
ar
X

iv
:1

11
0.

31
61

v1
  [

co
nd

-m
at

.d
is

-n
n]

  1
4 

O
ct

 2
01

1

Intrinsic adaptation in autonomous recurrent neural

networks

Dimitrije Marković1 and Claudius Gros1

1Institute for Theoretical Physics, J. W. Goethe University, Frankfurt am Main,

Germany.

Keywords: information theory, non-synaptic adaptation, self-organization,

neural networks

Abstract

A massively recurrent neural network responds on one side to input

stimuli and is autonomously active, on the other side, in the absence of

sensory inputs. Stimuli and information processing depends crucially

on the qualia of the autonomous-state dynamics of the ongoing neural

activity. This default neural activity may be dynamically structured

in time and space, showing regular, synchronized, bursting or chaotic

activity patterns.

We study the influence of non-synaptic plasticity on the default dy-

namical state of recurrent neural networks. The non-synaptic adaption

considered acts on intrinsic neural parameters, such as the threshold

and the gain, and is driven by the optimization of the information en-

tropy. We observe, in the presence of the intrinsic adaptation processes,

three distinct and globally attracting dynamical regimes, a regular syn-

chronized, an overall chaotic and an intermittent bursting regime. The
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intermittent bursting regime is characterized by intervals of regular

flows, which are quite insensitive to external stimuli, interseeded by

chaotic bursts which respond sensitively to input signals. We discuss

these finding in the context of self-organized information processing

and critical brain dynamics.

1 Introduction

In the last couple of decades self organized processes have attracted the interests

of many researchers from various scientific areas, both in natural and in social

sciences. A system is said to be self-organizing, quite generally, when a state

of high dynamical complexity arises reliably from relatively simple basic orga-

nization rules (Ashby, 1962; Camazine, Deneubourg, Franks, Sneyd, & Theraula,

2003; Gros, 2010).

It is often the case that the self-organization in dynamical systems is achieved

through an interplay or regulative forces involving positive and negative feed-

back, viz. through the interplay of internal drives which act destabilizing and

regulating, respectively, onto the dynamics of the system. In general one type

of feedback can dominate, driving the system towards a chaotic or towards an

ordered phase respectively. A proper balance of the two opposing drives can bring

the dynamical state at the point of a phase transition, a critical state. One speaks

of self-organized criticality (SOC) whenever this balance is not achieved through

the actions of an outside controller but through internal self-organizing processes

(Bak, Tang, & Wiesenfeld, 1987, 1998; , Bak, & Paczuski, 1995; Adami, 1995).

As a dynamical system approaches a critical point, its spatiotemporal com-

plexity rises. It has been suggested that this rise in the complexity improves

the computational properties and the capability of dynamical systems to process

information (e.g., Solé, & Miramontes, 1995; Bertschinger, & Natschläger, 2004;

Legenstein, & Maass, 2006). This notion of “Computation at the edge of chaos”

may also been seen in the broader context of “Life at the edge of chaos” (see

Zimmer, 1999; Gros, 2010); the dynamical systems at the underpinning of all

living have the tendency to self-organize themselves close to a critical state.
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In recent years there have been many studies of the possible occurrence of SOC

in neural networks with synaptic plasticity. Most of these studies have concluded

that synaptic plasticity drives the dynamics generically far below a critical point

(e.g., Siri, Quoy, Delord, Cessac, & Berry, 2007; Siri, Berry, Cessac, Delord, & Quoy,

2008; Dauce, Quoy, Cessac, Doyon, & Samuelides, 1998), viz. it over-regulates the

network dynamics. Hence, an organizational principle is needed which will main-

tain an intermediate level of excitability in neural networks, preventing the occur-

rence of dynamical states which are non- or hyper-reactive to external influences.

It has been assumed for many years that the dominant driving force, shaping

the brain’s dynamical state, is the synaptic plasticity. Thus, little attention was

put to other forms of neural adaption, the non-synaptic adaptation of individual

neurons (Mozzachiodi, & Byrne, 2010), also known as intrinsic plasticity. Intrinsic

plasticity is mostly manifested as a change in the excitability of a neuron, where

this change is achieved through the adaptation on the level of membrane compo-

nents. Here, we investigate the role of non-synaptic plasticity in the formation of

complex patterns of neural activity.

We study a previously proposed model of intrinsic plasticity (see Triesch, 2005,

2007; Stemmler, & Koch, 1999), and its influence on the dynamical properties of

autonomous recurrent neural networks with rate encoding neurons in discrete time.

Within this model neurons aspire to achieve, as an average over time, a firing-

rate distribution which maximizes the Shannon information entropy (Gros, 2010).

Therefore, the neurons are trying to homeostatically regulate an entire distribution

function, a mechanism denoted polyhomeostatic optimization (Markovic, & Gros,

2010).

Intrinsic plasticity in the form of polyhomeostatic optimization gives rise, for

random recurrent network topologies, to ongoing and self-sustained neural activi-

ties with non-trivial dynamical states. Depending on the target mean firing rate

and network parameters, one observes three distinct phase states: synchronized

oscillations, an intermittent-bursting and a chaotic phase; all states being globally

attracting in their respective phase spaces.

In Section 2 we derived the stochastic learning rules for intrinsic adaptation.

This is followed by the analysis of a single self-coupled neuron with intrinsic plas-
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ticity (Section 3) and the analysis of recurrent network with intrinsic plasticity

(Section 4). Concluding remarks and discussion are finally provided in Section 5.

2 Stochastic adaptation

We used a basic discrete-time, rate-encoding artificial neuron model. The firing

rate y ∈ [0, 1] of the neuron is given as a nonlinear transformation of the total

synaptic input current x ∈ (−∞,+∞), y = g(x). The transfer function g has a

sigmoidal form, a usual choice being the logistic function

y(t+ 1) = ga,b(x(t)), ga,b(z) =
1

1 + e−az−b
, (1)

where a is the gain and b the bias. The parameters of the transfer function, intrinsic

parameters, will eventually become slow variables with a stochastic learning rules

determining their time evolution.

Let us denote with px(x) the probability density function (PDF) of the total

input. Given the relation (1) between the input current x and the output activity

y we find

pa,b(y) =

∫ +∞

−∞

δ(y − ga,b(x)) px(x) dx =
px(x)

g′a,b(x)
|x=g−1

a,b
(y) (2)

for pa,b(y), the PDF of the firing rate. The main idea behind the derivation of

adaption rules for the intrinsic parameters a and b is the assumption that the

neuron’s excitability should change in a way which maximizes the entropy of the

firing rate distribution pa,b(y), keeping at the same time the average activity at a

desired level (Triesch, 2005).

The rational for this procedure is the following: the maximization of the firing

rate entropy implies that a neuron will use the entire range of available activity

states, optimizing the information transfer between neural input and output. Fur-

thermore, the regulation of the average firing rate is present due to environmental

constraints on the neuron, e.g. the limited energy resources needed for metabolic

processes.

Having a positive-definite variable y, with a fixed first moment, the maximum

4



entropy PDF corresponds to the exponential distribution

pλ(y) =
1

Z(λ)
e−λy, y ∈ [0, 1] , (3)

where Z(λ) =
∫ 1

0
e−λydy is the partition function. We will refer to the first moment

of the PDF (3), denoted as µ, as the target average firing rate. It is given by

µ =

∫ 1

0

ypλ(y)dy =
1

λ
− 1

eλ − 1
. (4)

In general the inverse function λ(µ) cannot be found, but for λ ≫ 1 we recover

the λ → 1/µ, which is valid for exponential PDFs defined on [0,∞].

A natural way to introduce a distance measure between two PDFs is the

Kullback-Leibler (KL) divergence (Gros, 2010), defined as

Dλ(a, b) =

∫

pa,b(y) ln

(
pa,b(y)

pλ(y)

)

dy

= −Epx [ln g
′
a,b(x)] + λEpx [ga,b(x)]−H [px] + lnZ(λ) , (5)

where Epx [·] denotes the expectation value with respect to px(x), andH [px] denotes

the differential entropy functional. By minimizing Dλ(a, b) with respect to the

intrinsic parameters a and b one obtains the learning rules. In Eq. (5) only the

first two terms are functions of a and b. The gradient descent hence gives the

following relation

− ∂Dλ(a, b)

∂α
= Epx

[
∂

∂α
ln g′a,b(x)− λ

∂

∂α
ga,b(x)

]

=

∫

px(x)

[
∂

∂α
ln g′a,b(x)− λ

∂

∂α
ga,b(x)

]

︸ ︷︷ ︸

≡∆α

dx , (6)

with α ∈ {a, b}. As the input distribution px(x) is in general unknown, it is

suitable to derive the adaption rules by using a stochastic gradient descent (Spall,

2005). Such adaption rules, for the update of the internal parameters a and b, are

obtained by using the expression between the brackets on the right-hand side of

Eq. (6) . An advantageous side effect of this approach is that the adaptation rules

become local in time. Using Eq. (1) for the transfer function ga,b(x) to evaluate

∆a and ∆b, we obtain the stochastic learning rules
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a(t + 1) = a(t) + ǫ∆a(t) = a(t) + ǫ (1/a(t) + x(t)∆(t))

b(t + 1) = b(t) + ǫ∆b(t) = b(t) + ǫ∆(t) , (7)

where ǫ is the learning rate and

∆(t) = 1− (2 + λ)y(t+ 1) + λy(t+ 1)2 .

The learning rate ǫ is assumed to be small; viz the time evolution of the internal

parameters is slow compared to the evolution of both x(t) and y(t). In this way the

stochastic adaptation, which depends only on the instantaneous values of the vari-

ables, can closely match the direction of the deterministic gradient Eq. (6). Also,

the input distribution can, in general, be non-stationary, therefore the minimum

of the cost function Dλ(a, b) could vary in time. For this reason, the learning rate

should also be large enough for the adaptation to follow the changing minimum.

However, any finite and constant learning rate ǫ > 0 doesn’t satisfy the condition

for exact convergence of internal parameters into the minimum of Kullback-Leibler

divergence (Spall, 2005). Still, if the learning rate decreases with every time step, a

condition needed for strict convergence, the intrinsic adaptation will react slower

with time to a variability in the position of the minimum of the cost function.

Thus, it’s more favorable to have here a constant learning rate which will result in

the oscillations of the intrinsic parameters around the minimum. The amplitude

of this oscillations roughly scales as ǫ (Bottou, 2004), thus a small learning rate

also ensures convergence within a small vicinity from the minimum of the cost

function Dλ(a, b).

3 Single neuron

We analyze initially a minimal network setup, a self-coupled neuron adapting

homeostatically the intrinsic parameters of the transfer function. A synaptic con-

nection between the axon and the dendrites of the same neuron is also known as

an autapse.
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Figure 1: (Left) A dependence of relative parameter change ∆ (Eq. 9) on output

activity y for different target firing rates µ. (Right) Critical value of the gain ac,

as a function of the average firing rate µ. The colored area shows the region of

stability of the fixpoint (y∗(λ), b∗(a, λ)), see Section 3.

Neurons with an autapse are not rare in the brain. They have been observed

in various brain regions and in different types of neurons. The discovery of func-

tional autapses provides clues for possible physiological roles (Bekkers, 2003).

Herrmann, & Klaus (2004) suggest that autapses lead to oscillatory behavior in

otherwise non-oscillating neurons. We shall see below how this type of behav-

ior spontaneously arises in self-excitatory neurons with intrinsic plasticity. We

focused on the analysis of excitatory autapse and used it as a basis for under-

standing the observed behavior in a larger network setup (see Section 4). For the

case of self-inhibition please refer to a separate study (Markovic et al., 2010).

The autapse neuron is equivalent to the identification x → y in Eqs. (1) and

(7). The complete set of evolution rules for the dynamical variables y(t), a(t) and

b(t) is then

y(t+ 1) = ga(t),b(t)(y(t))

b(t + 1) = b(t) + ǫ∆(t) (8)

a(t+ 1) = a(t) + ǫ(1/a(t) + y(t)∆(t))

with

∆(t) = 1− (2 + λ)y(t+ 1) + λy2(t + 1) . (9)

The right-hand side of (9) depends directly on y(t+1) and only implicitly on y(t),

as one can easily verify when going through the derivation of the rules (7) for the
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Figure 2: (Top) The time dependence of firing-rate y(t) (solid line), bias b(t)

(squares) and gain a(t) (circles) for the one-site problem (8), with a learning rate

ǫ = 0.01 and a target average firing rate µ = 0.25; The gain a(t) is set initially

bellow a critical value and since ǫ ≪ 1 the system relaxes quickly to the fixpoint of

y = ga,b(y). Once a(t) surpasses a certain threshold, compare Fig. 1, the fixpoint

becomes unstable and the system follows a limiting cycle.

(Bottom) Maximal local Lyapunov λmax(t) exponent compared to a Lyapunov

exponent of a perturbation parallel to the flow λ||(t). They were estimated along

the points of the trajectory (y(t), a(t), b(t)).

intrinsic plasticity. In plot at the left side of Fig. 1 we showed ∆(y) (Eq. (9))

for various target firing rates µ. Note that ∆(y = 0) = 1 and ∆(y = 1) = −1,

independently of λ.

3.1 Stability analysis

We first analyze a reduced model of the three evolution equations (8), obtained

by setting ∆a(t) = 0, viz considering a constant a = a(t) = a(t+1). The reduced

system contains a fixpoint (y∗(λ), b∗(λ, a)), where y∗ = [(2+λ)−
√
4 + λ2]/2λ and

8



b∗ = ln(y∗/(1−y∗))−ay∗. This fixpoint defines a one dimensional manifold in the

complete phase space (y, b, a), where the stability of the manifold depends directly

on the given value of a and λ (see Fig. 1). For a < ac the dynamics is attracted

toward the fixpoint (y∗, b∗), while for a > ac, the fixpoint becomes repelling and

the activity of the neuron follows a limiting cycle. One can show that the critical

gain is ac = 1/y∗(1− y∗).

The time evolution of the full set of equations (see Fig. 2, top) approaches

a limiting cycle, for all starting values of (y, b, a). The evolution rules (8) have

fixpoint solutions also for a vanishing adaptation, viz. for ǫ → 0. These fixpoints

are turned for ǫ > 0 into attractor relics (Gros, 2007, 2009). The trajectory

slows down close to the attractor relics, giving rise to the transient firing states,

observable in Fig. 2. This non-trivial activity pattern is a direct consequence

of the polyhomeostatic adaption principle. The system cannot achieve, as an

average over time, a non-trivial firing-rate distribution by settling into a steady

state. Polyhomeostatic adaption hence forces the neuron to remain autonomously

active, with varying firing rates.

For an insight on the influence of external input signal on the dynamics, we have

estimated the maximal local Lyapunov exponent λmax(t) and the Lyapunov expo-

nent for a perturbation in the direction of the flow λ|| (δ~r(t) ∝ (∆y(t),∆a(t),∆b(t))).

They are presented in the bottom graph of Fig. 2. We see that the neuron is most

sensitive to a perturbation during the transition between two attractor relics (low

and high activity levels), since λmax is positive through these transition periods.

Also, λ|| ≈ λmax during the fast transition between the attractor relics. We thus

conclude that the direction of maximal sensitivity to perturbations is aligned with

the direction of the flow at this points. Note that the two attractor relics can be

stable during the same time period, although the activity settles in only one of

them. This means that a transition could be induced with a sufficiently strong

perturbation.
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Figure 3: Output distributions of the two neurons with highest (diamonds) and

lowest (circles) Kullback-Leibler divergence (5) compared to the mean output dis-

tribution (dashed line) and the target exponential output distribution (full line).

The network size N = 500 neurons and a target mean firing rate µ = 0.28 (top)

and µ = 0.5 (bottom). The values are identical for all the neurons in the network

and fraction of excitatory links fexc = 0.5. Insets: Output distribution of the sin-

gle self-coupled neuron having the target average firing rate µ at the same value

as the neurons in the network.

3.2 Noisy autapse

Let us consider the case of a noisy autapse, when

x(t) → wy(t) + ξ(t) . (10)

The neuron receives, beside the autaptic signal ∼ wy(t), a random input from

an external source ∼ ξ(t) (e.g. from some other neurons in the network). The

non-autaptic component of the input is drawn from a Gaussian distribution, ξ ∼
N(0, σ), where N(0, σ) denotes a normal distribution with zero mean and variance

σ2.

The external input hence perturbs the signal coming from the autapse. From
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Figure 4: The Kullback-Leibler (KL) divergence Dλ(a, b) of the neuronal firing-

rate distribution relative to the target exponential distribution (3), as a function

of the standard deviation σ of a Gaussian input distribution px(x), in the presence

of an autapse (green dots, w = 1 in Eq. (10)) and in the absence of the autapse

(red dashed line, w = 0 in Eq. (10)). Target mean firing rate µ is set to 0.3 .

Inset: Mean KL divergence 〈Dλ〉 (see section 4) of the random recurrent neural

network with N = 1000 neurons and mean target firing rate µ = 0.3, as a function

of the fraction of excitatory links fexc. Note that increase of fexc can be related to

the decrease in the noisy component of the input that each neuron receives (see

section 4.2).

Fig. 2 it is quite obvious that the output distribution of a self-coupled neuron with

ξ ≡ 0, viz. noiseless autapse, in Eq. (10), deviates substantially from the target

exponential distribution. The output distribution in the case of noiseless autapse

is presented in the insets of Fig. 3. However, as we increase the magnitude of

the external signal, the output distribution of the neuron approaches the opti-

mal distribution and the KL divergence decreases toward a minimum, see Fig. 4.

Obviously, when σ ≫ ω, the external input dominates, and the two cases with

and without an autapse become equivalent. Nevertheless, even small amounts of

noise, that is σ < ω are sufficient to disrupt the oscillatory behavior of the output

activity. This happens because of the existence of the second stable fixpoint, for

certain values of a and b in y = ga,b(y). As the standard deviation σ increases,

the probability that the firing-rate y will transit toward the second fixpoint also
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Figure 5: (Left) Mean Kullback-Leibler (KL) divergence 〈Dλ〉 (color coded) as a
function of the fraction of excitatory links fexc and target mean firing rate µ in

a recurrent network of N = 1000 neurons and connectivity K = 100. (Right)

〈Dλ〉 as a function of connectivity K and target mean firing rate µ, with excita-

tory/inhibitory neurons (Top) and projections (Bottom). Fraction of excitatory

links fexc = 0.8 in both cases. Density plot was evaluated as a linear interpolation

of the experimentally obtained values represented with green dots.

increases. Thus, at a certain levels of noise, the activity stochastically escapes in

short time intervals from the stable fixpoints, and the regular oscillatory behavior

is destroyed. This also implies that a certain level of decorrelation between the

input current and output activity has to be reached, if the firing-rate distribution

is to come as close as possible to the desired target distribution.

4 Recurrent neural network

We studied numerically random recurrent neural networks (RRNN) of N poly-

homeostatically adapting neurons (7), where each neuron receives input from K

pre-synaptic neurons.

In a first step we consider networks of dual neurons, i.e. a single neuron can
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have both excitatory and inhibitory projections. In such setup, the synaptic input

that the ith neuron receives is expressed as

xi(t) =

K∑

j 6=i

wijyj(t) . (11)

The synaptic weights are selected as wij = ±1/
√
K, with a probability fexc for

the weight to be positive. The learning rate in (7) is set to ǫ = 0.01. We consider

homogeneous networks where all neurons have identical target average firing rate

µ, determined through (4), for the target output distributions pλ(y), see Eq. (3).

For a neuron to ideally map an arbitrary input to the exponential distribution

with specified mean, it needs a transfer function which can take any functional

form during the adaption process. This is obviously not the case for the logistic

function which has only two adaptable parameters. As a result of this limited flex-

ibility of the transfer function, even when the input of the neuron is independent

from the output (Fig. 4 red dashed line), the output distribution will never ideally

match the target exponential distribution (Markovic et al., 2010; Triesch, 2005).

4.1 Dynamical behaviors

To examine the mean deviation of the output activity from the target exponential

distribution, we have estimated the KL divergence Dλ(ai, bi), see Eq. (5), for

all neurons in a network of N = 1000 neurons, and averaged over the entire

network and over n = 50 random network realizations. The obtained mean 〈Dλ〉 is
presented in Fig. 5 as a function of target mean firing rate µ, fraction of excitatory

links fexc and network connectivity K. Note that 〈Dλ〉 is low for high target firing-

rates and for balanced excitation/inhibition, or for low connectivity K.

We have observed three distinct dynamical regimes, a pure chaotic regime

characterized by low values of 〈Dλ〉, a synchronised oscillatory regime observed

in random networks with dominating excitatory connections and a intermittent-

bursting regime observed for balanced excitation/inhibition and small µ.

To illustrate the difference between these dynamical behaviors, we present in

Fig. 6 the average neural activity (yellow line) and the activity patterns of a ran-

domly selected neuron in the network of N = 1000 units. As we vary the fraction
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Figure 6: Activity of one, randomly chosen, neuron from the network of N=1000

neurons with connectivity K=100, depending on the fraction of excitatory links

fexc (top; µ = 0.3) and the mean target firing rate µ (bottom; fexc = 0.5), where

the yellow line represents average network activity. The right ordinate shows the

corresponding mean Kullback-Leibler divergence (see section 4).

of excitatory links fexc and keep µ fixed (Fig. 6 Top) the dynamics shifts from

the chaotic phase into the phase of synchronised oscillations. On the other hand,

reducing the target mean firing rate for balanced excitation/inhibition (Fig. 6 Bot-

tom) leads to a manifestation of bursts of chaotic activity alternated by periods of

nearly constant activity. On the right side of the graphs we give the values of the

corresponding mean Kullback-Leibler divergence 〈Dλ〉. In addition, from the oscil-

latory regime it is possible to transit back into a chaotic or intermittent-bursting

regime (depending on the value of µ) by reducing the network connectivity K.

This can be easily seen from the similarity of the density plots on the right and

left hand side in Fig. 5.
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In Fig. 3 we give an example of the output distributions for two neurons, with

highest and lowest values of Dλ, when the dynamics of the neural network is set in

chaotic regime. The two output distribution are compared with a corresponding

target exponential distribution.

Alternatively to randomly selecting a single link as excitatory or inhibitory,

one can consider a case when a single neuron is selected as either excitatory or

inhibitory. Thus, all the projections from one neuron are of the same type. We

have shown 〈Dλ〉 for such case on the upper right graph of Fig. 5. The absence

of a visible difference between the upper and the lower graph indicates that the

intrinsic adaptation, in the low K limit, leads to the same dynamical behavior

indipendent from having excitatory and inhibitory neurons separeted or neurons

with both types of projections.

4.2 Oscillatory behavior

The network dynamics makes a transition into a synchronized oscillatory regime

(see Fig. 6), as fexc, the fraction of excitatory links, is increased. To better un-

derstand this oscillatory behavior let us recall the discussion from the previous

section. In the case of a single self-coupled neuron we showed how a certain

level of decorrelation, between the output activity and the input signal has to be

achieved in order for a neuron activity to properly match the target distribution

(see Fig. 4). The same argument holds in the case of RRNN. Thus, when the

input is uncorrelated with its output activity (corresponding to the fexc & 0.5),

the output distribution pa,b(y) closely matches the target distribution pλ(y).

The total synaptic input a neuron receives can be divided into two compo-

nents. The first component is correlated with its own output activity via excita-

tory recurrent connections. The second component corresponds to the noisy and

uncorrelated part of the input which results from the competition between inhibi-

tion and excitation. The first correlated part of the input becomes dominant over

the noisy second contribution as we increase the fraction of excitatory links fexc.

The activity therefore starts to follow an oscillatory locked-in trajectory for large

fractions fexc.

In the inset of Fig. 4 we present the change of mean KL divergence as the
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number of excitatory connections grows, but for a fixed target mean firing rate.

We can see that 〈Dλ〉 increases rapidly once the number of excitatory connections

starts to dominate. Note that the transition between two phases occurs in a

slightly different manner compared to the case of the neuron with a noisy autapse.

One reason for this difference is that input/output correlations will be amplified

by additional delayed components of an excitatory feedback a neuron receives.

This reasoning can be shown to hold by simulating a single neuron with delayed

coupling autapses driven by the input x(t) →
∑n−1

k=0 ωky(t− n) + ξ(t) .

4.3 Intermittent bursts of chaotic dynamics

In the second graph (Fig. 6 Bottom), the dynamics enters an intermediate phase,

characterized by intermittent bursting of chaotic neural activities, as the target

mean firing rate is decreased. A closer look into the phase space of intrinsic param-

eters (ai, bi), of the ith neuron, reveals that the intrinsic parameters approach a

limiting cycle, similar to the case of a neuron with an autapse. During the regime

of nearly constant activity ∆i(t) ≈ 0 the gain steadily increases. Once the gains

of sufficient number of neurons crosses a certain critical value, the activity of the

entire network shifts into a chaotic regime. The activity during the chaotic regime

exceeds the target average activity level µ, thus the gains of all neuron are driven

back to sub-critical values. Even when reducing the learning rates by several or-

ders of magnitude this intermittent-bursting behavior persists. Nevertheless, when

considering constant and supercritical gains for all neurons and allowing only the

respective biases to adapt, we observe a pure chaotic behavior. This change, which

arises when reducing the number of degrees of freedoms by considering constant

gains ai, is not yet fully understood. A one possible cause could be the use of

“vanilla” gradient which doesn’t take into account the curvature of the manifold

of probability distributions pa,b(y) (see Amari, 1998), and therefore doesn’t point

into direction of maximal change of Dλ(a, b).
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Figure 7: Nonlinear finite time Lyapunov exponent λ̄(δ0, τ) (see section 4.4) at

the time step τ , for the various target average firing rates, with N = 1000, K =

100, fexc = 0.5 and δ0 = 10−9 in all cases. Presented curves are the average of 104

random perturbations. Inset: The limit of dynamical predictability Tp defined as

a time needed for an error to reach 98% of the saturation level.

4.4 Sensitivity to external perturbations

We have evaluated the nonlinear finite time Lyapunov exponent (FTLE), which

measures the short-term growth rate of initial perturbations without linearization

of the time evolution equations (Ding, & Li, 2007).

In practice the FTLE is estimated by considering a small perturbation of the

trajectory ~z(t) ∈ R
3N along a randomly selected direction ~δ(0) ∈ R

3N , and follow-

ing the deviation of the perturbated trajectory from the reference orbit, that is

~δ(τ) = ~z′(t+ τ)− ~z(t+ τ). The FTLE is the obtained as λ(~z(t), δ0, τ) =
1
τ
ln δ(τ)

δ0
,

where δ(τ) = ||~δ(τ)|| and δ0 = ||~δ(0)|| ≪ 1. The FTLE depends on the starting

point ~z(t) of the initial perturbation and on the size of the initial displacement

δ0. The mean FTLE λ̄(δ0, τ), which is independent from the starting point ~z(t)

is evaluated by taking the average of the FTLEs over various points along the

trajectory,

λ̄(δ0, τ) = 〈λ(~z(t), δ0, τ)〉t =
1

n

n∑

t=1

λ(~z(t), δ0, τ) .

The mean FTLE still depends on the initial displacement δ0. If δ0 is chosen to be

very small one observes initially an exponential growth of the perturbation. For

this time period the mean FTLE is essentially constant and reduces to the largest
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Lyapunov exponent. The growth of the perturbation eventually enters a nonlinear

phase, which is maintained until the deviation from the reference orbit reaches a

saturation value. Note that FTLE (λ(~z(t), δ0, τ)) is not necessarily positive for

all τ and ~z(t), implying that an initial deviation can converge back towards the

reference trajectory.

When analysing the changes of the dynamical behavior as we reduced µ, while

keeping fexc constant at 0.5, we found that when µ is in the range which cor-

responds to small values of 〈Dλ〉 (see lower right part of Fig. 5), the dynamical

behavior is in a pure chaotic dynamical state with the constant part of the mean

FTLE λ̄(t) in the range [0.05, 0.1] . In this phase the FTLE is positive for all τ

and ~z(t), thus small initial displacements diverge along every point of the orbit

~z(t).

As the target mean firing rate is decreased down to µ = 0.2 we observe a kink

in the FTLE, with a transition to a second linear time development, see Fig. 7.

The manifestation of the kink corresponds to the occurrence of periods of quasi-

constant activity as seen in the bottom plot of Fig. 6. This laminar periods are

characterised by a negative local Lyapunov exponent, that is small perturbations

are suppressed during the laminar periods, leading however to a growth of the

perturbation during the periods of chaotic bursting.

In this intermittent bursting phase the short term chaotic behavior (t . 200)

describes the repulsion of two initially close trajectories mainly during the bursting

regime. The long term behavior (t ≫ 200) is also chaotic, as a consequence of

the intermittent chaotic bursts. The change in the growth of perturbations (see

Fig. 7) results from the interplay of the distinct characteristic timescales of the

intrinsic variables (ai and bi) and the firing rates (yi), with the first being slow

and the later being fast variables (Boffetta, Giuliani, Paladin, & Vulpiani, 1998).

The occurrence of transiently stable periods of activity also leads to an increase in

the time Tp, measuring the limit of dynamic predictability, as shown in the inset

of Fig. 7. The duration of predictability Tp is defined here as the time needed for

a perturbation to reach 98% of the saturation level (Ding et al., 2007).

The dependency of the FTLE on the position of a perturbation along the orbit

in phase space is presented in Fig. 8. We compared the FTLE, that is λ(~z(t), δ0, τ),
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Figure 8: Position dependent finite time Lyapunov exponent λ̄(~z(t), δ0, τ) (see

section 4.4) along the orbit. We considered three cases: (bottom) a chaotic phase

with µ = 0.25 and fexc = 0.5, (middle) intermittent-bursting phase with µ = 0.15

and fexc = 0.5, (top) synchronised oscillatory phase with µ = 0.15 and fexc = 0.7.

The initial displacement δ0, number of neurons N and connectivity K were set to

10−9, 103 and 102, respectively.

as estimated from six different points along the trajectory ~z(t), for all three dy-

namical regimes. The FTLE is then evaluated for 500 consecutive timesteps and

after the 500th timestep a new perturbation is introduced. In the pure chaotic

dynamical regime the FTLE is positive for all given initial perturbation points.

While, in intermittent bursting regime one can also notice negative values of the

FTLE when the perturbation is initiated within the laminar period. In contrast,

perturbations starting during the periods of bursts leads to a strictly positive

FTLEs. In the oscillatory regime the FTLE is negative along the orbit and, simi-

lar to the single neuron case, the trajectory is unstable during the fast transitions

from low to high activity states (and vice versa), which results in sharp, positive

valued, spikes in the FTLE.

Chaotic dynamics is also observed in the non-adapting limit with ǫ → 0, when-
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ever the static values of ai are above the critical value. This is in agreement

with the results of a large-N mean field analysis of an analogous continuous time

Hopfield network (Sompolinsky, Crisanti, & Sommers, 1988). Subcritical static ai

lead, on the other hand, to regular dynamics controlled by point attractors.

5 Discussion

Our results show that the introduction of intrinsic plasticity in random recurrent

neural networks results in ongoing and self-sustained neural activities with non

trivial dynamical states. For large networks we have observed, depending on the

specified parameters, three self-organized distinct phases. The network parameters

include the fraction of excitatory connections, the average connectivity and the

target average firing rate. These results show that non-synaptic adaptation plays

an important role in the formation of complex patterns of neural activity.

An important part of the sensory signals an organism receives result from the

reactions of the environment to the motor actions taken by the organism itself. The

complexity of this portion of sensory inputs will then depend on the complexity

of the organism’s own behavior. This consideration indicates that self-generated

and autonomously sustained neural activity is important for the generation of

non-trivial behavioral patterns. It is hence more likely that an animal will start

an explorative behavior if the brain, supporting the body, is able to maintain a

change in sensory input. In other words, if the dynamics of a neural controller

would approach, in the absence of sensory inputs, a state of stable and constant

activity, it would be capable of generating only trivial motor actions.

As mentioned in the introduction, synaptic plasticity alone drives the dynamics

of a recurrent network generically toward a frozen state, independent of the pres-

ence or absence of sensory input (Siri et al., 2007). Synaptic plasticity is thus in

general, for non-spiking neurons, not sufficient for achieving self sustained activity,

a likely essential precondition to complex behavioral patterns.

The relevance of critical brain dynamics for both non-linear sensory processing

(Kinouchi, & Copelli, 2006) and for self-sustained neural computation is being

investigated intensively. Levina, Herrmann, & Geisel (2007, 2009) have demon-
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strated that critical neural activity can be achieved when the depletion of synaptic

vesicles is included into the dynamics of membrane potential. Under this setup,

they observe power law scaling of avalanches formed by the activity of spiking neu-

rons, a result in agreement with experimental observations (e.g., Chialvo, 2010),

which are supportive of the notion that the brain works in critical regime. How-

ever, without any form of adaptation to varying sensory stimuli, neurons would

perform only trivial computations and criticality, or other complex activity pat-

terns, would generically not arise. Thus, to properly understand the brain dynam-

ics and cognitive processes, one must include various forms of plasticity (Triesch,

2005, 2007).

Here we showed that intrinsic or non-synaptic plasticity will drive a system

of recurrently interacting neurons, under certain quite general conditions (net-

work connectivity, ratio of excitation versus inhibition), towards a chaotic phase.

Synaptic adaption rules, on the other side, are known to generically drive recurrent

neural networks into a subcritical or frozen state. Our results hence indicate that

self-organization of neural network dynamics into a critical regime could occur

whenever intrinsic and synaptic plasticity are both present and relevant. Critical

neural dynamics would then result from the interplay between synaptic and non

synaptic adaption processes.

An analogous line of arguments has been brought forward by Der, Hesse, & Martius

(2006), by demonstrating the relevance of self-organized criticality for the emer-

gence of exploratory behavior in autonomous agents. Optimal predictability of

the sensory-motor cycle is achieved when the neural controller works in a critical

regime (Der et al., 2006). We believe that self-organized criticality in biologically

inspired autonomous recurrent neural networks will exhibit similar patterns of

complex behavior. Certainly, the complex behavior should persist when including

the interaction between an agent and the environment, as we plan to do in future

investigation.
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