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The time histogram is a fundamental tool for representing the inhomo-
geneous density of event occurrences such as neuronal firings. The shape
of a histogram critically depends on the size of the bins that partition
the time axis. In most neurophysiological studies, however, researchers
have arbitrarily selected the bin size when analyzing fluctuations in
neuronal activity. A rigorous method for selecting the appropriate bin
size was recently derived so that the mean integrated squared error be-
tween the time histogram and the unknown underlying rate is minimized
(Shimazaki & Shinomoto, 2007). This derivation assumes that spikes are
independently drawn from a given rate. However, in practice, biological
neurons express non-Poissonian features in their firing patterns, such that
the spike occurrence depends on the preceding spikes, which inevitably
deteriorate the optimization. In this letter, we revise the method for se-
lecting the bin size by considering the possible non-Poissonian features.
Improvement in the goodness of fit of the time histogram is assessed
and confirmed by numerically simulated non-Poissonian spike trains de-
rived from the given fluctuating rate. For some experimental data, the
revised algorithm transforms the shape of the time histogram from the
Poissonian optimization method.

1 Introduction

A rationale for estimating the neuronal firing rate in physiological studies
lies in the presumption that neurons express information via the frequency
of spike occurrences, obtained by dividing the number of spikes by the ob-
servation period (Adrian, 1928; Rieke, Warland, de Ruyter van Steveninck,
& Bialek, 1997). To grasp the temporal modulation of the neuronal firing
activity, a time histogram needs to be constructed by subdividing the ob-
servation period and counting the number of spikes in each bin (Gerstein
& Kiang, 1960; Abeles, 1982). However, the shape of a time histogram
depends considerably on the choice of the bin size. For instance, if the
bin size is quite small, the time histogram fluctuates significantly and the
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underlying spike rate cannot be discerned, whereas if the bin size is large,
the time-dependent rate cannot be grasped. In neurophysiological litera-
ture, most researchers have subjectively selected a bin size that critically
determines the goodness of fit of the time histogram to the experimental
data.

Theories for optimizing the rate estimation have been suggested on
various standards for the goodness of fit of the time histogram, such
as the Kullback-Leibler divergence (Hall, 1990), the Hellinger distance
(Kanazawa, 1993), the Bayesian principle (Endres, Oram, Schindelin, &
Foldiak, 2008; Endres & Oram, 2010), and the mean integrated squared er-
ror (MISE) (Révész, 1968; Scott, 1979; Koyama & Shinomoto, 2004). It was
recently proved that the expected MISE can be estimated from spike count
statistics alone, without knowing the underlying rate process (Rudemo,
1982; Shimazaki and Shinomoto, 2007). A method for minimizing the ex-
pected MISE was rigorously derived assuming that the spikes are inde-
pendently drawn from a given rate. When a peristimulus time histogram
(PSTH) is constructed by superimposing numerous spike trains, mixed
spikes are statistically independent, and the superimposed sequence can be
approximated as Poissonian (Snyder, 1975; Daley & Vere-Jones, 1988; Kass,
Ventura, & Brown, 2005).

However, individual spike trains bear non-Poissonian features such that
the spike occurrence depends on the preceding spike (Kuffler, Fitzhugh, &
Barlow, 1957; Baker & Lemon, 2000; Pillow, Paninski, Uzzell, Simoncelli,
& Chichilnisky, 2005; Kostal & Lansky, 2006).In particular, individual neu-
rons express specific firing patterns that may be characterized as regular,
random, or bursty, which are reflected in the local variation of interspike
intervals (ISIs) (Holt, Softky, Koch, & Douglas, 1996; Shinomoto, Shima, &
Tanji, 2003; Shinomoto, Miyazaki, Tamura, & Fujita, 2005; Shinomoto et al.,
2009; Miura, Okada, & Amari, 2006; Davies, Gerstein, & Baker, 2006; Nawrot
et al., 2008). Thus, the non-Poissonian features should be considered when
estimating the firing rate for a single spike train (Cunningham, Yu, Shenoy,
& Sahani, 2008; Cunningham, Gilja, Ryu, & Shenoy, 2009; Shimokawa &
Shinomoto, 2009). It is also critically important to consider the non-
Poissonian features when analyzing the spike correlation across multiple
spike trains. It has been shown that a simple Poissonian analysis produces
false positives particularly for regular spike trains, which leads to an in-
correct conclusion on the presence of spike correlations even between the
independent spike trains (Griin, 2009; Louis, Gerstein, Griin, & Diesmann,
2010).

In this letter, we revise the method for selecting bin size by considering
non-Poissonian features. By using simulation data, we evaluate the degree
to which the revised method improves the goodness of fit according to the
MISE. Furthermore, we apply the method to in vivo spike data to examine
the manner in which the shape of a time histogram is transformed by the
replacement of optimization algorithms.
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2 Derivation of Bin Size Optimization Method

A time histogram is readily constructed by partitioning an observation
period T into intervals of width A, counting the number of spikes k; that
fall into each (ith) bin, and drawing a bar at height k;/A fori=1,2,..., N.

The optimization method aims to find the bin size A that minimizes the
MISE between the time histogram, A,, and the underlying rate, 1,. Assuming
that the spikes are sampled from a stochastic process, we use the expected
MISE defined by the following formula,

1 (T .
MISE:ff E (b — A% dt, 2.1
0

where E refers to the expectation over different realizations of spikes under a
given 1,. Minimizing the MISE is equivalent to minimizing the cost function
constructed by subtracting the optimization-free term, as given by

C(A)=MISE — (A, — &), 22)

where A = L [T Adt represents the time average.
By using bias-variance decomposition (see appendix A) Shimazaki and
Shinomoto (2007) transformed the cost function into

C(A) = 2(E(®; — 6,)*) — (E(6; — (ED,))%), (2.3)

where the brackets denote the average over all bins (4;) = & SNLA, 6 s
the height of the ith histogram bin given by k;/A, and 6; is the expected
height of the histogram bin given by the unknown underlying rate ,,

1 iA
= — Apdt. (2.4)

2.1 Poissonian Optimization Method. If individual spikes are drawn
independently from an underlying rate, the number of spikes k; counted
in each (ith) bin obeys Poisson distribution, satisfying the condition that
the spike count variance is equal to the mean, E (k; — E (k;))*> = Ek;. Because
the height of the histogram bin is given by 6, = k;/A, this variance-mean
relationship implies

~ 1 _ 4
E@ —6)* = XEG-.

1

(2.5)
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By inserting equation 2.5 into equation 2.3, the cost function can be repre-
sented as a function of the histogram estimator 6,

2 A A A
CA) = X(E@) —(E6; — (EOI-))2). (2.6)

By recovering the original terms for the spike count, the cost function is
given by the simple formula

N

. 1 2k, — (k; — k)2
C(A):NZ{I(A;)}’ 2.7)
i=1

where k = & SNk, is the mean spike count. The optimal bin size is ob-
tained by minimizing the cost function C(A).

2.2 Non-Poissonian Optimization Method. We now revise the op-
timization algorithm so that it applies to the spike trains that bear
non-Poissonian features for which the variance-mean relationship (see
equation 2.5) is not valid. In general, the ratio of the variance to the mean of
the event count is called the Fano factor F (Fano, 1947). We suggest revising
equation 2.5 by using the Fano factor F; in each bin as follows:

. 1 4
E@;—6)* = FLE0: (2.8)

With this new variance-mean relationship, the cost function is simply
revised as

N

\ 1 2Fk; — (k; — k)?
cw =g {HieR], 29)
i=1

where F, is an estimator of the Fano factor. To estimate the Fano factor from
a single spike train in each bin, we relate the Fano factor to the ISI variability
by using the approximation F ~ C2 (Cox, 1962; appendix B); where Cy, is the
coefficient of variation, which is defined as the standard deviation of the ISIs
divided by the mean, C;, = At /7. In order to obtain a concrete estimation,
we suggest two alternative algorithms based on this relationship.
Algorithm 1: First, we suggest a direct estimation of C, in each bin
according to the original definition. If a bin contains fewer than three spikes,
then the ISI variability is not measurable, and we therefore suggest setting

F =1, because the Fano factor approaches unity for an interval that contains
few spikes (see appendix B). Taken together, we propose an algorithm
denoted as algorithm 1 for estimating the Fano factor in each bin of a single
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spike train:

1, if k; <2,

>

(2.10)

Ar)\2 .
C‘Z, = (—) , otherwise
T

Algorithm 2: The coefficient of variation is known to be easily disturbed
by rate fluctuation. The influence of rate fluctuation on the estimation of
intrinsic firing irregularity can be eliminated by rescaling the time axis or by
using the local variation L, (Shinomoto et al., 2003, 2009; appendix C); that
can be computed as L, = % ZI]{:(% )% using the ISIs {z;} that fall into
each bin (j=1,2,...,k; — 1). Here we relate the Fano factor F to L, using
the conversion relation, C‘z/ = 2L, /(3 — L), which is derived by assuming
gamma processes (appendix D). Expanding upon algorithm 1, we propose

an alternative algorithm denoted as algorithm 2:

1, ifk <2,

. (2.11)
, otherwise

3-1L,

In the next section, we confirm by numerical simulation that algorithm 2
outperforms algorithm 1. Thus, we adopt algorithm 2 as the representative
method; the computations are summarized by the following steps:

Computational Steps for Selecting Bin Size for a Non-Poissonian
Spike Train.

1. Divide the observation period T into N bins having width A, and
count the number of spikes k; that enter the ith bin.
2. Estimate the Fano factor for each bin,

1, ifk <2,

>

2L,
3-1L,

, otherwise,

where L, = k%z Zi’j(%)z is computed from the ISIs {r } that
i i
fall into the bin. .
3. Compute the average of {Fk;} and the variance of {k;} as

1, 1Y -
h= ZPiki' and v = ﬁz(ki_k)z’

i=1 i=1
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4. Construct the cost function,

5. Repeat steps 1 through 4 while changing the bin size A to search for
the optimal bin size that minimizes C(A).

Note that the Poissonian optimization method is obtained by simply re-
placing step 2 with F = 1. Also, computational complexity may be reduced
drastically by skipping the individual estimation of L, in each bin and
replacing the value with the one computed for the entire spike train.

3 Performance of the Optimization Algorithms

3.1 Application to Simulation Data. We compare the performances of
the original and revised algorithms by applying them to non-Poissonian
spike sequences. For this purpose, we generate the spike trains by nu-
merically simulating inhomogeneous gamma processes with a given rate
function A, (0 < t < T) via inverse rescaling in the following steps. First, the
ISIs {x;, x,, ..., x,} are drawn independently from the gamma distribution
function (Cox & Lewis, 1966),

f(x) = K (kex) e /T (i), (3.1)

where T'(k) = fO°° ¥~ le*dx is the gamma function. Here the non-
Poissonian feature can be specified by the shape factor « that determines the
ISI variability. The number of ISIs n is determined as the smallest integer
satisfying "' x; > fOT Ldt. Second, the ISIs {x,x,,...,x,} are consecu-
tively arranged on the time axis to construct a non-Poissonian spike train of
a uniform rate; the ith spike time is given by summing the previous ISIs as
Y, = le:l x;. Third, the time axis is rescaled with a given time-dependent
rate (Berman, 1983; Ogata, 1988; Reich, Victor, & Knight, 1998; Oram,
Wiener, Lestienne, & Richmond, 1999; Brown, Barbieri, Ventura, Kass, &
Frank, 2002; Koyama & Shinomoto, 2005) such that the original spike times
{Y1, Yo, ..., y,} are transformed into rescaled times by t, = A~!(y;) , where
A1 (y) is the inverse of the function A(t) = fot Agds. By using this method,
we can parametrically control the non-Poissonian spiking features with-
out impairing the given rate process. By using the simulated spike trains
derived from the given rate A, the performance of any rate estimation al-
gorithm can be evaluated by computing the integrated squared error (ISE)
between the underlying rate 4, and the time histogram J, constructed from
the spike train, as defined by ISE = [ (i, — A,)%dt.

Figure 1 exemplifies three types of spike trains derived from an iden-
tical sinusoidally modulated rate; they bear different non-Poissonian
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Figure 1: Time histograms determined by Poissonian and non-Poissonian op-
timization methods. (A) Underlying spike rate, 4,. (B) Three ISI distribution
functions. We selected the gamma distribution functions of the shape factors
k =0.5,1, and 5, which generate bursty, Poissonian random, and regular spike
trains, respectively. (C) Spike trains derived from an identical sinusoidal rate
process using different ISI distribution functions. (D) Time histograms con-
structed using the bin size determined by the Poissonian optimization method
(Shimazaki & Shinomoto, 2007). (E) Non-Poissonian optimization method
(algorithm 2).

features that may be called bursty, Poissonian random, or regular according
to the shape parameter of the gamma distribution function, ¥k <1, x =1,
and « > 1, respectively. For respective spike trains, the time histograms op-
timized by the present algorithm (algorithm 2) are compared with those
constructed by the original Poissonian method (Shimazaki & Shinomoto,
2007), illustrating the improved performance achieved by the revision.
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Figure 2: Goodness-of-fit performance of the Poissonian and non-Poissonian
optimization method. Integrated squared error (ISE) between the underlying
rate and the time histograms constructed for the spike trains characterized
with a shape factor « of the ISI distribution. The dotted, dashed, and solid
lines represent the ISEs for the Poissonian (Shimazaki & Shinomoto, 2007) and
algorithms 1 and 2 of the non-Poissonian optimization method, respectively.
k <1,k =1,and k > 1 correspond to bursty, Poissonian random, and regular,
respectively. (A) Sinusoidally regulated rate process. (B) Sawtooth rate fluctua-
tion whose teeth are mutually incommensurate 1 : V2.

Note that the optimized bin size shows the opposite behavior between
the Poissonian and non-Poissonian optimization methods. For the regular
spike train, bin size obtained by the non-Poissonian optimization method
is smaller than by the Poissonian optimization method. This is because the
metric of the local variation L, detected the regular noiseless firing, and,
accordingly, the optimization method could obtain the reliable estimate
using fewer spikes. For the bursty spike train, the firing irregularity was
higher than the Poisson randomness, and, accordingly, the optimization
method required more spikes for the reliable rate estimation. In contrast,
the Poissonian optimization method chose the smaller bin size for the bursty
spike train. This is because the Poissonian optimization method interpreted
the bursty firing as a signal rather than noise.

Figure 2 compares the performances of two variant algorithms of the
revised method and the original Poissonian algorithm represented by a
small ISE between histograms and the given underlying rate. Algorithm 1
improves the performance over the Poissonian algorithm for the non-
Poissonian spike trains whose shape factor « deviates considerably from
1 (Poissonian); however, the performance is slightly inferior in the near-
Poissonian range. In contrast, algorithm 2 always performs better than
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both the Poissonian algorithm and algorithm 1. Therefore, we adopt algo-
rithm 2 as an appropriate algorithm for the non-Poissonian optimization
method.

Here we tested two types of rate fluctuation: sinusoidally regulated and
sawtooth rate fluctuations. Both cases show that the ISE decreases with «,
reflecting the tendency of the spike signals to become less noisy with an
increase of the shape factor. In both cases of any regularity «, algorithm 2
is advantageous over other algorithms.

3.2 Application to Biological Data. Next, we apply the optimization
methods to actual biological data to examine the manner in which the
shape of the time histogram is transformed by replacing the optimization
methods. Here, we employ the commonly available spike trains of a neuron
in area MT of a monkey responding to a random dot stimulus (Britten,
Shadlen, Newsome, & Movshon, 1992, 2004). Figure 3 depicts sample spike
sequences and compares the time histograms constructed using the original
Poissonian method and the non-Poissonian method for each spike train. It
is observed that for some spike trains, the revised optimization method
considerably transforms the shape of the time histogram.

In the section 3.1, we tested the effectiveness of the optimization meth-
ods using numerically simulated data by directly comparing the resulting
histogram to a given underlying rate. However, with regard to the exper-
imental data, the underlying rate is unknown. Thus, we attempt here to
verify the suitability of the optimization methods by performing a likeli-
hood cross-validation, although it is more indirect than numerical simu-
lation. Specifically, from a time histogram constructed from a single spike
train, we estimate the average likelihood of other spike trains. Among the
15 spike trains from repetitive presentation of an identical stimulus (see
Figure 3A), seven of these samples resulted in an estimate of the same bin
size for Poissonian and non-Poissonian optimization methods. Among the
remaining eight spike trains for which the two methods gave different time
histograms, six samples gave a greater value for the cross-validated like-
lihood for the non-Poissonian method, while two samples gave a smaller
value. This result implies that in our spike data, the non-Poissonian method
is superior with respect to the likelihood of cross-validation criteria. In ad-
dition, we compute the ISE between the individual optimized histogram
and the average rate of spike occurrences of the 15 spike trains. By using
the optimal kernel method proposed by Shimazaki and Shinomoto (2010),
we estimated the average rate of spike occurrences (see Figure 3B, also de-
picted as the dashed line in Figures 3D and 3E). Among the eight spike
trains, seven samples gave a smaller ISE for the non-Poissonian method,
and one sample gave a larger ISE. This also implies the superiority of the
non-Poissonian method. However, it should be noted that the likelihood
cross-validation analysis or the ISE analysis is based on the assumption
that the spike train is repeatedly derived from the same underlying rate.
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Figure 3: Application of Poissonian and non-Poissonian optimization meth-
ods to the spike data of an MT neuron (#j015 in Britten et al., 2004). (A) Spike
trains obtained by the repeated presentation of a visual stimulus. (B) Average
frequency of spikes estimated with the kernel density estimate (Shimazaki &
Shinomoto, 2010, fixed bandwidth optimization). (C) Single spike trains sam-
pled from the ensemble. (D) Time histograms constructed with the bin size
determined by the Poissonian optimization method (Shimazaki & Shinomoto,
2007). (E) Non-Poissonian optimization method (algorithm 2).

4 Discussion

We revised the method of selecting the bin size of the time histogram so
that it applies to the non-Poissonian spike trains. The revision replaces the
Poissonian variance-mean relationship with the general non-Poissonian re-
lationship given by the Fano factor F. To make the revision practicable,
we proposed an estimation of the Fano factor in each bin from the ISI
variability of a single spike train. We suggested two algorithms for the non-
Poissonian optimization method and tested them for their goodness-of-fit
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performance by using the spike trains numerically derived from an in-
homogeneous gamma process. Algorithm 1, which employs the raw co-
efficient of variation Cy, generally improves the goodness of fit for the
non-Poissonian data; however, its performance is slightly inferior to that of
the original Poissonian optimization method for the near-Poissonian spike
trains. This is presumably because C,, fluctuates considerably under the in-
fluence of rate fluctuation and thus degrades the optimization. To improve
this imperfection, we suggested an alternative algorithm, algorithm 2,
which employs the local variation metric L, that robustly detects the
non-Poissonian feature despite the rate fluctuation. Algorithm 2 exhibits
goodness-of-fit superior to both algorithm 1 and the original Poissonian
optimization method throughout the entire range of the shape parameter
of the gamma ISI distribution.

In theoretical neuroscience, neuronal firing has also been approximated
by the multiplicative intensity model in which neuronal refractoriness is
considered by introducing a hazard function (Aalen, 1978). This effect
is similar to considering a gamma process of a regular range, x > 1. By
using spike trains numerically generated by the multiplicative intensity
model, we also confirmed the validity of algorithm 2 (data not shown).
Furthermore, we applied the non-Poissonian optimization method to ac-
tual biological data and demonstrated that the revised algorithm trans-
forms the shape of the time histogram from the Poissonian optimization
method.

However, it should be noted that the revised method does not cover all
types of non-Poissonian firing. The extension of the Poissonian optimiza-
tion method to the non-Poissonian range is based on the assumption of a
renewal process in which the ISIs are drawn independently from an identi-
cal distribution function, although its timescale may be modulated slowly
in time. Thus, the method is not valid for spike trains with a strong serial
correlation of arbitrary order.

Rate estimation inevitably depends on the method and the principle it is
based on. Therefore, it is not uniquely determined for a set of data (Bowman,
1985). Nevertheless, the range of the plausible principles and the estimation
methods is limited, and the rate estimated from a given set of data should
not vary among the principled methods. For instance, it was shown that
the bin size that minimizes the Hellinger distance is asymptotically equal
to the bin size that minimizes the Kullback-Leibler distance and also to
the bin size selected according to the Akaike information criterion, in the
limit of large sample sizes (Kanazawa, 1993). We also argue that the MISE
minimization for a PSTH and the marginal likelihood maximization for
the Bayes estimation both render the same degree of detectability for the
presence of rate modulation (Shinomoto, 2010). Thus, the discussion based
on the MISE principle is not entirely exceptional and may share a common
trait with various reasonable principles.
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It has been reported recently that by analyzing biological data, re-
searchers decoded animal behavior more efficiently via the correlation code,
which lies in the serial correlations within a spike train, rather than by the
standard “rate code” analysis (Jacobs et al., 2009). In this letter, we have
demonstrated that the firing rate estimation can be improved by consid-
ering non-Poissonian firing characteristics. These two conclusions are not
necessarily conflicting but may represent two sides of the same coin. The
“correlation code” may indicate the specific interspike correlation reflecting
the non-Poissonian firing characteristics, and in both cases, the endeavor
to capture the non-Poissonian characteristics adds information to the sim-
ple rate decoded under the Poissonian assumption. The similarities and
differences between those approaches are worth investigating.

Appendix A: Derivation of Cost Function

Here, we derive a formula for the cost function, equation 2.3, by tracing the
derivation in Shimazaki and Shinomoto (2007).

By splitting the observation period into bins of size A, the MISE can be
divided into parts,

SE = "EG 24— 1 1 ) 24
MISE = — E(, —A t=— — E@©; — r,)"dt Al
P EG-srat=3 03 [ B s )

i-1)A

where 6, = k;/A is the height of the histogram at the ith bin. The summand
on the right-hand side can be decomposed into two parts,

1 iA R R 1 iA
— E(; — 6,4+ 6, — »,)*dt = E(6; — 6,)* + —/ (A — 6,)2dt,
A Ji—na A Ji—ia
(A.2)
where
1o .
6,=— / A, =E(@). (A.3)
A (i-1)A

The second term of equation A.2 can be further decomposed into

1 iA 1 iA
— Oy —(0)+1(6;) — 0,)%dt = — / O — ()7t — (6, — (6))%,
A Ji—1a A Ji—1a

(A.4)
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where brackets represent the average over all bins, (A;) = & SN, A, and,
accordingly,
N N
1 11 [ —
<9i>EN29i=NZX/ A=Ay (A5)
i=1 i

=1

By incorporating equations A.2 and A.4 in equation A.1, we obtain
MISE = (E(§; — 6)%) — ((6; — (6:)*) + (0, — A2 (A.6)

By removing the last term that is independent of the bin size, the cost
function defined in equation 2.2 is obtained as

C(A)=MISE — (&, — A,)?
=(E6; — 6)%) — ((6; — (6:)?). (A7)

Because 0, is given by the unobservable underlying rate A,, the second term
should be rewritten in terms of the observable estimator 6;. For this purpose,
bias-variance decomposition is employed:

E@; — (6:))% = 6, — (6;))* + E(0. — 6,)%, (A8)

where the first and second terms on the right-hand side, respectively, rep-
resent the (bias)? and variance. By replacing (6;) on the left-hand side with
(E6;) and plugging this relationship into equation A.7, the cost function is
transformed into equation 2.3:

C(A) =2(E(0;, — 6)*) — (E(6;, — (E6))%). (A.9)

The variance E(é,— —6,)? in the first term is replaced with the observable

mean E(f) through the variance-mean relationship given by equation 2.5
or 2.8.

Appendix B: Estimating the Fano Factor from a Single Spike Train

The Fano factor measures the variability in spike count using the ratio of the
variance to the mean for the number of spikes that fall into an interval. This
original definition requires numerous spike trains, but it can be estimated
from a single spike train in two cases.
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For a long sequence of spikes derived from a stationary renewal process,
the Fano factor F is approximated by the square of the coefficient of variation
Cy of the ISIs (Cox, 1962):

. 5 AT 2
Jim F=C} = (T) , (B.1)
where D is the duration of observation and At and 7 are the standard devi-
ation and the mean of the ISIs, respectively. The relationship can be proven
as follows. For a stationary renewal process in which the ISIs {r;} are drawn
independently from an identical distribution function, the probability that
the number of spikes in the interval N(D) is smaller than m is identical to
the probability that the sum of m ISIs is longer than D:

Prob(N(D) < m) = Prob(t; + 1, +--- + 1, > D). (B.2)

The central limit theorem holds in the limit of large m; the sum of the ISIs
is approximately normally distributed with the mean m7 and the variance
m(At)?. This is represented as

1 o x?
Prob(z; + 7, + -+ 1, >D):—f dxexp(—=). (B.3)
" 27 D—m% 2
\/m(Ar)Z

By combining equations B.3 and B.2 and introducing a new variable, y =
(D — mf)/«/ﬁ, we obtain

2

dx exp(—%) . (B4)

oo

w
2 % 1*};@

Prob(N(T) < D/7 —yv/D/%) =

In the limit of the long duration D, the lower bound of the integral becomes
y+/T/At. Thus, N(D) is asymptotically normally distributed with the mean
D/7 and the variance D(At)?/73. Therefore, the Fano factor is approximated
as F ~ (A1)?/7?, leading to equation B.1.

In the opposite limit in which the interval D is narrow, few spikes are
counted by chance with a small probability. This process can be approxi-
mated as Poissonian, in which the Fano factor is unity:

lim F = 1. (B.5)

D—0

The transition of the Fano factor from 1 to C‘z/ with the observation
interval D is obtained by performing numerical simulation in a manner
similar to Nawrot (2010): the Fano factor is computed for an ensemble of
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Figure 4: Dependence of the Fano factor on the observation period D. The Fano
factor is computed from 10° spike trains derived from a uniform gamma process
with the mean rate unity. The asymptotic values C2 = 1/« for the large limit of
D for various processes are indicated by arrows.

spike trains derived from a uniform gamma process with a mean rate unity.
Figure 4 shows that the Fano factor is close to unity for a short interval
that contains few spikes, and it swiftly approaches the asymptotic value of
C? = 1/k in an interval typically containing a few spikes. This result may
support our step for using F = 1 when there are fewer than three spikes.

Appendix C: Relating the Fano Factor to ISI Variability in the Presence
of Rate Fluctuation

The method of estimating the Fano factor from the ISI variability of a sin-
gle spike train is derived in appendix B assuming that the spikes were
drawn from a stationary renewal process. Here we extend the method to
nonstationary processes in which the rate fluctuates in time.

If the inhomogeneous spike rate A(t) is known for a given spike train,
then we can convert it to a uniform spike train by transforming the original
spike times {t,, ..., t,} to another sequence {s, ..., 5;} by s; = A(t;), defined
by

t
Alt) = / A(t)dt. (C.1)
0

If time rescaling recovers stationarity without breaking the renewal charac-
teristics, the theory relating the Fano factor to the ISI variability applies to



3140 T. Omi and S. Shinomoto

the new sequence {s;, ..., s;}, because any time rescaling does not change
the number of spike count.

Several methods for performing a suitable time rescaling have been pro-
posed (Reich et al., 1998; Oram et al., 1999; Barbieri, Quirk, Frank, Wilson, &
Brown, 2001; Smith & Brown, 2003; Koyama & Shinomoto, 2005; Shinomoto
& Koyama, 2007; Shimokawa & Shinomoto, 2009; Shimokawa, Koyama, &
Shinomoto, 2010; Nawrot, 2010), but they generally require complicated al-
gorithms, and therefore high computational costs. It should be noted that a
simple metric of the local variation L, spontaneously realizes time rescaling
in the estimation of the variability of consecutive intervals (Shinomoto et al.,
2003, 2009; Zhao, Omi, Matsuno, & Shinomoto, 2010): In the definition of

k—2 , T,—T .
L, = % > i1 (4 Hf )2 the summand computes the cross-correlation of the
j j+1

consecutive ISIs 7; and 7, ;, each rescaled with the instantaneous spike rate
(t; + 7j41)/2, as represented by

2
T, — T, 27, 271,
Yy g J I (C.2)
Tt Tin Tt Tin/ \Ttn

Owing to this time-rescaling mechanism, L, robustly detects the intrinsic
firing characteristic against the rate fluctuation.

Appendix D: Relating L, to C,,

Although different variability metrics are not uniquely related, we can ob-
tain a practical conversion formula by allowing them to measure the same
set of spike trains. For uniform gamma processes in which the ISIs are drawn
from the gamma distribution functions of the shape factor « (equation 3.1),
we can compute the expectation value of the local variation L,

o0 00 _ 2
ElL,]= — fo dx, /0 dx, (xyx,) " le % (M) (D.1)

I'(x)? X+ %,
3 o t 2 k=1 _4 S\ 2
3
= . D.3
2k +1 D:3)

The expectation value of C, can also be obtained by computing the mean 7
and the standard deviation At for the gamma distribution,

E[C)] = 1 (D.4)

§'
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Thus, the two metrics are parametrically related through the gamma distri-
bution functions of various shape parameters as

2L
Ch=—2. D.
V3oL, (D.5)
Acknowledgments

This study was supported in part by Grant-in-Aid for Scientific Research to
S.S. from the MEXT Japan (20300083) and the Grant-in-Aid for the Global
COE Program, The Next Generation of Physics, Spun from Universality and
Emergence, from the MEXT of Japan. T.O. is supported by JSPS Research
Fellowships for Young Scientists. We greatly appreciate that K. H. Britten,
M. N. Shadlen, W. T. Newsome, and J. A. Movshon have made their data
publicly available.

References

Aalen, O. (1978). Nonparametric inference for a family of counting processes. Annals
of Statistics, 6, 701-726.

Abeles, M. (1982). Quantification, smoothing, and confidence limits for single-units’
histograms. Journal of Neuroscience Methods, 5, 317-325.

Adrian, E. D. (1928). The basis of sensation: The action of the sense organs. New York:
Norton.

Baker, S. N., & Lemon, R. N. (2000). Precise spatiotemporal repeating patterns in
monkey primary and supplementary motor areas occur at chance levels. Journal
of Neurophysiology, 84, 1770-1780.

Barbieri, R., Quirk, M. C., Frank, L. M., Wilson, M. A., & Brown, E. N. (2001).
Construction and analysis of non-Poisson stimulus-response models of neural
spiking activity. Journal of Neuroscience Methods, 105, 25-37.

Berman, M. (1983). Comment on “Likelihood analysis of point processes and its
applications to seismological data” by Ogata. Bulletin Internatl. Stat. Instit., 50,
412-418.

Bowman, A. W. (1985). A comparative study of some kernel-based nonparametric
density estimators. Journal of Statistical Computation and Simulation, 21, 313-327.

Britten, K. H., Shadlen, M. N., Newsome, W. T., & Movshon, J. A. (1992). The analysis
of visual motion: A comparison of neuronal and psychophysical performance.
Journal of Neuroscience, 12, 4745-4765.

Britten, K. H., Shadlen, M. N., Newsome, W. T., & Movshon, J. A. (2004). Responses of
single neurons in macaque MT/V5 as a function of motion coherence in stochastic
dot stimuli. Neural Signal Archive, NSA2004.1

Brown, E. N., Barbieri, R., Ventura, V., Kass, R. E., & Frank, L. M. (2002). The time-
rescaling theorem and its application to neural spike train data analysis. Neural
Computation, 14, 325-346.

Cox, D. R. (1962). Renewal theory. London: Chapman and Hall.



3142 T. Omi and S. Shinomoto

Cox, D. R., & Lewis, PA.W. (1966). Statistical analysis of series of events. London:
Chapman and Hall.

Cunningham, J. P, Gilja, V., Ryu, S. I, & Shenoy, K. V. (2009). Methods for estimat-
ing neural firing rates, and their application to brain-machine interfaces. Neural
Networks, 22, 1235-1246.

Cunningham, J. P,, Yu, B. M., Shenoy, K. V., & Sahani, M. (2008). Inferring neural
firing rates from spike trains using gaussian processes. In J. Platt, D. Koller, Y.
Singer, & S. Roweis (Eds.), Advances in neural information processing systems, 20.
Cambridge, MA: MIT Press.

Daley, D. J., & Vere-Jones, D. (1988). An introduction to the theory of point processes.
New York: Springer-Verlag.

Davies, R. M., Gerstein, G. L., & Baker, S. N. (2006). Measurement of time-dependent
changes in the irregularity of neural spiking. Journal of Neurophysiology, 96, 906—
918.

Endres, D., & Oram, M. (2010). Feature extraction from spike trains with Bayesian
binning: “Latency is where the signal starts.” Journal of Computational Neuroscience,
29, 149-169.

Endres, D., Oram, M., Schindelin, ]., & Foldiak, P. (2008). Bayesian binning beats
approximate alternatives: Estimating peristimulus time histograms. In J. C. Platt,
D. Koller,Y. Singer, & S. Roweis (Eds.), Advances in neural information processing
systems, 20. Cambridge, MA: MIT Press.

Fano, U. (1947). Ionization yield of radiations, II. The fluctuations of the number of
ions. Physical Review, 72, 26-29.

Gerstein, G. L., & Kiang, N.Y.S. (1960). An approach to the quantitative analysis of
electrophysiological data from single neurons. Biophysical Journal, 1, 15-28.

Griin, S. (2009). Data-driven significance estimation for precise spike correlation.
Journal of Neurophysiology, 101, 1126-1140.

Hall, P. (1990). Akaike’s information criterion and Kullback-Leibler loss for his-
togram density estimation. Probability Theory and Related Fields, 85, 449-467.

Holt, G. R, Softky, W. R., Koch, C., & Douglas, R. J. (1996). Comparison of dis-
charge variability in vitro and in vivo in cat visual cortex neurons. Journal of
Neurophysiology, 75, 1806-1814.

Jacobs, A. L., Fridman, G., Douglas, R. M., Alam, N. M., Latham, P. E., Prusky,
G. T, etal. (2009). Ruling out and ruling in neural codes. Proceedings of the National
Academy of Sciences of the United States of America, 106, 5936-5941.

Kass, R. E., Ventura, V., & Brown, E. N. (2005). Statistical issues in the analysis of
neuronal data. Journal of Neurophysiology, 94, 8-25.

Kanazawa, Y. (1993). Hellinger distance and Akaike’s information criterion for the
histogram. Statistics and Probability Letters, 17, 293-298.

Kostal, L., & Lansky, P. (2006). Classification of stationary neuronal activity ac-
cording to its information rate. Network: Computation in Neural Systems, 17, 193—
210.

Koyama, S., & Shinomoto, S. (2004). Histogram bin width selection for time-
dependent Poisson processes. Journal of Physics A—Mathematical and General, 37,
7255-7265.

Koyama, S., & Shinomoto, S. (2005). Empirical Bayes interpretations of random point
events. Journal of Physics A—Mathematical and General, 38, L531-1L537.



Optimizing Time Histograms for Non-Poissonian Spike Trains 3143

Kuffler, S. W., Fitzhugh, R., & Barlow, H. B. (1957). Maintained activity in
the cat’s retina in light and darkness. Journal of General Physiology, 40, 683—
702.

Louis, S., Gerstein, G. L., Griin, S., & Diesmann, M. (2010). Surrogate spike train
generation through dithering in operational time. Frontiers in Computational Neu-
roscience, 4, 127.

Miura, K., Okada, M., & Amari, S. (2006). Estimating spiking irregularities under
changing environments. Neural Computation, 18, 2359-2386.

Nawrot, M. P. (2010). Analysis and interpretation of interval and count variability in
neural spike trains. In S. Griin & S. Rotter (Eds.), Analysis of parallel spike trains.
New York: Springer.

Nawrot, M. P,, Boucsein, C., Rodriguez Molina, V., Riehle, A., Aertsen, A., & Rotter,
S. (2008). Measurement of variability dynamics in cortical spike trains. Journal of
Neuroscience Methods, 169, 374-390.

Ogata, Y. (1988). Statistical models for earthquake occurrences and residual analysis
for point processes. Journal of American Statistical Association, 83, 9-27.

Oram, M. W., Wiener, M. C., Lestienne, R., & Richmond, B. J. (1999). Stochastic nature
of precisely timed spike patterns in visual system neuronal responses. Journal of
Neurophysiology, 81, 3021-3033.

Pillow, J. W., Paninski, L., Uzzell, V.J., Simoncelli, E. P, & Chichilnisky, E. J. (2005).
Prediction and decoding of retinal ganglion cell responses with a probabilistic
spiking model. Journal of Neuroscience, 25, 11003-11013.

Reich, D. S., Victor, J. D., & Knight, B. W. (1998). The power ratio and the interval
map: Spiking models and extracellular recordings. Journal of Neuroscience, 18,
10090-10104.

Révész, P. (1968). The laws of large numbers. Orlando, FL: Academic Press.

Rieke, F,, Warland, D., de Ruyter van Steveninck, R., & Bialek, W. (1997). Spikes:
Exploring the neural code. Cambridge, MA: MIT Press.

Rudemo, M. (1982). Empirical choice of histograms and kernel density estimators.
Scandinavian Journal of Statistics, 9, 65-78.

Scott, D. W. (1979). Optimal and data-based histograms. Biometrika, 66, 605-610.

Shimazaki, H., & Shinomoto, S. (2007). A method for selecting the bin size of a time
histogram. Neural Computation, 19, 1503-1527.

Shimazaki, H., & Shinomoto, S. (2010). Kernel bandwidth optimization in spike rate
estimation. Journal of Computational Neuroscience, 29, 171-182.

Shimokawa, T., & Shinomoto, S. (2009). Estimating instantaneous irregularity of
neuronal firing. Neural Computation, 21, 1931-1951.

Shimokawa, T, Koyama, S., & Shinomoto, S. (2010). A characterization of the time-
rescaled gamma process as a model for spike trains. Journal of Computational
Neuroscience, 29, 183-191.

Shinomoto, S. (2010). Estimating the firing rate. In S. Griin & S. Rotter (Eds.), Analysis
of parallel spike trains. New York: Springer.

Shinomoto, S., Kim, H., Shimokawa, T., Matsuno, N., Funahashi, S., Shima, K., et al.
(2009). Relating neuronal firing patterns to functional differentiation of cerebral
cortex. PLoS Computational Biology, 5, e1000433.

Shinomoto, S., & Koyama, S. (2007). A solution to the controversy between rate and
temporal coding. Statistics in Medicine, 26, 4032—-4038.



3144 T. Omi and S. Shinomoto

Shinomoto, S., Miyazaki, Y., & Tamura, H., & Fujita, I. (2005). Regional and laminar
differences in vivo firing patterns of primate cortical neurons. Journal of Neuro-
physiology, 94, 567-575.

Shinomoto, S., Shima, K., & Tanji, J. (2003). Differences in spiking patterns among
cortical neurons. Newural Computation, 15, 2823-2842.

Smith, A. C., & Brown, E. N. (2003). Estimating a state-space model from point
process observations. Neural Computation, 15, 965-991.

Snyder, D. L. (1975). Random point processes. Hoboken, NJ: Wiley.

Zhao, X., Omi, T., Matsuno, N., & Shinomoto, S. (2010). A non-universal aspect in
the temporal occurrence of earthquakes. New Journal of Physics, 12, 063010.

Received December 16, 2010; accepted June 13, 2011.



