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Abstract
A biologically plausible low-order model (LOM)
of biological neural networks is a recurrent
hierarchical network of models of dendritic
nodes/trees, spiking/nonspiking neurons, unsuper-
vised/supervised covariance/accumulative learning
mechanisms, feedback connections, and a scheme
for maximal generalization. These component
models are motivated and necessitated by making
LOM learn and retrieve easily without differenti-
ation, optimization or iteration, and cluster, detect
and recognize multiple/hierarchical corrupted, dis-
torted and occluded temporal and spatial patterns.
A masking matrix for a dendritic tree, whose upper
part comprises model dendritic encoders, enables
maximal generalization on corrupted, distorted and
occluded data. It is a mathematical organization
and idealization of dendritic trees with overlapped
and nested input vectors. A model nonspiking neu-
ron transmits inhibitory graded signals to modu-
late its neighboring model spiking neurons. Model
spiking neurons evaluate the subjective probabil-
ity distribution (SPD) of the labels of the inputs to
model dendritic encoders, and generate spike trains
with such SPDs as firing rates. Feedback connec-
tions from the same or higher layers with differ-
ent numbers of unit-delay devices reflect different
signal traveling times, enabling LOM to fully uti-
lize temporally and spatially associated informa-
tion. Biological plausibility of the component mod-
els is discussed. Numerical examples are given to
demonstrate how LOM operates in retrieving, gen-
eralizing, and unsupervised/supervised learning.

1 Introduction
A learning machine, called a temporal hierarchical proba-
bilistic associative memory (THPAM), was recently reported
[Lo, 2010]. The goal to achieve in the construction of TH-
PAM was to develop a learning machine that learns, with
or without supervision, and retrieves easily without differen-
tiation, optimization or iteration; and recognizes corrupted,
distorted and occluded temporal and spatial information. In
the process to achieve the goal, mathematical necessity took

precedence over biological plausibility. This top-down ap-
proach focused first on minimum mathematical structures and
operations that are required for an effective learning machine
with the mentioned properties.

THPAM turned out to be a functional model of neural net-
works with many unique features that well-known models
such as the recurrent multilayer perceptron [Hecht-Nielsen,
1990; Principe et al., 2000; Bishop, 2006; Haykin, 2009], as-
sociative memories [Kohonen, 1988b; Willshaw et al., 1969;
Nagano, 1972; Amari, 1989; Sutherland, 1992; Turner and
Austin, 1997], spiking neural networks [Maass and Bishop,
1998; Gerstner and Kistler, 2002], and cortical circuit models
[Martin, 2002; Granger, 2006; Grossberg, 2007; George and
Hawkins, 2009] do not have.

These unique features indicated that THPAM might con-
tain clues for understanding the operations and structures
of biological neural networks. The components of THPAM
were then examined from the biological point of view with
the purpose of constructing a model of biological neural net-
works with biologically plausible component models. The
components of THPAM were identified with those of biolog-
ical neural networks and reconstructed, if necessary, into bi-
ologically plausible models of the same.

This effort resulted in a low-order model (LOM) of bi-
ological neural networks. LOM is a recurrent hierarchical
network of biologically plausible models of dendritic nodes
and trees, synapses, spiking and nonspiking neurons, unsu-
pervised and supervised learning mechanisms, a retrieving
mechanism, a generalization scheme, and feedback connec-
tions with delays of different durations. All of these biologi-
cally plausible component models, except the generalization
scheme and the feedback connections, are significantly differ-
ent from their corresponding components in THPAM. More
will be said about the differences.

Note that although a dendrite or axon is a part of a neuron,
and a dendro-dendritic synapse is a part of a dendrite (thus a
part of a neuron), they are treated, for simplicity, as if they
were separate entities, and the word “neuron” refers essen-
tially to the soma of a neuron in this paper.

A basic approximation made in the modeling effort re-
ported here is that LOM is a discrete-time model and all
the spike trains running through it are Bernoulli processes.
The discrete-time approximation is frequently made in neu-
roscience. Mathematically, Bernoulli processes are discrete-
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time approximation of Poisson processes, which are usu-
ally used to model spike trains. The discrete-time assump-
tion seems similar to that made in the theory of discrete-
time dynamical systems as exemplified by the standard time-
discretization of a differential equation into a difference equa-
tion. However, it is appropriate to point out that the discrete
time for LOM and Bernoulli processes is perhaps more than
simply a mathematical approximation.

1. A spike (or action potential) is not allowed to start within
the refractory period of another, violating a basic prop-
erty of Poisson processes. Consecutive spikes in the
brain cannot be arbitrarily close and are separated at
least by the duration of a spike including its refractory
period, setting the minimum time length between two
consecutive time points in a time line.

2. Neuron or spike synchronization has been discovered
in biological neural networks [Von der Malsburg, 1981;
Singer and Gray, 1995]. Such synchronization may orig-
inate from or be driven by synchronous spikes from sen-
sory neurons.

3. If a neuron and its synapses integrate multiple spikes in
response to sensory stimuli being held constant (e.g., an
image fixated by the retina for about 1/3 of a second),
and the neuron generates multiple spikes in the pro-
cess of each of such integrations; different time scales
and their match-up can probably be reconciled for the
discrete-time LOM and Bernoulli processes. Before
more can be said, the discrete-time approximation is
looked upon as part of the low-order approximation by
LOM.

2 Brief Description of LOM
LOM is a layered network of processing units (PUs), which is
actually rather simple in structure and operation. Each PU is
composed of a number of (model) spiking neurons that jointly
output a binary estimate of the label of the image appearing in
the receptive fiels of the PU. Each neuron contains dendrites,
synapses, spiking/nonspiking somas, Hebbian learning mech-
anisms, and generalization schemes, which are of course all
computational models.

As a image appears in the receptive field of a PU, the image
is encoded by the dendrites into a dendritic code. If the outer
product of this code and the label estimate output from the PU
is added to the memories stored in the synapses completing
the unsupervised Hebbian learning of the image input to the
PU, the PU is called a UPU (unsupervised PU). If the label
estimated is replaced with a label provided from outside of
the PU in learning the input image, the supervised Hebbian
learning is completed and the PU is called an SPU (super-
vised PU). Different dendritic codes are orthogonal, allowing
us to decode the dendritic code of the estimated or provided
label for retrieving the same.

2.1 Encoding inputs to neurons
Dendritic trees use more than 60% of the energy consumed
by the brain [Wong, 1989], occupy more than 99% of the
surface of some neurons [Fox and Barnard, 1957], and are

the largest component of neural tissue in volume [Sirevaag
and Greenough, 1987]. Yet, dendritic trees are missing
in deep learning machines (including convolutional neural
networks), associative memories [Kohonen, 1988a; Hinton
and Anderson, 1989; Hassoun, 1993] and models of corti-
cal circuits [Martin, 2002; Granger, 2006; Grossberg, 2007;
George and Hawkins, 2009], overlooking a large proportion
of the neuronal circuit.

A key feature of LOM is a novel model of the den-
dritic encoder. A dendritic encoder that inputs vτ =

[ vτ1 vτ2 vτ3 ]
′ encodes it into the dendritic code

v̆τ by the standard parity function φ as follows:
v̆τ = [0 vτ1 vτ2 φ (vτ2, vτ1) vτ3 φ (vτ3, vτ1)
φ (vτ3, vτ2) φ (vτ3, vτ2, vτ1)]′

A graph showing the dendritic encoder is given in Fig-
ure. 1. For example, [ 1 0 1 ]

′ and [ 0 1 1 ]
′ are

encoded into the codes [ 0 1 0 1 1 0 1 0 ]
′

and [ 0 0 1 1 1 1 0 0 ]
′ respectively. In
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Figure 1: A dendritic encoder.

general, given an input vector vτ = [vτ1, . . . , vτm]
′

to a dendritic encoder, the dendritic code v̆τ of
the vector vτ is [0 vτ1 vτ2 φ (vτ2, vτ1)
vτ3 φ (vτ3, vτ1) φ (vτ3, vτ2) φ (vτ3, vτ2, vτ1)
· · · φ (vτm, · · · , vτ1)]′ Dendritic codes have the orthogo-
nality property: If vτ 6= vt, then

(
v̆τ − 1

21
)′ (

v̆t − 1
21
)

= 0.
If vτ = vt, then

(
v̆τ − 1

21
)′ (

v̆t − 1
21
)

= 2dim vτ−2, where
1 = [ 1 1 · · · 1 ]

′. This key property is proven in
[Lo, 2011]. To avoid curse of dimensionality and enhance
generalization capability, only subvectors of the feature
vector vτ are expanded as above.

2.2 Unsupervised/supervised learning and
memorizing in synapses

Figure. 2 shows the output v̆tj of the dendritic encoder go-
ing through a synapse with weight Dij represented by ⊗ to
reach spiking soma i, whose output at time t is uti.The un-
supervised covariance rule that updates the strength Dij of
the synapse receiving v̆tj and feeding spiking neuron i whose
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Figure 2: Unsupervised covariance learning.

output is uti follows:

Dij ← λDij + Λ (uti − 〈uti〉) (v̆tj − 〈v̆tj〉) (1)

where Λ is a proportional constant, λ is a forgetting factor
that is a positive number less than one, and 〈v̆tj〉 and 〈uti〉
denote, respectively, the average activities of the presynaptic
dendritic node j and postsynaptic spiking neuron i over some
suitable time intervals.

The outputs uti, i = 1, . . . , R, of the R spiking somas can
be assembled into a vector, ut = [ ut1 ut2 · · · utR ]

′,
and the strengths Dij into a matrix D whose i × j-th entry
is Dij . The vector ut is the label of the input vector vt that
is selected in accordance with a probability distribution or
membership function by the neurons for unsupervised learn-
ing [Lo, 2011]. Such selection creates a vocabulary for the
neurons themselves.

The synaptic strengths on the connections from the output
terminals of a dendritic encoder to a single nonspiking neuron
form a row vector C and are updated by the unsupervised
accumulation rule:

C ← λC +
Λ

2
(v̆t − 〈v̆t〉)′ (2)

For supervised learning, the output uti from the spiking
soma i in (1) is replaced with a component wti of the label of
the input vector vt provided from outside the LOM. Note that
the label is that of the feature vector in the receptive field of
soma i.

2.3 Masking Matrices for Generalization
If the vector vτ input to a neuron has not been learned (pos-
sibly due to distortion, corruption and occlusion), it would be
ideal if the largest subvector of xτ that matches at least one
subvector xt stored in theD and C stored in the synapses can
be found automatically and the subjective probability distri-
bution of the label of this largest subvector of xτ can be gener-
ated. This ideal capability is called maximal/adjustable gen-
eralization. Maximal generalization can actually be achieved
by the use of a masking matrix M .

For example, masking the second and fourth components
of 1 = [ 1 1 1 1 1 ]

′ can be done with the multi-
plication diag [ 1 0 1 0 1 ]1 by the masking matrix
diag [ 1 0 1 0 1 ]. Masking certain numbers of bits
and assigning different weights to the corresponding mask-
ing matrices to deemphasize masking large numbers of bits
allow us to achieve maximal/adjustable generalization. De-
tailed description of masking matrices can be found in [Lo,
2011].

2.4 Estimation of labels by Somas
Once a vector vτ is received and encoded by a dendritic en-
coder into v̆τ , v̆τ is made available to synapses for learning
as well as retrieving of the information about the label of the
input vτ . In response to v̆τ , the masking matrix M computes
Mjj (v̆τj − 〈v̆τj〉) for all j. Synapse j for a nonspiking soma
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Figure 3: Nonspiking soma and spiking soma k.

then computes cτj = CjMjj (v̆τj − 〈v̆τj〉), for all j, where
Mjj is the j-th diagonal entry of M . As shown in Figure. 3,
the model nonspiking soma sums up cτj to obtain the graded
signal cτ . Note that the synaptic weight vector C is defined
in (2). Because of the orthogonality property of v̆τ , t = 1,
..., T ; cτ is an estimate of the total number of times v̆τ has
been encoded and stored in C. The inhibitory output −cτ is a
graded signal transmitted to each of the mentioned R spiking
neurons that generate a point estimate of the label rt of vτ .

The model spiking soma k is also depicted in Figure.
3. The entries of the jth row Dj of D are the weights or
strengths of the synapses for the jth spiking neuron. In re-
sponse to v̆τ produced by the dendritic encoders, the mask-
ing matrix M and synapses for the jth spiking neuron com-
pute Mjj (v̆τj − 〈v̆τj〉) and dτkj = DkjMjj (v̆τj − 〈v̆τj〉),
respectively. As shown in Figure 3, the jth spiking neuron
(a model spiking neuron) sums up dτkj to obtain the graded
signal dτk =

∑
j dτkj .

Because of the orthogonality property of v̆τ ; dτk is an es-
timate of the total number of times vτ has been encoded and
stored in Dk with the kth component rτk of rτ being 1 minus
the total number of times vτ has been encoded and stored in
Dk with the kth component rτk of rτ being 0. The effects
of M , λ and Λ are included in computing said total numbers,
which make dτk only an estimate.

Recall that cτ is an estimate of the total number of times
vτ has been learned regardless of its labels. Therefore,
(cτ + dτk) /2 is an estimate of the total number of times vτ
has been encoded and stored with the kth component rτk of



rτ being 1. Consequently, (dτk/cτ + 1) /2 is the subjective
probability pτk that rτk is equal to 1. The kth spiking neu-
ron then uses a pseudo-random generator to generate 1 with
probability pτj and 0 with probability 1− pτj . This 1 or 0 is
the output of the kth spiking neuron. Biological justification
of the model nonspiking and spiking somas are provided in
[Lo, 2011].

Note that the vector pτ = [ pτ1 pτ2 · · · pτR ]
′ is a

representation of a subjective probability distribution of the
label rτ of the input vector vτ . A pseudorandom ternary num-
ber generator in the jth spiking neuron uses pτj to generate an
output denoted by v {pτk} as follows: v {pτk} = 1 with prob-
ability pτk, and v {pτk} = −1 with probability 1− pτk. Note
also that the outputs of the R spiking neurons in response to
vτ form a binary vector v {pτ}, which is a point estimate of
the label rτ of vτ .

2.5 Processing Units (PUs)
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Figure 4: Unsupervised or supervised processing unit (UPU or
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LOM organizes a biological neural network into a recur-
rent network of PUs (processing units). A schematic diagram
of a PU is shown in Figure. 4, which shows how dendritic en-
coders, synapses, a nonspiking soma, R spiking somas, and
learning and retrieving mechanisms are integrated into a pro-
cessing unit (PU). The vector vτ input to a PU is first ex-
panded by dendritic encoders into a dendritic code v̆τ . v̆τ
is used to compute cτj and dτkj using the synaptic weights
Cj and Dkj respectively. The nonspiking soma in the PU
computes the sum

∑
j

cτj , and the kth spiking soma com-

putes
∑
j

dτkj and pτk =

(∑
j

dτkj/
∑
j

cτj + 1

)
/2, which

is the relative frequency that the kth digit of the label of
vτ is +1. By a pseudo-random generator, the kth spiking
soma outputs v {pτk}, which is +1 with probability pτk and
is −1 with probability 1 − pτk, for k = 1, ..., R. v {pτ} =
[ v {pτ1} · · · v {pτR} ]

′ is a point estimate of the label
of vτ . Note that use of weights in the masking matrices can
facilitate max-pooling of dendritic encoders in the computa-
tion of pτk [Lo, 2011].

The green lever circled with the red solid line indicates that
the estimated label v {pτ} is used for unsupervised learning.
In this case, the PU is a unsupervised PU (UPU). If the green
lever is placed in the position circled with the blue dashed

line, then the handcrafted rτ is used for supervised learning,
and the PU is a supervised PU (SPU). UPUs in the lowest
layer cluster and recognize the lowest level of pattern ele-
ments such as variants of a hyphen, a pipe, a slash, a back
slash, and so on. These pattern elements are integrated from
layer to layer into larger and larger pattern elements and pat-
terns. As long as inputs are provided to an UPU by sensors
or other parts of the LOM, the UPU learns (without supervi-
sion).

By the maximal/adjustable generalization capability (or
more specifically, masking matrix M ), each UPU acts as a
cluster of its input vectors vτ . If vτ or a close version has not
been learned by an UPU, The UPU generates the label of vτ
at random. This enables the UPU to act as a pattern recog-
nizer by itself. Whenever a handcrafted label rτ is available
to an SPU, the SPU learns its input vector vτ with rτ . By the
maximal/adjustable generalization capability, the entire clus-
ter(s) constructed by the UPU(s) that provide vτ is assigned
the same label rτ . This minimizes the amount of handcrafted
labels required.

2.6 Clustering and Interpreting
The version of LOM proposed herein consists of a hierarchi-
cal network of UPUs (unsupervised processing units) with
feedbacks connections, acting as pattern recognizers, and
a number of offshoot SPUs (supervised processing units),
translating the self-generated labels from UPUs into human
language, which are called the clusterer and interpreter, re-
spectively. An example clusterer in its entirety for clustering
spatial and temporal data is shown in Figure. 5. The feedback
connections in the clusterer have delay devices of different
durations make LOM suitable for recognizing temporal pat-
terns in video and movie. However, they will not be used in
the proposed project.

Once an exogenous feature vector is input to the clusterer,
the UPUs perform retrieving and/or learning from layer to
layer starting with layer 1, the lowest layer. After the UPUs
in the highest layer complete performing their functions, the
clusterer is said to have completed one round of retrievings
and/or learnings (or memory adjustments). For each exoge-
nous feature vector, the clusterer will continue to complete a
certain number of rounds of retrievings and/or learnings. The
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Figure 5: (a)A network of unsupervised processing units(UPUs), (b)
offshoot supervised processing units(SPUs)

clusterer in Figure. 5 (a) is also shown in Figure. 5 (b) with
the connections and delay devices removed. The three UPUs
in the lowest layer of the clusterer do not branch out, but each



of the three UPUs in the second and third layers branches
out to an SPU. UPU

(
12
)

and UPU
(
22
)

in the second layer
have feedforward connections to SPU

(
12
)

and SPU
(
22
)

re-
spectively, and UPU

(
13
)

in the third layer has feedforward
connections to SPU

(
13
)
.

The labels, rτ
(
12
)
, rτ

(
22
)

and rτ
(
13
)
, which are used

for supervised learning are provided by the human trainer of
the LOM.

3 Preliminary Numerical Tests of LOM
3.1 A simplified supervised learning architecture

based on LOM
This section describes in detail the architecture of a simpli-
fied LOM supervised learning neural network model. This
architecture comprises four layers, including the input layer,
output layer, and two hidden layers. The inputs are 28 × 28
pixel images from the standard MNIST database. In the in-
put layer, a 28 × 28 pixel image is split into 22 per row and
22 per column sub-images, the total number of sub-images
is 22 × 22 = 484. The sub-images are generated by sliding
an 8 × 8 pixel window one row or one column each time.
An input prepared for a first hidden layer PU is a manually
selected16-pixel pattern from the 8× 8 pixel sub-image. The
selection pattern for each first hidden layer PU is identical.
Each PU in each layer is fixed and is always focusing on the
same receptive field of the images during the training and test-
ing process.

The input pixels’ values are normalized so that the white
(0) corresponds to a grayscale value of smaller than 35, and
the black (1) corresponds to a grayscale value of larger or
equal to 35, which fits the learning scheme. The second hid-
den layer consists 11 × 11 = 121 PUs. The input of a PU is
formed by combining the output of four lower hidden layer
PUs. The lower layer’s four PUs are the closest neighbors
form a square without overlapping each other. In this case,
the receptive field of a PU in the current layer is extended to
16× 16.

Within the hidden layers, supervised learning is applied.
In the first hidden layer, before a pattern is prepared as an
input to be learned by the hidden layer PU, the PU will first
check whether the neurons have seen this pattern. If the pat-
tern has not been learned before, this pattern will be learned
using the image’s 4-bit binary label, translated from the orig-
inal 0-9 decimal label. However, if the pattern has been seen
before, the neurons can retrieve the pattern’s label by trans-
lating probabilities into a label. This pre-check garnered one
pattern that does not have two or more labels, which greatly
confuse the PU when retrieving. This schema is based on the
that the digits share many similar parts. We do not need to dis-
tinguish each part in every digit. What we really care about
is that the pattern is represented following the right way. For
example, if a digit can be covered by the receptive field of
four square PUs in the first hidden layer, because the top arch
pattern of the ”2” and ”3” are similar, the label retrieved from
the top two PUs of the four PUs will tell the PU of the next
layer this digit is an arch pattern, but they are not sure whether
it is from ”2” or ”3”. After gathering all the four PUs, the PU

of the next layer can finally give a prediction based on the
patterns shown in each part of the digit.

The second hidden layer does not apply the same learning
scheme. In the learning process, a decimal label is translated
as a 10-bit one-hot label. Whether the input has been learned
or not, it will be learned with the label of the current image.
That implies that the same pattern might have two or more
labels assigned to it. In the testing process, the 10-bit proba-
bility vectors will be treated as the output of the PU.

In the final output layer, each second hidden layer’s predic-
tion was analyzed and summarized to produce a final predic-
tion. Each probability vectors will check whether the biggest
probability within the vector is larger than 0.85. If the vec-
tor’s largest probability is smaller than 0.85, that means this
pattern might have been assigned many labels and will pro-
duce ambiguities towards the final prediction. To obtain a
more reliable result, only the vectors with the biggest prob-
ability larger than 0.85 will be summed up in the final layer.
Finally, the biggest probability after summation will decide
the result.

3.2 Tests on the MNIST dataset

Training data 
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Figure 6: Error rate of real-time learning.

The above architecture is developed and tested on the stan-
dard. MNIST dataset consists of 60,000 images of handwrit-
ten numerals for training and 10,000 images for testing, each
image containing 28×28 pixels. The 60,000 images are di-
vided into 30 bins. Each bin consists of 2000 images. The
real-time learning machine-learned each bin sequentially. Af-
ter learning every 2000 images, the learning machine uses
the 10,000 testing images to make a prediction. Following
this procedure, a total of 30 predictions of the testing data are
made. As shown in Figure. 6. the error rate of each predic-
tion is marked as a red dot. There is an overall downward
trend. The error rate drops dramatically from 37% to lower
than 10%, with only learning the first 12,000 training images.
The downward trend slowed down afterward. The final error
rate is 3.28%. The error rate continually dropping around 1%
over the learning procedure of the last 10,000 training images
confirmed the LOM model’s potential and showed room for
improvement. We expect that new LOM architectures will



soon be found to achieve an accuracy rate close to the best
error rate. It is appropriate to note that MNIST is a fixed
collection of images of handwritten numerals, each with a
single given hand-crafted label, on which training a learning
machine requires none of the above desirable learning capa-
bilities. MNIST is, therefore, an ideal kind of dataset for deep
learning machine to be trained on without limits on the num-
ber of training sessions, the number of times the weights of
deep learning machine can be changed, or the training time
in each training session. However, this proposal’s main ob-
jective is to develop highly accurate LOM architectures with
capabilities of real-time, photographic, unsupervised, and hi-
erarchical learning.

Acknowledgments
This project is supported by National Science Foundation.

References
[Amari, 1989] S. Amari. Characteristics of sparsely en-

coded associative memory. Neural Networks, 2(6):451–
457, 1989.

[Bishop, 2006] C. M. Bishop. Pattern Recognition and Ma-
chine Learning. Springer Science, New York, 2006.

[Fox and Barnard, 1957] C. A. Fox and J. W. Barnard. A
quantitative study of the purkinje cell dendritic branches
and their relationship to afferent fibers. Journal of
Anatomy, 91:299–313, 1957.

[Fromherz and Gaede, 1993] Peter Fromherz and Volker
Gaede. Exclusive-or function of single arborized neuron.
Biological Cybernetics, 69:337–334, 1993.

[Gabbiani et al., 2002] F. Gabbiani, H. G. Krapp, C. Koch,
and G. Laurent. Multiplication computation in a visual
neuron sensitive to looming. Nature, 420:320–324, 2002.

[Gabbiani et al., 2004] F. Gabbiani, H. G. Krapp, N. Hat-
sopoulos, C.-H. Mo, C. Koch, and G. Laurent. Multiplica-
tion and stimulus invariance in a looming-sensitive neuron.
Journal of Physiology, 98:19–34, 2004.

[George and Hawkins, 2009] D. George and J. Hawkins. To-
wards a mathematical theory of cortical micro-circuits.
PLoS Computational Biology, 5-10:1–26, 2009.

[Gerstner and Kistler, 2002] W. Gerstner and W. M. Kistler.
Spiking Neuron Models, Single Neurons, Populations,
Plasticity. Cambridge University Press, Cambridge, UK,
2002.

[Granger, 2006] R. Granger. Engines of the brain: The com-
putational instruction set of human cognition. AI Maga-
zine, 27:15–31, 2006.

[Grossberg, 2007] S. Grossberg. Towards a unified theory of
neocortex: Laminar cortical circuits for vision and cogni-
tion. Progress in Brain Research, 165:79–104, 2007.

[Hassoun, 1993] M. H. Hassoun. Associative Neural Mem-
ories, Theory and Implementation. Oxford University
Press, New York, New York, 1993.

[Haykin, 2009] Simon Haykin. Neural Networks and Learn-
ing Machines, Third Edition. Prentice Hall, Upper Saddle
River, New Jersey, 2009.

[Hecht-Nielsen, 1990] Robert Hecht-Nielsen. Neurocomput-
ing. Addison-Wesley Publishing Company, New York,
NY, 1990.

[Hinton and Anderson, 1989] G. E. Hinton and J. A. Ander-
son. Parallel Models of Associative Memory. Lawrence
Erlbaum Associates, Hillsdale, New Jersey, 1989.

[Kalman et al., 1969] R. E. Kalman, P. Falb, and M. A. Ar-
bib. Topics in Mathematical System Theory. McGraw-Hill,
New York, 1969.

[Koch and Poggio, et al., 1983] C. Koch and T. Poggio, et
al. Nonlinear interactions in a dendritic tree: localization,
timing, and role in information processing. Proceedings of
National Academy of Sciences, U.S.A., 80(9):2799–2802,
1983.

[Koch and Poggio, 1982] C. Koch and T. Poggio. Retina
ganglion cells: a functional interpretation of dendritic
morphology. Philos Trans R Soc Lond B Biol Sci,
298(1090):227–263, 1982.

[Koch and Poggio, 1992] C. Koch and T. Poggio. Multiply-
ing with synapses and neurons. In T. McKenna, J. Davis,
and S. F. Zornetzer, editors, Single Neuron Computation.
Academic Press, Boston MA, 1992.

[Koch, 1999] Christof Koch. Biophysics of Computation.
Oxford University Press, 1999.

[Kohonen, 1988a] T. Kohonen. Self-Organization and Asso-
ciative Memory. Springer Verlag, New York, New York,
1988.

[Kohonen, 1988b] T. Kohonen. Self-Organization and As-
sociative Memory, second edition. Springer-Verlag, New
York, 1988.

[Landau and Lifshitz, 1987] L. D. Landau and E. M. Lif-
shitz. Fluid mechanics. Pergamon Press, 1987.

[Lo, 2010] James Ting-Ho Lo. Functional model of biolog-
ical neural networks. Cognitive Neurodynamics, 4-4:295–
313, Published online 20 April 2010, 2010.

[Lo, 2011] James Ting-Ho Lo. A low-order model of biolog-
ical neural networks. Neural Computation, 23-10:2626–
2682, 2011.

[Maass and Bishop, 1998] W. Maass and C. M. Bishop.
Pulsed Neural Networks. The MIT Press, Cambridge,
Massachussetts, 1998.

[Martin, 2002] Kevan A. C. Martin. Microcircuits in visual
cortex. Current Opinion in Neurobiology, 12-4:418–42,
2002.

[Mel, 1992a] B. W. Mel. The clusteron: toward a simple ab-
straction in a complex neuron. In J. Moody, S. Hanson,
and R. Lippmann, editors, Advances in Neural Informa-
tion Processing Systems, volume 4, pages 35–42. Morgan
Kauffmann, San Mateo, CA, 1992.



[Mel, 1992b] B. W. Mel. NMDA-based pattern discrimina-
tion in a modeled cortical neuron. Neural Computation,
4:502–516, 1992.

[Mel, 1993] B. W. Mel. Synaptic integration in an excitable
dendritic tree. Journal of Neurophysiology, 70(3):1086–
1101, 1993.

[Mel, 1994] B. W. Mel. Information processing in dendritic
trees. Neural Computation, 6:1031–1085, 1994.

[Mel, 2008] B. W. Mel. Why have dendrites? a computa-
tional perspective. In Greg Stuart, Nelson Spruston, and
Michael Hausser, editors, Dendrites, Second Edition. Ox-
ford University Press, Oxford, United Kingdom, 2008.

[Nagano, 1972] K. Nagano. Association - a model of asso-
ciative memory. IEEE Transactions on Systems, Man and
Cybernetics, SMC-2:68–70, 1972.

[Principe et al., 2000] J. C. Principe, N. R. Euliano, and
W. C. Lefebvre. Neural and Adaptive Systems: Funda-
mentals through Simulations. John Wiley and Sons, Inc.,
New York, 2000.

[Rall and Sergev, 1987] W. Rall and I. Sergev. Functional
possibilities for synapses on dendrites and on dendritic
spines. In G. M. Edelman, W. F. Gail, and W. M. Cowan,
editors, Synaptic Function, pages 603–636. Wiley, New
York, 1987.

[Schlichting and Gersten, 2000] H. Schlichting and K. Ger-
sten. Boundary-Layer Theory. Springer, New York, 2000.

[Sejnowski, 1977] T. J. Sejnowski. Storing covariance with
nonlinearly interacting neurons. Journal of Mathematical
Biology, 69:303–321, 1977.

[Shepherd and Brayton, 1987] G. M. Shepherd and R. K.
Brayton. Logic operations are properties of computer-
simulated interactions between excitable dendritic spines.
Neuroscience, 21(1):151–165, 1987.

[Singer and Gray, 1995] W. Singer and C. M. Gray. Visual
feature integration and the temporal correlation hypothe-
sis. Annual Review of Neuroscience, 18:555, 1995.

[Sirevaag and Greenough, 1987] A. M. Sirevaag and W. T.
Greenough. Differential rearing effects on rat visual cortex
synapses, III neuronal and glial nuclei, boutons, dendrites,
and capillaries. Brain Research, 424:320–332, 1987.

[Sutherland, 1992] J. G. Sutherland. The holographic neural
method. In Soucek Branko, editor, Fuzzy, Holographic,
and Parallel Intelligence. John Wiley and Sons, 1992.

[Tal and Schwartz, 1997] D. Tal and E. L. Schwartz. Com-
puting with the leaky integrate and fire neuron: logarith-
mic computation and multiplication. Neural Computation,
9(2):305–318, 1997.

[Turner and Austin, 1997] M. Turner and J. Austin. Match-
ing performance of binary correlation matrix memories.
Neural Networks, 1997.

[Von der Malsburg, 1981] C. Von der Malsburg. The corre-
lation theory of brain function. In E. Domani, J. L. Van
Hemmen, and K. Schulten, editors, Models of neural net-
works II. Springer, Berlin, 1981.

[Willshaw et al., 1969] D. J. Willshaw, O. P. Buneman, and
H. C. Longet-Higgins. Non-holographic associative mem-
ory. Nature, 222:960–962, 1969.

[Wong, 1989] M. T. T. Wong. Cytochrome oxidase: an en-
dogenous metabolic marker for neuronal activity. Trends
in Neuroscience, 12(3):94–101, 1989.

[Zador et al., 1992] Anthony M. Zador, Brenda J. Clair-
borne, and Thomas H. Brown. Nonlinear pattern sepa-
ration in single hippocampal neurons with active dendritic
membrane. In J. Moody, Hanson S, and R. Lippmann, edi-
tors, Advances in Neural Information Processing Systems,
volume 4, pages 51–58. Morgan Kaufmann, San Mateo,
CA, 1992.


	1 Introduction
	2 Brief Description of LOM
	2.1 Encoding inputs to neurons
	2.2 Unsupervised/supervised learning and memorizing in synapses
	2.3 Masking Matrices for Generalization
	2.4 Estimation of labels by Somas 
	2.5 Processing Units (PUs)
	2.6 Clustering and Interpreting

	3 Preliminary Numerical Tests of LOM 
	3.1 A simplified supervised learning architecture based on LOM
	3.2 Tests on the MNIST dataset


