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Abstract

Learning and decision making in the brain are key processes critical to survival, and yet are
processes implemented by non-ideal biological building blocks which can impose significant
error. We explore quantitatively how the brain might cope with this inherent source of error by
taking advantage of two ubiquitous mechanisms, redundancyand synchronization. In particu-
lar we consider a neural process whose goal is to learn a decision function by implementing a
nonlinear gradient dynamics. The dynamics, however, are assumed to be corrupted by pertur-
bations modeling the error which might be incurred due to limitations of the biology, intrinsic
neuronal noise, and imperfect measurements. We show that error, and the associated uncertainty
surrounding a learned solution, can be controlled in large part by trading off synchronization
strength among multiple redundant neural systems against the noise amplitude. The impact
of the coupling between such redundant systems is quantifiedby the spectrum of the network
Laplacian, and we discuss the role of network topology in synchronization and in reducing the
effect of noise. A range of situations in which the mechanisms we model arise in brain science
are discussed, and we draw attention to experimental evidence suggesting that cortical circuits
capable of implementing the computations of interest here can be found on several scales. Fi-
nally, simulations comparing theoretical bounds to the relevant empirical quantities show that
the theoretical estimates we derive can be tight.

1 Introduction

Learning and decision making in the brain are key processes critical to survival, and yet are pro-
cesses implemented by imperfect biological building blocks which can impose significant error. We
suggest that the brain can cope with this inherent source of error by taking advantage of two ubiqui-
tous mechanisms:redundancy, andsharing of information. These concepts will be made precise in
the context of a specific model and learning scenario which together can serve as a conceptual tool
for illustrating the effect of redundancy and sharing.

Motivated by the problem of learning to discriminate, we consider a neural process whose goal
is to learn a decision function by implementing a nonlinear gradient dynamics. The dynamics, how-
ever, are assumed to be corrupted by perturbations modelingthe error which might be incurred.
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This general perspective is intended to capture a range of possible learning instances occurring at
different anatomical scales: The neural process can involve whole brain areas communicating via
behavioral, motor or sensory pathways (Schnitzler and Gross, 2005), as in the case of the multi-
ple amygdala-thalamus loops assumed to underpin fear conditioning for instance (LeDoux, 2000;
Maren, 2001). Interacting local field potentials (LFPs) mayalso be modeled as both direct (by long
range phase-locking, e.g. in olfactory systems (Friedrichet al., 2004)) or indirect measurements of
coordination and interaction among large assemblies of neurons. The learning dynamics may alter-
natively model smaller ensembles of individual neurons, asin primary motor cortex, though we do
not emphasize biological realism in our models at this scale. Nevertheless, one may still draw useful
conclusions as to the role of redundancy and information sharing. The error too may be treated at
different scales, and may take the form of noise intrinsic tothe neural environment (Faisal et al.,
2008) on a large, aggregate scale (e.g. in the case of LFPs) oron a small scale involving localized
populations of neurons.

If there is noise corrupting the learning process, an immediate question is whether it is possible
to gauge the accuracy of the predictions of the learned function, and to what extent the organism can
reduce uncertainty in its decisions by taking advantage of asimple, common information sharing
mechanism. If there is redundancy in the form of multiple independentcopiesof the dynamical cir-
cuit (Adams, 1998; Fernando et al., 2010), it is reasonable to expect that averaging over the different
solutions might reduce noise via cancelation effects. In the case of learning in the brain, however,
this approach is problematic because neurons are susceptible to saturation of their firing rates, and
on large scales aggregate signal amplitudes will also saturate; the macroscopic dynamics that neu-
ron populations and assemblies obey can be strongly nonlinear. When the dynamics followed by
different dynamical systems are nonlinear, one cannot expect to gain a meaningful signal by lin-
ear averaging (see e.g. (Tabareau et al., 2010) and examplestherein). As a simple illustration of
this phenomenon, consider a collection of noisy sinusoidaloscillators allowed to run starting from
different initial conditions, with identical frequenciesand independent noise terms. The oscillators
will be out of phase from each other, so an average over the trajectories will not yield anything
close to a clean version of a sinusoid at the desired frequency. On the other hand it is reasonable to
suppose thatsynchronizationacross neuron populations or between macro-scale corticalloops may
provide sufficient phase alignment to make linear averaging, and thus “consensus”, a powerful pro-
posal for reducing the effects of noise (Tabareau et al., 2010; Masuda et al., 2010; Cao et al., 2010;
Young et al., 2010; Poulakakis et al., 2010; Gigante et al., 2009). Indeed, it is a well known fact,
that synchrony within a system of coupled dynamical elements provides (quantifiable) robustness to
perturbations occurring in any one element’s dynamics (Needleman et al., 2001; Wang and Slotine,
2005; Pham and Slotine, 2007).

We will place much emphasis on exploring quantitatively therole of synchrony in controlling
uncertainty arising from noise modeling neural error. In particular, we base our work on the ar-
gument that noisy, nonlinear trajectories can be linearly averaged if fluctuations due to noise can
be made small and that fluctuations can be made small by coupling the dynamical elements ap-
propriately. In the stochastic setting adopted here, “synchronization” refers to state synchrony: the
tendency for individual elements’ trajectories to move towards a common trajectory, in a quan-
tifiable sense. The estimates we present directly characterize the tradeoff between the network’s
tendency towards synchrony and the noise, and ultimately address the specific role this tradeoff
plays in determining uncertainty surrounding a function learned by an imperfect learning system.

We further show how and where the topology of the network of neural ensembles impacts the
extent to which the noise, and therefore uncertainty, can becontrolled. The estimates we provide
take into account in a fundamental way both the nonlinearityin the dynamics and the noise. More
generally, the work discussed here also has implications inother related domains, such as networks
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of coupled learners or adaptive sensor networks, and can be extended to multitask online or dy-
namic learning settings. The difficulty inherent in analyzing dynamiclearning systems, such as
hierarchies with feedback (Mumford, 1992; Lee and Mumford,2003), poses a challenge. But con-
sidering dynamic systems can yield substantial benefits: transients can be important, as suggested
by the literature on regularization paths and early stopping (Yao et al., 2007). Furthermore, the role
of feedback/backprojections and attention-like mechanisms in learning and recognition systems,
both biological and artificial, is known to be important but is not well understood (Hahnloser et al.,
1999; Itti and Koch, 2001; Hung et al., 2005).

The paper is organized as follows. In Section 2 we consider a specific learning problem and
define a system of stochastic differential equations (SDEs)modeling a simple dynamic learning
process. We then discuss stability and network topology in the context of synchronization. In Sec-
tion 3 we present the main theoretical results of the paper, aset of uncertainty estimates, postponing
proofs until later. Then in Section 5 we provide simulationsand compare empirical estimates to
the theoretical quantities predicted by the Theorems in Section 3. Section 4 provides a discussion
addressing the significance and applicability of our theoretical contributions to neuroscience and
behavior. Finally, in Section 6 we give proofs of the resultsstated in Section 3.

2 Biological Learning as a Stochastic Network Model

The learning process we will model is that of a one-dimensional linear fitting problem described by
gradient based minimization of a square loss objective, in the spirit of Rao & Ballard (Rao and Ballard,
1999). This is perhaps the simplest and most fundamental abstract learning problem that an organ-
ism might be confronted with – that of using experiential evidence to infer correlations and ulti-
mately discover causal relationships which govern the environment and which can be used to make
predictions about the future. The model realizing this learning process is also simple, in that we
capture neural communication as an abstract process “in which a neural element (a single neuron
or a population of neurons) conveys certain aspects of its functional state to another neural ele-
ment” (Schnitzler and Gross, 2005). In doing so, we focus on the underlying computations taking
place in the nervous system, rather than dwell on neural representations. Even this simple setting
becomes involved technically, and is rich enough to exploreall of the key themes discussed above.
Our model also supports nonlinear decision functions in thesense that we might consider taking a
linear function of nonlinear variables whose values might be computed upstream. In this case the
development would be similar, but extended to the multidimensional case. The model may also be
extended to richer function classes and more exotic loss functions directly, however for our pur-
poses the additional generality does not yield significant further insight and furthermore might raise
biological plausibility concerns1.

2.1 Problem Setup

To make the setting more concrete, we begin by assuming that we have observed a set of input-
output examples{xi ∈ R, yi ∈ R}mi=1, each representing a generic unit of sensory experience, and
want to estimate the linear regression functionfw(x) = wx. Adopting the square loss, the total
error incurred on the observations byfw is given by the familiar expression

E(w) =
m∑

i=1

(yi − fw(xi))
2 =

m∑

i=1

(yi − wxi)
2.

1In the sense that one would have to carefully justify biologically the particular nonlinearities going into a nonlinear
decision function on a case-by-case basis.
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We will model adaptation (training) by a noisy gradient descent process, with biologically plausible
dynamics, on this squared prediction error loss function. The trajectory of the slope parameter
over timew(t) and its governing dynamics may be represented in the biologyin various forms.
Stochastic rate codes, average activities in populations of neurons and population codes, localized
direct electrical signals and chemical concentration gradients are some possibilities occurring across
a range of scales. The dynamical system may also be interpreted as modeling the noisy, time-varying
strength of a local field potential or other macro electrophysiological signal when there are multiple,
interacting brain regions. We discuss these possibilitiesfurther in Section 4.

The gradient ofE with respect to the weight parameter is given by∇wE = −
∑m

i=1(yi −
wxi)xi, and serves as the starting point. The gradient dynamicsẇ = −∇wE(w) are both linear
and noise-free. Following the discussion above, we modify these dynamics to capture nonlinear
saturation effectsas well as (often substantial)noisemodeling error. Saturation effects lead to a
saturated gradient which we model in the form of the hyperbolic tangent nonlinearity,

ẇ = − tanh(a∇wE(w)),

wherea is a slope parameter. Note that the saturated dynamics need not be interpretable as itself
the gradient of an appropriate loss function. The fundamental learning problem is defined by the
square-loss, but it is implemented using an imperfect mechanism which imposes the nonlinearity2.
The error is modeled with an additional diffusion (noise) term giving the SDE

dwt = − tanh(a∇wE(wt))dt+ σdBt, (1)

wheredBt denotes the standard 1-dimensional Wiener increment process with standard deviation
σ > 0. As mentioned before, this noise termσdBt and corresponding error is due to intrinsic
neuronal noise (Faisal et al., 2008) (aggregated or localized) and possible interference between large
assemblies of neurons or circuits and parallels the more general concept of measurement error in
networks of coupled dynamical systems.

2.2 Synchronization and Noise

We now consider the effect of havingn independent copies of the neural system or pathway imple-
menting the dynamics (1), with associated parameters{w1(t), . . . , wn(t)}. Since these dynamics
are nonlinear, the effect of the noise cannot be reduced by simply averaging over the independent
trajectories. However, if the circuit copies are coupled strongly enough they will attempt tosyn-
chronize, and averaging over the copies becomes a potentially powerful way to reduce the effect of
the noise (Sherman and Rinzel, 1991; Needleman et al., 2001). The noise can be potentially large
(we do not make any small-noise assumptions), and will of course act to break the synchrony. We
will explore how well the noise can be reduced by synchronization and redundancy in the sections
that follow.

Givenn diffusively coupledcopies of the noisy neural system, and settinga = 1 in (1), we have
the following system of nonlinear SDEs:

dwi(t) = − tanh

[
m∑

ℓ=1

(
wi(t)xℓ − yℓ

)
xℓ

]
dt+

n∑

j=1

Wij(wj − wi)dt+ σdB
(i)
t (2)

for i = 1, . . . , n, whereB(i)
t are independentstandard Wiener processes. The diffusive couplings

here should be interpreted as modeling abstract intercommunication between and among different

2Put differently, in our setting the nonlinearity is not partof the learningproblem, and so the saturated gradient
dynamics should not be viewed as the gradient of another error criteria
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neural circuits, populations, or pathways. In such a general setting, diffusive coupling is a natural
and mathematically tractable choice that can capture the key, aggregate aspects of communication
among neural systems. Electrical connections such as thoseimplemented by gap junctions in the
mammalian cortex (Fukuda et al., 2006; Bennett and Zukin, 2004) are also modeled well by dif-
fusive coupling terms when individual neurons are being discussed, however we emphasize that
the system in Equation (2) is a conceptual model involving possibly large brain regions and do
not make assumptions at a level of biological detail that would invoke or require gap-junction type
connectivity.

Each copy of the basic neural circuit is corrupted by independent noise processes but follows
the same noise-free dynamics as the others, modulo initial conditions. In fact these coupled systems
may start from very different initial conditions. We will assume for simplicity uniform symmetric
weightsWji = Wij = κ > 0 when elementi is connected to elementj. Defining(w)i to be the
(scalar) output of thei-th circuit, we can rewrite the system (2) in vector form as

dw(t) = −
(
tanh

[ m∑

i=1

(
w(t)xi − yi1

)
xi

]
+ Lw(t)

)
dt+ σdBt (3)

whereL = diag(W1)−W is thenetwork Laplacian, andBt is the standardn-dimensional Wiener
process. The spectrum of the network Laplacian captures important properties of the network’s
topology, and will play a key role. Finally, the change of variableXt := w‖x‖2 − 〈x,y〉1, with
(x)i = xi, (y)i = yi, yields a system that will be easier to analyze:

dXt = −
(
tanh(Xt)‖x‖2 + LXt

)
dt+ σ̃dBt (4)

where we have defined̃σ := σ‖x‖2. The unique globally stable equilibrium point for the deter-
ministic part of (4) is seen to beX∗ = 0, which checks with the fact that the solution to the linear
regression problem isw∗ = 〈x,y〉/〈x,x〉 in this simple case.

2.3 Role of Network Topology

The topology of a network of dynamical systems strongly influences synchronization, to include
the rate at which elements synchronize and whether sync (or the tendency to sync) can occur at all
in the first place. Thus the pattern of interconnections among neural systems plays an important
role in controlling uncertainty by way of synchronization properties. In a network of stochastic
systems of the general (diffusive) type described in Section 2, topology can be seen to influence
the robustness of synchrony to noise through the spectrum ofthe network Laplacian. Laplacians
arising in various interesting networks and applications have received much attention, both in bi-
ological decision making and in the context of synchronization of dynamical systems more gener-
ally (Kopell and Ermentrout, 1986; Kopell, 2000; Jadbabaieet al., 2003; Wang and Slotine, 2005;
Taylor et al., 2009; Poulakakis et al., 2010).

We will consider four important network graphs here, and these arrangements will be helpful
examples to keep in mind when interpreting the results givenin Section 3. The simplest graph
of coupled elements is perhaps the full, all-to-all graph. As one may guess, this network is also
the easiest to synchronize since each element can speak directly to the others. The spectrum of
the network Laplacianλ(L) for this graph shows why it might be especially effective forreducing
uncertainty in the context of Equation (3). With uniform coupling strengthκ > 0 andn denoting
the number of elements in the network, one can check thatλ(L) = {0, nκ, . . . , nκ}. Denote byλ−
the smallest non-zero (Fiedler) eigenvalue, and byλ+ the largest eigenvalue. Hereλ− = λ+ = nκ
and it is these eigenvalues that control synchronization for any given network. As we will show
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Figure 1:Examples of (undirected) network graphs.

below in Theorem 3.1, the effect of the noise can be reduced particularly quickly precisely because
the non-zero eigenvalues depend on both parameters,κ andn.

If fewer connections are made in the network it becomes harder to synchronize, and we move
away from the all-to-all ideal. Figure 1 shows some other common network graphs. The undirected
ring graph, appearing in the middle, has spectrumλi(L) = 2κ

[
1 − cos

(
2π
n (i − 1)

)]
, i = 1, . . . , n.

If the single edge connecting the first and last elements is removed to make a chain as shown on the
left in the Figure, the network becomes considerably harderto synchronize (Kopell and Ermentrout,
1986), although the spectrum of the chain looks similar:λi(L) = 2κ

[
1 − cos

(
π
n(i − 1)

)]
. This

makes intuitive sense because information is constrained to flow through only one path, and with
possibly significant delays. Finally, the star graph shown on the right in the Figure has spectrum
λ(L) = {0, κ, . . . , κ, nκ}, and we can see that the key Fiedler eigenvalueλ− = κ does not grow
with the size of the networkn. The Theorems in Section 3 then predict that it will be impossible
to increase the synchronization rate simply by incorporating more copies of the neural circuit. The
coupling strength must also increase to make fluctuations from the common trajectory (synchro-
nization subspace) small. We will discuss this case in more detail. As might be particularly relevant
to brain anatomy, random graphs and directed graphs may alsobe considered, and have been studied
extensively (Bollobas, 2001).

In neuroscience-related models, each connection in a network has an associated biophysical
cost in terms of energy and space requirements. All-to-all networks, withn2 connections amongn
circuits or neurons, is often criticized as being biologically unrealistic because of this cost. However,
it has been noted that all-to-all connectivity can be implemented with2n connections using quorum
sensing ideas (Taylor et al., 2009), wherein a global average is computed and shared. The global
average is computed given inputs from alln elements, and this average is sent back to each circuit
via anothern connections. The shared variable may be communicated by synapses, or sensed
chemically or electrically. Although quorum sensing cannot realizeanyset ofn2 connections, the
global average may be a weighted average or there may be several common variables organized
hierarchically. This allows for a rich set of networks withO(n) connectivity which behave more
like networks with all-to-all connectivity for synchronization and stability purposes. Furthermore,
dynamics in the computation of the quorum variable itself, when appropriate for modeling purposes,
does not necessarily pose any special difficulty for establishing synchronization properties if virtual
systems are used (Russo and Slotine, 2010).

The difficulty with which synchrony may be imposed can be “normalized” by the number of
connections in many cases to obtain a comparison between synchronization properties of vari-
ous graphs that takes biological cost into account. Using quorum variables where appropriate,
graphs whose spectrums depend onn are thus roughly comparable on equal biological terms. Cost-
normalized comparisons of synchronization properties arenot always possible or meaningful, how-
ever. Consider the ring and chain networks introduced above. There is a difference of one edge
between the two, but in the noise-free setting for example the chain requires asymptotically four
times more effort to synchronize than the ring architecture(see e.g. (Wang and Slotine, 2005), Ex-
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ample 4.5).

2.4 A Comment on Stability and Contraction

We turn to analyzing the stability of the nonlinear system given by Equation (4). We will argue that
this is difficult for two reasons: the presence of noise, and the fact that the (noise-free) dynamics
saturate in magnitude. Indeed, without additional assumptions, one cannot in general show that the
system is globally exponentially stable. A common method for studying the stability properties of
a noiseless nonlinear dynamical system is via Lyapunov theory (Slotine and Li, 1991), however in
the presence of noise system trajectories along the Lyapunov surface may not be strictly decreas-
ing. Contraction analysis (Lohmiller and Slotine, 1998; Wang and Slotine, 2005) is a differential
formalism related to Lyapunov exponents, and captures the notion that a system is stable in some
region if initial conditions or temporary disturbances areforgotten. If all neighboring trajectories
converge to each other, global exponential convergence to asingle trajectory can be concluded:

Definition 2.1 (Contraction). Given the system equationsẋ = f(x, t), a region of the state space
is called a contraction region if the JacobianJf = ∂f

∂x is uniformly negative definite in that region.
Furthermore, the contractionrateis given byβ, where1

2(Jf + J⊤
f ) ≤ βI < 0.

An analogous definition in the case stochastic dynamics has also been developed (Pham et al.,
2009), and requires contraction of the noise-free dynamicsas well as a uniform upper bound on the
variance of the noise. However for the system (4), the Jacobian is found to be

J(w) = ‖x‖2 diag(tanh2(w)− 1)− L

so thatλ
(
J(w)

)
< −λ

(
L
)
≤ −λmin(L) = 0. The subspace of constant vectors is a flow invariant

subspace, andL does not contribute to the dynamics in this flow invariant space sinceL has a
zero eigenvalue corresponding to its constant eigenvector. This difficulty can arise whenever one
considers diffusively coupled elements, and in such cases the usual way around this difficulty is to
work with an auxiliary or virtual system (as in e.g. (Pham andSlotine, 2007)) and study contraction
to the flow invariant subspace starting from initial conditions outside. However sincetanh′(x) =
1−tanh2(x), we still are left with the difficulty that the noise-free dynamics can have a convergence
rate to equilibrium arbitrarily close to zero as one travelsfar out to the tails of thetanh function; the
system is not necessarily contracting. Indeed, for any saturated dynamics,tanh

(
f(x, t)

)
, the rate

can be arbitrarily small. Thus one cannot easily determine the rate of convergence to equilibrium
using standard techniques. The analysis which we provide inthe succeeding sections will attempt
to get around these difficulties by separately exploring thesystem’s behavior in and out of the flow-
invariant (synchronization) subspace of constant vectors.

3 Controlling Uncertainty in Learning

In this section we present and interpret the main results of the paper. The argument we put forward
is that noisy, nonlinear trajectories can be linearly averaged to reduce the noise if fluctuations due
to noise can be made small. We show that the fluctuations can bemade small by coupling the
dynamical systems, and that one can precisely control the size of the fluctuations. In particular,
we give estimates which show that the tradeoff between noiseand coupling strength among neural
circuits determines the amount of uncertainty surroundingthe decisions made by the neural system.
Proofs of the Theorems are postponed until Section 6.
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3.1 Preliminaries

We begin by decomposing the stochastic process{Xt ∈ R
n}t≥0 into a sum describing fluctuations

about the center of mass. LetP = I − (1/n)11⊤, the canonical projection onto the zero-mean
subspace ofRn, and defineQ = I − P . Then for all t ≥ 0, Xt = PXt + QXt. Clearly,
kerP = imQ is the subspace of constant vectors. We will adopt the notation X̃t for PXt, andX t1

for QXt (along with the analogous notatioñwt andw̄t), and derive expressions for these quantities
based on Equation (4). The macroscopic variableXt satisfies

dXt =
1
n1

⊤dXt = −‖x‖2
n

1
⊤tanh(Xt)dt+

σ̃√
n
dBt (5)

and thus

dX̃t = dXt − dXt1 = −
(
tanh(Xt)‖x‖2 + LXt −

‖x‖2
n

1
⊤tanh(Xt)1

)
dt+ σ̃dBt −

σ̃√
n
dBt1.

(6)
In terms of the original variablew, the fluctuations̃wt are purely due to the noise, whilēwt parame-
terizes the average decision function. As the decision function we consider is linear, the uncertainty
in the decisions is directly equivalent to uncertainty in the parameterw. We will study the evolution
of both the mean and the fluctuation processes over time, however to assess uncertainty the central
quantity of interest will be the size of the ball containing the fluctuations (the “microscopic” vari-
ables). We characterize the magnitude of the fluctuations via the squared norm process satisfying

d‖X̃t‖2
2

= −
(
‖x‖2〈X̃t, tanh(Xt)〉+ 〈X̃t, LXt〉

)
dt+

1

2
σ̃2(n− 1)dt+ σ̃‖X̃t‖dBt (7)

which follows from (6) applying Ito’s Lemma to the functionh(X̃t) =
1
2〈X̃t, X̃t〉 and the fact that

〈X̃t, dBt〉 = ‖X̃t‖dBt in law.

3.2 Uncertainty Estimates

The first –and central– result says that the ball centered atw̄ (the center of mass) containing the
fluctuations can be controlled in expectation from above andbelow by the coupling strength and in
most cases the number of circuit copies, via the spectrum of the network LaplacianL. We note that
lower bounds are typically ignored in the dynamical systemsliterature, possible because they are
less important for stability analyses. We have found, however, that such bounds can be derived in
the case of saturated gradient dynamics, and that control from below can yield further insight into
the present problem of neural learning.

Let λ+ be the largest eigenvalue of L, and letλ− be the smallest non-zero eigenvalue ofL.

Theorem 3.1(Fluctuations can be made small). After transients of rate2λ−

(n− 1)σ2

2λ+

(
1− ‖x‖2

λ−

)
≤ E

∥∥w̃(t)
∥∥2 ≤ (n − 1)σ2

2λ−

wherew̃ = Pw(t).

Clearly the lower bound is informative only whenλ− > ‖x‖2. While we do not explicitly
assume any particular bound on the size of the examples‖x‖, it is reasonable thatλ− ≫ ‖x‖2
sinceλ− can depend on the number of circuitsn and will always depend on the coupling strengthκ,
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which can be large. Large coupling strengths can be found in avariety of circumstances, particularly
in the case of motor control circuits (Grandhe et al., 1999; Kiemel et al., 2003) for example.

In the next Theorem we give the variance of the fluctuations via a higher moment of‖w̃‖. This
result makes use of the lower bound in Theorem 3.1, and leads to a result that gives control of the
fluctuations in probability rather than in expectation.

Theorem 3.2(Variance of the trajectory distances to the center of mass). After transients of rate
2λ−

var
(
‖w̃(t)‖2

)
≤

(
(n− 1)σ2

2λ−

)2 (
2 +

4

n− 1

)
−

(
(n− 1)σ2

2λ+

)2 (
1− ‖x‖2

λ−

)2

.

Chebyshev’s inequality combined with Theorem 3.2 immediately gives the following Corollary.

Corollary 3.1. After transients of rate2λ−

P

[∥∥w̃(t)
∥∥2 − E

∥∥w̃(t)
∥∥2 ≥ ε

]
≤ var

(
‖w̃(t)‖2

)

ε2
. (8)

Since any connected network graph has non-trivial eigenvalues which depend on the uniform
coupling strengthκ, we see that for fixedn asκ → ∞, var

(
‖w̃(t)‖2

)
→ 0. In the case of the

all-to-all network topology, for example, the eigenvaluesof L depend on bothn and κ so that
var

(
‖w̃(t)‖2

)
= O(κ−2) giving a power law decay of orderO(κ−2ε−2) on the right hand side of

Equation (8) in Corollary 3.1.
Finally, we turn to estimating in expectation the steady-state average distance between the tra-

jectories of the circuit copies and the noise-free solution. As we have argued in Section 2.4, the rate
of convergence to equilibrium of the trajectorieswi(t) can be arbitrarily small. Although from the
Theorems above the fluctuations can be made small, one cannotin general make a similar statement
about the center of mass̄wt process unless assumptions about the initial conditions are made (and
by extension, the same holds true for the trajectorieswi(t)). Such an assumption would lead to
control over the contribution of thetanh terms, and establishes a lower bound on the contraction
rate. Rather than make a specific assumption however, we state a general result: We again provide
a lower bound, this time following from the law of large numbers governing sums of i.i.d. Gaussian
random variables and the lower bound on the fluctuations provided by Theorem 3.1.

Theorem 3.3(Average distance to the noise-free trajectory). Denote byw∗ the minimizer of the
squared-error objective(2.1). After transients of rate2λ−

σ2

n
+

[
(n− 1)σ2

2nλ+

(
1− ‖x‖2

λ−

)]+
≤ E

[
1

n

n∑

i=1

(wi(t)− w∗)2

]
≤ σ2

2λ−
+ E

[
(w̄t −w∗)2

]

where[ · ]+ ≡ max(0, ·).

Theorem 3.3 says that average closeness of the noisy system to that of the noise-free optimum
is controlled by the tradeoff between the noise and the coupling strength, and the number of circuit
copiesn. The former controls in large part the magnitude of the fluctuations, as discussed above.
The latter quantity is the unavoidable linear averaging component, and can be brought to zero only
as fast as the law of large numbers allows,O(n−1/2) at best. For fixedn asλ(n)

− → ∞, the upper and
lower bounds coincide sinceE

[
(w̄(t)−w∗)2

]
→ σ2/n. As bothn → ∞ andκ → ∞ Theorem 3.3

confirms thatwi(t) → w∗ in expectation. If the fluctuations are not made small however, linear
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averaging will be wrong, and the error will of course be greater. Just how bad linear averaging is
when the fluctuations are allowed to be large is described in large part by the maximum curvature
of the noise-free dynamics3.

Finally, we note that the estimates above depend on the number of samplesm only through
the norm of the examplesx, and it is reasonable to assume that this quantity may be appropriately
normalized based on the maximum values conveyed by subsystems or rates of neurons comprising
the circuit in the case of population or rate codes, or maximum field strengths in the case of LFPs.
However, the requirement that the organism must collectm observations before learning can pro-
ceed is not essential. We may also consider theonline learning setting, where data are observed
sequentially and updates to the parameters(w)i are made separately on the basis of each observa-
tion in temporal order. The analysis above studies convergence to and distance from the solution in
the steady state, whatever that solution may be, givenm pieces of evidence. Thus the online setting
can also be considered as long as the time between observations is longer than the transient periods.
Indeed, in many scenarios learning and decision making processes in the brain can take place on
short time scales relative to the time scale on which experience is accumulated. In this case when
another piece of information arrives, the system moves to a region defined (stochastically) around a
new steady-state. A complication can arise when the new point arrives during the transient period
of the previous learning process – before the system has had achance to settle, on average, into the
new equilibrium – however we do not attempt to model this situation here.

4 Discussion

The estimates given in Section 3 quantify the tradeoff between the degree of synchronization and the
noise (error), and the role this tradeoff plays in determining the uncertainty of a decision function
learned by way of a stochastic, nonlinear dynamics. Estimates both in expectation and in probability
were derived. We showed how and where both the coupling strength and the topology of the network
of neural ensembles impact the extent to which the noise, andtherefore uncertainty due to error, can
be controlled. In particular, for most networks (see Section 2.3) the effect of the noise can be reduced
by either increasing the coupling strength or the number of redundant systems (or both), leading to a
steady-state solution that is going to be closer to the ideal, error-free solution with high probability.
From a technical standpoint, this is because fluctuations about the common trajectory are exactly the
way in which the noise enters the picture; when the fluctuations are made small, the error is made
small. In this way an organism may mitigate error imposed by anoisy, imperfect learning apparatus
and solve a learning task to greater accuracy. Furthermore,synchronization and redundancy can
both improve thespeedof learning, in the sense that the rate of convergence to the steady state
solution also depends on these mechanisms. Each of the bounds presented in Section 3 above hold
after transient terms of ordere−tλ

− vanish, whereλ− is the smallest non-zero eigenvalue of the
network Laplacian. For any stable connected network, strong coupling strengths directly improve
convergence rates to the steady-state, as seen by the dependence ofλ− onκ. In the case of all-to-all
(including approximately all-to-all and many random graphs),λ− = O(nκ) so that both increased
redundancy and sync will improve the speed of learning.

Our overarching goal has been to explore quantitatively therole of redundancy and synchro-
nization in reducing error incurred by a stochastic, non-ideal learning and decision making neural
process. We have gone about this by considering a model whichemphasizes the underlying compu-

3One way to see this is to take the first-order Taylor expansionof the dynamics with integral remainder. The re-
mainder term can be upper bounded by the spectral radius of the Hessian matrix, which is related to curvature (see e.g.
(Tabareau et al., 2010)).
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tations taking place rather than particular neural representations. Looking at the appropriate scale,
we seek to address the precise meaning of ensemble measurements and population codes, as well as
the information these codes convey about the underlying dynamics and signals. The results derived
above support the notion that synchronization and redundancy play a more functional role in the
context of learning processes in the brain, rather than being a mere epiphenomenon.

4.1 Synchronization and Redundancy in the Brain

Synchronization has been suggested, over a diverse historyof experimental work, as a fundamen-
tal mechanism for improvement in precision and reduction ofuncertainty in the nervous system
(see e.g. (Needleman et al., 2001; Enright, 1980)). Redundancy too is an important and com-
monly occurring mechanism. In retinal ganglion cells (Croner et al., 1993; Puchalla et al., 2005)
and heart cells (Clay and DeHaan, 1979) the spatial mean across coupled cells cancels out noise.
Populations of hair cells in otoliths perform redundant, collaborative computations to achieve ro-
bustness (Kandel et al., 2000; Eliasmith and Anderson, 2004), and it has been suggested that multi-
ple cortical (amygdala-thalamus) loops contribute to fearresponse/conditioning, and emotion more
generally (LeDoux, 2000). With motor tasks such as reachingor standing, it has been argued that
planning and representation occurs at least partially in redundant coordinate systems and involve
redundant degrees of freedom (Scholz and Schoner, 1999). Todorov (Todorov, 2008) maintains
that redundancy and noise combine to give rise to optimal muscle control policies, raising the in-
teresting possibility that in some cases the impact of the noise may need to be adjusted but not
necessarily eliminated altogether. On a more localized scale, reach direction has also been found to
be conveyed by populations of neurons with overlapping tuning curves (Georgopoulos et al., 1982)
where synchrony within such populations plays an importantrole (Grammont and Riehle, 1999).
Multiple sensorimotor transformations involving disparate brain regions may be at play in the pari-
etal cortex, where redundant sensory inputs from multiple modalities must be mapped into motor
responses (Ting, 2007; Pouget and Sejnowski, 1997). In the ascending auditory pathway, varying
degrees of redundancy have been noted, and contribute to therobust representation of frequency and
more complex auditory objects (Chechik et al., 2006). Ensemble measurements have also been con-
nected to behavior and have been suggested as inputs to brain-machine interfaces, while in stochastic
neural decision making it has been suggested that it is the collective behavior across multiple pop-
ulations of neurons that is responsible for perception and decision making, rather than activity of a
single neuron or population of neurons (Gigante et al., 2009).

In these examples and more generally, we suggest that redundancy plus feedback synchroniza-
tion is a mechanism which may be used to improve the accuracy,robustness and speed of a learning
process involving the relevant respective brain areas. This is separate from, and in contrast with, re-
dundancies which are harnessed to specifically increase storage capacity, as in the case of associate
memory models (Hertz et al., 1991). There, robustness to corruption is also achieved (via pattern
completion dynamics) but the degree of robustness must be traded off against capacity. The primary
function of such populations of neurons is to ostensibly store and retrieve memory patterns rather
than to implement adaptive, learning dynamics while eliminating noise.

Another theme emerging from these instances of sync and redundancy, is that key computations
may be seen as implemented by distant brain regions coupled together by way of long-distance
projections and network “hubs”. Recent experimental observations inC. eleganscasts this inter-
pretation in a developmental light (Varier and Kaiser, 2011), and suggests that such interactions
occur from an early stage in life and are important for normaldevelopment in even simple organ-
isms. Learning processes realized by such computations andinteractions are certainly susceptible
to noise, and must cope with this noise one way or another. We suggest that synchronization and
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redundancy are not only present and possible, but provide a ready, natural solution.
The ability to learn and make decisions reliably in the presence of uncertainty is of fundamental

importance for survival of any organism. This uncertainty can be seen to arise from three distinct
sources, and the approach discussed here treats only the first two: intrinsic neuronal noise, both
local and in aggregate, and noise in the form of measurement error, under which we include error
due to limitations in precision and nonlinearity in biological systems. A third and equally impor-
tant source of error is that of uncertainty in the inference process itself (Yang and Shadlen, 2007;
Kiani and Shadlen, 2009). This uncertainty is specific to andinherent in the decision problem and is
characterized by the posterior distribution over decisions given the experiential evidence. Our work
only considers uncertainty beyond that of the inference process, and as such is one part of a larger
puzzle. We argue that intrinsic noise is both experimentally and theoretically important – and in-
volved enough technically – to be addressed in isolation, while holding all other variables constant.
Indeed, intrinsic noise intensities can be large. The role of the network’s topology and coupling
mechanism also strongly influences the overall picture, often in surprising or subtle ways. But it
is also possible that the methods recruited here can be applied towards understanding some aspect
of the inference error if different inferences from the sameobservations can be made by different
“expert” (circuits) each with their own biases. Then averaging, nonlinearity and the uncertainty
could potentially be treated in a similar framework.

4.2 Extensions and Generalizations

Asymptotic stability of the stochastic system considered here is guaranteed as long as there is cou-
pling. In general, if the dynamics of a stochastic system arecontracting or can be made contracting
with feedback, then combinations (e.g. parallel, serial, hierarchical) of such systems will be con-
tracting (Pham et al., 2009; Lohmiller and Slotine, 1998). In the present setting, the system govern-
ing the fluctuations about the mean trajectory is contracting with a rate dependent on the coupling
strength and the noise variance. Thus combinations of learning systems of the general type con-
sidered here can enjoy strong stability guarantees automatically, since the individual systems are
contracting.

Finally, we have assumed throughout that the errors affecting the collection of redundant neural
circuits or systems are mutually independent. This is not anunreasonable modeling assumption:
For large-scale learning processes involving different brain areas, noise imposed by local spike ir-
regularities is largely unrelated to noise present in distant circuits. Within small populations of
neurons, it is likely that dependence among intrinsic neuronal noise sources decays rapidly in space
so that nearest-neighbors may experience somewhat correlated noise, but beyond this are not sig-
nificantly impacted by other members of the population. As noises in a biological environment
can never be fully dependent (whether due to thermal or chemical-kinetic factors, or otherwise),
partial-dependence among noise inputs may be explicitly modeled as, for example, mixing pro-
cesses if desired (Doukhan, 1994). Estimates of the form discussed here would then be augmented
with mixing terms leading to results which make identical qualitative statements about the role of
redundancy and sync. Fluctuations, and the effect of the noise, would still be reducible but would
require larger coupling strengths or more redundancy compared to what would be necessary if the
noise sources were independent.
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Figure 2: (Left) Typical simulated trajectories for coupled and uncoupled networks driven by the
same noise. (Right) Population average trajectories for the coupled and uncoupled systems.

5 Simulations

To empirically test the estimates given in Section 3 we simulated several systems of SDEs given by
Equation (4) using Euler-Maruyama integration (over timet ∈ [0, 10s], 105 regularly spaced sample
points), for different settings of the parametersn (number of circuits or elements),κ (coupling
strength) andσ (noise standard deviation). Initial conditions were randomly drawn from the uniform
distribution on[−5, 5], and we fixed‖x‖2 = 1 and the coupling arrangement to all-to-all coupling
with fixed strength determined byκ. For simplicity the simulated systems had equilibrium point
at zero, corresponding toy = 0, so that〈x, y〉 = 0 andX∗ = w∗ (the change of variables is the
identity map and we can identifyXt with wt).

For comparison purposes we first show on the left in Figure 2 typical simulated trajectories of
uncoupled (top) and coupled (bottom) populations whenn = 20, κ = 5, σ = 10. Both populations
are driven by the same noise and the same set of initial conditions, however each element is driven
by noise independent from the others as assumed above. From the units on the vertical axes, one can
see that coupling clearly reduces inter-trajectory fluctuations as expected. On the right in Figure 2,
we show the coupled/uncoupled populations’ respective center of mass trajectories for this particular
simulation instance. One can see from this figure that the average of the coupled system tends closer
to zero (X∗), and is less affected by large noise excursions.

To empirically test tightness of the estimates given in Section 3, we repeated simulations of each
respective system5000 times, and averaged the relevant outcomes to approximate the expectations
appearing in the bounds. Transient periods were excluded inall cases. In Tables 1 through 5
we show the values predicted by the bounds and the corresponding simulated quantities, for each
respective triple of system parameter settings. Sample standard deviations of the simulated averages
(expectations) are given in parentheses. In Figure 3 we showtheoretical versus simulated expected
magnitudes of the fluctuationsE‖X̃t‖2 when n = 200 and σ = 10 over a range of coupling
strengths. The solid dark trace is the upper bound of Theorem3.1, while the open circles are the
average simulated quantities (again5000 separate simulations were run for eachκ). Error bars are
also given for the simulated expectations. Note that the magnitude scale (y-axis) is logarithmic, so
the error bars are also plotted on alog scale. We omitted the lower theoretical bound from the plot
because it is too close to the upper bound to visualize well relative to the scale of the bounds.

Generally, the estimates relating to the magnitude of the fluctuations are seen to be tight, and the
variance estimate is within an order of magnitude. For the experiments with large noise amplitudes,
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Quantity Lower Bound Simulated Upper Bound

E‖X̃t‖2 9.405 9.497 (std= 3.1) 9.500
var

(
‖X̃t‖2

)
- 9.450 (std= 14.7) 111.046

1
nE‖Xt −X∗

1‖2 5.470 12.249 (std= 22.2) 12.249 (std= 22.2)

Table 1:Estimates vs. simulated quantities:n = 20, κ = 5, σ = 10.

Quantity Lower Bound Simulated Upper Bound

E‖X̃t‖2 11.281 11.719 (std= 3.8) 11.875
var

(
‖X̃t‖2

)
- 14.261 (std= 23.0) 184.45

1
nE‖Xt −X∗

1‖2 1.814 1.933 (std= 2.5) 1.946 (std= 2.4)

Table 2:Estimates vs. simulated quantities:n = 20, κ = 1, σ = 5.

Quantity Lower Bound Simulated Upper Bound

E‖X̃t‖2 45.125 47.053 (std= 15.2) 47.500
var

(
‖X̃t‖2

)
- 230.275 (std= 373.4) 2951.234

1
nE‖Xt −X∗

1‖2 7.256 14.761 (std= 24.1) 14.784 (std= 24.1)

Table 3:Estimates vs. simulated quantities:n = 20, κ = 1, σ = 10.

Quantity Lower Bound Simulated Upper Bound

E‖X̃t‖2 49.005 49.556 (std= 7.0) 49.500
var

(
‖X̃t‖2

)
- 49.332 (std= 70.6) 2598

1
nE‖Xt −X∗

1‖2 1.490 1.449 (std= 1.6) 1.449 (std= 1.6)

Table 4:Estimates vs. simulated quantities:n = 100, κ = 1, σ = 10.

Quantity Lower Bound Simulated Upper Bound

E‖X̃t‖2 9.880 10.137 (std= 1.5) 9.900
var

(
‖X̃t‖2

)
- 2.151 (std= 3.2) 102.362

1
nE‖Xt −X∗

1‖2 1.099 1.496 (std= 1.5) 1.496 (std= 1.5)

Table 5:Estimates vs. simulated quantities:n = 100, κ = 5, σ = 10.
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Figure 3:Simulated vs. theoretical upper bound estimates of the fluctuations’ expected magnitude
over a range of coupling strengthsκ. Heren = 200 circuits andσ = 10.

the empirical estimates can appear to slightly violate the bounds where the bounds are tight since
the variance across simulations is large. The lower bound estimating the distance of the center of
mass to the noise-free solution is also seen to be reasonablygood. For comparison, we give the
upper estimate where the empirical distance is substitutedin place of the expectation in order to
show closeness to the lower bound. Theorem 3.3 predicts thatthe upper and lower estimates will
eventually coincide ifκ and/orn are chosen large enough.

6 Proofs

In this section we provide proofs of the results discussed inSection 3.
We first introduce a key Lemma to be used in the development immediately below.

Lemma 6.1. LetP = I − (1/n)11⊤, the canonical projection onto the zero mean subspace ofR
n.

Then for allx ∈ R
n

0 ≤ 〈Px, tanh(x)〉 ≤ ‖Px‖2,
where the hyperbolic tangent applies elementwise.

Proof. Given x ∈ R
n, define the index setsI = {1, . . . , n}, I+ = {i ∈ I | (Px)i ≥ 0}, and

I− = I\I+. SincePx is zero mean,
∑

i∈I+(Px)i =
∑

i∈I
−

|(Px)i|. We will express the hyperbolic

tangent astanh(z) = 2s(2z)− 1, wheres(z) = (1+ e−z)−1 is the logistic sigmoid function. If we
letµ = 1

n1
⊤x be the center of mass ofx, (Px)i = xi−µ ≥ 0 impliess(xi) ≥ s(µ) by monotonicity

of s. Likewise,(Px)i < 0 impliess(xi) < s(µ). Finally, note that sinceP 2 = P and1 ∈ kerP ,
〈Px, tanh(x)〉 = 〈Px, P

(
2s(2x)− 1

)
〉 = 2〈Px, s(2x)〉. Using these facts, we prove the lower
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bound first:

〈Px, tanh(x)〉 = 2
∑

i∈I+

(Px)is(2xi)− 2
∑

i∈I
−

|(Px)i|s(2xi)

≥ 2s(2µ)
∑

i∈I+

(Px)i − 2s(2µ)
∑

i∈I
−

|(Px)i|

= 2s(2µ) · 0 = 0.

Turning to the upper bound, we prove the equivalent statement 〈Px, s(2x) − x〉 ≤ 0. First, if
µ = 0, thenPx = x so〈Px, tanh(x)〉 = 〈x, tanh(x)〉 ≤ ‖x‖‖tanh(x)‖ ≤ ‖x‖2 = ‖Px‖2, since
‖tanh(x)‖ ≤ ‖x‖ by virtue of the fact that| tanh(z)| = tanh(|z|) ≤ |z| for any z ∈ R. Now
suppose thatµ > 0. If z ≥ µ > 0, we can upper bounds(2z) by the line tangent to the point
(µ, s(2µ)): s(2z) ≤ mz + b with m < 1

2 andb > 1
2 . If z < µ, we can take the lower bound

s(2z) > 1
2z +

1
2µ− s(2µ). Using these estimates, we have that

〈Px, s(2x)− x〉 =
∑

i∈I+

(Px)i
(
s(2xi)− xi

)
+

∑

i∈I
−

|(Px)i|
(
xi − s(2xi)

)

≤
∑

i∈I+

(Px)i
(
b− (1−m)xi) +

∑

i∈I
−

|(Px)i|
(
1
2xi +

1
2µ− s(2µ)

)

≤
∑

i∈I+

(Px)i
(
b− (1−m)µ) +

∑

i∈I
−

|(Px)i|
(
1
2µ+ 1

2µ− s(2µ)
)

=
(∑

i∈I+

(Px)i

)(
b+mµ− s(2µ)

)
= 0.

The second inequality follows from the fact that(1 − m) > 0, xi ≥ µ for i ∈ I+ andxi < µ for
i ∈ I−. Since

∑
i∈I+(Px)i =

∑
i∈I

−

|(Px)i|, and recalling that by definitionb satisfiesmµ+ b =
s(2µ), the final equalities follow. Ifµ < 0, then the proof is similar, taking the line tangent to the
point (µ, s(2µ)) as a lower bound fors(2z) and the line12(z − µ) + s(2µ) as an upper bound.

6.1 Fluctuations Estimates: Proof of Theorem 3.1

We begin by addingλ‖Xt‖2dt, with λ ∈ (0,∞), to both sides of Equation (7) to obtain

1
2d‖X̃t‖2 + λ‖X̃t‖2dt = −‖x‖2〈tanhXt, X̃t〉dt+ (λ‖X̃t‖2 − 〈LXt, X̃t〉)dt

+
1

2
(n− 1)σ̃2dt+ σ̃‖X̃t‖dBt = e−2λtd(12‖X̃t‖2e2λt),

where the second equality follows noticing that the right hand side is the total Ito derivative of the
left hand side of the first equality. Now multiply both sides by e2λt, switch to integral form, and
multiply both sides bye−2λt to arrive at

1
2‖X̃t‖2 = e−2λt‖X̃0‖2 +

∫ t

0
e2λ(s−t)

(1
2
(n− 1)σ̃2 − ‖x‖2〈tanhXs, X̃s〉

)
ds

+

∫ t

0
e2λ(s−t)(λ‖X̃s‖2 − 〈LXs, X̃s〉)ds + σ̃

∫ t

0
e2λ(s−t)‖X̃s‖dBs.

(9)

Upper Bound: Next, note that〈LXt, X̃t〉 = 〈LX̃t, X̃t〉 sinceL(Xt1) = 0, and thatX̃t is by
definition orthogonal to any constant vector. For allt we also have that

λ−‖X̃t‖2 − 〈LX̃t, X̃t〉 ≤ 0

−〈tanhXt, X̃t〉 ≤ 0
(10)
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almost surely. The first inequality follows from the fact that for all x ∈ imP ,

λ−‖X̃t‖2 ≤ 〈LX̃t, X̃t〉 ≤ λ+‖X̃t‖2,

if λ− is the Fiedler eigenvalue ofL andλ+ is the largest eigenvalue ofL. The second inequality is
given by Lemma 6.1. Settingλ ≡ λ− and applying the inequalities (10) to Equation (9) gives the
estimate

1
2‖X̃t‖2 ≤ e−2λ

−
t‖X̃0‖2 +

(n − 1)σ̃2

2

∫ t

0
e2λ−

(s−t)ds+ σ̃

∫ t

0
e2λ−

(s−t)‖X̃s‖dBs

= e−2λ
−
t‖X̃0‖2 +

(n − 1)σ̃2

4λ−
(1− e−2λ

−
t) + σ̃

∫ t

0
e2λ−

(s−t)‖X̃s‖dBs (11)

almost surely. Taking expectations and noting thatE

[∫ t
0 e

2λ
−
(s−t)‖X̃s‖dBs

]
= 0, we have that

E‖X̃t‖2 ≤
(n− 1)σ̃2

2λ−
(12)

after transients of rate2λ−.
Lower Bound: We show thatE‖X̃t‖2 has a lower bound that can also be expressed in terms of the
coupling strength and the noise level. The derivation is similar to that of the upper bound, and we
begin with Equation (9). We setλ ≡ λ+ and apply the estimatesλ+‖X̃s‖2 − 〈LX̃s, X̃s〉 ≥ 0 and
〈tanhXs, X̃s〉 ≤ ‖X̃s‖2 for all s a.s., yielding

1
2‖X̃t‖2 ≥ e−2λ+t‖X̃0‖2+

∫ t

0
e2λ+(s−t)

(1
2
(n−1)σ̃2−‖x‖2‖X̃s‖2

)
ds+σ̃

∫ t

0
e2λ+(s−t)‖X̃s‖dBs.

Taking expectations and integrating the Ito term, we have

1
2E‖X̃t‖2 ≥ e−2λ+t

E‖X̃0‖2 +
(n− 1)σ̃2

4λ+
(1− e−2λ+t)− ‖x‖2

∫ t

0
e2λ+(s−t)

E‖X̃s‖2ds.

After transients of rate2λ−, we can apply (12) to estimate the remaining integral and lower bound
the above equation by

e−2λ+t
E‖X̃0‖2 +

(n− 1)σ̃2

4λ+
(1− e−2λ+t)− ‖x‖2 (n− 1)σ̃2

4λ−λ+
(1− e−2λ+t).

Sinceλ− ≤ λ+, transients of rate2λ+ have already transpired if we suppose that we have waited
for transients of rate2λ−. Therefore, we can say that after transients of rate2λ−,

E‖X̃t‖2 ≥
(n− 1)σ̃2

2λ+

(
1− ‖x‖2

λ−

)
. (13)

6.1.1 Inverting the change of variables

Finally, we can obtain corresponding upper and lower boundsfor the original system (3) noting that
sinceX̃t = P

(
w(t)‖x‖2 − 〈x,y〉1

)
= ‖x‖2Pw(t), we haveE‖w̃‖2 = E‖X̃t‖2/‖x‖4, where we

have used the notatioñw for Pw. The‖x‖4 in the denominator then cancels with the same quantity
occurring inσ̃2 in Equations (12) and (13), giving the final form shown in Theorem 3.1.
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6.2 Fluctuations Estimates: Proof of Theorem 3.2

We first derive the fourth moment of the norm of the fluctuations. Starting from Equation (11),
allow transients of rate2λ− to pass so that we are left with the integral inequality

1
2‖X̃t‖2 ≤

(n− 1)σ̃2

4λ−
+ σ̃

∫ t

0
e2λ−

(s−t)‖X̃s‖dBs.

Squaring both sides, we can apply the identity(a+ b)2 ≤ 2a2 + 2b2 to obtain

‖X̃t‖4 ≤
(
(n− 1)σ̃2

√
2λ−

)2

+ 8σ̃2

(∫ t

0
e2λ−

(s−t)‖X̃s‖dBs

)2

.

Taking expectations and invoking Ito’s Isometry for the second term leads to

E‖X̃t‖4 ≤
(
(n− 1)σ̃2

√
2λ−

)2

+ 8σ̃2

∫ t

0
e4λ−

(s−t)
E‖X̃s‖2ds

≤
(
(n− 1)σ̃2

√
2λ−

)2

+
8σ̃2

4λ−

(
(n− 1)σ̃2

2λ−

)
=

(
(n− 1)σ̃2

2λ−

)2 (
2 +

4

n− 1

)

where the estimate (12) has been substituted in forE‖X̃s‖2. An upper bound on the variance
is then obtained from the identityvar(Z2) = E[Z4] − (EZ2)2 and the lower estimate given in
Equation (13). Reversing the change of variables as in Section 6.1.1 yields the final result.

6.3 Distance to the Noise-Free Trajectory: Proof of Theorem3.3

Theorem 3.1 can be applied towards providing a lower bound for the average distance between the
noisy trajectories of the neural circuit and the noise-freesolution to the learning problem. First
observe that from the orthogonal decompositionXt = PXt + QXt and the change of variables
mapping (3) to (4),

‖Xt‖2 = ‖X t1‖2 + ‖X̃t‖2 = ‖x‖4‖w − w∗
1‖2. (14)

Furthermore, we have that

Xt = n−1
∑

i

Xi(t) = n−1
∑

i

(wi‖x‖2 − 〈x,y〉),

so evidently‖x‖−4
EX

2
t = E[(w̄t − w∗)2]. Next, note that if the fluctuations are small, the tra-

jectories(wi(t))
n
i=1 are close to one another and the average trajectoryw̄t = n−1w(t)⊤1 evolves

essentially as̄wt ∼ w∗ + σ√
n
Wt, whereWt is interpreted as a white noise process. In this case we

then have thatE[(w̄t − w∗)2] = σ2

n , and we see thatE[(w̄t − w∗)2] ≥ σ2

n when the fluctuations are

not necessarily small. So we have that‖x‖−4
EX

2
t ≥ σ2

n . Combining the above with Theorem 3.1,

σ2

n
+

[
(n− 1)σ2

2nλ+

(
1− ‖x‖2

λ−

)]+
≤ EX

2
t

‖x‖4 +
E‖X̃t‖2
n‖x‖4 ≤ σ2

2λ−
+ E

[
(w̄t − w∗)2

]

with the notation[ · ]+ ≡ max(0, ·). Equation (14) then shows that the middle quantity above is
equal toE

[
1
n

∑n
i=1(wi(t)− w∗)2

]
.
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