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Abstract

Learning and decision making in the brain are key proces##satto survival, and yet are
processes implemented by non-ideal biological buildirecké which can impose significant
error. We explore quantitatively how the brain might cop&hwthis inherent source of error by
taking advantage of two ubiquitous mechanisms, redundandysynchronization. In particu-
lar we consider a neural process whose goal is to learn aideisction by implementing a
nonlinear gradient dynamics. The dynamics, however, asenasd to be corrupted by pertur-
bations modeling the error which might be incurred due tatétions of the biology, intrinsic
neuronal noise, and imperfect measurements. We show thatamnd the associated uncertainty
surrounding a learned solution, can be controlled in lamye lpy trading off synchronization
strength among multiple redundant neural systems agdiastdise amplitude. The impact
of the coupling between such redundant systems is quaniifi¢de spectrum of the network
Laplacian, and we discuss the role of network topology irchyonization and in reducing the
effect of noise. A range of situations in which the mechasism model arise in brain science
are discussed, and we draw attention to experimental esgdgunggesting that cortical circuits
capable of implementing the computations of interest harebe found on several scales. Fi-
nally, simulations comparing theoretical bounds to thewaht empirical quantities show that
the theoretical estimates we derive can be tight.

1 Introduction

Learning and decision making in the brain are key processgsat to survival, and yet are pro-
cesses implemented by imperfect biological building béoakich can impose significant error. We
suggest that the brain can cope with this inherent sourceaf ley taking advantage of two ubiqui-
tous mechanismsedundancyandsharing of information These concepts will be made precise in
the context of a specific model and learning scenario whigbttwer can serve as a conceptual tool
for illustrating the effect of redundancy and sharing.

Motivated by the problem of learning to discriminate, we sider a neural process whose goal
is to learn a decision function by implementing a nonlineadgent dynamics. The dynamics, how-
ever, are assumed to be corrupted by perturbations moddeegrror which might be incurred.
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This general perspective is intended to capture a rangessilge learning instances occurring at
different anatomical scales: The neural process can iavwatvole brain areas communicating via
behavioral, motor or sensory pathways (Schnitzler and $512805), as in the case of the multi-

le a dala-thalamus loops assumed to underpin fear teamidg for mstance@O,
[ﬂ@\ 1). Interacting local field potentials (LFPs) raéso be modeled as both direct (by long
range phase-locking, e.g. in olfactory systelﬂs (Eriedetcl., 200|4)) or indirect measurements of
coordination and interaction among large assemblies abmsu The learning dynamics may alter-
natively model smaller ensembles of individual neuronsnasimary motor cortex, though we do
not emphasize biological realism in our models at this sddéertheless, one may still draw useful
conclusions as to the role of redundancy and informatiomirsipaThe error too may be treated at
different scales, and may take the form of noise intrinsithi® neural environmen al.,
M) on a large, aggregate scale (e.g. in the case of LF®s) @small scale involving localized
populations of neurons.

If there is noise corrupting the learning process, an imatedjuestion is whether it is possible
to gauge the accuracy of the predictions of the learnedifumcind to what extent the organism can
reduce uncertainty in its decisions by taking advantage sifrgle, common information sharing
mechanism. If there is redundancy in the form of multiplesipendentopiesof the dynamical cir-
cuit (Adam5, 1998; Fernando ef al., 2010), it is reasonabéepect that averaging over the different
solutions might reduce noise via cancelation effects. éndhise of learning in the brain, however,
this approach is problematic because neurons are sudedptibaturation of their firing rates, and
on large scales aggregate signal amplitudes will also &&tuthe macroscopic dynamics that neu-
ron populations and assemblies obey can be strongly nanlindhen the dynamics followed by
different dynamical systems are nonlinear, one cannotaxpegain a meaningful signal by lin-
ear averaging (see e.g. (Tabareau et al.,|2010) and exathplesn). As a simple illustration of
this phenomenon, consider a collection of noisy sinusaidalllators allowed to run starting from
different initial conditions, with identical frequenciesd independent noise terms. The oscillators
will be out of phase from each other, so an average over tiectogies will not yield anything
close to a clean version of a sinusoid at the desired frequéht the other hand it is reasonable to
suppose thatynchronizatioracross neuron populations or between macro-scale cddimas may
provide sufficient phase alignment to make linear averaging thus “consensus”, a powerful pro-

posal for reducing the effects of noise (Tabareau et al.02Bthsuda et all, 2010; Cao et al., 2010;
Young et al.| 2010; Poulakakis et al., 2010; Gigante et 8092 Indeed, it is a well known fact,

that synchrony within a system of coupled dynamical elesprivides (quantifiable) robustness to
perturbations occurring in any one element’s dynanics @iésean et all, 2001; ine,
2005] Pham and Slotine, 2007).

We will place much emphasis on exploring quantitatively ithle of synchrony in controlling
uncertainty arising from noise modeling neural error. Imtipalar, we base our work on the ar-
gument that noisy, nonlinear trajectories can be linearBraged if fluctuations due to noise can
be made small and that fluctuations can be made small by ogugiie dynamical elements ap-
propriately. In the stochastic setting adopted here, ‘Byozation” refers to state synchrony: the
tendency for individual elements’ trajectories to move dod¢ a common trajectory, in a quan-
tifiable sense. The estimates we present directly chaiaettdre tradeoff between the network’s
tendency towards synchrony and the noise, and ultimatedyead the specific role this tradeoff
plays in determining uncertainty surrounding a functicarhed by an imperfect learning system.

We further show how and where the topology of the network afralkensembles impacts the
extent to which the noise, and therefore uncertainty, cacooérolled. The estimates we provide
take into account in a fundamental way both the nonlineanityre dynamics and the noise. More
generally, the work discussed here also has implicationghier related domains, such as networks
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of coupled learners or adaptive sensor networks, and caxtbaded to multitask online or dy-
namic learning settings. The difficulty inherent in anatggdynamiclearning systems, such as
hierarchies with feedback (Mumford, 1992; Lee and Mumf@@03), poses a challenge. But con-
sidering dynamic systems can yield substantial benefasisients can be important, as suggested
by the literature on regularization paths and early sto;pm.@n Furthermore, the role
of feedback/backprojections and attention-like mechmasig learning and recognition systems,
both biological and artificial, is known to be important bsitiot well understoom al.,
11999 Itti and Koch,, 2001.; Hung et/dl., 2005).

The paper is organized as follows. In Sectidn 2 we considereaific learning problem and
define a system of stochastic differential equations (SDE®)eling a simple dynamic learning
process. We then discuss stability and network topologhéncontext of synchronization. In Sec-
tion[3 we present the main theoretical results of the papset af uncertainty estimates, postponing
proofs until later. Then in Sectidd 5 we provide simulati@msl compare empirical estimates to
the theoretical quantities predicted by the Theorems iti@ed. Sectioi ¥ provides a discussion
addressing the significance and applicability of our thécmkcontributions to neuroscience and
behavior. Finally, in Section] 6 we give proofs of the resattted in Sectionl 3.

2 Biological Learning as a Stochastic Network Model

The learning process we will model is that of a one-dimerdaitinear fitting problem described by
gradient based minimization of a square loss objectivéarspirit of Rao & Ballarmm,
). This is perhaps the simplest and most fundamentalbabgearning problem that an organ-
ism might be confronted with — that of using experientialdevice to infer correlations and ulti-
mately discover causal relationships which govern therenwent and which can be used to make
predictions about the future. The model realizing thisrieésg process is also simple, in that we
capture neural communication as an abstract process “iohwhineural element (a single neuron
or a population of neurons) conveys certain aspects of iistional state to another neural ele-
ment” {Schnitzlgr and girdMOS). In doing so, we focushenuinderlying computations taking
place in the nervous system, rather than dwell on neuraéseptations. Even this simple setting
becomes involved technically, and is rich enough to expddiref the key themes discussed above.
Our model also supports nonlinear decision functions irstiiese that we might consider taking a
linear function of nonlinear variables whose values mightbmputed upstream. In this case the
development would be similar, but extended to the multigisi@enal case. The model may also be
extended to richer function classes and more exotic losstiturs directly, however for our pur-
poses the additional generality does not yield significarther insight and furthermore might raise
biological plausibility concerrls

2.1 Problem Setup

To make the setting more concrete, we begin by assuming thdtave observed a set of input-
output examplegz; € R,y; € R}, each representing a generic unit of sensory experiende, an
want to estimate the linear regression functify{z) = wz. Adopting the square loss, the total
error incurred on the observations iy is given by the familiar expression
m m
B(w) = Y (g — ful@)? = Y (i — wa)*

i=1 =1

!In the sense that one would have to carefully justify biataji the particular nonlinearities going into a nonlinear
decision function on a case-by-case basis.



We will model adaptation (training) by a noisy gradient as¥qgrocess, with biologically plausible
dynamics, on this squared prediction error loss functiome Trajectory of the slope parameter
over timew(t) and its governing dynamics may be represented in the bidlogrrious forms.
Stochastic rate codes, average activities in populatibmewrons and population codes, localized
direct electrical signals and chemical concentrationigrad are some possibilities occurring across
arange of scales. The dynamical system may also be intedpastmodeling the noisy, time-varying
strength of a local field potential or other macro electragbipgical signal when there are multiple,
interacting brain regions. We discuss these possibilitiher in Sectiof }.

The gradient ofE with respect to the weight parameter is given By, E = —> 7" (y; —
wz;)x;, and serves as the starting point. The gradient dynamies —V ,,E(w) are both linear
and noise-free. Following the discussion above, we modi&s¢ dynamics to capture nonlinear
saturation effectas well as (often substantialpisemodeling error. Saturation effects lead to a
saturated gradient which we model in the form of the hypéckdahgent nonlinearity,

W= — tanh(anE(w))7

whereaq is a slope parameter. Note that the saturated dynamics reedukrinterpretable as itself
the gradient of an appropriate loss function. The fundaaidatrning problem is defined by the
square-loss, but it is implemented using an imperfect m@shawhich imposes the nonlinearty
The error is modeled with an additional diffusion (noisejrteayiving the SDE

dw; = —tanh(aV, E(wy))dt + odBy, 1)

whered B, denotes the standard 1-dimensional Wiener increment ggoeéh standard deviation
o > 0. As mentioned before, this noise temwdB; and corresponding error is due to intrinsic
neuronal noiséiEaEaLe.ﬂiLlﬂ)OB) (aggregated or laad)liand possible interference between large
assemblies of neurons or circuits and parallels the morergenoncept of measurement error in
networks of coupled dynamical systems.

2.2 Synchronization and Noise

We now consider the effect of havingindependent copies of the neural system or pathway imple-
menting the dynamic$]1), with associated parameferst),. .., w,(¢)}. Since these dynamics
are nonlinear, the effect of the noise cannot be reducedrbplgiaveraging over the independent
trajectories. However, if the circuit copies are coupladrgjly enough they will attempt teyn-
chronize and averaging over the copies becomes a potentially polwedy to reduce the effect of
the noisel(Sherman and Rirzel, 1991; Needleman et al.| 200) noise can be potentially large
(we do not make any small-noise assumptions), and will ofsmact to break the synchrony. We
will explore how well the noise can be reduced by synchrdiinaand redundancy in the sections
that follow.

Givenn diffusively coupleaopies of the noisy neural system, and setting 1 in (I), we have
the following system of nonlinear SDESs:

dwl(t) = —tanh [Z(wl(t)xg — yg)xg dt + Z Wij(wj _ 'wz)dt + O_dBt(l) (2)
/=1 j=1
fori =1,...,n, WhereBt(i) areindependenstandard Wiener processes. The diffusive couplings

here should be interpreted as modeling abstract intercaonimation between and among different

2put differently, in our setting the nonlinearity is not paftthe learningproblem and so the saturated gradient
dynamics should not be viewed as the gradient of another exiteria
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neural circuits, populations, or pathways. In such a gérseting, diffusive coupling is a natural
and mathematically tractable choice that can capture theaggregate aspects of communication
among neural systems. Electrical connections such as thiggemented by gap junctions in the
mammalian cortex (Fukuda et dl., 2006; Bennett and Zukif4p@re also modeled well by dif-
fusive coupling terms when individual neurons are beingussed, however we emphasize that
the system in Equatiori](2) is a conceptual model involvingsfiy large brain regions and do
not make assumptions at a level of biological detail thatld/awoke or require gap-junction type
connectivity.

Each copy of the basic neural circuit is corrupted by indepah noise processes but follows
the same noise-free dynamics as the others, modulo inftiitions. In fact these coupled systems
may start from very different initial conditions. We will @ame for simplicity uniform symmetric
weightsW;; = W;; = x > 0 when element is connected to elemerit Defining (w); to be the
(scalar) output of the-th circuit, we can rewrite the system (2) in vector form as

dw(t) = — (tanh [i (w(t)w; — yﬂl)wi] + Lw(t))dt + 0dB; (3)
i=1

whereL = diag(W1) — W is thenetwork LaplacianandB; is the standara-dimensional Wiener
process. The spectrum of the network Laplacian capturesriiaut properties of the network’s
topology, and will play a key role. Finally, the change ofigate X; := w|x||?> — (x,y)1, with
(x); = =z, (¥)i = y;, yields a system that will be easier to analyze:

dXy = —(tanh(X,)||x||* + LX;)dt + GdB, 4

where we have definedl := o||x|2. The unique globally stable equilibrium point for the deter
ministic part of [4) is seen to b&* = 0, which checks with the fact that the solution to the linear
regression problem is* = (x,y)/(x,x) in this simple case.

2.3 Role of Network Topology

The topology of a network of dynamical systems strongly fices synchronization, to include
the rate at which elements synchronize and whether syntiédendency to sync) can occur at all
in the first place. Thus the pattern of interconnections amueural systems plays an important
role in controlling uncertainty by way of synchronizatioroperties. In a network of stochastic
systems of the general (diffusive) type described in Se@ptopology can be seen to influence
the robustness of synchrony to noise through the spectrutineofietwork Laplacian. Laplacians
arising in various interesting networks and applicatioasehreceived much attention, both in bi-
ological decision making and in the context of synchromirabf dynamical systems more gener-

ally (Kopell and Ermentrolit, 1986; Kopell, 2000; Jadbatsial., 2003} Wang and Sloti 05;
Taylor et al.| 2009; Poulakakis et al., 2010).

We will consider four important network graphs here, ands¢harrangements will be helpful
examples to keep in mind when interpreting the results gime8ection[8. The simplest graph
of coupled elements is perhaps the full, all-to-all grapls ohe may guess, this network is also
the easiest to synchronize since each element can speakiydiethe others. The spectrum of
the network Laplacian\(L) for this graph shows why it might be especially effective feducing
uncertainty in the context of Equatidn (3). With uniform pting strengthx > 0 andn denoting
the number of elements in the network, one can checktfat = {0, nx,...,nx}. Denote by_
the smallest non-zero (Fiedler) eigenvalue, and bythe largest eigenvalue. Heke = A\ = nk
and it is these eigenvalues that control synchronizatiorafty given network. As we will show
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Figure 1:Examples of (undirected) network graphs.

below in Theoren 311, the effect of the noise can be reducditpiarly quickly precisely because
the non-zero eigenvalues depend on both parametensdn.

If fewer connections are made in the network it becomes hdodgynchronize, and we move
away from the all-to-all ideal. Figufé 1 shows some other mmm network graphs. The undirected
ring graph, appearing in the middle, has spectiyiiL) = 2x[1 — cos(2(i — 1))],i = 1,...,n.

If the single edge connecting the first and last elementsigved to make a chain as shown on the
left in the Figure, the network becomes considerably haujs'ynchronizd_LKQp_elLand_ELm_enl[but.
1986), although the spectrum of the chain looks simika(L) = 2r[1 — cos(Z(i — 1))]. This
makes intuitive sense because information is constraiméw through only one path, and with
possibly significant delays. Finally, the star graph showrthe right in the Figure has spectrum
ML) ={0,k,...,k,nk}, and we can see that the key Fiedler eigenvalue= « does not grow
with the size of the network. The Theorems in Sectidd 3 then predict that it will be imgaes

to increase the synchronization rate simply by incorpogathore copies of the neural circuit. The
coupling strength must also increase to make fluctuatiao® the common trajectory (synchro-
nization subspace) small. We will discuss this case in metaild As might be particularly relevant
to brain anatomy, random graphs and directed graphs mapealsonsidered, and have been studied
extensivelyl).

In neuroscience-related models, each connection in a nethasls an associated biophysical
cost in terms of energy and space requirements. All-toetivarks, withn? connections among
circuits or neurons, is often criticized as being biolojcanrealistic because of this cost. However,
it has been noted that all-to-all connectivity can be impated with2n connections using quorum
sensing ideas (Taylor et dL_Zd)Og), wherein a global aeemgomputed and shared. The global
average is computed given inputs fromsalélements, and this average is sent back to each circuit
via anothern connections. The shared variable may be communicated tgpsgs, or sensed
chemically or electrically. Although quorum sensing canmealizeany set ofn? connections, the
global average may be a weighted average or there may beakewenmon variables organized
hierarchically. This allows for a rich set of networks with(n) connectivity which behave more
like networks with all-to-all connectivity for synchromition and stability purposes. Furthermore,
dynamics in the computation of the quorum variable itselfewappropriate for modeling purposes,
does not necessarily pose any special difficulty for esthlnlg synchronization properties if virtual
systems are used (Russo and Slotine, 2010).

The difficulty with which synchrony may be imposed can be fnalized” by the number of
connections in many cases to obtain a comparison betweahrgymization properties of vari-
ous graphs that takes biological cost into account. Usimyuqu variables where appropriate,
graphs whose spectrums depenchaare thus roughly comparable on equal biological terms.-Cost
normalized comparisons of synchronization propertieat@lways possible or meaningful, how-
ever. Consider the ring and chain networks introduced abdwere is a difference of one edge
between the two, but in the noise-free setting for exampectiain requires asymptotically four
times more effort to synchronize than the ring architec{gee e.g..(Wang and §Ioﬂrig_2b05), Ex-




ample 4.5).

2.4 A Comment on Stability and Contraction

We turn to analyzing the stability of the nonlinear systemegiby Equation[(4). We will argue that
this is difficult for two reasons: the presence of noise, dredfact that the (noise-free) dynamics
saturate in magnitude. Indeed, without additional assiomgtone cannot in general show that the
system is globally exponentially stable. A common methadstadying the stability properties of
a noiseless nonlinear dynamical system is via Lyapunowyhégiotine and Li| 1991), however in
the presence of noise system trajectories along the Lyapsundace may not be strictly decreas-
ing. Contraction analysis (Lohmiller and Slofi 908:1yand Slotinel, 2005) is a differential
formalism related to Lyapunov exponents, and captures atiemthat a system is stable in some
region if initial conditions or temporary disturbances &oeyotten. If all neighboring trajectories
converge to each other, global exponential convergencesitigée trajectory can be concluded:

Definition 2.1 (Contraction) Given the system equatioss= f(x,t), a region of the state space
is called a contraction region if the Jacobialy = a—i is uniformly negative definite in that region.
Furthermore, the contractiorateis given bys, wherej (J; + J;/) < 5T < 0.

An analogous definition in the case stochastic dynamics Ilsasbaen develope al.,
), and requires contraction of the noise-free dynaasagell as a uniform upper bound on the
variance of the noise. However for the systéin (4), the Jacakifound to be

J(w) = |x|? diag(tanh?(w) — 1) — L

so that\(J(w)) < —A(L) < —Amin(L) = 0. The subspace of constant vectors is a flow invariant
subspace, and. does not contribute to the dynamics in this flow invariantcgpaincel has a
zero eigenvalue corresponding to its constant eigenvedtiois difficulty can arise whenever one
considers diffusively coupled elements, and in such cdsesdual way around this difficulty is to
work with an auxiliary or virtual system (as in e.b. (Pham Stokine) 200 7)) and study contraction
to the flow invariant subspace starting from initial coratis outside. However singanh’(z) =
1—tanh?(z), we still are left with the difficulty that the noise-free dymics can have a convergence
rate to equilibrium arbitrarily close to zero as one trafatout to the tails of theanh function; the
system is not necessarily contracting. Indeed, for anyraizd dynamicst;anh(f (x, t)), the rate
can be arbitrarily small. Thus one cannot easily determieerate of convergence to equilibrium
using standard techniques. The analysis which we provideeirsucceeding sections will attempt
to get around these difficulties by separately exploringsistem’s behavior in and out of the flow-
invariant (synchronization) subspace of constant vectors

3 Controlling Uncertainty in Learning

In this section we present and interpret the main resultesepaper. The argument we put forward
is that noisy, nonlinear trajectories can be linearly agedato reduce the noise if fluctuations due
to noise can be made small. We show that the fluctuations candae small by coupling the
dynamical systems, and that one can precisely control #eedfithe fluctuations. In particular,
we give estimates which show that the tradeoff between ramsgecoupling strength among neural
circuits determines the amount of uncertainty surrounttiegdecisions made by the neural system.
Proofs of the Theorems are postponed until Se¢fion 6.



3.1 Preliminaries

We begin by decomposing the stochastic prodesse R" };~( into a sum describing fluctuations
about the center of mass. L&t = I — (1/n)117, the canonical projection onto the zero-mean
subspace oRR”, and defineQ = I — P. Then for allt > 0, X; = PX; + QX;. Clearly,
ker P = im @ is the subspace of constant vectors. We will adopt the ootaf for PX,, andX,1

for QX; (along with the analogous notatie®; andw,), and derive expressions for these quantities
based on Equationl(4). The macroscopic variablesatisfies

HXH2

dX; = 117dx, = — =1 T tanh(X;)dt + —dBt (5)

vn

and thus

~ . 2 -
dXt = dXt — dXt]]. = — (tanh(Xt)HxHZ + LXt — @ﬂTtanh(Xt)]l) dt + &dBt - %dBt]].
n
(6)

In terms of the original variabler, the fluctuationsy, are purely due to the noise, whil@ parame-
terizes the average decision function. As the decisiontiomeve consider is linear, the uncertainty
in the decisions is directly equivalent to uncertainty ie garametetw. We will study the evolution
of both the mean and the fluctuation processes over time,Jenwe assess uncertainty the central
guantity of interest will be the size of the ball containitg tfluctuations (the “microscopic” vari-
ables). We characterize the magnitude of the fluctuaticm$ha squared norm process satisfying

dJ| X ]| 25 5 1
o = — (P (e, tanh (X)) + (X, LX) )dt 4+ 56%(n— Dt + 5| KelldB: (7)

[\D

which follows from [8) applying Ito’s Lemma to the functidr(X;) = 3(X;, X;) and the fact that
(X;,dBy) = || Xy||dB in law.

3.2 Uncertainty Estimates

The first —and central— result says that the ball centered @he center of mass) containing the
fluctuations can be controlled in expectation from abovelaidw by the coupling strength and in
most cases the number of circuit copies, via the spectrutmeafi¢twork Laplaciard.. We note that
lower bounds are typically ignored in the dynamical systditesature, possible because they are
less important for stability analyses. We have found, h@methat such bounds can be derived in
the case of saturated gradient dynamics, and that contnol lrelow can yield further insight into
the present problem of neural learning.

Let A, be the largest eigenvalue of L, and }et be the smallest non-zero eigenvaluelof

Theorem 3.1(Fluctuations can be made smalBfter transients of rat@\ _

n—1)o? X n—1)o?
(2;3 (1 HAH><EH gl < =D

wherew = Pw (t).

Clearly the lower bound is informative only when. > ||x||>. While we do not explicitly
assume any particular bound on the size of the exanjptéisit is reasonable thax_ > ||x||?
since)_ can depend on the number of circuiteind will always depend on the coupling strength



which can be large. Large coupling strengths can be foundanmiaty of circumstances, particularly
in the case of motor control circuits (Grandhe et al., 199@ntel et al., 2003) for example.

In the next Theorem we give the variance of the fluctuatioasaviigher moment dfw||. This
result makes use of the lower bound in Theotem 3.1, and leadsesult that gives control of the
fluctuations in probability rather than in expectation.

Theorem 3.2(Variance of the trajectory distances to the center of ma&#r transients of rate

2
var (|[w(t)[|?) < <(712_A71_)J2>2 (2 +— f 1) B ((n 2—)\1)0—2>2 (1 _ ”;\(_|_|2>2

ChebyshevV’s inequality combined with Theorend 3.2 immedijagives the following Corollary.

Corollary 3.1. After transients of rat@\ _

~ 2
P [l ~ Ellsio)? = <] < 2UZOF), ®

Since any connected network graph has non-trivial eigeegalvhich depend on the uniform
coupling strength:, we see that for fixedh asx — oo, var(||[w(¢)||*) — 0. In the case of the
all-to-all network topology, for example, the eigenvalugsl. depend on botl and x so that
var([|w(t)||?) = O(x?) giving a power law decay of ord&?(x~2¢~2) on the right hand side of
Equation[(B) in Corollary_3]1.

Finally, we turn to estimating in expectation the steadtestverage distance between the tra-
jectories of the circuit copies and the noise-free solutiswe have argued in Sectibn .4, the rate
of convergence to equilibrium of the trajectorieg(t) can be arbitrarily small. Although from the
Theorems above the fluctuations can be made small, one dargerteral make a similar statement
about the center of masg process unless assumptions about the initial conditiomsraade (and
by extension, the same holds true for the trajectorig)). Such an assumption would lead to
control over the contribution of theanh terms, and establishes a lower bound on the contraction
rate. Rather than make a specific assumption however, weasggneral result: We again provide
a lower bound, this time following from the law of large numdbgoverning sums of i.i.d. Gaussian

random variables and the lower bound on the fluctuationsigiedvby Theoreri 3]1.

Theorem 3.3(Average distance to the noise-free trajectorienote byw™* the minimizer of the
squared-error objectivgZ.1). After transients of raté\_

0'2 n — 0'2 X 2 * - 0'2
T (- 50)] < [% 2Ll _W] < g T El@ —w]

i=1
where[ -]t = max(0, -).

Theoren{ 3B says that average closeness of the noisy systid¥at of the noise-free optimum
is controlled by the tradeoff between the noise and the aogistrength, and the number of circuit
copiesn. The former controls in large part the magnitude of the flattuns, as discussed above.
The latter quantity is the unavoidable linear averaging moment, and can be brought to zero only
as fast as the law of large numbers allomn‘m) at best. For fixea as)\(_") — o0, the upper and
lower bounds coincide sind&[(w(t) — w*)?] — o%/n. As bothn — oo andx — co Theoreni:3B
confirms thatw;(t) — w* in expectation. If the fluctuations are not made small howeireear



averaging will be wrong, and the error will of course be geeatlust how bad linear averaging is
when the fluctuations are allowed to be large is describedrgelpart by the maximum curvature
of the noise-free dynamigs

Finally, we note that the estimates above depend on the nuailsamplesm only through
the norm of the examples, and it is reasonable to assume that this quantity may beppately
normalized based on the maximum values conveyed by subsysterates of neurons comprising
the circuit in the case of population or rate codes, or marinfield strengths in the case of LFPs.
However, the requirement that the organism must cotieabservations before learning can pro-
ceed is not essential. We may also considerdhkne learning setting, where data are observed
sequentially and updates to the parameters are made separately on the basis of each observa-
tion in temporal order. The analysis above studies conneé and distance from the solution in
the steady state, whatever that solution may be, givgneces of evidence. Thus the online setting
can also be considered as long as the time between obses/atilmnger than the transient periods.
Indeed, in many scenarios learning and decision makingegess in the brain can take place on
short time scales relative to the time scale on which expeeiés accumulated. In this case when
another piece of information arrives, the system moves &g@n defined (stochastically) around a
new steady-state. A complication can arise when the newt paiives during the transient period
of the previous learning process — before the system has tlaahee to settle, on average, into the
new equilibrium — however we do not attempt to model thisagian here.

4 Discussion

The estimates given in Sectibh 3 quantify the tradeoff betwtbe degree of synchronization and the
noise (error), and the role this tradeoff plays in determgnihe uncertainty of a decision function
learned by way of a stochastic, nonlinear dynamics. Eséisiadth in expectation and in probability
were derived. We showed how and where both the couplinggitremd the topology of the network
of neural ensembles impact the extent to which the noisethandfore uncertainty due to error, can
be controlled. In particular, for most networks (see Se#@) the effect of the noise can be reduced
by either increasing the coupling strength or the numbeedfindant systems (or both), leading to a
steady-state solution that is going to be closer to the jéeedr-free solution with high probability.
From a technical standpoint, this is because fluctuatiooatahe common trajectory are exactly the
way in which the noise enters the picture; when the fluctnatare made small, the error is made
small. In this way an organism may mitigate error imposed bygiay, imperfect learning apparatus
and solve a learning task to greater accuracy. Furthernsgreshronization and redundancy can
both improve thespeedof learning, in the sense that the rate of convergence totdalg state
solution also depends on these mechanisms. Each of the bpuvesknted in Sectidh 3 above hold
after transient terms of order ‘*- vanish, where\_ is the smallest non-zero eigenvalue of the
network Laplacian. For any stable connected network, gtamupling strengths directly improve
convergence rates to the steady-state, as seen by the daperaf) _ on . In the case of all-to-all
(including approximately all-to-all and many random grsphh_ = O(n«) so that both increased
redundancy and sync will improve the speed of learning.

Our overarching goal has been to explore quantitativelyrdtee of redundancy and synchro-
nization in reducing error incurred by a stochastic, narldearning and decision making neural
process. We have gone about this by considering a model whiginasizes the underlying compu-

30ne way to see this is to take the first-order Taylor expanefatihe dynamics with integral remainder. The re-
mainder term can be upper bounded by the spectral radiug dielssian matrix, which is related to curvature (see e.qg.

(Tabareau et al., 2010)).
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tations taking place rather than particular neural reprtasi®ns. Looking at the appropriate scale,
we seek to address the precise meaning of ensemble meastse@mne population codes, as well as
the information these codes convey about the underlyinguiyecs and signals. The results derived
above support the notion that synchronization and redwydplay a more functional role in the
context of learning processes in the brain, rather thargeeimere epiphenomenon.

4.1 Synchronization and Redundancy in the Brain

Synchronization has been suggested, over a diverse hist@yperimental work, as a fundamen-
tal mechanism for improvement in precision and reductiomr@ertainty in the nervous system
(see e.g. L(Needleman el al., 2001; Enh@ht, 11980)). Redwydtoo is an important and com-
monly occurring mechanism. In retinal ganglion cells (Guoet al.) 1993 Puchalla et/dl., 2005)
and heart cells (Clay and DgHbMQN) the spatial meamssacmupled cells cancels out noise.
Populations of hair cells in otoliths perform redundantatmrative computations to achieve ro-
bustness (Kandel etldl., 2000; Eliasmith and Anderson, 2@ it has been suggested that multi-
ple cortical (amygdala-thalamus) loops contribute to feaponse/conditioning, and emotion more
generally O). With motor tasks such as reachimgtanding, it has been argued that
planning and representation occurs at least partially domdant coordinate systems and involve
redundant degrees of freedom (Scholz and Schoner] 1999jordo (Todorov) 2008) maintains
that redundancy and noise combine to give rise to optimakhawmntrol policies, raising the in-
teresting possibility that in some cases the impact of theenmay need to be adjusted but not
necessarily eliminated altogether. On a more localizeléspsach direction has also been found to
be conveyed by populations of neurons with overlappingiicurves|(Georgopoulos et al., 1982)
where synchrony within such populations plays an importafet (Grammont and Rielile, 1999).
Multiple sensorimotor transformations involving disgararain regions may be at play in the pari-
etal cortex, where redundant sensory inputs from multipbelatities must be mapped into motor
responseé_(IihMQbE:_Bngﬂ_andjﬁindvlLsKLJ1997). Indbenaing auditory pathway, varying
degrees of redundancy have been noted, and contribute ttotthst representation of frequency and
more complex auditory objects (Chechik etlal., 2006). Erdemeasurements have also been con-
nected to behavior and have been suggested as inputs tenfimalmine interfaces, while in stochastic
neural decision making it has been suggested that it is tectiee behavior across multiple pop-
ulations of neurons that is responsible for perception auistbn making, rather than activity of a
single neuron or population of neurons (Gigante &t al., [p009

In these examples and more generally, we suggest that redeyglus feedback synchroniza-
tion is a mechanism which may be used to improve the accuraloystness and speed of a learning
process involving the relevant respective brain areass iStseparate from, and in contrast with, re-
dundancies which are harnessed to specifically increasggstcapacity, as in the case of associate
memory modeISJ_LH_QLtZ_elJaL_lggl). There, robustness tapon is also achieved (via pattern
completion dynamics) but the degree of robustness musatedroff against capacity. The primary
function of such populations of neurons is to ostensiblyestond retrieve memory patterns rather
than to implement adaptive, learning dynamics while elatiimg noise.

Another theme emerging from these instances of sync andhdadiay, is that key computations
may be seen as implemented by distant brain regions coupggdhier by way of long-distance
projections and network “hubs”. Recent experimental olzéms inC. eleganscasts this inter-
pretation in a developmental IigHL(Ma.l:iﬁl'_and_KdiiQL._jbOh‘rld suggests that such interactions
occur from an early stage in life and are important for nordelelopment in even simple organ-
isms. Learning processes realized by such computationgngerdctions are certainly susceptible
to noise, and must cope with this noise one way or another. Uygest that synchronization and
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redundancy are not only present and possible, but providadyy natural solution.

The ability to learn and make decisions reliably in the pneseof uncertainty is of fundamental
importance for survival of any organism. This uncertaingy ®©e seen to arise from three distinct
sources, and the approach discussed here treats only theviirsintrinsic neuronal noise, both
local and in aggregate, and noise in the form of measurememt ender which we include error
due to limitations in precision and nonlinearity in biologi systems. A third and equally impor-
tant source of error is that of uncertainty in the inferenoecpss itselfL(lang@ndﬁ.hadlé&.ZbO?:
Kiani and Shadlén, 20b9). This uncertainty is specific toiahdrent in the decision problem and is
characterized by the posterior distribution over decsigiren the experiential evidence. Our work
only considers uncertainty beyond that of the inferencegss, and as such is one part of a larger
puzzle. We argue that intrinsic noise is both experimentatid theoretically important — and in-
volved enough technically — to be addressed in isolationleWiolding all other variables constant.
Indeed, intrinsic noise intensities can be large. The rélhe network’s topology and coupling
mechanism also strongly influences the overall picturegroiit surprising or subtle ways. But it
is also possible that the methods recruited here can beedpolivards understanding some aspect
of the inference error if different inferences from the sawshservations can be made by different
“expert” (circuits) each with their own biases. Then avargg nonlinearity and the uncertainty
could potentially be treated in a similar framework.

4.2 Extensions and Generalizations

Asymptotic stability of the stochastic system considerecehs guaranteed as long as there is cou-
pling. In general, if the dynamics of a stochastic systencardgracting or can be made contracting
with feedback, then combinations (e.g. parallel, seri@ténchical) of such systems will be con-
tracting KEha.m_el_éLlbe_._Lthﬂl_QLand_S_Ileh&_Jl996)tHe present setting, the system govern-
ing the fluctuations about the mean trajectory is contrgotiith a rate dependent on the coupling
strength and the noise variance. Thus combinations ofilgasystems of the general type con-
sidered here can enjoy strong stability guarantees auitatigt since the individual systems are
contracting.

Finally, we have assumed throughout that the errors affgdtie collection of redundant neural
circuits or systems are mutually independent. This is natirmeasonable modeling assumption:
For large-scale learning processes involving differeairbareas, noise imposed by local spike ir-
regularities is largely unrelated to noise present in distarcuits. Within small populations of
neurons, itis likely that dependence among intrinsic nealraoise sources decays rapidly in space
so that nearest-neighbors may experience somewhat d¢edelaise, but beyond this are not sig-
nificantly impacted by other members of the population. Aseé® in a biological environment
can never be fully dependent (whether due to thermal or darkinetic factors, or otherwise),
partial- dependence amon n0|se inputs may be explicitidateal as, for example, mixing pro-
cesses if deSIre 94) Estimates of the forougéed here would then be augmented
with mixing terms Ieadlng to results which make identicaélifative statements about the role of
redundancy and sync. Fluctuations, and the effect of theeneiould still be reducible but would
require larger coupling strengths or more redundancy coedp® what would be necessary if the
noise sources were independent.
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Figure 2: (Left) Typical simulated trajectories for coupled and uapled networks driven by the
same noise. (Right) Population average trajectories fercbupled and uncoupled systems.

5 Simulations

To empirically test the estimates given in Secfibn 3 we sataal several systems of SDESs given by
Equation[(#) using Euler-Maruyama integration (over tinee|[0, 10s], 10° regularly spaced sample
points), for different settings of the parametergnumber of circuits or elements), (coupling
strength) and (noise standard deviation). Initial conditions were rantjodrawn from the uniform
distribution on[—5, 5], and we fixed|x||*> = 1 and the coupling arrangement to all-to-all coupling
with fixed strength determined by. For simplicity the simulated systems had equilibrium poin
at zero, corresponding tp = 0, so that(x,y) = 0 and X* = w* (the change of variables is the
identity map and we can identify(; with w).

For comparison purposes we first show on the left in Figlirepé) simulated trajectories of
uncoupled (top) and coupled (bottom) populations wher 20, x = 5,0 = 10. Both populations
are driven by the same noise and the same set of initial dondjthowever each element is driven
by noise independent from the others as assumed above. keamits on the vertical axes, one can
see that coupling clearly reduces inter-trajectory flumbns as expected. On the right in Figlie 2,
we show the coupled/uncoupled populations’ respectiveec@fimass trajectories for this particular
simulation instance. One can see from this figure that theageeof the coupled system tends closer
to zero (X*), and is less affected by large noise excursions.

To empirically test tightness of the estimates given ini®afd, we repeated simulations of each
respective systerd000 times, and averaged the relevant outcomes to approximatexiectations
appearing in the bounds. Transient periods were excludedl icases. In Tables] 1 throudh 5
we show the values predicted by the bounds and the corresgpsiinulated quantities, for each
respective triple of system parameter settings. Samptelate deviations of the simulated averages
(expectations) are given in parentheses. In Figure 3 we shewvetical versus simulated expected
magnitudes of the fluctuatior§||X;||> whenn = 200 ando = 10 over a range of coupling
strengths. The solid dark trace is the upper bound of The@dmwhile the open circles are the
average simulated quantities (agaiit0 separate simulations were run for eagh Error bars are
also given for the simulated expectations. Note that thenitade scaley-axis) is logarithmic, so
the error bars are also plotted otog scale. We omitted the lower theoretical bound from the plot
because it is too close to the upper bound to visualize wiellive to the scale of the bounds.

Generally, the estimates relating to the magnitude of tletuftions are seen to be tight, and the
variance estimate is within an order of magnitude. For tipegments with large noise amplitudes,
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Quantity | Lower Bound| Simulated | Upper Bound

E[| X[ 9.405 9.497 (ste- 3.1) 9.500
var( || X[?) - 9.450 (st 14.7) 111.046
1E( X, — X*1| 5.470 12.249 (ste- 22.2) 12.249 (ste- 22.2)

Table 1:Estimates vs. simulated quantities'= 20, x = 5,0 = 10.

Quantity | Lower Bound| Simulated | Upper Bound
E[| X[ 11.281 | 11.719 (ste- 3.8) 11.875
var (|| X,]1?) - 14.261 (ste- 23.0) 184.45
1E[ X, — X*1|] 1.814 1.933 (ste= 2.5) 1.946 (std= 2.4)

Table 2:Estimates vs. simulated quantities:= 20,x = 1,0 = 5.

Quantity | Lower Bound| Simulated | Upper Bound
E[| X[ 45.125 | 47.053 (ste- 15.2) 47.500
var( || X;[?) - 230.275 (ste 373.4) | 2951.234
1g|x, — x*1)? 7.256 14.761 (stek 24.1) 14.784 (ste- 24.1)

Table 3:Estimates vs. simulated quantities'= 20,x = 1,0 = 10.

Quantity | Lower Bound| Simulated | Upper Bound
E|| X, || 49.005 | 49.556 (ste- 7.0) 49.500
var (|| X:[?) - 49.332 (ste- 70.6) 2598
1E[ X, — X*1| 1.490 1.449 (ste= 1.6) 1.449 (std- 1.6)

Table 4:Estimates vs. simulated quantities:= 100, x = 1,0 = 10.

Quantity | Lower Bound| Simulated | Upper Bound
E[| X[ 9.880 10.137 (ste- 1.5) 9.900
var (|| X, [1?) - 2.151 (ste-= 3.2) 102.362
1E[ X, — X*1| 1.099 1.496 (ste= 1.5) 1.496 (std- 1.5)

Table 5:Estimates vs. simulated quantities:= 100, x = 5,0 = 10.
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Figure 3:Simulated vs. theoretical upper bound estimates of theutitiohs’ expected magnitude
over a range of coupling strengthas Heren = 200 circuits ando = 10.

the empirical estimates can appear to slightly violate tenlds where the bounds are tight since
the variance across simulations is large. The lower boutichating the distance of the center of

mass to the noise-free solution is also seen to be reasogably. For comparison, we give the

upper estimate where the empirical distance is substitinguace of the expectation in order to

show closeness to the lower bound. Theofem 3.3 predictghitbatpper and lower estimates will

eventually coincide i and/orn are chosen large enough.

6 Proofs

In this section we provide proofs of the results discusseSieictior 8.
We first introduce a key Lemma to be used in the developmentidately below.

Lemma6.1. LetP = I — (1/n)117, the canonical projection onto the zero mean subspadof
Then for allz € R™
0 < (Pz,tanh(z)) < ||Pz|?,

where the hyperbolic tangent applies elementwise.

Proof. Givenz € R", define the index set6 = {1,...,n}, I, = {i € I | (Px); > 0}, and
I_ =1I\I;. SincePziszeromeany ;. (Px); = 3 ;c; [(Pz);|. We will express the hyperbolic
tangent asanh(z) = 2s(2z) — 1, wheres(z) = (14 ¢~%)~! is the logistic sigmoid function. If we
letx = L1z be the center of mass of (Pz); = z;—p > 0impliess(z;) > s(u) by monotonicity
of s. Likewise,(Px); < 0 impliess(z;) < s(u). Finally, note that sincé? = P and1 € ker P,
(Px,tanh(z)) = (Pxz, P(2s(2z) — 1)) = 2(Pz, s(2x)). Using these facts, we prove the lower
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bound first:

(Px,tanh(x)) = 2 Z (Pz);s(2z;) — 2 Z |(Px);|s(2x;)
el el
> 25(21) Y (Px); — 25(2p) Y |(Pa)i
iely iel_
=2s(2u) - 0=0.

Turning to the upper bound, we prove the equivalent staterfiém, s(2x) — z) < 0. First, if
p =0, thenPz = z so(Pz,tanh(x)) = (z,tanh(z)) < ||z||||tanh(z)| < ||z||*> = || Pz|?, since
[tanh(z)|| < ||z| by virtue of the fact thattanh(z)| = tanh(|z|) < |z| for anyz € R. Now
suppose that > 0. If z > p > 0, we can upper bound(2z) by the line tangent to the point
(1, s(2p)): s(22) < mz+bwithm < § andb > 1. If = < p, we can take the lower bound
s(22) > $2 + L1 — s(2u). Using these estimates, we have that

(Px,s(2z) —x) = Z(Pw) (s(22;) — ) Z |(Pz)s| (i — s(22;))

1< el
< Z(P;n)i(b— (1 —m)x;) + Z |(Pz); + 31— s(2p))
1< el
< ST (Pa)i(b— (1 —m)w) + S I(Pa)il (b + S — 5(2)
icly iel_
= (Z (Pm),) (b4 mp — s(2p)) = 0.
el

The second inequality follows from the fact tHat— m) > 0, ; > pfori € Iy andz; < u for
i€l..Sinced ., (Px); =3 ;e [(Px);|, and recalling that by definitiob satisfiesnu + b =
s(2u), the final equalities follow. Ifx < 0, then the proof is similar, taking the line tangent to the
point (1, s(211)) as a lower bound fos(2z) and the line} (= — 1) + s(2u1) as an upper bound. O

6.1 Fluctuations Estimates: Proof of Theoreni 3]1
We begin by adding\|| X;||?dt, with A € (0, o), to both sides of Equatiofi](7) to obtain
LA|| X2 + N[ X 2dt = —||x||*(banh X, X )dt + (N Xe||* — (LXy, X,))dt
F 5 (n— 1)t 4+ 5 KB, = a1 X)),
where the second equality follows noticing that the rightdhaide is the total Ito derivative of the

left hand side of the first equality. Now multiply both sidesd3**, switch to integral form, and
multiply both sides by —2* to arrive at

t
~ B ~ e/l B -
HITP = IS+ [ e (G = )5 — A tanh X, K2 )ds
t . i t i ©
+/ e”(S—t)(AHXS\P—(LXS,XS>)ds+&/ 6| X || dBs.
0 0

Upper Bound: Next, note that{LX;, X;) = (LX;,X,) since L(X,1) = 0, and thatX; is by
definition orthogonal to any constant vector. Fortalle also have that

A_|IX? = (LXy, X)) <0

- (10)
—(tanhXt,Xt> S 0
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almost surely. The first inequality follows from the facttiar all x € im P,
A_[IXE)1? < (LXG, Xp) < AL X%,

if A_ is the Fiedler eigenvalue df and ), is the largest eigenvalue @f. The second inequality is
given by Lemma6]1. Setting = \_ and applying the inequalitieb_({10) to Equatiéh (9) gives the
estimate

- - -1 ~2 t t "
%HXt”Z < €—2>\,tHX0”2 + (n 5 )U / eZA(S_t)dS-I-&/ 62>\7(S_t)”X8HdB8
0 0

(n —1)52

—OA_t (2
pu—
e | Xoll* + D

t ~
(1—6—”%4—&/ne”“*mxgmﬁg (11)
0

almost surely. Taking expectations and noting m%gfot e (5=1) IIJZSIIdBS} = 0, we have that

(n—1)52

BRI <

(12)

after transients of rate\ _.

Lower Bound: We show thaff|| X, || has a lower bound that can also be expressed in terms of the
coupling strength and the noise level. The derivation idlaimio that of the upper bound, and we
begin with Equation[{9). We set= A, and apply the estimates, | X,||? — (LX,, X;) > 0 and
(tanh X, X,) < || X,||? for all s a.s., yielding

~ ~ t 1 ~ t ~
ST 2 PRl [ e (G- 05— [P s+ [ IR, dB,
0 0

Taking expectations and integrating the Ito term, we have

(n —1)52

B[ X% > e || Xo||* +
Ay

t ~
(1) | [ OB s,
0
After transients of raté\_, we can apply[(12) to estimate the remaining integral anetdvound
the above equation by
(n —1)52

(1 724 — [P (1 e,

(n —1)52

P Dol +
_l’_

SinceA_ < A4, transients of rat@)\, have already transpired if we suppose that we have waited
for transients of rat@\_. Therefore, we can say that after transients of 2ate,

= —1)5° [1x]|?
BI% 2> 1— . 13
(| Xe|* > o ( = (13)

6.1.1 Inverting the change of variables

Finally, we can obtain corresponding upper and lower bodmidthe original systeni{3) noting that
sinceX,; = P(w(t)|x]|? = (x,y)1) = ||x||*Pw(t), we haveE|w|* = E||X,2/|Ix||4, where we
have used the notatiok for Pw. The||x||* in the denominator then cancels with the same quantity
occurring ing2 in Equations[(IR) and{13), giving the final form shown in Tieen[3.].
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6.2 Fluctuations Estimates: Proof of Theoreni 312

We first derive the fourth moment of the norm of the fluctuadiorstarting from Equatiori (11),
allow transients of rat@\_ to pass so that we are left with the integral inequality

v (TL B 1)&2 ~ ! _(s— v
SIXP < == +5 | 7YX dB.
- 0

Squaring both sides, we can apply the identity+ b)? < 2a? + 2b* to obtain

2

- 2 t

v oi14 (n—1)5* ~9 22_(s—1)|| ¥

t = - = S S .

| Xl << ) + 85 (/ e | Xs||dB
V2A_ 0

Taking expectations and invoking Ito’s Isometry for the@®tterm leads to

> (n—1)5? ? b o
E|| X ||* < <7\/§A > +852/ M -CIE|| X, 2ds
- 0

=2\ 2 ~2 =2 =2\ 2
- (n—1)o . 85 ((n—1)o _ (n—1)c 54 4
=\ V2M AN_ 2 2 n—1
where the estimaté (12) has been substituted inEfoK,|[2. An upper bound on the variance

is then obtained from the identityar(Z2) = E[Z%] — (EZ?)? and the lower estimate given in
Equation [(IB). Reversing the change of variables as in@g6fil.1 yields the final result.

6.3 Distance to the Noise-Free Trajectory: Proof of Theoreri3.3

Theoreni 3.1l can be applied towards providing a lower bounthfvaverage distance between the
noisy trajectories of the neural circuit and the noise-setition to the learning problem. First
observe that from the orthogonal decompositivn = PX; + QX; and the change of variables
mapping [(B) tol(#), B N

1112 = 11X )® + 1 ]1° =[xt [lw — w* L. (14)

Furthermore, we have that

Xi=n"" ZXz(t) =n"! Z(szIXII2 - (%),

so evidently|x|| “EX, = E[(w; — w*)?]. Next, note that if the fluctuations are small, the tra-
jectories(w;(t))™_, are close to one another and the average trajeatory: n~'w(t) "1 evolves

essentially aso; ~ w* + %Wt, wherell; is interpreted as a white noise process. In this case we
then have thaE[(w; — w*)?] = 2, and we see that[(w; — w*)?] > < when the fluctuations are

not necessarily small. So we have that|—4EYf > %2 Combining the above with TheordmB.1,

o  [(n—1)0° [1x]|?

N 1—

n 2nAy A
with the notation[-|* = max(0,-). Equation [I4) then shows that the middle quantity above is
equal toE [ 31, (w;(t) — w*)?].

T OEX, E|X? | o2
< L <
It ol T 2A-

+ E[(’J)t — w*)z]
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