-generating func-
tions (see appendix B). As is standard in VB estimation, updates for specific
variables depend on the expectations of the remaining variables, leading
to a natural iterative algorithm. Convergence can be easily assessed by
monitoring changes in the free energy or in the statistics of the variational
distributions.

4 Online VB for SSPP

The offline VB algorithm of section 3 can be extended for use in an online
scenario with some modifications. Using a standard technique in dual fil-
tering (Wan & Nelson, 2001), we introduce a time evolution model for the
parameters,

θ k = θ k−1 + ek,

where ek ∈ R
d is additive white gaussian noise with diagonal covariance

matrix 
e
k ∈ R

d×d , which is also time varying (see below). Let �k = {θ i }k
i=1.

Equations 2.2 and 2.4 now become

λc
k = exp(μk + βc

k xk),

xk = ρk xk−1 + αk Ik + εk .

The online variational posteriors are given as

p̃(Xk) ∝ exp(〈[ln p(Xk,Yk,�k)]〉p̃(�k )), (4.1a)
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p̃(θ i
k) ∝ exp

[
〈[ln p(Xk,Yk,�k)]〉

p̃(Xk )p̃(�
/θ i

k
k )

]
, (4.1b)

where p̃(�/θ i
k

k ) is the joint p̃(�k) without the variable θ i
k . We choose the

following variational posteriors,

p̃(Xk,�k) ≈ p̃(Xk)
k∏

j=1

p̃(θ j )

= p̃(Xk)p̃(�k),

(4.2)

that is, the parameters are approximated to be conditionally independent
in time through the product distribution p̃(�k). To facilitate recursion, the
parameter variational posteriors are further restricted to be the filtered
distributions. We hence redefine p̃(�k) as

p̃(�k) =
k∏

j=1

p̃(θ j |Y j ). (4.3)

At each time step the distributions p̃(Xk) and p̃(θ k) are variational posteriors
in the conventional sense. We refer to {p̃(θ j )}k−1

j=1 as the restricted variational
posteriors, as is typical in restricted variational Bayes methods (Šmı́dl &
Quinn, 2006). A novel result for dual VB filtering is presented in the follow-
ing theorem.

Theorem 1. For the SSPP described by equations 2.3 and 2.4, given the fac-
torization in equation 4.2, the restriction in equation 4.3, and the maximizers in
equations 4.1a and 4.1b, the recursive updates for the state and parameter varia-
tional distributions p̃(Xk) and p̃(θ k) are given by

p̃(xk) ∝
∫

dxk−1p̃(xk−1)exp(〈ln p(xk |xk−1, θ k)p(yk |xk, θ k)〉p̃(θ k )), (4.4a)

p̃(θ i
k) ∝ exp(〈ln p(yk |xk, θ k)p(xk |xk−1, θ k)〉p̃(Xk )p̃(θ / i

k ))

× exp(〈ln p(θ i
k |θ i

k−1)〉p̃(θ i
k−1)), i = 1 . . . d. (4.4b)

Proof. We start by considering the variational approximation of the state
marginal, which is given by

p̃(xk)∝
∫

dXk−1 exp(〈ln p(Xk,�k,Yk)〉)

= exp(〈ln p(yk |xk, θ k)〉)
∫

dXk−1 exp(〈ln p(xk |xk−1, θ k)

× p(Xk−1,�k,Yk−1)〉), (4.5)
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where the above expectations are taken with respect to the unknown pa-
rameters. The second term of the integrand can also be expanded, and by
treating the conditional parameter distributions as constants relative to the
distribution of interest, it can be shown that

p̃(xk) ∝ exp(〈ln p(yk |xk, θ k)〉)
∫

dxk−1

(
exp(〈ln p(xk |xk−1, θ k)〉)

×
[

exp(〈ln p(yk−1|xk−1, θ k−1)〉)
∫

dXk−2 exp(〈ln p(xk−1|xk−2, θ k−1)〉)

× exp(〈ln p(Xk−2,�k−1,Yk−2)〉)
])

. (4.6)

Recall that since the approximate parameter posteriors have been re-
stricted to be conditional on the data up to the instant at which they were
estimated, the distributions of the parameters do not need to be recomputed
using the latest data which is available. In particular for any function ψ(·),

〈ψ(θ k−1)〉p̃(�k ) = 〈ψ(θ k−1)〉p̃(θ k−1|Yk−1),

which was computed at the previous time step. Hence, in comparison to
equation 4.5, it is clear that the terms in the square brackets of equation 4.6
constitute the exact variational posterior marginal of the state at the previous
time instant to give equation 4.4a. Equation 4.4b follows by application of

the chain rule on equation 4.1b where the joint p(Xk−1,�
/θ i

k
k ,Yk−1) is constant

relative to the distribution of interest.

Theorem 1 does not constitute an online algorithm in the strictest sense
since equations 4.4a and 4.4b are evidently coupled, and, as in the offline
case, some form of iteration between the solutions is required for conver-
gence. However, iterations are required only between the marginals at the
last time instant, making the algorithm fast and efficient, and in practice,
few iterations often suffice. It should also be noted that the online algorithm
does not necessarily maximize the variational free energy because the re-
stricted VB assumption is an approximation to the correct update rule.
Based on this result, one can find the update equations for the variational
posteriors of interest.

4.1 Online Update of p̃(Xk). By comparing equation 4.1a to equation
3.1a, it is evident that p̃(Xk) is updated exactly in the same way as in the
offline case, with these two differences:

� The expectations in this case are taken with respect to the parameters
at the latest time instant.
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� From equation 4.4b, it is evident that only the variational posteri-
ors over the pair (xk, xk−1) are required to be evaluated at each time
step.

The parameter distribution updates require the smoothed distribution
of xk−1 at each time instant and the cross-covariance between (xk, xk−1) (see
section A.2). The required sufficient statistics are denoted as

Uk = I 2
k , Gk = Ik〈xk−1〉, Mk = Ik〈xk〉, Wk = 〈x2

k−1〉, Sk = 〈xk xk−1〉.

4.2 Online Update of p̃(θ k). The variational posteriors can be obtained
using similar computations to those for the offline case. The only alteration
is the time evolution of the parameters driven by the noise ek . Following
standard practice in signal processing (Wan & Nelson, 2001), ek is modeled
to have zero mean and slowly varying variance,

〈
ei2

k

〉 = (ηi )−1σ 2
θ i

k−1
, i = 1, . . . , d,

where the term ηi ∈ (0, 1], i ∈ {α, ρ, μ, β1, β2, . . . , βC } is a user-defined for-
getting factor. Effectively the prior is no longer fixed (although an additional
fixed prior can be introduced); rather, according to the parameter evolution
equation, it is a gaussian distribution with the mean of the previous estimate
and a precision weighted by η.

4.2.1 Online Update of p̃(αk). The joint distribution p̃(ρk, αk) is first found
from equation 4.4b. The conditional distribution may then be obtained from
p̃(ρk, αk) = p̃(ρk |αk) p̄(αk). Ignoring terms independent of ρk , this is given
as

ln p̃(ρk |αk) = 〈ln p(ρk |ρk−1)〉 + 〈ln p(xk |xk−1, ρk, αk)〉,

from which the following expressions are obtained:

σ 2
ρk |αk

=
[

1
ηρ−1

σ 2
ρk−1

+ Wk

σ 2
ε

]−1

,

(4.7)

〈ρk〉p̃(ρk |αk ) = σ 2
ρk |αk

[
Sk

σ 2
ε

+ ρ̂k−1

ηρ−1
σ 2

ρk−1

− αk Gk

σ 2
ε

]
.
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The marginal p̃(αk) may be found by marginalizing ρk from the
p̃(ρk |αk) p̄(αk). This is given by

σ 2
αk

=
(

1
ηα−1

σ 2
αk−1

+ Uk

σ 2
ε

− σ 2
ρk |αk

G2
k

σ 4
ε

)−1

,

α̂k = σ 2
αk

(
α̂k−1

ηα−1
σ 2

αk−1

+ Mk

σ 2
ε

− Gk

σ 2
ε

[ Skσ
2
ρk |αk

σ 2
ε

+ σ 2
ρk |αk

ρ̂k−1

ηρ−1
σ 2

ρk−1

])
. (4.8)

4.2.2 Online Update of p̃(ρk). The statistics over ρk are obtained by
marginalizing αk from the joint distribution as

p̃(ρk) =
∫

dαkp̃(ρk |αk)p̃(αk).

The variational posterior p̃(ρk |αk) is computed from equation 4.7, and
p̃(αk) is known from equation 4.8. The marginalization is straightforward to
give the following expressions:

σ 2
ρk

= σ 2
ρk |αk

+ σ 2
αk

σ 4
ρk |αk

G2
k

σ 4
ε

,

ρ̂k = σ 2
ρk |αk

[
Sk

σ 2
ε

+ ρ̂k−1

ηρ−1
σ 2

ρk−1

− Gk α̂k

σ 2
ε

]
.

4.2.3 Online Update of p̃(μk). Following equation 4.4b and ignoring terms
independent of μk , we have that

ln p̃(μk) =〈ln p(μk |μk−1)〉 + 〈ln p(yk |xk, μk,βk)〉,

=−〈(μk − μk−1)2〉
2ημ−1

σ 2
μk−1

+
〈

C∑
c=1

yc
k

[
μk +βc

k xk
]−exp(μk) exp(βc

k xk)�

〉
,

where the state evolution density is omitted since it is independent of μk . On
expanding and approximating around μ̂k , the following update equations
are obtained:

μ̂k = μ̂k−1 + ημ−1
σ 2

μk−1

C∑
c=1

(
yc

k − �
〈
exp

(
βc

k xk
)〉

exp(μ̂k)
)
,

σ 2
μk

=
(

ημσ−2
μk−1

+ � exp(μ̂k)
C∑

c=1

〈
exp

(
βc

k xk
)〉)−1

.



Online Variational Bayesian Approach with Point-Process Observations 1979

4.2.4 Online Update of p̃(βc
k ). Following the same reasoning as that for

updating p̃(μk) the resulting equations are given as

β̂c
k = β̂c

k−1 + ηβ−1
σ 2

βc
k−1

(
yc

k 〈xk〉 − �〈exp μk〉 d
dβc

k

[〈exp xkβ
c
k 〉
]∣∣

βc
k =β̂c

k

)
,

σ 2
βc

k
=
(

ηβc
σ−2

βc
k−1

+ �〈exp μk〉
[

d2

dβc2

k

〈exp xkβ
c
k 〉
∣∣
βc

k =β̂c
k

])−1

.

5 Results

5.1 Multiple Point-Process Outputs Driven by a Shared Underlying
State. We first considered the offline inference problem illustrated by Smith
and Brown (2003) and Yuan and Niranjan (2010), where outputs from mul-
tiple neurons sharing a common hidden state were simulated. We set the
number of neurons C = 20 and considered the response to a spike input
applied every 1 s over a time interval of T = 10 s with a sampling rate of 100
Hz. We set ρ = 0.8, α = 4, μ = 0, and βc to a randomly generated number
in the interval [0.9 1.1].

All priors on the parameters and states, except for that over βc , were
set to normal distributions with variances: σ 2

ρp
= 5, σ 2

αp
= 50, σ 2

μp
= 1. The

prior over βc was set to a normal distribution centered at 1 with a 99%
confidence between 0.7 and 1.3; this was done to remedy the identifiability
issues stemming from the fact that the likelihood, equation 2.3, involves only
the product βc xk (a problem related to the parameter offsetting observed
by Smith & Brown, 2003).

The estimation of the state variational posterior describing the latent
process using the VBEM algorithm can be seen in Figure 1, where at each
time step, the variational posterior’s mean and 99% confidence limits are
given. Graphical results for the corresponding estimation of the 23 unknown
parameters are in Figure 2, showing rapid convergence to good estimates.

We further compared our results to those obtained using EM (Smith &
Brown, 2003) and those given by a Gibbs sampler on the same data set (see
appendix C). To avoid identifiability issues, we also ran experiments with
β fixed to its true value. Table 1 shows that all methods are effective in
estimating parameters for these data, with Gibbs and VBEM also providing
confidence intervals that are in good agreement with the true values. It took
5 s for the EM algorithm (50 iterations), 12 s for the VBEM algorithm (50
iterations), and 279 s for the Gibbs sampler (5000 iterations) to converge.1

A more informative test of the model’s performance is its ability to
capture the spike train distribution. A quantitative measure of this can

1Simulations carried out on an Intel Core 2 Quad Q6600 @ 2.40 GHZ with 4 GB of
RAM.
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Figure 1: True state (continuous unmarked line) and mean estimated state
(marked line) as given by the batch VB algorithm in the final iteration. The
true state lies consistently within the 99% confidence intervals (dashed line).

Figure 2: Mean estimates (continuous varying line) and 99% confidence inter-
vals (dashed line) over 100 VBEM iterations for the parameters (a) ρ, α, μ and
(b) βc, c = 1, . . . , 20 using the batch VB algorithm. The parameters converge
in distribution to reasonable estimates regardless of the initial conditions, and
the true (solid level line) values are seen to lie well within the 99% confidence
intervals at steady state.
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Table 1: Parameter Estimation by the EM Algorithm, Gibbs Sampler, and VBEM
Algorithm.

θ True EM Gibbs VBEM VBEM (free β)

ρ 0.80 0.82 0.79 ± 0.06 0.79 ± 0.03 0.79 ± 0.03
α 4.00 4.08 3.81 ± 0.48 4.04 ± 0.22 4.07 ± 0.22
μ 0.00 −0.19 0.06 ± 0.24 0.01 ± 0.14 0.02± 0.14
avr(β) 1.00 - - - 0.99 ± 0.19

Note: Unless stated, β was fixed to the true value during simulation.

Table 2: Mean Squared Maximum KS Distances for the 20 Neurons with Dif-
ferent Event-Rate Models (Lower Is Better) for One Data Set.

Gibbs VBEM EM VBEM (free β) EM (free β) SW

MSE 0.0046 0.0058 0.0076 0.0077 0.0136 0.0336

Note: Unless stated, β was fixed to the true value during simulation.

be achieved using the time-rescaling theorem of Brown, Barbieri, Ventura,
Kass, and Frank (2002) in conjunction with a Kolmogorov-Smirnov (KS)
test, following the same procedure as Smith and Brown (2003) and Barbieri,
Matten, Alabi, and Brown (2005). As a goodness-of-fit measure, the mean
squared maximum distance between the model rate and the true rate over
all output channels was found. The results for this KS measure on a syn-
thetic data set are given in Table 2. For completeness we also compare with
a sliding window (SW) empirical rate estimator of 100 ms width, which is
often used in these applications (Riehle, Grün, Diesmann, & Aertsen, 1997).
The Bayesian methods (VBEM and Gibbs sampler) obtain a considerably
better goodness of fit than the EM algorithm (which, in turn, is much better
than the simple SW heuristic), indicating that retaining distributional infor-
mation over the parameters leads to an improvement in the modeling of the
spike distribution. To further validate the result, we ran a two-sample t-test
on the KS measures from 20 different data sets. The mean-square maximum
KS distance for all these runs was 0.0070 for the VBEM algorithm (fixed β)
and 0.0089 for the EM algorithm (also with fixed β). The test rejected the
null hypothesis that the decrease in error occurred by chance at the 5%
significance level.

5.2 Online Parameter Tracking from Point-Process Observations. In
this section we present a simulation study of the VB online algorithm
derived in section 4. The nature of the data typical in these types of models
requires some further intervention for correct estimation when using filters.
In regions where no input is present, the observed events in the output are



1982 A. Zammit Mangion et al.

Figure 3: Selective updating of parameter estimates in an online framework is
carried out in accordance with the areas where the state bears most information
about the relevant parameters of interest. In this case, the narrow stretch close
to an input spike bears a lot of information on the state decay factor ρ and the
input gain α. The noise parameters μ and σ 2

ε are more evident in regions of no
input.

predominantly due to the background firing rate μ and state noise σ 2
ε , and

there is little or no information about ρ and α in these regions. On the other
hand, the deterministic component of the hidden state governs the output
in time intervals close to an input. In these areas, there is significant infor-
mation about ρ and α. Parameter distributions were thus updated only in
regions where there is ample information about the relevant parameters, as
illustrated in Figure 3. This procedure is standard in online filtering in other
areas, such as speech enhancement by spectral subtraction, in which noise
levels are estimated in regions of the signal where speech is not present (Boll,
1979).

For this study, we assumed C = 20 and that β and μ were predetermined
from a previous offline analysis and assumed to be constant. The choice
of the forgetting factors was carried out by trial and error such that a
parameter change could be tracked without compromising stability in the
online estimates. We subsequently chose ηρ = 0.8 and ηα = 0.9. The dual
VB filter was compared to a standard particle filter (PF), which makes
use of an augmented state vector zk = [xk, ρk, αk]T and implements what
is effectively a standard sequential importance sampling with resampling
(SISR) algorithm (see Kitagawa, 1998; Doucet, de Freitas, & Gordon, 2001;
de Freitas, Niranjan, Gee, & Doucet, 2000). The prior distribution was chosen
as the importance distribution so that the weights were updated in time
according to the likelihood. That is, if w

(i)
k denotes the weight of the ith
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particle at time k and z(i)
k the ith particle at time k, the weight update is

given as

w
(i)
k ∝ w

(i)
k−1 p

(
yk |z(i)

k

)
.

The selective estimation process described was adapted to the PF by
using selective SISR, as shown in Figure 4. In this figure, the case where
only the input gain αk and the state xk are to be estimated at one time
instant is shown. In regions where αk does not affect the likelihood (or im-
portance factor), propagation and subsequent resampling take place only in
the state-space. The respective parameter marginal distribution is retained
and propagated through time unchanged. Formally, after resampling, in
this region, we have that the full joint distribution is given by

p(αk, xk |Yk) ≈ 1
N

N∑
i=1

δ

(
xk − x(i)

k

αk − α
(i)
k−1

)

and the subsequent marginal distribution by

p(αk |Yk) =
∫

dxk p(αk, xk |Yk) ≈ 1
N

N∑
i=1

δ
(
αk − α

(i)
k−1

) ≈ p(αk−1|Yk−1),

where N denotes the number of particles and δ(·) the delta Dirac mass. The
result for the successful tracking of a sudden change in the true value of
ρ from 0.8 to 0.6 by both the VB filter, and the PF with N = 5000 particles,
is shown in Figure 5 (the number of particles chosen was the minimum
required for consistent posterior distribution approximations across several
trials). The results corroborate each other, indicating that the VB filter gives
a realistic description of what can be termed the ground truth.2 Complete
results are shown in Table 3. Despite the parameter distributions estimated
being very similar, the PF took on the order of 10 times longer than the VB
filter to execute. Indeed, the computational time required by the PF in this
example was more than the duration of the data stream itself, rendering it
impractical for the real-time application of this case study scenario.

5.3 Online Characterization of Taste Stimuli. As an example applica-
tion of our online algorithm on real data, we modeled spiking patterns of

2Since filters are particularly sensitive to the chosen parameter evolution model, the
online parameter posterior distribution is highly dependent on the forgetting factor in the
VB filter and the corresponding parameter noise statistics in the PF. In the latter case, the
variance was tuned to give a similar learning rate as that of the VB filter.
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Figure 4: (Top) The likelihood function is used to appropriately weight the par-
ticles (P#) representing the posterior distribution, which are then resampled into
N particles of equal weight. (Bottom) In this case, the likelihood is practically
independent of αk , and thus the weighing and resampling steps depend solely
on the xk component of the particles. In order to maintain the posterior distribu-
tion with fewer particles than would be necessary otherwise, the prior particle
parameter set is redistributed after resampling, with equal weight among the
resampled particles. The figures (top) and (bottom) correspond to the two areas
marked in Figure 3, respectively (likelihood surfaces shown are for illustration
only and do not represent actual surfaces).
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Figure 5: Online tracking of a sudden change in the true parameter (level black
line) ρ at time t = 500 s. In this example, μ and β were assumed constant
and known from previous offline analysis of the system. The 99% confidence
intervals (outer traces) are seen to enclose the true value on the filter reaching a
steady behavior for both the (left) VB filter and (right) particle filter with 5000
particles.

Table 3: Comparison Between the VB Filter and a PF for SSPP with 5000 Par-
ticles.

ρ α mean(ρ̂k ) mean(σρk ) mean(α̂k ) mean(σαk )

VB (t ≤ 500) 0.8 3.5 0.799 0.037 3.52 0.13
PF (t ≤ 500) 0.797 0.031 3.49 0.12
VB (t > 500) 0.6 3.5 0.607 0.041 3.51 0.12
PF (t > 500) 0.602 0.049 3.49 0.10

taste response cells in the nucleus tractus solitarii (NTS) of Sprague-Dawley
rats following the application of different taste stimuli (di Lorenzo & Victor,
2003). The attraction of the online approach is that it provides a method for
stimulus chemical discrimination by tracking changes in underlying pa-
rameters on the presentation of different stimuli. The experimental data
were obtained from trials where different compounds dissolved in distilled
water were delivered to the oropharyngeal area. Taste-evoked spike train
data used in this study were delivered via neurodatabase.org, a neuroin-
formatics resource funded by the Human Brain Project.

Although the SSPP was primarily developed for implicit stimuli, it pro-
vides a neat way of parameterizing a dynamic CIF to model variable-rate
neural responses to explicit stimuli. Such is the case considered here, where
ample evidence suggests that for some of the cells in the NTS, rate coding is
used for interstimulus discrimination (Roussin, Victor, Chen, & di Lorenzo,
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2008).3 Some of these are so finely tuned to different stimuli that one can
use spike count alone to discriminate between different tastes (e.g., cell 9 in
the study). Others are not so finely tuned, and spike count cannot be used
to discriminate between the tastants (e.g., cell 11). Nonetheless, spike count
gives no information on the time-varying event rate (or the rate envelope)
itself. Moreover, many alternatives (such as the conventional sliding win-
dow) do not provide a plausible model for the underlying neural dynamics.
The SSPP applied to these cells can give not only the descriptive powers
required for taste discrimination but also additional information that may
be of physiological use. Here we also show how the VB filter can infer the
varying SSPP parameters governing the underlying dynamics, which for
the same neuron appear to vary in a structured manner with the application
of different stimuli.

Each experimental trial consisted of three phases: (1) a 10 s baseline pe-
riod in the absence of any stimulus, (2) 5 s of stimulus presentation, and (3)
a 5 s wait. Each trial was separated by rinsing and a 1.5 min wait. The data
used in the analysis were those recorded in the second and third phases
(10 s segments) in which the neural response to the four tastants used—
NaCl, HCl, quinine, and sucrose (each of which represents a different taste
quality; salty, sour, bitter and sweet, respectively)—is present. The learn-
ing data set was formed by first grouping the 10 s segments according to
stimulus and then concatenating them into four sets (one per stimulus).
Combinations of these spike trains were then joined together to form the
data sets on which learning was carried out.

Data were gathered at a resolution of 1 ms, and we hence initially or-
ganized the spikes into bins of � = 1 ms such that the condition shown
in equation 2.1 was satisfied. However, we then increased the bin size to
� = 10 ms to speed up the algorithm. This resulted in some bins (less
than 5%) containing more than one output spike (e.g., for cell 9, max-
imum HCl with 3.4% and minimum sucrose with 1.5%), which were
subsequently repositioned to the closest empty bin in forward time. Pre-
analysis of the data was carried out by studying the poststimulus his-
tograms (PSTHs) of the responses to the four stimuli. These histograms
suggested an approximate linear increase in firing rate for the first 250 ms
and also a response latency that was not considered in the simulation study.
To cater for these effects, we treated the input signal as a pulse of width
250 ms.

It was evident from preliminary studies that the dominant rate coding
characteristics that differed across tastants were attributed to the input gain
α and the background firing rate μ. We thus chose to monitor these two

3As opposed to temporal coding, where the specific arrangement in time is of particular
relevance to discrimination and deemed to play an important role, particularly in the
initial (phasic) phase of the response.
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Figure 6: A 20 s segment of training data taken from the cell 9 response to NaCl.
The time duration shown spans across two trials with the rinsing and phase 1
periods removed. The estimated state (dashed line) and probability of a spike
occurring (solid line) are seen to be indicative of the frequency of spike events
(shown on the bottom axis).

parameters online (in addition to the underlying state) in order to study
the response behavior while discriminating among the tastants in real time.
With the use of offline methods, we chose to fix the unknown parameters
β = 0.5, σ 2

ε = 0.05, and ρ = 0.97, which was representative of all tastants.
The dual VB filter was, however, found to be robust and resistant to changes
in state noise and fixed parameter estimates. The relevant forgetting factors
were set to ημ = 0.999 and ηα = 0.9, respectively.

As discussed in section 5.2, to ensure identifiability, the online parameter
updates were carried out only in the regions where ample information is
present, so that α was updated only in regions of input application and
μ in regions between the application of the respective inputs. We show
a representative filtered state and output probability of a spike occurring
for the tastant NaCl in cell 9 in Figure 6. Note how the firing probability
adequately captures the behavior of the spike train.

The changes in both α and μ were very evident across the different
experiments. In some cases, monitoring μ is sufficient to characterize the
difference in response to different tastants (see Figure 7 for a comparison of
sucrose with HCl in cell 9). However, this is not the general case, as shown
by the trajectories of the mean parameter estimates of α and μ in Figures
8 and 9. For instance, while μ seems to vary across tastants in cell 9 (see
Figure 8), the background firing rates in response to NaCl and HCl for cell
11 are fairly similar (see Figure 9). It is the input gain α that is different
between these two responses. When the parameters μ and α are monitored,
the responses cluster in distinct and separate regions characteristic of the
stimulus being applied.

It is also interesting to note that except for sucrose, neither response
can be considered to be passive, that is, with both a low α and a low μ.
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Figure 7: Tracking the mean (solid) and corresponding 99% intervals (dashed)
of μ indicating a change in stimulus from HCl to sucrose and back to HCl in
cell 9. The parameter change is indicative of a change in the spike train pattern
(inset) when the stimulus is changed. The solid vertical lines indicate where
the change in applied chemical stimulus took place. For this trial, α was fixed
to 0.1.

Figure 8: Cell 9—temporal progression of the estimated mean of α and μ indi-
cating a change of stimulus from (in order of decreasing contrast) HCl (H) to
sucrose (S) to quinine (Q) to NaCl (N). Although the cell is, overall, less respon-
sive (μ) to quinine, the immediate effect of its application (α) is relatively more
substantial than in the case of both HCl and NaCl. The ellipses define arbitrarily
chosen classification boundaries.
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Figure 9: Cell 11—temporal progression of the estimated mean of α and μ

indicating a change of stimulus from (in order of decreasing contrast) HCl (H)
to NaCl (N) to quinine (Q) to sucrose (S). From this chart, it is evident that α or μ

on their own cannot capture the difference in response to the different tastants.
The ellipses define arbitrarily chosen classification boundaries.

The responses exhibit prominent activity in either the initial stage or the
steady-state stage (the phasic and tonic stages respectively), or both. The
considerable activity in the initial stage even when the overall reponse μ

is low (particularly with quinine), is also somewhat of a testimony to the
hypothesis that the initial neural response to every tastant may contain some
additional information, encoding for instance a measure of taste acceptance
(known as the hedonic value; see di Lorenzo & Victor, 2003).

Finally, we conclude by showing how the online algorithm also man-
ages to accurately give a rate envelope over the responses as indicated
by the multiple overlays on the PSTHs in Figure 10. The VB filter man-
ages to approximate the PSTH in each trial, validating the appropriateness
of this model for characterization of the rate-encoding properties of this
neuron.

6 Discussion

In this letter, we have proposed a variational Bayesian method for filtering
and smoothing within state-space models with point-process observations.
This class of models provides a physiologically plausible signal process-
ing framework for event-based observations and has proved a popular
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Figure 10: The estimated firing rate in spikes per second (sps) from five ran-
domly selected trials (gray) in the online data, overlaying the PSTH (black) of
responses to the respective stimuli, H (HCl), Q (quinine) and N (NaCl) in cell 9.
The approximate firing rate is computed as p(yk = 1|xk, θ k)/�.

framework for analyzing and decoding spike train data. Experiments on
realistic simulated data show that the Bayesian treatment (by either VB
or computationally expensive sampling methods) does indeed lead to an
improvement in the modeling of the spike train distribution while retain-
ing very good accuracy in estimating the parameter posteriors. A major
contribution of this work is the introduction of an online estimation frame-
work. This allows considerable computational savings, potentially paving
the way for real-time biomedical applications. It also allows the monitoring
of online changes in a system mode of operation, as exemplified in our
study of neural responses to different taste stimuli.

Filtering of doubly stochastic point-process may be carried out directly
in continuous time (Snyder & Miller, 1991), in which case the stochas-
tic intensity is generally assumed to be a function of a diffusion (Segall,
Davis, & Kailath, 1975; Solo, 2000). Solutions are given as normalized or
unnormalized conditional intensities that take the form of partial differen-
tial equations. Analytical solutions can be found in special cases, such as
when the intensity is given as the square of an Ornstein-Uhlenbeck process
(Boel & Benes, 1980). Nonetheless, in the general case, computationally ex-
pensive numerical methods are still required for implementation. The case
is similar in discrete time. Manton, Krishnamurthy, and Elliott (1999), for
instance, showed that an exact (strictly) finite-dimensional filter exists for
equation 2.4 with λc

k = (γk xk)2, γk > 0.∀k, but the treatment quickly becomes
intractable for different forms of the intensity. This work, and most of the
literature that focuses on state estimation from point-process observations,
uses models where the parameters are assumed to be known. This motivates
investigation into new, more versatile methods such as that first proposed
by Smith and Brown (2003), now extended into a variational setting in this
letter.

VB provides a neat, deterministic way for approximating the joint pos-
terior distribution online. We have compared the performance of the VB
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filter to a stochastic approximation method through a standard PF and
seen that it performs very well comparatively, with a marked decrease
in computational requirements. Previous to this work, sequential Monte
Carlo (SMC) methods had been applied to the state estimation problem in
the SSPP framework. Ergün et al. (2007) modeled the underlying state dy-
namics by a random walk process, but the underlying parameters were
assumed to be known. The authors introduced point-process adaptive
filters (Eden, Frank, Barbieri, Solo, & Brown, 2004) for proposing new
particles to increase computational efficiency. The method showed good
performance on both a synthetic and a real data set, where the problem
of tracking the evolution of a hippocampal spatial receptive field was
studied. The extension of these results to online parameter learning SMC
approaches (see also Storvik, 2002) was thus a natural step. It should be
noted that the highly linear substructure (through the underlying AR la-
tent process) also allows for Rao-Blackwellized PFs (Doucet, de Freitas,
Murphy, & Russell, 2000) to be applied. In this case, the state forward fil-
tering step may by approximated by that of Smith and Brown (2003) or
Fahrmeir and Tutz (1994). However, preliminary results show that even in
this case, SMC methods may still prove to be too time-consuming for any
interesting biomedical application where data need to be handled in real
time.

Online variational Bayes was first proposed for model selection of static
conjugate-exponential (CE) models by Sato (2001), where the recursive up-
dates at each time step describe the solution to successive maximizations
of a discounted free energy. Unlike the online VB algorithm presented
here, Sato’s approach has the advantage that the algorithm behaves as a
stochastic approximator for the maximum expected free energy for a fixed
number of data points, obviating the requirement of VB iterations at each
datum. However, Sato’s algorithm relies on the favorable properties of the
family of static CE models that SSPP clearly do not form part of. More-
over, it is envisioned that the algorithm proposed in this work will find
potential in application to a continuous stream of data, where the maxi-
mization of a fixed objective functional loses its appeal. In the proposed
solution, we have made use of a static forgetting factor to discount the use
of “old” information in the estimation process. This bears similarity to the
time-varying discount factor for variable learning rate as used in Sato’s
work.

The application to online tracking suggests naturally an extension to
consider state-space models with switching parameters, which would for-
mally incorporate abrupt changes in mode of operation into the model.
These have proved a popular tool in biomedical applications (see, e.g.,
Quinn, Williams, & McIntosh, 2008), and would also be suitable for the
application described in section 5.3. This additional complexity is likely,
however, to come at some computational cost. A further interesting ex-
tension would be to improve on the observation model by using more
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advanced models for spike generation such as integrate and fire; pa-
rameter estimation within these models has recently been explored us-
ing search-type algorithms (MacGregor, Williams, & Lang, 2009), but the
complexity of the likelihood model means that it is likely that consider-
able work will be needed before they can be used in signal processing
applications.

Appendix A: Derivation of the Update Equations for p̃(XK)

A.1 The Forward Pass. Initialize x0|0 and set σ 2
0|0 = κ where κ is indica-

tive of the uncertainty on the initial state. The forward pass is given by Beal
(2003),

p(xk |Yk) ∝
∫

dxk−1 p(xk−1|Yk−1) exp 〈ln p(xk |xk−1, θ )p(yk |xk, θ )〉,

where p(xk |xk−1, θ ) = Nxk (ρxk−1 + α Ik, σ 2
ε ) and p(xk−1|Yk−1) =

Nxk−1 (xk−1|k−1, σ
2
k−1|k−1). The product p(xk−1|Yk−1) exp 〈ln p(xk |xk−1, θ )〉

is normal in xk−1 with precision σ−2
k−1 = σ−2

k−1 + 〈ρ2〉σ−2
ε and mean

xk−1 = σ 2
k−1(xk−1|k−1σ

−2
k−1|k−1 + 〈ρ〉xkσ

−2
ε − 〈ρα〉Ikσ

−2
ε ).

Marginalizing out xk−1, we get

p(xk |Yk) ∝ Nxk (x̃k, σ̃
2
k ) exp(〈ln p(yk |xk, θ )〉),

where σ̃−2
k = σ−2

ε − 〈ρ〉2σ 2
k−1σ

−4
ε , and

x̃k = σ̃ 2
k

(
σ 2

k−1〈ρ〉σ−2
ε [xk−1|k−1σ

−2
k−1|k−1 − 〈ρα〉Ikσ

−2
ε ] + 〈α〉Ikσ

−2
ε

)
.

Since the observation equation is nonlinear, we choose to approximate
the product of the distributions to a gaussian with Laplace’s method so that

Nxk

(
x̃k, σ̃

2
k

)
exp(〈ln p(yk |xk, θ )〉) ≈ Nxk

(
xk|k, σ 2

k|k
)
,

where, we recall,

p(yk |xk, θ ) =
C∏

c=1

� exp(μ + βc xk)yc
k exp(− exp(μ + βc xk)�).

As shown in the main text, a nonlinear optimizer is needed to evaluate xk|k .
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A.2 The Backward Pass. Initialize with σ ∗2 = κ where κ is large and
x∗

K = xK |K if carried out after the forward pass (see below). The backward
pass is given by the recursion as in Beal (2003),

p(yk+1:K |xk) =
∫

dxk+1 p(yk+2:K |xk+1)

× exp 〈ln p(xk+1|xk, θ )p(yk+1|xk+1, θ )〉,

where p(xk+1|xk, θ ) = Nxk+1 (ρxk + α Ik+1, σ 2
ε ) and p(yk+2:K |xk+1) =

Nxk+1 (x∗
k+1, σ ∗2

k+1). We find p(yk+2:K |xk+1) exp(〈ln p(yk+1|xk+1, θ )〉) ≈
Nxk+1 (x′

k+1, σ ′2
k+1) by taking the quadratic Taylor expansion around an

arbitrary x̂k+1 to obtain the expressions

x′
k+1 = x̂k+1 + σ ′2

k+1

(
x∗

k+1 − x̂k+1

σ ∗2

k+1

+
C∑

c=1

{
〈βc〉p̃(βc ) yc

k+1

−�〈exp μ〉p̃(μ)
d

dxk+1

[〈exp xk+1β
c〉p̃(βc )

]∣∣
xk+1=x̂k+1

})
,

σ ′2
k+1 =

(
σ ∗−2

k+1+
C∑

c=1

{
�〈exp μ〉p̃(μ)

d2

dx2
k+1

[〈exp xk+1β
c〉p̃(βc )]|xk+1=x̂k+1

})−1

.

The choice of x̂k+1 bears a lot of weight on the performance of the al-
gorithm. One can set x̂k+1 = x′

k+1, resulting in a nonlinear optimization
problem. Or, one can linearize around the filtered estimate xk+1|k+1 instead,
and this is what is done in the main text. The advantage is that no nonlinear
optimization is required to compute the backward pass; the drawback is
that the backward pass can no longer be carried out in parallel with the
forward pass.

The next step is to find the product of this approximate distribution with
exp(〈ln p(xk+1|xk, θ )〉), which is easily shown to be proportional to

exp
(−x2

k+1(σ−2
ε + σ ′−2

k+1)/2 + xk+1
[〈ρ〉xkσ

−2
ε + 〈α〉Ik+1σ

−2
ε + x′

k+1σ
′−2
k+1

]
−〈ρ2〉x2

k σ−2
ε /2 − 〈ρα〉xk Ik+1σ

−2
ε

)
.

The required normal distribution in xk with mean x∗
k and variance σ ∗2

k is
found by marginalizing out xk+1. The smoothed estimate is computed by
considering the product distribution of the forward pass and the backward
pass. In particular, we find that

p(xk |YK ) ∝ p(xk |Yk)p(yk+1:K |xk).
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Since this is a product of gaussian distributions, the state estimate condi-
tioned on all the data can be found and can be readily computed in the
backward pass if this is carried out sequential to the forward pass. The
results are shown in the main text. The pairwise marginals are given as

p (xk, xk+1|YK ) ∝ p(xk |YK )p(yk+2:K |xk+1)

× exp(〈ln p(xk+1|xk, θ ) p(yk+1|xk+1, θ )〉).

We expand the logarithm of this quantity and approximate it to a multi-
variate normal distribution about the smoothed state estimate. The required
second moment is then found by adding the product of the smoothed pair
to the cross-covariance. The result is shown in the main text.

Appendix B: Derivation of the Update Equations for p̃(μ) and p̃(β)

B.1 Batch Update of p̃(μ). The variational posterior over μ, ignoring
terms independent of μ, is given by

ln p̃(μ) = ln p(μ) +
〈

C∑
c=1

K∑
i=1

yc
i [μ + βc xi ] − exp(μ) exp(βc xi )�

〉
,

where p(μ) is the prior over μ with mean μp and variance σ 2
p . We restrict

the variational posterior to be gaussian with mean μ̂ and variance σ 2
μ. By

application of the standard Laplace method, we obtain the expressions
given in the main text. In these expressions it is required to evaluate the
quantity 〈exp(xiβ

c)〉. From moment-generating functions, we know that

∫
exp(xiβ

c)Nxi (xi |K , σ 2
i |K )dxi = exp(xi |K βc + σ 2

i |K βc2
/2).

However, we are concerned with the quantity

〈exp(xiβ
c)〉 =

∫
dxi

[∫
dβcNβc (β̂c, σ 2

βc )

]
Nxi (xi |K , σ 2

i |K )

=
∫

dxi exp(β̂c xi + σ 2
βc x2

i /2)Nxi (xi |K , σ 2
i |K )

= 1√
2πσ 2

i |K

∫
dxi exp(β̂c xi + σ 2

βc x2
i /2 − (xi − xi |K )2/2σ 2

i |K ).
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After marginalizing out xi and some algebraic manipulation, the final
result is

〈exp(βc xi )〉p̃(XK )p̃(βc ) =
√

1
1 − σ 2

βc σ
2
i |K

exp

(
x2

i |K σ 2
βc +β̂c 2

σ 2
i |K + 2β̂c xi |K

2(1 − σ 2
βc σ

2
i |K )

)
.

B.2 Batch Update of p̃(β c). The variational posterior over βc , ignoring
terms independent of βc , is given by

ln p̃(βc) = ln p(βc) +
〈

K∑
i=1

yc
i [μ + βc xi ] − exp(μ) exp(βc xi )�

〉
,

where p(βc) denotes the prior over βc . Effecting the required derivatives,
we once again restrict the variational posterior to be gaussian with mean
and variance as given in the main text. The expectations required in this
case are those of log-normal distributions, which are easy to compute. In
particular, we have

〈exp(βc xi )〉p̃(XK ) = exp(βc xi |K + βc2
σ 2

i |K /2)

and 〈exp(μ)〉p̃(μ) = exp(μ̂ + σ 2
μ/2).

Appendix C: Gibbs Sampler for SSPP

Unlike with variational methods, in a full Bayesian treatment for the SSPP,
we attempt to find the full joint distribution of the underlying states and
parameters given the observations (p(XK , θ |YK )) by employing Markov
chain Monte Carlo (MCMC) approximation methods. The Gibbs sampler
is a standard technique used when approaching this problem (Carter and
Kohn, 1994; Geweke & Tanizaki, 2001) by iteratively drawing samples from
two conditional probability distributions; p(XK |YK , θ ) and p(θ |YK ,XK ).

For sampling the latent states, the distribution p(XK |YK , θ ) can be found
by sequentially drawing samples from p(xk |X /k

K ,YK , θ ), where X /k
K denotes

the joint XK without xk , and k = 1, . . . , K . It is easy to show that

p (xk |X /k
K ,YK , θ ) (C.1)

∝

⎧⎪⎨
⎪⎩

p(xk |xk−1, α, ρ, σ 2
ε )p(xk+1|xk, α, ρ, σ 2

ε )
∏C

c=1 p(yc
k |xk, μ, βc)

k = 1, . . . , K − 1

p(xk |xk−1, α, ρ, σ 2
ε )
∏C

c=1 p(yc
k |xk, μ, βc) k = K .

In a similar fashion to the estimation of the state distribution, the param-
eters posterior distribution p(θ |YK ,XK ) is approached by single-site up-
dates, where parameters are updated one at a time. These conditionals are
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given as

p(ρ|Yk,XK , α, σ 2
ε , μ,β) ∝

K∏
k=1

p(xk |xk−1, ρ, α, σ 2
ε )p(ρ), (C.2)

p(α|Yk,XK , ρ, σ 2
ε , μ,β) ∝

K∏
k=1

p(xk |xk−1, ρ, α, σ 2
ε )p(α), (C.3)

p(μ|Yk,XK , ρ, α, σ 2
ε ,β) ∝

C∏
c=1

K∏
k=1

p(yc
k |xk, μ, βc)p(μ), (C.4)

p(βc |Yk,XK , ρ, α, σ 2
ε , μ) ∝

K∏
k=1

p(yc
k |xk, μ, βc)p(βc). (C.5)

In this work, the prior for each parameter is set to be the uniform distri-
bution. The Gibbs sampler for the above conditional distributions is shown
in algorithm 1. Clearly for the SSPP, it is not possible to directly draw sam-
ples from the above distributions. We hence use the Metropolis-Hastings
algorithm with a random walk proposal (as in Geweke & Tanizaki, 2001)
to overcome such a difficulty.4

We tested our Gibbs sampler based on synthetic data with the parameters
set as in the main text. Figure 11 shows that the Gibbs sampler is able to
converge within a burn-in period of 3000 iterations.

4 Using the state transition density as the proposal density gives similar results in this
case.
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Figure 11: The trajectory of the Gibbs sampler for the unknown parameters ρ,
α, and μ. The solid level line denotes the true parameter value.
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Šmı́dl, V., & Quinn, A. (2005). The variational Bayes method in signal processing. New
York: Springer-Verlag.
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