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Reproducing Kernel Banach Spaces with the ℓ1 Norm II: Error

Analysis for Regularized Least Square Regression∗

Guohui Song† and Haizhang Zhang‡

Abstract

A typical approach in estimating the learning rate of a regularized learning scheme is to bound
the approximation error by the sum of the sampling error, the hypothesis error and the regulariza-
tion error. Using a reproducing kernel space that satisfies the linear representer theorem brings the
advantage of discarding the hypothesis error from the sum automatically. Following this direction,
we illustrate how reproducing kernel Banach spaces with the ℓ1 norm can be applied to improve
the learning rate estimate of ℓ1-regularization in machine learning.

Keywords: reproducing kernel Banach spaces, sparse learning, regularization, least square regres-
sion, learning rate, the representer theorem

1 Introduction

A class of reproducing kernel Banach spaces (RKBS) with the ℓ1 norm that satisfies the linear rep-
resenter theorem was recently constructed in [14]. The purpose of this note is to illustrate how the
obtained spaces can be applied to estimate the learning rate of the ℓ1-regularized least square regression
in machine learning.

A general coefficient-based regularization of the least square regression has the form

min
c∈Rm

1

m

m
∑

j=1

|Kx(xj)c− yj|2 + λφ(c), (1.1)

where x := {xj : j ∈ Nm} with Nm := {1, 2, . . . ,m} is the sequence of sampling points from an input
space X, yj ∈ Y ⊆ R is the observed data on xj, λ is a positive regularization parameter, φ is a
nonnegative regularization function on the coefficient column vector c, and with a chosen function
K : X ×X → R, Kx(x) is the 1×m row vector (K(xj , x) : j ∈ Nm).

When K is a positive-definite reproducing kernel on X and

φ(c) := cTK[x]c, (1.2)
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where K[x] is the m×m matrix defined by

(K[x])j,k := K(xk, xj), j, k ∈ Nm,

it follows from the celebrated representer theorem [7] that (1.1) is the classical regularization network
and has been extensively studied in the literature [6, 9, 10, 13, 19]. Estimates for the learning rate
of the regularization network can be found, for example, in [4, 5, 12, 15, 23]. Learning rates for
(1.1) when φ(c) =

∑m
j=1 |cj |p for 1 < p ≤ 2 and p = 2 were respectively obtained in [18] and [16].

The linear programming regularization where φ(c) is the ℓ1 norm ‖c‖1 of c has recently attracted
much attention. The increasing interest is mainly brought by the progress of the lasso in statistics
[17] and compressive sensing [2, 3] in which ℓ1-regularization is able to yield sparse representation
of the resulting minimizer, a desirable feature in model selection. Moreover, the ℓ1-regularization is
particularly robust to non-Gaussian additive noise such as impulsive noise [1, 8].

Without making use of a reproducing kernel space, the recent references [11, 20] established esti-
mates of the learning rate for the ℓ1-regularized least square regression

min
c∈Rm

1

m

m
∑

j=1

|Kx(xj)c− yj|2 + λ‖c‖1. (1.3)

We attempt to show that improvement on the estimates could be made if an RKBS with the ℓ1 norm
is used. To explain how this could be done, we first introduce the popular approach [5] for learning
rate estimates in machine learning.

A fundamental assumption in machine learning is that the sample data z := {(xj , yj) : j ∈ Nm} ∈
X×Y consists of independent and identically distributed instances of a random variable (x, y) ∈ X×Y
subject to an unknown probability measure ρ on X × Y . The performance of a predictor f : X → Y
is hence measured by

E(f) :=
∫

X×Y
|f(x)− y|2dρ.

The predictor that minimizes the above error is the regression function

fρ(x) :=

∫

Y
ydρ(y|x), x ∈ X, (1.4)

where ρ(y|x) denotes the conditional probability measure of y with respect to x. In fact, we have for
every predictor f that

E(f) = E(fρ) + ‖f − fρ‖2L2
ρX
, (1.5)

where ρX is the marginal probability measure of ρ on X and for p ∈ [1,+∞), Lp
ρX denotes the Banach

space of measurable functions f on X with respect to ρX such that

‖f‖Lp
ρX

:=

(∫

X
|f(x)|pdρX(x)

)1/p

< +∞.

The formula (1.4), though attractive, is only of theoretical value as ρ is unknown. A practical way is
to find a minimizer c

z,λ of (1.1) and hope that

f
z,λ(x) := Kx(x)c

z,λ, x ∈ X (1.6)

will be competitive with fρ in the sense that the approximation error E(f
z,λ)− E(fρ) would be small.

To be more precise, for the learning scheme (1.1) to be useful in practice, this error should converge
to zero fast in probability as the number of sampling points increases.
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The approach in [5] works by introducing intermediate functions between f
z,λ and fρ that are from

a Banach space B of functions on X with the properties that K(x, ·) ∈ B for all x ∈ X and for all
pairwise distinct xj ∈ X, j ∈ N

m and c ∈ R
m

ψ(‖Kx(·)c‖B) = φ(c),

for some nonnegative function ψ. Here ‖ · ‖B is the norm on B. Let g be an arbitrary function from
such a space B and set for each function f : X → R

Ez(f) :=
1

m

m
∑

j=1

(f(xj)− yj)
2.

The approximation error E(f
z,λ)− E(fρ) can then be decomposed into the sum of four quantities

E(f
z,λ)− E(fρ) = S(z, λ, g) + P(z, λ, g) +D(λ, g) − λψ(‖f

z,λ‖B), (1.7)

where
S(z, λ, g) := E(f

z,λ)− Ez(fz,λ) + Ez(g) − E(g),
P(z, λ, g) := (Ez(fz,λ) + λψ(‖f

z,λ‖B))− (Ez(g) + λψ(‖g‖B)) ,
D(λ, g) := E(g) − E(fρ) + λψ(‖g‖B).

The above three quantities are called the sampling error, the hypothesis error and the regularization
error, respectively. The strategy is to choose B and g carefully so that these three errors can be well
bounded from above. When B is the reproducing kernel Hilbert space of a positive-definite reproducing
kernel K on X and the regularizer φ is given by (1.2), we have ψ(t) = t2, t ∈ R and by the representer
theorem and the definition of f

z,λ in (1.6) that

f
z,λ = argmin

f∈B

(

Ez(f) + λ‖f‖2B
)

. (1.8)

In this case, one immediately has that P(z, λ, g) ≤ 0 and thus, by (1.7) that

E(f
z,λ) ≤ S(z, λ, g) +D(λ, g). (1.9)

For the ℓ1-regularization where φ(c) = ‖c‖1, the space B chosen in [11, 20] does not satisfy the linear
representer theorem. Consequently, the hypothesis error needed to be dealt with there.

A class of RKBS with the ℓ1 norm that satisfies the linear representer theorem was recently
constructed in [14]. In Section 2, we shall follow a similar idea to construct a slightly larger RKBS
with the same desirable properties. By using the constructed space, we enjoy the same advantage
as that for the RKHS case of discarding the hypothesis error automatically. Moreover, the space
also leads to a better estimate of the regularization error than that in [20]. Combining these two
improvements and directly using the estimates of the sampling error established in [20] or [11], one
immediately has a superior learning rate. As our focus is on the advantages brought by the constructed
RKBS, we shall only improve the learning rate estimate of [20] in Section 3. Interested readers may
follow our strategy to engage the more sophisticated sampling error estimate given in [11] to improve
the learning rate therein.

2 RKBS by Borel Measures

In this section, we construct RKBS applicable to the error analysis of the ℓ1-regularized least square
regression. The constructed spaces are expected to have the ℓ1 norm and satisfy the linear representer
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theorem. The approach is different from the one by semi-inner products in [21, 22] as an infinite-
dimensional ℓ1 space is neither reflexive nor strictly convex.

Suppose that the input space X is a locally convex topological space and denote by C0(X) the
space of continuous functions f : X → R such that for all ε > 0, the set {x ∈ X : |f(x)| > ε} is
compact. We also impose the requirement that for all pairwise distinct xj ∈ X, j ∈ Nm, m ∈ N, the
kernel matrix K[x] is nonsingular. With the maximum norm ‖f‖C0(X) := maxx∈X |f(x)|, the space
C0(X) is a Banach space. Its dual space is isometrically isomorphic to the space M(X) of all the
signed Borel measures on X with bounded total variation. In other words, for each continuous linear
functional T on C0(X), there exists a unique measure µ ∈ M(X) such that

T (f) =

∫

X
f(x)dµ(x) and sup

f∈C0(X),f 6=0

|Tf |
‖f‖C0(X)

= ‖µ‖, (2.1)

where ‖µ‖ denotes the total variation of µ.
Let K be a real-valued function on X ×X such that K(·, x) ∈ C0(X) for all x ∈ X and

span {K(·, x) : x ∈ X} = C0(X). (2.2)

With such a function, we introduce the following space

B :=

{

fµ :=

∫

X
K(t, ·)dµ(t) : µ ∈ M(X)

}

(2.3)

with the norm
‖fµ‖B := ‖µ‖. (2.4)

Recall that a vector space V is called a pre-RKBS [14] on X if it is a Banach space consisting of
functions on X such that point evaluation functionals are continuous on V and such that for all
f ∈ V , ‖f‖V = 0 if and only if f vanishes everywhere on X.

Proposition 2.1 Suppose that K(·, x) ∈ C0(X) for all x ∈ X and (2.2) is satisfied. Then B defined
by (2.3) is a pre-RKBS on X.

Proof: We first show that the norm (2.4) is well-defined. Let µ, ν be two measures in M(X) such that
fµ(x) = fν(x) for all x ∈ X. Then we get that

∫

X
K(t, x)d(µ − ν)(t) = 0 for all x ∈ X.

By the denseness condition (2.2), the above equation implies that µ − ν = 0. Thus, the measure µ
associated with a function fµ ∈ B is unique. This proves that (2.4) is well-defined and that ‖fµ‖B = 0
if and only if fµ(x) = 0 for all x ∈ X. Another consequence is that B is isometrically isomorphic to
M(X) and is hence a Banach space. Finally, we observe for all x0 ∈ X and µ ∈ M(X) that

|fµ(x0)| =
∣

∣

∣

∣

∫

X
K(t, x0)dµ(t)

∣

∣

∣

∣

≤ ‖K(·, x0)‖C0(X)‖µ‖ = ‖K(·, x0)‖C0(X)‖fµ‖B.

Therefore, point evaluations are continuous linear functionals on B. We conclude that B is a pre-RKBS
on X. The proof is complete. ✷
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Let the sampling points in x be pairwise distinct. By definition, Kx(·)c ∈ B for all c ∈ R
m. The

denseness condition (2.2) implies that K(xj, ·), j ∈ Nm are linearly independent. As a result,

‖Kx(·)c‖B = ‖c‖1. (2.5)

It is in the above sense that B is said to possess the ℓ1 norm.
We next turn to the crucial linear representer theorem in B. We say that B satisfies the lin-

ear representer theorem if for all continuous nonnegative loss function Q and regularizer ψ with
limt→∞ ψ(t) = +∞, the regularized learning scheme

inf
f∈B

Q(f(x)) + λψ(‖f‖B)

has a minimizer f0 of the form f0 = Kx(·)c for some c ∈ R
m. Here, f(x) = (f(xj) : j ∈ Nm)T .

The following lemma can be proved by arguments similar to those in [14].

Lemma 2.2 The space B satisfies the linear representer theorem if and only if for all x of pairwise
distinct sampling points and y ∈ R

m, the minimal norm interpolation

inf{‖f‖B : f ∈ B, f(x) = y} (2.6)

has a minimizer f0 of the form f0 = Kx(·)c for some c ∈ R
m.

A subspace of B was constructed in [14] and conditions for it to satisfy the linear representer
theorem were studied. In order to make use of the results obtained there, we first introduce the
subspace. Denote by ℓ1(X) the subset of M(X) of those Borel measures that are supported on a
countable subset of X. Thus, for each ν ∈ ℓ1(X), there exist some pairwise distinct points xj ∈ X,
j ∈ I where I is a countable index set, such that

ν(A) =
∑

xj∈A

ν(xj) for every Borel subset A ⊆ X.

Denote by supp ν the countable set of points where ν is nonzero. The space B1 considered in [14] is

B1 :=

{

∑

x∈ supp ν

ν(x)K(x, ·) : ν ∈ ℓ1(X)

}

with the norm inherited from that of B.
Put for all x ∈ X, Kx(x) := (K(x, xj) : j ∈ Nm)T , which is an m × 1 vector in R

m. One should
not confuse Kx(x) with K

x(x). The latter is 1×m and might even not be the transpose of the former
as K is not required to be symmetric. The following result about B1 is from [14].

Lemma 2.3 For all y ∈ R
m, the minimal norm interpolation

inf{‖f‖B1 : f ∈ B1, f(x) = y} (2.7)

has a minimizer f0 of the form f0 = Kx(·)c for some c ∈ R
m if and only if

‖K[x]−1Kx(x)‖1 ≤ 1 for all x ∈ X. (2.8)

Moreover, under condition (2.8), there holds for all c ∈ R
m that

‖cTKx(·)‖C0(X) = ‖cTK[x]‖∞, (2.9)

where ‖ · ‖∞ is the maximum norm on R
m.
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We are ready to present the main result of this section.

Theorem 2.4 The space B satisfies the linear representer theorem if and only if (2.8) holds true.

Proof: Suppose that (2.8) holds true. By Lemma 2.2, to show that B satisfies the linear representer
theorem, it suffices to show that f0 = Kx(·)K[x]−1y is a minimizer of (2.6). Clearly, f0(x) = y. Let
fµ, µ ∈ M(X), be an arbitrary function in B that satisfies the interpolation condition fµ(x) = y. We
then have for all c ∈ R

m that
∫

X
cTKx(t)dµ(t) =

∫

X

m
∑

j=1

cjK(t, xj)dµ(t) =

m
∑

j=1

cjfµ(xj) = cTy.

It follows from (2.1) that for all c ∈ R
m

|cTy| ≤ ‖cTKx(·)‖C0(X)‖µ‖.

This together with (2.9) implies that

‖µ‖ ≥ sup
c∈Rm,c6=0

|cTy|
‖cTKx(·)‖C0(X)

= sup
c∈Rm,c6=0

|cTy|
‖cTK[x]‖∞

= sup
a∈Rm,a 6=0

|aTK[x]−1y|
‖a‖∞

= ‖K[x]−1y‖1.

Now, recall by (2.5) that ‖f0‖B = ‖K[x]−1y‖1 and by definition of ‖ ·‖B that ‖fµ‖B = ‖µ‖. These two
facts combined with the above inequality imply that ‖fµ‖B ≥ ‖f0‖B. Thus, f0 is indeed a minimizer
of (2.6).

On the other hand, suppose that B satisfies the linear representer theorem and we want to prove
(2.8). Let y ∈ R

m. By Lemma 2.2, the minimal norm interpolation (2.6) has a minimizer f0 of the
form f0 = Kx(·)c for some c ∈ R

m. Clearly, f0 is also a minimizer of (2.7) because f0 ∈ B1 and

‖f0‖B1 = ‖f0‖B = inf{‖f‖B : f ∈ B, f(x) = y} ≤ inf{‖f‖B1 : f ∈ B1, f(x) = y}.

By Lemma 2.3, (2.8) holds true. The proof is complete. ✷

It will become clear in the next section that the above theorem makes B a useful space for error
analysis of the ℓ1-regularized least square regression.

We present two examples of K that satisfy all the assumptions, especially (2.8), in this section:

– the exponential kernel
K(s, t) := e−|s−t|, s, t ∈ R,

– the Brownian bridge kernel

K(s, t) := min{s, t} − st, s, t ∈ (0, 1).

That these two kernels satisfy (2.8) has been proved in [14]. It remains to verify the denseness
requirement (2.2). The exponential kernel is a particular case of the following result.

Proposition 2.5 If φ is Lebesgue integrable on Rd that is nonzero almost everywhere then the function

K(s, t) :=

∫

Rd

e−i(s−t)·ξφ(ξ)dξ, s, t ∈ R
d (2.10)

satisfies that K(·, t) ∈ C0(R
d) for all t ∈ R

d and the denseness condition (2.2). So does K(s, t) :=
ψ(s − t), s, t ∈ R

d where ψ is a nontrivial continuous function on R
d of compact support.
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Proof: That the function given by (2.10) belongs to C0(R
d) for all t ∈ R

d follows from the Riemann-
Lebesgue lemma. The denseness condition (2.2) for the two kernels can be proved by arguments
similar to those in [14]. ✷

The Brownian bridge kernel is handled with a manner different from that in [14].

Proposition 2.6 The Brownian bridge kernel satisfies (2.2).

Proof: Clearly, for the Brownian bridge kernel, K(·, t) is continuous for all t ∈ (0, 1). Let ν be a Borel
measure on X := (0, 1) such that

∫

X
K(s, t)dν(s) = 0 for all t ∈ (0, 1). (2.11)

Note that K has the representation

K(s, t) =

∫

X
Γs(z)Γt(z)dz, s, t ∈ (0, 1),

where Γs := χ(0,s) − s with χ(0,s) denoting the characteristic function of (0, s). Arguments similar to
those in [14] yield that there exists a constant C such that

∫ s

0
dν(s) = C for all s ∈ (0, 1).

It follows that ν((s1, s2)) = 0 for all 0 < s1 < s2 < 1. Consequently, ν is the zero Borel measure on
(0, 1). Thus, the Brownian bridge kernel satisfies (2.2). ✷

Finally, we remark that the function K can be regarded as the reproducing kernel for B constructed
by (2.3). To see this, we introduce a bilinear form on B × C0(X) by setting

〈fµ, g〉 :=
∫

X
g(x)dµ(x) for all µ ∈ M(X) and g ∈ C0(X).

We observe by (2.1) that
|〈fµ, g〉| ≤ ‖µ‖‖g‖C0(X) = ‖fµ‖B‖g‖C0(X)

and that for all x ∈ X,
fµ(x) = 〈fµ,K(·, x)〉, g(x) = 〈K(x, ·), g〉.

In the above senses, K is said to be the reproducing kernel for both B and C0(X).

3 Error Analysis of the ℓ
1-Regularization

We apply the constructed space B to estimate the learning rate of the ℓ1-regularized least square
regression (1.3) in this section. To this end, we first introduce some standard assumptions in the
literature imposed on the regression function fρ, the input space X and the function K.

Let X be compact metric space with the distance d and assume that ρX is a Borel probability
measure on X. In this note, we suppose that K is a positive-definite reproducing kernel on X with
the Lipschitz condition

|K(x, t)−K(x, t′)| ≤ Cα(d(t, t
′))α for some positive constants α,Cα and for all x, t, t′ ∈ X. (3.1)

7



Denote for all r > 0 by N (X, r) the least number of open balls with radius r that cover X. Assume
that this covering number satisfies for some positive constants η,Cη that

N (X, r) ≤ Cη

rη
for all 0 < r ≤ 1. (3.2)

The requirement on fρ is that it is contained in the range ran (Ls
K) of Ls

K for some s > 0. Here, LK

is the compact positive operator on L2
ρX defined by

LKf :=

∫

X
K(t, ·)f(t)dρX (t), f ∈ L2

ρX
.

Let φj , j ∈ N be an orthonormal basis for L2
ρX

consisting of eigenfunctions of LK with the correspond-
ing eigenvalues λj ≥ λj+1, j ∈ N. The assumption fρ ∈ ran (Ls

K) implies that

fρ =

∞
∑

j=1

λsjajφj

for some h =
∑∞

j=1 ajφj in L
2
ρX . In order to make use of the space constructed in the last section, our

last requirement is that K satisfies that span {K(·, x) : x ∈ X} = C(X) and condition (2.8).
Let c

z,λ be a minimizer of (1.3) and let f
z,λ be given by (1.6). For the minimization problem (1.3),

the hypothesis error and regularization error have the specific forms

P(z, λ, g) := (Ez(fz,λ) + λ‖f
z,λ‖B)− (Ez(g) + λ‖g‖B) ,

D(λ, g) := E(g)− E(fρ) + λ‖g‖B ,

where g is a function in B to be carefully chosen.
The use of the space B enables us to discard the hypothesis error immediately.

Lemma 3.1 Under the above assumptions on K, there holds E(f
z,λ) − E(fρ) ≤ S(z, λ, g) + D(λ, g)

for all g ∈ B.

Proof: By Theorem 2.4,
f
z,λ = argmin

f∈B
Ez(f) + λ‖f‖B.

As a consequence, P(z, λ, g) ≤ 0, which together with inequality (1.7) completes the proof. ✷

We next estimate the regularization error.

Lemma 3.2 If 0 < s < 1 then

inf
g∈B

D(λ, g) ≤ (‖h‖L2
ρX

+ ‖h‖2L2
ρX

)λ
2s
1+s . (3.3)

If s ≥ 1 then fρ ∈ B and
D(λ, fρ) ≤ (λs−1

1 ‖h‖L2
ρX

)λ. (3.4)

Proof: Firstly, we have for each ϕ ∈ L2
ρX

that LKϕ ∈ B and by the Cauchy-Schwartz inequality that

‖LKϕ‖B = ‖ϕ‖L1
ρX

≤ ‖ϕ‖L2
ρX
. (3.5)
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If s ≥ 1 then fρ = LKϕ where

ϕ =

∞
∑

j=1

λs−1
j ajφj .

As λj is non-increasing,

‖ϕ‖L2
ρX

≤ λs−1
1

( ∞
∑

j=1

|aj |2
)1/2

= λs−1
1 ‖h‖L2

ρX
.

We then get by the above equation and (3.5) that

D(λ, fρ) = λ‖fρ‖B ≤ λ‖ϕ‖L2
ρX

≤ λλs−1
1 ‖h‖L2

ρX
,

which is (3.4).

Suppose now that 0 < s < 1. If λ1 ≤ λ
1

1+s then by (1.5),

D(λ, 0) = E(0) − E(fρ) = ‖fρ‖2L2
ρX

=
∞
∑

j=1

λ2sj a
2
j ≤ λ

2s
1+s ‖h‖2L2

ρX
,

which implies (3.3). If λ1 > λ
1

1+s then since λj decreases to zero as j tends to infinity, there exists

some N ∈ N such that λN+1 < λ
1

1+s ≤ λN . Put

ϕ :=

N
∑

j=1

λs−1
j ajφj.

It follows from (1.5) and (3.5) that

D(λ,LKϕ) ≤ ‖LKϕ− fρ‖2L2
ρX

+ λ‖ϕ‖L2
ρX
.

We estimate that

λ‖ϕ‖L2
ρX

= λ

( N
∑

j=1

a2jλ
2s−2
j

)1/2

≤ λλ
s−1
1+s

( N
∑

j=1

a2j

)1/2

≤ λ
2s
1+s ‖h‖L2

ρX

and that

‖LKϕ− fρ‖2L2
ρX

=
∞
∑

j=N+1

λ2sj a
2
j ≤ λ

2s
1+s

∞
∑

j=N+1

a2j ≤ λ
2s
1+s ‖h‖2L2

ρX
.

Combing the above two inequalities leads to (3.3). The proof is complete. ✷

We remark that the estimated regularization error in [20] was of the order O(λ
2s
2+s ) for 0 < s ≤ 2.

Turning to the sampling error, we follow the approach in [20] to decompose it into the sum
S(z, λ, g) = S1(z, λ, g) + S2(z, λ) where

S1(z, λ, g) = (Ez(g) − Ez(fρ))− (E(g) − E(fρ)), S2(z, λ) = (E(f
z,λ)− E(fρ))− (Ez(fz,λ)− Ez(fρ)).

The first summand S1(z, λ, g) can be bounded by using the law of large numbers. By the same
arguments as those in [5, 20], we use the estimate in Lemma 3.2 to obtain an improved bound.
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Lemma 3.3 Suppose that the output of sample data is bounded by a positive constant almost surely.
If 0 < s < 1 then for each ε > 0 there exists some g ∈ B such that for all 0 < δ < 1, we have with
confidence 1− δ

2 that

S1(z, λ, g) ≤ C1





λ
2(s−1)
1+s

m
+
λ

2s−1
1+s

√
m



 log
2

δ

for some positive constant C1. If s ≥ 1 then S1(z, λ, fρ) = 0.

For S2(z, λ), we cite the following result from [20].

Lemma 3.4 Suppose that (3.1) and (3.2) hold true. If λ ≤ 1 then we have with confidence 1− δ
2 that

S2(z, λ) ≤
1

2
(E(f

z,λ)− E(fρ)) + C2
log 2

δ + log(1 +m)

λ2
m

− 1
1+η/α

for some positive constant C2.

Combining Lemmas 3.1, 3.2, 3.3, and 3.4, we reach a new learning rate estimate of the ℓ1-regularized
least square regression.

Theorem 3.5 Suppose that X satisfy (3.2), the output is bounded by a positive constant almost
surely, and fρ ∈ ran (Ls

K) for some s > 0. Let K be a positive-definite reproducing kernel satisfying
span {K(·, x) : x ∈ X} = C(X), the condition (2.8) and the Lipschitz condition (3.1). Then there

exists some constant C > 0 such that with the choice λ = m
− 1

2
1

1+η/α
1+s
1+2s , we have for all 0 < δ < 1

with confidence 1− δ that

E(f
z,λ)− E(fρ) ≤ Cm

− s
1+2s

1
1+η/α log

2 + 2m

δ
, when 0 < s < 1 (3.6)

and

E(f
z,λ)− E(fρ) ≤ Cm

− 1
3(1+η/α) log

1 +m

δ
, when s ≥ 1.

Proof: We only discuss the case when 0 < s < 1 as the other situation is easier and can be shown in
a similar way. We choose λ = m−θ, θ > 0 and get by Lemmas 3.1, 3.2, 3.3, and 3.4 that there exists
some constant C > 0 such that with confidence 1− δ

E(f
z,λ)− E(fρ) ≤ Cm−γ log

2 + 2m

δ
, (3.7)

where

γ = min

{

1

1 + η/α
− 2θ, 1− 2θ(1− s)

1 + s
,
1

2
− 1− 2s

1 + s
θ,

2θs

1 + s

}

.

The maximum of γ is achieved when

θ =
1

2

1

1 + η/α

1 + s

1 + 2s
.

Substituting the above choice into (3.7) yields (3.6). ✷

Improvements of the learning rate can be achieved if higher regularity is imposed on the kernel K
[24] or better estimates of the sampling error are engaged [11]. Another remark is that the assumption
of positive-definiteness and symmetry on K might be abandoned by using the strategy in [20].
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