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Abstract

In short-term memory networks, transient stimuli are represented by patterns of neural activity that 

persist long after stimulus offset. Here, we compare the performance of two prominent classes of 

memory networks, feedback-based attractor networks and feedforward networks, in conveying 

information about the amplitude of a briefly presented stimulus in the presence of gaussian noise. 

Using Fisher information as a metric of memory performance, we find that the optimal form of 

network architecture depends strongly on assumptions about the forms of nonlinearities in the 

network. For purely linear networks, we find that feedforward networks outperform attractor 

networks because noise is continually removed from feedforward networks when signals exit the 

network; as a result, feedforward networks can amplify signals they receive faster than noise 

accumulates over time. By contrast, attractor networks must operate in a signal-attenuating regime 

to avoid the buildup of noise. However, if the amplification of signals is limited by a finite 

dynamic range of neuronal responses or if noise is reset at the time of signal arrival, as suggested 

by recent experiments, we find that attractor networks can out-perform feedforward ones. Under a 

simple model in which neurons have a finite dynamic range, we find that the optimal attractor 

networks are forgetful if there is no mechanism for noise reduction with signal arrival but 

nonforgetful (perfect integrators) in the presence of a strong reset mechanism. Furthermore, we 

find that the maximal Fisher information for the feedforward and attractor networks exhibits 

power law decay as a function of time and scales linearly with the number of neurons. These 

results highlight prominent factors that lead to trade-offs in the memory performance of networks 

with different architectures and constraints, and suggest conditions under which attractor or 

feedforward networks may be best suited to storing information about previous stimuli.

1 Introduction

Short-term memory is thought to be maintained by patterns of neural activity that are 

initiated by a memorized stimulus and persist long after its offset. Because memory periods 

are relatively long compared to biophysical time constants of individual neurons, it has been 

suggested that network interactions can extend the time over which neural activities are 

sustained (Brody, Romo, & Kepecs, 2003; Durstewitz, Seamans, & Sejnowski, 2000; Major 
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& Tank, 2004; Wang, 2001). However, the form of such interactions is currently unknown in 

most systems, and experimental and theoretical work has suggested a range of different 

network architectures that could subserve short-term memory.

A critical factor for robustly maintaining the memory of a stimulus is being able to resist the 

effects of noise that can accumulate over time. This is a particularly acute problem for the 

representation of analog values in memory. In many memory-storing paradigms during 

which neurophysiological recordings have been obtained (for example, see Aksay, Baker, 

Seung, & Tank, 2000; Goldman-Rakic, 1995; Robinson, 1989; Romo, Brody, Hernandez, & 

Lemus, 1999; Sharp, Blair, & Cho, 2001; Taube & Bassett, 2003), neurons have been shown 

to exhibit what appear to be continuously varying response levels that change in a graded 

manner with the stored stimulus value. With such analog representations, any noise-induced 

change in neural activity has the potential to affect the encoding of the stimulus. Thus, such 

networks are faced with apparently conflicting demands. On the one hand, the networks 

must be able to maintain the value of a signal in memory for long durations. On the other 

hand, the mechanism for performing this maintenance must keep the signal from being 

contaminated by excessive buildup of noise.

The most common models for how activity evoked by a transient stimulus is maintained over 

time are the so-called attractor networks. In attractor networks, individual neurons do not 

intrinsically maintain activity over long timescales and thus cannot in isolation store a 

memory. Instead, activity is maintained by positive feedback whereby neurons that are 

connected by excitatory or disinhibitory positive feedback loops maintain one another’s 

activity following the offset of the external drive provided by the stimulus. In such models, 

the network structure determines which patterns of activity can be sustained by positive 

feedback, and typically only a small, specially designed set of patterns can be maintained. 

These maintained patterns of activity are called attractors of the network dynamics, because 

perturbing the dynamics away from such patterns leads to a rapid return to the attractor. A 

number of models of analog memory storage have utilized attractor dynamics (for review, 

see Brody et al., 2003; Durstewitz et al., 2000; Major & Tank, 2004; Wang, 2001), and 

recent analyses of neocortical data provide suggestive evidence for such attractors in tasks 

involving a working memory component (Ganguli, Bisley et al., 2008).

Recently both theoretical models (Ganguli, Huh, & Sompolinsky, 2008; Goldman, 2009; 

Mauk & Buonomano, 2004; Rabinovich, Huerta, & Laurent, 2008; Savin & Triesch, 2009; 

White, Lee, & Sompolinsky, 2004) and experimental observations (MacDonald, Lepage, 

Eden, & Eichenbaum, 2011; Pastalkova, Itskov, Amarasingham, & Buzsaki, 2008) have 

suggested instead how purely feedforward networks can store the memory of a stimulus in 

their transient dynamics. Experimentally, a feedforward progression of neuronal activity has 

been reported in hippocampal neurons during memory delay periods (MacDonald et al., 

2011; Pastalkova et al., 2008), and theoretical work suggests mechanistically how an analog 

signal can be represented over time by activity that slowly propagates through a feedforward 

chain of neurons or, in recurrent networks, through a sequence of distinct and 

nonoverlapping patterns of network activity (Ganguli, Huh, et al., 2008; Goldman, 2009; 

White et al., 2004).
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Here, we compare the performance of attractor and feedforward models in the presence of 

noise. Our work builds on the information-theoretic frameworks for quantifying memory 

performance of White et al. (2004) and Ganguli, Huh et al. (2008), who considered the 

performance of linear neural networks with discrete dynamics (i.e., defined with difference 

equations so that time is measured in discrete units that facilitate analytic calculation). We 

measure memory performance by calculating the Fisher information that is maintained about 

a transient stimulus at a time T into the future. Unlike previous work in neuronal systems 

(but as in the fluid mechanics example of Ganguli, Huh et al., 2008), the networks we study 

are defined by differential equations that consider the more realistic situation of continuous 

time dynamics. However, to facilitate analytic calculations, we also, when appropriate, 

compare to networks constructed with discrete dynamics.

The structure of this letter is as follows. First, in analogy to previous studies of linear 

networks with discrete dynamics, we analytically calculate the memory-storing performance 

of linear, continuous-time networks and determine the properties that optimize the Fisher 

information storage capacity of both attractor and feedforward networks. We then consider 

the effects of two nonlinearities suggested by neuronal recording data. First, we consider the 

effects on memory performance of reset mechanisms that, for example, remove noise from 

the system near the time of stimulus arrival (Churchland et al., 2010; Rajan, Abbott, & 

Sompolinsky, 2010; Weber & Daroff, 1972) or keep the network from entering the memory-

storing state until the time of stimulus onset (Amit & Brunel, 1997; Durstewitz et al., 2000; 

Wang, 2001). Second, we consider the effect of limiting neurons to having a finite range of 

firing rates with which they can encode amemorized stimulus.

2 Material and Methods

In this letter, we compare the performance of attractor and feedforward network models in 

maintaining the memory of a brief, analog-valued stimulus for a fixed or known delay period 

T in the presence of noise. Here, we define the dynamics of each network model, as well as 

the Fisher information used to quantify the memory performance.

2.1 Linear Network Models

The structure of the networks considered in this letter is illustrated in Figure 1A. The goal of 

the network models is to maintain information about the scalar-valued amplitude s of a 

briefly presented stimulus occurring at time t = 0. In the majority of this work, we employ a 

firing rate model with continuous linear dynamics described by

(2.1)

where r⃗ is a vector containing the firing rates of the N neurons in the network, each of which 

has intrinsic time constant τ. Inputs to the neurons include recurrent feedback from other 

neurons W↔r⃗, the pulse-like input sv⃗δ(t) whose strength s is to be remembered, and 

gaussian white noise σξ⃗(t) of mean 0 and amplitude σ that is presented at all times (see 
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Figure 1A). Here, the elements of the connectivity matrix Wij represent the strength of the 

synaptic connection from the jth to the ith neuron, and the elements of the input vector v⃗ 
indicate the relative weights of the inputs to each neuron. The input is presented as a 

transient pulse at time 0, modeled by a delta function δ(t).

Equation 2.1 can be solved analytically to give the form of the neuronal activities at time t 
when the stimulus strength is s and noise starts entering the system at time t0:

(2.2)

The first and second terms describe the evolution of neural activities in response to the 

deterministic pulse-like stimulus and continually presented noisy input, respectively. The 

resulting mean neural activity and covariance matrix of neural variability are given as

(2.3)

(2.4)

where the superscript T here denotes a matrix transpose and should not be confused with the 

memory period duration T. Note that the mean neural activity scales linearly with s and the 

magnitude of v⃗. We set ||v⃗|| = 1 except in section 3.3, where we consider the effects of 

imposing a finite dynamic range on neuronal responses. The covariance matrix scales 

linearly with σ2, and we denote the integral factor in equation 2.4 by C↔. In linear networks 

with no reset, we set t0 to −∞ to account for noise building up continuously at all times 

before the stimulus onset. When considering networks in which the appearance of the 

stimulus resets the noise, t0 is set to 0, so that only noise presented after the stimulus onset 

affects memory performance.

To facilitate analytic calculations in cases where evaluation of the Fisher information is 

difficult, we also consider in Figures 6, 9, and 10 a network with discrete dynamics defined 

as in Ganguli, Huh et al. (2008). To derive these discrete dynamics, we start from the 

continuous differential equation:

Note that the additional factor  multiplying ξ⃗(t′) reflects that the variance, rather than 

standard deviation, of white noise grows linearly with time: 
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. By discretizing 

time with time step Δt′ and replacing the derivative of r⃗(t′) with a finite difference, we 

obtain the discrete dynamics approximating the continuous dynamics as follows:

(2.5)

Here, the discrete dynamics approximation can be seen to be equivalent to updating the 

continuous dynamics equation with a time step equal to the intrinsic neuronal time constant 

τ, that is, with Δt′ = 1. W↔, v⃗, and σ are the same as in equation 2.1, and δ(n) and ξ⃗ are the 

delta function and gaussian white noise in discrete time, respectively. The mean and 

covariance matrix for the above equation can be obtained as

(2.6)

(2.7)

In equation 2.7, n0 replaces t0 in equation 2.4 and the power of τ in the denominator is 

reduced by one relative to that in equation 2.4 because the differential dt′ in equation 2.4 is 

set equal to τ in discrete dynamics and therefore cancels one factor of τ in the denominator.

The evolution of the network activity under linear dynamics can be computed by 

decomposing the activity into linearly independent modes. Here, we consider two such 

decompositions and use them to characterize the dynamics of the attractor and feedforward 

network models in the absence of noise.

In attractor networks, positive feedback sustains the activity evoked by the transient 

stimulus, for example, due to mutual excitatory connections between neurons that form a 

positive feedback loop (see Figure 1B). To identify such positive feedback, the eigenvector 

decomposition is commonly used to decompose the coupled networks into noninteracting 

modes of activity that can be considered independently. In the eigenvector decomposition, 

the pattern of neural activity r⃗ at any given time is defined in terms of the eigenvectors q⃗i and 

corresponding eigenvalues λi of the connectivity matrix W↔, which satisfy the equation 

W↔q⃗i = λiq⃗i for i = 1 to N. Geometrically, the eigenvector decomposition corresponds to a 

change of basis into a new coordinate system whose axes are defined by the eigenvectors qi⃗. 

In this new basis, the connectivity matrix W↔ is represented by a diagonal matrix D↔ 
having eigenvalues as diagonal entries such that Q↔−1W↔ Q↔ = D↔, where the column 

vectors of Q↔ are the eigenvectors. When the eigenvectors are orthogonal to each other, 

W↔ is known as a normal matrix. In this case, the activity in each mode is equal to the 
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Cartesian projection of the network activity onto that mode, and there is no overlap among 

the activities in the different modes.

Activity in any eigenmode exhibits exponential growth or decay with a time constant 

. If λi = 1, activity is sustained without decay, and the mode can integrate 

any input perfectly. If Re (λi) < 1, activity decays with a time constant that decreases as λi 

decreases, and for Re (λi) > 1, activity grows exponentially. Attractor networks are defined 

by having a small number of modes (the attractor modes) with λi’s much larger than the 

other eigenvalues. For such networks, activity in all except the attractor modes decays 

exponentially quickly to zero so that after a transient period, the only remaining activity is 

along these modes. The resulting subspace spanned by these modes is then called an 

attractor of the network dynamics. We illustrate a simple attractor network consisting of two 

symmetric excitatory neurons in Figure 1B. In such a network, the noninteracting modes 

correspond to the sum and difference of the activities and are called the common and 

difference modes (see Figure 1C). In the common mode, which is proportional to the 

average activity in the network, activity evoked by a transient input is maintained by mutual 

excitation of the neurons. By contrast, because the symmetric mutual excitation tends to 

make the neurons fire at equal rates, the difference mode is sharply attenuated by the 

network interactions, leading to rapid decay of any initial activity in this mode. Thus, after a 

transient period, only the activity along the common mode remains and the common mode is 

called an attractor of the network dynamics. Generally if there exist multiple modes with 

strong positive feedback, the signal can be stored in any of these modes, and the network is 

called a d-dimensional attractor network, where d denotes the number of modes with large 

λi’s (see Figure 1D). In the special case when d equals one or two, the attractor is called a 

line or plane attractor, respectively.

Feedforward networks use a different mechanism for storing a signal. Rather than 

maintaining a stable pattern of activity through positive feedback, as in the attractor 

networks, the signal is carried by different neurons at different times. For example, in 

feedforward networks composed of neurons connected as a chain, the activity can be 

maintained as long as activity continues to propagate along a chain in which the activity in 

the previous neuron is passed onto the next neuron and filtered at each stage (see Figures 1E 

and 1G). The feedforward networks cannot be decomposed into a full set of N eigenmodes 

because, by the definition of an eigenmode, the activity that starts in an eigenmode remains 

in that mode (see Figure 1F, left). By contrast, the fundamental characteristic of the 

feedforward networks is that the activities of all neurons except the final one are passed onto 

the next neurons instead of being sustained.

The Schur decomposition is more suitable for describing feedforward networks (Ganguli, 

Huh et al., 2008; Goldman, 2009; Murphy & Miller, 2009). Rather than diagonalizing the 

matrix W↔, the Schur decomposition changes to a basis in which W↔ is triangular, that is, 

it decomposes any connectivity matrix into orthogonal modes that can have both 

feedforward and self-connections, but no feedback connections from later-stage neurons to 

earlier neurons. Formally, the Schur decomposition transforms the matrix W↔ into a lower 

triangular matrix M↔ such that Q↔−1W↔ Q↔ = M↔, where the columns of Q↔ are the 
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orthogonal modes, called Schur modes, and the values of M↔ along the diagonal are the 

eigenvalues of W↔ (equivalently, M↔ can be made into an upper triangular matrix; Horn 

& Johnson, 1985). As in the eigenvector decomposition for normal networks, the diagonal 

entries of M↔ give the feedback of the Schur modes onto themselves (for normal W↔, the 

Schur and eigenvector decompositions are identical). If W↔ is nonnormal, then the Schur 

decomposition will contain nonzero lower triangular entries that correspond to feedforward 

connections between the Schur modes. In this case, activity may be transiently amplified as 

it propagates through the feedforward connections between modes, even when all the 

eigenmodes are decaying (i.e., when all λi < 1; Trefethen & Embree, 2005).

Here, we consider two types of feedforward networks. First, we consider literally 

feedforward networks for which the connectivity matrix W↔ itself is lower triangular with 

zeros along the diagonal, so that all connections are feedforward. Thus, the Schur mode 

patterns of activity correspond to individual neurons (see Figure 1F, right). Especially, we 

consider a simple chain-like structure whose connectivity matrix between neurons in the 

literally feedforward networks is of the form Wi j = α > 0 for all i and j such that i = j + 1 

and zero otherwise. For networks with many neurons arranged in a chain, the propagation of 

activity can continue for a duration proportional to the chain length, with each neuron’s 

activity peaking at different times. With this diversity of temporal profiles of neural 

activities, the network can generate persistent activity with a simple readout that linearly 

sums the activities of the different neurons with appropriate weights (see Figure 1G; 

Goldman, 2009).

Second, we consider recurrent matrices W↔ whose Schur decomposition M↔ has a 

feedforward(lower triangular, with zeros along the diagonal) structure; we call these 

functionally feedforward networks because the activity patterns defined by the Schurmodes, 

rather than the neuronal activity itself, propagate in a feedforward manner (Ganguli, Huh et 

al., 2008; Goldman, 2009; Murphy & Miller, 2009). As in the case of the literally 

feedforward networks, we consider simple functionally feedforward chains of the form Mi j 

= α > 0 for all i and j such that i = j + 1 and zero otherwise. An example of a functionally 

feedforward chain is shown in Figures 1Hand 1I, in which a two-neuron network with one 

excitatory and one inhibitory neuron is decomposed into common and difference modes by 

the Schur decomposition. The modes make a feedforward chain such that the activity of the 

difference mode drives the activity in the common mode (see Figure 1I). More neurons can 

form a longer functionally feedforward chain, allowing progression of activity patterns that 

persist for longer periods of time (see Figure 1J).

2.2 Fisher Information Measure for Memory Performance

To achieve good memory performance, a network must maintain a memory of the stimulus 

while resisting the excessive accumulation of noise. The ability to achieve this can be 

quantified as the ratio between the amount of signal and noise stored in the system at a given 

time following stimulus offset. Here we use a closely related measure, the Fisher 

information IF, which quantifies the amount of information carried about a signal by the 

distribution of neural activities and which, for linear networks and gaussian white noise, is 
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shown below to represent a ratio between the factor by which the network amplifies signals 

and the amount of noise accumulated by the network (Ganguli, Huh et al., 2008).

To get an intuition for this measure, we show in Figure 2A how to compute the Fisher 

information for an example of the activity of a single neuron (or a single eigenmode of an 

attractor network) in the presence of noise. The neuron (or mode) must distinguish between 

different pulse-like stimuli of amplitudes s and s + δs that it receives at time 0. Making this 

discrimination more difficult, noise is presented to the neuron (or mode) continually in time 

(see Figure 2A). We model the transient stimulus as a delta function δ(t) so that the stimulus 

causes a jump in the mean neural activity at time 0, with size proportional to the stimulus 

strength s or s + δs (see Figures 2B and 2C, thick lines). Due to the noise, each presentation 

of the stimulus leads to a different trajectory so that there is trial-to-trial variability in the 

response (the black and gray noisy trajectories in Figure 2B).

The memory of the stimulus is carried by the distribution of the firing activities of the 

neurons. In order to perform well in maintaining the distinction among stimuli, the 

distributions for different stimuli must remain well separated: the more the noise makes the 

two distributions overlap, the greater will be the corruption of the stored memory. In linear 

networks, the mean activities of the neurons (gray circle and black asterisk in Figure 2C) 

carry the information about the presented stimulus, and the signal gain is measured as the 

difference in the mean activities δ〈r〉 divided (i.e., normalized) by the separation δs of the 

signals to be discriminated (see Figure 2D). The noise in the neural activities is given by the 

spread in the firing rate distribution. The Fisher information IF conveyed by the network is 

defined as the ratio of the square of the signal gain to the noise variance at time T. Thus, 

either a wider separation between the means (high signal gain) or narrower distributions 

about these means (small noise variance) lead to higher Fisher information.

Formally, the Fisher information is defined as

(2.8)

where 〈 〉r⃗(t) denotes taking the average over all r⃗(t) for a given s.

For linear networks with gaussian white noise, the distribution of neural activity remains 

gaussian for all times and therefore can be described completely by the mean and noise 

covariance matrix of the firing rate distribution (see equations 2.3 and 2.4). Using that the 

logarithm of a gaussian distribution is proportional to the squared deviation from the mean 

divided by the covariance matrix, that is, log p(r ⃗|s) = −c1 [r⃗ − mean(r ⃗)]T [Cov(r ⃗)]−1 [r⃗ − 

mean(r⃗)] + c2, where ci are constants, IF is in this case given by
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(2.9)

Here,  is the derivative of the mean with respect to s, called the 

signal gain. Thus, equation 2.9 shows that IF is of the form of a (matrix) ratio between the 

signal gain squared and the noise covariance. Note that σ2IF (t) is independent of the 

stimulus strength s and injected noise level σ2 and depends only on the properties of the 

network connectivity. Therefore, in the following, we calculate ĨF = σ2IF (t) instead of IF and 

often refer to ĨF as the Fisher information for brevity (see Figure 2D). Note that this quantity 

has the same units as σ2 since IF is unitless (and assuming that s is unitless).

In equation 2.9, the readout of the network activities is not specified. In particular, in a linear 

system with gaussian noise, it can be shown that ĨF is greater than or equal to the (signal 

gain)-to-(noise gain) ratio in any linear readout of the network (see section A.1 in the 

appendix). The equality holds when the linear readout is in the direction C↔−1 exp[(−I↔ + 

W↔)t/τ]v⃗ (see the optimal linear estimator in population decoding, as in Salinas & Abbott, 

1994; Sompolinsky, Yoon, Kang, & Shamir, 2001). Note that in the feedforward networks, 

the optimal linear readout will generally vary over time, reflecting that information about the 

signal propagates from earlier to later stages in the feedforward chain.

3 Results

Here we compare how attractor and attractorless (literally feedforward or functionally 

feedforward) models perform in storing the amplitude of a brief stimulus. The memory 

performance is measured by the Fisher information, a measure of how much the network 

amplifies the signal corresponding to the stimulus compared to how much it amplifies 

ambient noise (see section 2.2). In section 3.1, we consider purely linear networks that allow 

us to isolate how the structures of attractor and feedforward networks influence memory 

performance in the absence of nonlinear influences. Then we consider the effect of two 

biologically observed nonlinearities. In section 3.2, we consider a condition that we term a 

reset nonlinearity under which either noise does not begin to accumulate strongly until the 

memory period commences (Amit & Brunel, 1997; Durstewitz et al., 2000; Wang, 2001) or 

in which noise that is present before the stimulus arrival is “reset” by the appearance of the 

stimulus (Churchland et al., 2010; Rajan et al., 2010; Weber & Daroff, 1972). In section 3.3, 

we consider the effects of restricting neurons to having a finite range of firing rates with 

which they encode a stimulus.

3.1 Linear Networks

In this section, we compare the memory performance of attractor and feedforward network 

models with continuous linear dynamics. This allows us to focus on how signal and noise 

are propagated through the network as a function of the structure of the network connectivity 

without the complicating influence of nonlinearities. We first compute the Fisher 

information ĨF = σ2IF in line attractor networks and then extend our results to higher-

Lim and Goldman Page 9

Neural Comput. Author manuscript; available in PMC 2017 July 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



dimensional attractor networks. Then we compute ĨF for feedforward networks and compare 

their performance to that of the attractor networks.

3.1.1 One-Dimensional Attractor Networks—We first consider the line attractor 

networks, which are defined by having only a single stationary or slowly decaying (or 

possibly growing) pattern of activity that defines the attracting mode (see Figures 1B and 

1C). When stimulated by a brief stimulus, both signal and accumulated noise in line attractor 

networks quickly converge to this attractor. As a result, for times after the transient 

responses of the nonattractor modes decay away, all information conveyed by the line 

attractor networks is contained in the attractor mode, and we can closely approximate the 

Fisher information ĨF by the (signal gain)-to-(noise gain) ratio in this mode (see Figure 2).

The memory-storing performance of the line attractor models reflects a balance between two 

factors. First, the network must be able to sustain the signal for the full duration of the 

memory period. As shown in Figure 1C, this is accomplished in attractor networks by 

having sufficiently large positive feedback in the attracting mode. Second, the network must 

not accumulate too much noise over time. Since noise is assumed to be presented at all 

times, including prior to stimulus onset, this implies that inputs to the network should not be 

sustained indefinitely or noise will accumulate without bound. Thus, there is a trade-off in 

attractor networks between sustaining signals for sufficiently long to maintain signal 

strength and having enough decay of signals that noise does not accumulate excessively.

To quantify this trade-off between sustaining the signal and accumulating noise, we examine 

the memory performance of the attractor network in terms of the amount of positive 

feedback α in the attracting mode, where α is the eigenvalue associated with the attracting 

eigenmode and the time constant of decay (or growth, for Re(α)>1) of activity in this mode 

is given by τeff = τ/|1 − Re(α)|. When the feedback is too weak (see Figure 3A), the signal 

decays quickly to zero and any memory of the initial stimulus amplitude s is forgotten. Thus, 

ĨF is close to zero in this case (see Figure 3D). Increasing the recurrent feedback leads to 

slower decay of signals corresponding to the memorized stimulus, and when the feedback is 

tuned to be large enough to offset the intrinsic leak of the neurons (α ≈ 1), the mean 

responses to different amplitude stimuli stay well separated (black and gray thick traces in 

Figure 3C). However, because noise along the attractor mode is subject to the same 

dynamics as signals along this mode, noise also accumulates without decay. Because noise is 

present at all times before the stimulus arrives, this leads to an extremely large variance in 

the responses (see Figure 3C; note the wide spread of trajectories even before time 0). For 

networks that are either nonforgetful (α = 1) or amplifying (α > 1), this noise becomes 

infinite in magnitude so that the Fisher information ĨF is zero (see Figure 3D). Thus, there is 

an optimal amount of feedback in linear attractor networks, and a corresponding optimal 

time constant of decay of network activity, that balances having a long time constant so that 

the signal does not decay and having a short time constant so that noise does not accumulate 

too much (see Figures 3B and 3D).

This example shows that the attractor network performance is benefited by having an 

imperfect memory-holding mechanism. To find the optimal forgetting time constant of 

network activity decay, we analytically calculated ĨF for the line attractor networks (see 
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sections A.2.1 and A.2.2). We find that ĨF achieves its maximum when the decay time 

constant of network activity τeff,opt = 2T, where T is the duration over which the signal is to 

be stored. Thus, the memory duration T sets the scale for the optimal network decay time. 

When activity decays much faster than the memory duration T, the signal decays away 

before the end of the memory period. When activity decays much more slowly than T or 

grows exponentially, noise accumulation overwhelms the signal.

3.1.2 Higher-Dimensional Attractor Networks—We next extend the result for line 

attractor networks to higher-dimensional attractor networks having many modes with slow 

decay of activity. In line attractor networks, the input is stored along the one-dimensional 

attractor. In higher-dimensional attractor networks, signal and noise can accumulate in any 

direction spanned by the multiple attractor modes. We show that these extra dimensions do 

not affect ĨF of networks with optimally arranged inputs and readout. However, for 

imperfectly arranged inputs or outputs, we find that the memory performance of the line 

attractor networks is sensitive to the input direction but insensitive to the readout direction. 

In contrast, higher-dimensional attractor networks are more sensitive to the readout but less 

sensitive to the input direction.

For illustration, in Figure 4 we compare the line attractor networks to plane attractor 

networks defined by having two slowly decaying modes of activity. To convey geometrical 

intuition, we plot only the modes q⃗1 and q⃗2 with the two largest eigenvalues and assume all 

the eigenmodes are orthogonal. For simplicity, we assume that each attracting mode has the 

same eigenvalue, so that all directions in the attracting plane have equal decay times and the 

signal can be stored equally well in any direction on the plane. Likewise, noise accumulates 

in the same manner in any direction on the plane. Then, when gaussian white noise is 

presented equally to all neurons and thus to all orthogonal modes (see Figure 4A), the 

resulting noise at any time is also equivalent in all directions of the plane (see Figure 4C). 

By contrast, in the line attractor networks, noise along directions other than the line attractor 

is filtered out so that noise along the attracting mode has a larger variance than that along the 

other modes (see Figure 4B).

To maximize the strength of the signal carried by attractor networks, the inputs should be 

arranged so that none of the input is lost due to being sent into decaying modes whose 

amplitudes quickly fall to zero. In line attractor networks, this corresponds to aligning the 

input direction v⃗ along the direction of the attracting eigenmode q⃗1 (see Figure 4E). When 

there is more than one attracting mode, as in the plane attractor networks, the optimal input 

direction v⃗ can be along any linear combination of these attracting modes (see Figure 4F). 

The Fisher information ĨF is proportional to the square of the projection of the signal onto 

the attracting modes. Thus, the Fisher information is identical and equal to its maximal value 

for both the line and higher-dimensional attractors as long as the input is aligned along the 

subspace defined by the attracting eigenmodes (see Figure 4D, θ = 0). If v⃗ is not aligned 

along the attracting modes, a portion of the signal is lost to the decaying modes and ĨF 

decreases from this maximum value. In the line attractor, there exists only a single attracting 

mode storing the signal, so ĨF decreases as v⃗ deviates from q⃗1 (see Figure 4D, solid curve). 

On the other hand, ĨF stays the same in the plane attractor networks for any v⃗ in the 

attracting plane (see Figure 4D, dashed line). Note that ĨF in the plane attractor networks 
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would decrease as in the line attractor networks if v⃗ were to deviate from the attracting plane 

(not shown). However, because the dimension of the plane attractor is higher than that of the 

line attractor, the alignment of the input vector is less restrained in the plane attractor (or, 

more generally, higher-dimensional attractor) networks.

Next we consider the arrangement of the readout for the maximal memory performance. As 

discussed in section 2.2, the Fisher information measure ĨF implicitly assumes an optimal 

readout because ĨF is equal to the (signal gain)-to-(noise gain) ratio along the optimal linear 

readout direction. However, for nonoptimal readout, the memory performance may be less 

than ĨF and the sensitivity to the direction of the readout may differ between the line and 

plane attractor networks (see section A.2.4).

In the line attractor networks, mistuning of the readout does not have much effect on the 

(signal gain)-to-(noise gain) ratio because the signal and noise accumulate along the one-

dimensional attracting mode and their ratio is maintained for the projection onto any readout 

direction (see Figure 4H). Thus, the memory performance of line attractor networks remains 

near the maximal ĨF even when the readout direction is well away from the attractor mode 

(see Figure 4G, solid line). Only when the readout direction becomes close to orthogonal to 

the attractor direction, so that the signal becomes smaller than or comparable to the small but 

finite noise accumulated in the nonattracting modes, does the memory performance fall off 

by a significant amount. By contrast, in plane attractor networks, the memory performance is 

far more sensitive to the direction of the readout (see Figure 4G, dashed line). Because noise 

develops along all attractor dimensions but the signal lies only along the direction v⃗ defined 

by the input, projections that are not along the input direction pick up additional noise and 

lower the (signal gain)-to-(noise gain) ratio (see Figure 4I). Hence, optimal performance 

requires amore precise readout mechanism in higher-dimensional attractor networks.

In summary, both the line attractor and higher-dimensional attractor networks were shown to 

have the same maximal memory performance, as characterized by the Fisher information. 

For the line attractor networks, memory performance was highly insensitive to the readout 

direction but more sensitive to the direction of the input. Conversely, for higher-dimensional 

attractor networks, the memory performance was highly sensitive to the readout direction 

but less sensitive to the direction of the inputs. These results suggest that line attractor 

networks might be more useful if the stored memory needed to be used by multiple networks 

that each projected activity along a different direction. By contrast, higher-dimensional 

attractors might be more useful in storing memories that can arrive from multiple input 

networks that each sends in different input patterns encoding the stored variable.

3.1.3 Feedforward Networks—Next, we compute the memory performance of linear 

feedforward networks and focus on networks with a chain-like structure that were proposed 

recently as a neural substrate for short-term memory storage (Ganguli, Huh et al., 2008; 

Goldman, 2009; White et al., 2004). A critical difference between feedforward and attractor 

networks is that, unlike in attractor networks, activity in feedforward networks eventually 

exits out the end of the network. Thus, the memory of any input is lost after some finite time 

in feedforward networks. Although this finite time of signal propagation might at first seem 

to be disadvantageous, finite memory duration can be advantageous because it prevents 
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noise from building up in the network (Ganguli, Huh et al., 2008). These relative advantages 

and disadvantages are quantified below, where we compute the Fisher information conveyed 

by linear feedforward networks and compare their performance to that of attractor networks.

Here, we consider simple feedforward chains having uniform strength α of the feedforward 

connections and compute ĨF as a function of α. When the strength of the connections is 

weak, the activity decays before it reaches the last stage and ĨF is close to zero (see Figures 

5A and 5C). On the other hand, if the feedforward connections are stronger, the signal 

decays more slowly (for α < 1) or can grow exponentially (for α > 1). Noise entering the 

system at any given time similarly gets amplified as it passes down the chain. However, 

unlike in the attractor networks, accumulation of noise in the feedforward networks is 

limited because noise exits the system when it reaches the end of the chain. Moreover, if 

signals are amplified along the feedforward chain, then inputs entering the first stage of the 

network get amplified more than inputs entering later stages. Thus, by arranging to have the 

signal enter the network at the first stage, the network can make the signal at time T 
arbitrarily larger than the noise entering at later times by using strong connection strengths α 
that allow the signal to be amplified faster than noise enters the system (see Figure 5B). This 

implies that ĨF can increase indefinitely with increasing α, so that linear feedforward 

networks could in principle convey signals to arbitrary precision (see Figure 5C; for how this 

result changes when neurons have a finite dynamic range, see section 3.3). This result is 

consistent with that of Ganguli, Huh et al. (2008) who also showed a monotonic increase of 

ĨF with α in models with discrete dynamics.

Comparison with the attractor networks reveals two important features of the feedforward 

networks that reflect the advantages and disadvantages of having finite memory duration 

(see Figure 5D). First, because the feedforward networks can transiently amplify signals 

over the memory period but still remove noise due to the eventual exiting of signals from the 

chain, these networks can greatly outperform the attractor networks. Second, for smaller 

values of α, the attractor networks outperform the feedforward networks. This latter result 

reflects the smearing out of signals by the continuous dynamics (see section 3.2 and Figure 

6) and differs from that found when comparing feedforward and attractor networks with 

discrete dynamics (Ganguli, Huh et al., 2008), in which the feedforward networks 

outperformed the attractor networks for all settings of α.

In summary, with continuous buildup of noise, short-term memory networks need to forget 

to prevent the excessive accumulation of noise. In feedforward networks, this forgetting 

mechanism is inherent in the finite length of the feedforward chain, and the networks can 

amplify signals transiently without noise building up in an unbounded manner. In contrast, 

in attractor networks, the duration of signal and noise accumulation is not limited, and a 

perfect memory holding mechanism is inferior to a forgetful one in which signal decay and 

noise accumulation are optimally balanced. Comparing the purely linear attractor and 

feedforward network models, we find that the feedforward networks can outperform the 

attractor models due to their ability to transiently amplify signals without building up 

excessive noise. In the following sections, we show how these results may change in the 

presence of select, biologically motivated nonlinearities.
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3.2 Networks with a Reset Mechanism

In the previous section, we found that the feedforward networks stored more information 

than the attractor networks because they could amplify the signal without infinite buildup of 

noise. In contrast, the attractor networks needed to be forgetful in order to prevent infinite 

noise buildup. However, what if the accumulation of noise before the memory period is 

limited, or there exists a mechanism to reset the network state near the onset of the signal? 

Recent experimental studies in several cortical regions showed that variability in neural 

activity is reduced with stimulus onset (Churchland et al., 2010), and theoretical work 

suggests this may be a general feature of many nonlinear recurrent networks (Rajan et al., 

2010). Alternatively, networks may not switch into a memory-storing state that accumulates 

noise until close to the start of the memory period; for example, such a switch may occur 

due to a change in network state triggered by attention or neuromodulation (Amit & Brunel, 

1997; Durstewitz et al., 2000; Wang, 2001). Finally, if a network receives feedback about its 

deviation from a desired level and is able to correct these errors, then infinite buildup of 

errors is also prohibited. For example, in the oculomotor system, drift in the networks that 

control eye position triggers corrective saccades that can correct errors caused by 

accumulation of noise or systematic drift of network activity (Weber & Daroff, 1972). 

Motivated by these examples, we here consider the effect of allowing a network to reset its 

activities with the arrival of a signal and remove previously accumulated noise. Note that the 

level of spontaneous activity before the memory period can differ between these different 

reset mechanisms, being low even before stimulus arrival if there is a stable low-rate 

spontaneous state (Amit & Brunel, 1997; Durstewitz et al., 2000; Wang, 2001) or being 

higher during spontaneous activity and reduced only at stimulus onset (Rajan et al., 2010; 

Churchland et al., 2010); however, for any reset mechanism, the variability of network 

activity would be low at the beginning of the memory period. For simplicity, we implement 

this “reset nonlinearity” by setting the noise to zero at the time of signal arrival, so that noise 

accumulates only during the memory period of duration T.

First, we consider the attractor networks. Before the signal arrives, noise accumulates, and 

this accumulation can grow without bounds along any nondecaying (α ≥ 1) modes of the 

network (see Figures 6A and 6B). However, at the time of signal arrival, the reset 

mechanism quenches the neural activities to zero. Therefore, only noise presented after t = 0 

degrades the memory performance, and unlike in the attractor networks without reset, 

perfectly integrating or exponentially growing modes can convey information about the 

signal. In fact, ĨF monotonically increases with increasing α (see Figure 6C and section A.

2.2), showing that memory performance is enhanced by amplifying signals in the network. 

This result can be understood by recalling that the signal is presented only at time t = 0, 

whereas noise is equally presented during the entire memory performance: by amplifying 

the input over time, more weight is given to inputs at earlier times, allowing the signal to be 

amplified faster than noise enters the system. In the limit of infinite signal amplification, the 

signal can be made arbitrarily larger than the noise, so that the Fisher information ĨF 

approaches infinity and signals can be discriminated with perfect precision.

In feedforward networks, the reset mechanism also enhances memory performance by 

removing noise accumulated prior to the stimulus onset (see Figures 6D and 6E) and thereby 
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increases ĨF relative to a network without reset (see Figure 6F). However, the increase in ĨF 

for the feedforward chain network is not nearly as large as that in the attractor networks. 

This reflects that, even without an externally imposed reset, the finite length of the 

feedforward chain already provides a mechanism for removing noise because noise exits the 

system when it reaches the end of the chain.

By comparing the performance of the attractor and feedforward networks, we find that the 

attractor networks perform better than the feedforward networks when there exists a reset 

mechanism (see Figure 6I). To understand what factors contribute to this result, we first 

consider the case of networks with discrete dynamics (Ganguli, Huh et al., 2008). In 

feedforward chains exhibiting discrete dynamics, all activity at one stage of the chain passes 

in the next time step to the following stage. When α = 1 (see Figure 6G), activity is passed 

from neuron to neuron in discrete time steps without loss of amplitude. Thus, there is no 

smearing out of activity across neurons as the activity progresses through the feedforward 

chain. In this case, the Fisher information for the feedforward and attractor networks is 

identical (see section A.4), reflecting a deep similarity between the feedforward and attractor 

networks: whereas in attractor networks, activity at each time step is sent from a given 

neuron (or mode) onto the same neuron (or mode), in feedforward networks, the activity is 

similarly propagated over time, but instead from one neuron to the next (see Figure 6G; for 

discussion of a more general mathematical formalism that formalizes the similarity between 

feedforward and attractor networks, based on pseudospectral analysis (Trefethen & Embree, 

2005) see the supplement of Goldman, 2009).

The discrete dynamics example suggests that the key factor explaining the poorer 

performance of feedforward networks with continuous dynamics is the spreading of activity 

across neurons or modes that occurs in the continuous feedforward networks. This spreading 

has two effects. First, it reduces the amplitude (vector length) of the signal carried by the 

network by spreading activity across different neurons. To understand this, note, for 

example, that dividing a signal equally among two neurons, so that the activity can be 

described by a vector (s/2, s/2), reduces the vector amplitude of the signal by a factor of 

compared to when the entire signal is carried by a single neuron, that is, (s, 0). This loss of 

signal is evident in Figure 6H, which shows how the signal gain decreases over time in the 

continuous feedforward networks (dashed curve) but is maintained at a constant level in the 

discrete feedforward networks (circles). Second, the spreading of activity causes activity to 

exit the network before the end of the memory period. This is evidenced by the dip in signal 

gain seen near the end of the memory period (T = 2) in the same figure. Due to both the 

spreading of the signal and the loss of signal out the end of the chain, ĨF for continuous-time 

feedforward networks becomes lower than that of the attractor networks (see Figure 6I).

In the example above, we showed that the attractor network outperforms the feedforward 

network with the same strength between the modes. However, a more direct biological 

constraint is to compare the attractor and feedforward networks when the maximum 

connection strength between neurons is held fixed. In this case, we again find that the 

optimal attractor network outperforms any (literally or functionally) feedforward network. 

The proof is given in section A.5. There, we show that if the maximal synaptic strengths 

between the neurons are bounded by wmax and the eigenmodes or Schur modes are 
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orthogonal to each other, the connectivity strength between the modes is bounded and given 

by Nwmax. For the attractor networks, we find a network that reaches this bound. By 

contrast, the feedforward networks cannot achieve this bound for all connections between 

modes. Further, even if we assume there exists a feedforward network with all connections 

between modes set to Nwmax, the previous comparison of memory performance for a given 

connectivity between the modes shows that the attractor network still outperforms the 

feedforward network when both networks have connectivity strength Nwmax between modes 

(see Figures 6H and 6I). Thus, the optimal attractor network outperforms any feedforward 

network when the synaptic connectivity between the neurons is bounded. Alternatively, we 

can also consider the constraint that the total postsynaptic weight is bounded. We note that at 

least for the case of excitatory (literally feedforward or excitatory attractor) networks, the 

maximal memory performance under this constraint corresponds to the previous result, in 

which there were fixed connections between modes (see Figures 6H and 6I). The optimal 

feedforward networks use this maximal connection strength wpostsynaptic,max between all 

neurons, and the optimal attractor networks have a maximum eigenvalue wpostsynaptic,max. 

Thus, the optimal attractor networks outperform the optimal feedforward networks.

In summary, in this section we considered the effect on memory performance of reset 

mechanisms that remove accumulated noise at the time of signal arrival. As a result of this 

reset, the attractor networks could amplify signals without having a buildup of noise prior to 

signal arrival affect the memory performance. Moreover, for a given level of amplification 

between the neurons or modes, the attractor networks perform better than the feedforward 

networks since the activity in the feedforward networks spreads out along the chain and is 

lost when it exits the end the chain.

3.3 Bounds on the Neuronal Activity

In the previous sections, we found that the networks exhibiting the best memory 

performance depended on strong amplification of signals that led to large and potentially 

unbounded growth of network activity. However, unbounded amplification of activities is not 

possible since neurons have a limited dynamic range. This limited range assumes several 

forms. Biophysically, there are absolute limits on the maximal firing rates that neurons can 

achieve (typically in the hundreds of Hz) due to postspike refractoriness. Additionally, 

neurons have been suggested experimentally (Baddeley et al., 1997) to have constraints on 

the average firing rates they can assume over long time periods. During working memory 

periods, most neurons do not sustain average firing rates beyond several tens of Hz, even 

though trial-to-trial fluctuations may be much larger than this for brief periods of time.

Given these observations, in this section we consider the effects of imposing constraints on 

the range of firing rates with which neurons encode signals in memory. Throughout much of 

the discussion, we confine ourselves to limits on the mean firing rates attained over the 

course of the memory period. This constraint is motivated by the observation that memory 

neurons typically have much lower (trial-averaged) mean firing rates than are allowed by 

their moment-to-moment biophysical constraints, and for analytical tractability is 

implemented by adjusting the inputs of an otherwise linear network such that the activity 

never exceeds hard bounds on the mean rates. Then, in order to gain insights into the effects 
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of constraints on the absolute size of neuronal fluctuations, we consider what happens when 

we additionally apply a hard bound on the variance of firing rates about the mean.

3.3.1 Effects of Bounded Rates on the Form of External Inputs—Before 

considering the effects of a finite dynamic range of firing activity in specific networks, we 

investigate the constraints it places on the form of the input vector. Since the input vector 

drives the mean firing activity in linear networks (see equation 2.3), putting a limit on the 

mean firing rate correspondingly constrains the input vector. Note that this differs from our 

treatment of networks with unconstrained firing rates, for which we normalized ||v⃗|| to 1 

because the Fisher information for all networks simply scaled with the square of the input 

magnitude and could be made arbitrarily large by increasing ||v⃗ ||; see equation 2.9 and 

compare to Ganguli, Huh et al., (2008), who assumed that ||v⃗|| is still limited to 1 under a 

similar constraint on the dynamic range). To implement the constraint on mean firing rates, 

we assume that each neuron has its mean (absolute) activity bounded by a maximal value r0 

(where negative rates can be considered as the firing rate of an “anti-neuron” with opposite 

stimulus preference; Shadlen, Britten, Newsome, & Movshon, 1996). This is illustrated 

geometrically in Figure 7A, which shows that the hard limits on the mean firing rate define a 

hypercube (a square in 2D) in the space of possible firing rates. To stay within these limits, 

the magnitude of the input vector must be set such that the mean firing rate of any given 

neuron never exceeds its bound. As we show further, this leads to different maximal 

amplitudes of the input vector for different network architectures.

The constraint on the mean firing rate has immediate implications as well for the spatial 

pattern of inputs that are conveyed most faithfully by the network. Given the limitation on 

how much information any given neuron can convey with its limited dynamic range, the 

maximal information carried by a network is achieved when all neurons are used and each of 

these neurons uses its full dynamic range. When this idea is represented geometrically, 

information storage is maximized if the attracting or Schur modes of the networks lie along 

the directions pointing to the vertices of the hypercube that defines the maximal range of 

mean responses (see Figure 7B, open circles). With this arrangement, the strength (vector 

length) of signals conveyed by the networks is proportional to , illustrating the benefits 

of having more neurons in the network when each individual neuron has limited dynamic 

range. As shown in section A.6, this scaling leads to the Fisher information for the best 

attractor and feedforward networks scaling with the network size N (see Figure 8G).

3.3.2 Attractor Networks with Finite Dynamic Range—We first consider the 

performance of attractor networks with a limited range of mean firing rates and no reset 

nonlinearity. In this case, our results follow closely that found for the linear networks of 

section 3.1: if the decay time constant of the network is too small, the signal decays to zero 

before the end of the memory period (see Figure 8A, bottom trace, and Figure 8B, 

probability distribution of activity in this mode). By contrast, if the network does not exhibit 

decay or decays too slowly, then noise builds up to the point that the signal becomes 

overwhelmed by noise (see Figures 8A and 8B, top traces). To perform optimally, the 

network must balance signal decay and the accumulation of noise, and we find that the 

optimal time constant of network decay to achieve this balance is  (see 
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Figures 8A and 8B, middle traces; in Figure 8E, the dotted line shows memory performance 

as a function of α). We note that this result is identical to that found in section 3.1 for 

networks with no bounds on the mean firing rates. This identical result reflects that, due to 

the need to remove noise through decay of network activity, the activity of the network never 

needs to be constrained by the limited dynamic range. However, the limited dynamic range 

does bound the total information that can be conveyed by the network because it constrains 

the amount of input that the network can receive at the time of the stimulus.

When there is a reset nonlinearity at the time of signal arrival, the optimal strength of 

network feedback does change compared to that obtained without a limited dynamic range. 

Recall that, without limits on the dynamic range (see section 3.2), the optimal networks were 

found to have strong feedback (α > 1) so that they could amplify their signals faster than 

noise entered the system. With a finite dynamic range, unconstrained amplification of 

activity is no longer possible. Figure 8C illustrates mean trajectories of three modes with 

different recurrent feedback α, or, equivalently τeff, corresponding to decaying ( ), 

perfectly integrating ( ), and exponentially growing modes ( ), respectively. 

Compared to the decaying mode, the perfectly integrating mode performs better because it 

maintains the signal faithfully yet has only a finite buildup of noise due to the reset at time t 
= 0. For the amplifying mode that exhibits exponential growth (the increasing trajectory in 

Figure 8C), we set ||v⃗|| to a value such that activity propagates linearly through the network 

until, at the end of the memory period, it just reaches the limit of the dynamic range. Thus, 

the maximal signal that can be carried by the network is identical to that obtained in the 

perfectly integrating mode. However, due to the amplification, noise accumulates faster than 

in the perfectly integrating mode, resulting in a larger variance in the neuronal firing rates 

(see Figure 8D). Thus, with a finite dynamic range and reset of activities with arrival of the 

signal, we find that perfectly sustaining the activity during the memory period is optimal 

(see Figure 8E; see section A.6 for the detailed calculation).

More generally, in both the networks with and without a reset nonlinearity, we find that ĨF 

for optimally tuned networks increases linearly with the number of neurons N (see Figure 

8G) and decreases inversely with the memory duration T (see Figure 8H). Thus, it scales 

with N/T. The former result reflects that more neurons allow more signal to be carried by the 

network, as discussed in the preceding section. This latter result reflects the accumulation of 

the continually presented noise, which results in a linear increase in noise variance over the 

memory period (see section A.6).

Note that the constraint on the mean firing rate alone may allow infinite accumulation of 

noise, which is not biologically plausible. Thus, in addition to constraining the mean 

activity, we further consider bounds on the variance of neural activity. For analytical 

tractability, we place a simple bound on the maximal variance of activity without affecting 

the underlying dynamics: if the variance of activity obtained from the dynamics exceeds the 

bound, the variance is saturated and the variance is set to the bound (see section A.6).

To see the effect of the bound on variance, we note that there are two possible cases. In the 

first case, the Fisher information is maximized in a regime where the noise variance bound is 
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saturated. Since the noise variance is saturated, this corresponds to a regime in which the 

signal-to-noise, at best, is very low and the information transmission is exceptionally small. 

Thus, without some additional nonlinear mechanism for noise reduction, the system would 

fail to transmit much information. Furthermore, it is not even clear that Fisher information 

provides a good metric in such cases where only very coarse discrimination of signals may 

be performed (see Butts & Goldman, 2006). We therefore do not consider this case further.

In the second case, corresponding to a higher signal-to-noise regime, the maximal Fisher 

information is obtained when the noise variance is not saturated. In this case, as shown in 

section A.6, we find that the optimal value of the network feedback α is not different from 

that obtained without a bound on the noise variance (compare Figures 8E and 8F). 

Furthermore, we derive conditions on σ and N such that this higher signal-to-noise regime is 

attained. In a similar manner, the optimal memory performance of the feedforward networks 

in the high signal-to-noise regime is not affected by the bound on the variability. Therefore, 

for the feedforward networks discussed below, we consider only the effect of the bound on 

the mean activity.

3.3.3 Feedforward Networks with Finite Dynamic Range—In the sections 3.1 and 

3.2, we found that the optimal feedforward networks used transient amplification of signals 

to increase the (signal gain)-to–(noise gain) ratios that are represented by ĨF. However, as we 

noted for the attractor networks with a reset, unbounded signal amplification is no longer 

possible when there is a finite dynamic range, and firing rates will saturate unless the inputs 

entering the network are reduced. The consequences of this limited dynamic range for the 

feedforward networks are delineated below.

We consider first the case of networks with discrete dynamics (see Figure 6G) for which 

analytical calculation of the optimal Fisher information is tractable. Similar to the above 

results for the attractor networks with a reset, we find that the optimal memory performance 

is obtained under two conditions. First, the input vector v⃗ should be made as strong as 

possible for each neuron so that each neuron in the network uses the full extent of its mean 

dynamic range. This immediately implies that the optimal feedforward networks must have a 

functionally, rather than literally, feedforward architecture (because in a literally feedforward 

architecture, by definition the first stage does not contain all neurons).

Second, the networks should use a value α = 1 that corresponds to perfect maintenance of 

the signal as it propagates down the chain of modes (see Figure 9A). If network activity 

decays more quickly than this (α<1), part of the signal will be lost. If network activity grows 

more quickly (α> 1), then in order to use its full dynamic range of mean activity and not 

saturate, the network will need to have initial activity that is less than maximal and will need 

to amplify this activity over time, leading to an amplification of noise as well. This is 

precisely analogous to the case for the attractor network with a reset, and indeed the discrete 

feedforward and attractor networks with a reset have identical ĨF (see Figure 10C). Without a 

reset, the feedforward networks with discrete dynamics can outperform the attractor 

networks because they do not need to forget in order to remove noise and, in fact, the 

performance of the feedforward networks is identical with or without a reset (see Figures 

10A and 10C).
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We note that the two conditions above imply that for the feedforward networks to maintain 

neuronal activity at a level that uses the full dynamic range of all neurons, the activities of 

the neurons at all times need to be directed along the vertices of the hypercube that defines 

the allowed range of mean firing rates (see Figures 7B and 9B). It is not immediately 

obvious that this condition can be met for the feedforward networks, because it implies that 

there must be N orthogonal modes of the network that each lie along a different vertex of the 

hypercube. In section A.6, we show that networks can be constructed that obey this criterion, 

at least in the case that the number of neurons N is equal to a power of 2. When N is 

restricted to this case, we show that the Fisher information conveyed by the network scales 

as N/T, similar to the case of the attractor networks with a reset. Building on this case, we 

show in section A.6 that for general N, the maximal Fisher information is still of the order of 

N/T when the number of neurons is at least twice the number of feedforward stages.

Literally feedforward networks perform more poorly than the optimal, functionally 

feedforward networks already described. In the literally feedforward networks, different sets 

of neurons are used to convey information in each stage. In particular, since input is applied 

to neurons only in the first stage and is carried only by a subset of neurons at any time, the 

feedforward networks cannot convey as much information as functionally feedforward 

networks that use all neurons at every stage. Interestingly, when we considered storage of a 

single-dimensional stimulus in a literally feedforward network with number of stages equal 

to the duration of the memory period (as in Ganguli, Huh et al., 2008), we found that the 

memory performance of the optimal networks scaled only as N/T2 rather than as N/T (see 

section A.6). Furthermore, although the previous study focused on networks having a fan-

out structure with more neurons at later stages, we found that the optimal network 

architecture in this case contained equal numbers of neurons at all times (see section 4 for 

further commentary). This uniform structure provides an optimal balance between the fan-

out architecture, which allows larger signal amplification between stages, and the fan-in 

architecture, which reduces noise (and particularly the amount of noise that is common 

among neurons) by pooling stages with more neurons into stages with fewer neurons (see 

Figures 9C to 9E). Figure 9D shows how ĨF depends on the rate of fan-out, which is defined 

as the ratio of the number of neurons in the successive stages: when the fan-out rate is less 

than 1 (greater than 1), it is a fan-in (fan-out) structure. As seen in this figure, ĨF is 

maximized when the fan-out rate is 1, that is, for a uniform structure. We note that this result 

holds regardless of whether ||v⃗ || = 1, as in Ganguli, Huh et al. (2008) (calculation not 

shown).

For feedforward networks with continuous dynamics, the Fisher information ĨF cannot be 

expressed in a simple analytical form, making it difficult to find the structure that optimizes 

memory performance. To obtain a lower bound on the maximal ĨF and gain an intuition for 

how the results obtained in discrete dynamics might change when the dynamics are 

continuous, we therefore calculated ĨF for networks with the structure found to be optimal 

under discrete dynamics. Numerical simulation in this case shows that the feedforward 

networks perform worse than the attractor networks, either with or without reset (see Figures 

10B and 10D). Furthermore, with a reset, we show in section A.6 that the attractor network 

saturates the bound on information transmission achievable by any network with a finite 

dynamic range, whereas no feedforward network can achieve this bound. Thus, at least for 
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networks with a reset, the attractor networks strictly outperform the feedforward networks. 

Without a reset, the worse performance of the feedforward networks could in principle be 

due to the nonoptimal architecture taken from the optimal discrete network. However, we 

think this is unlikely because the reduced memory performance for the feedforward 

networks with continuous dynamics is analogous to the similar result found in section 3.2 

(Figures 6H and 6I and accompanying text), which could be explained by the combination of 

spreading of signals across the modes of the network and signal loss through the end of the 

chain.

4 Discussion

We have compared the memory performance of two prominent classes of short-term 

memory networks in storing the amplitude of a briefly presented stimulus in the presence of 

gaussian white noise. In one class of networks, memory was sustained by positive feedback 

that was mediated by recurrent connections and resulted in the formation of low-dimensional 

attractors (Robinson, 1989; Seung, 1996). In the other class, memory was sustained by 

passing activity through either long feedforward chains of neurons or through a chain of 

orthogonal activity patterns (Schurmodes) in a recurrent network (Ganguli, Huh et al., 2008; 

Goldman, 2009; White et al., 2004). In each case, memory performance was quantified with 

the Fisher information, which, for the linear network dynamics considered here, represents a 

ratio of the amount that the network amplifies the signals versus the noise received.

Our primary results were as follows. For the attractor networks, including those with a 

limited range of firing rates, we found that the best-performing networks were forgetful if 

noise is allowed to build up without constraint before the stimulus arrives. This forgetfulness 

reflected a fundamental trade-off between requiring a long time constant of decay of 

network activity to maintain signals throughout the memory period and needing some decay 

of network activity in order to remove noise that enters the system before the stimulus 

arrives. However, if there exists a mechanism to remove noise from the system near the time 

of stimulus arrival or if networks enter the memory-storing state only close to the time of the 

stimulus onset, then we found that the optimal networks with a limited dynamic range 

perfectly maintain their signals throughout the memory period.

Comparison of the memory performance between line attractor and higher-dimensional 

attractor networks showed that the optimal memory performance with or without reset is 

independent of the dimension of the attracting modes. However, optimal memory 

performance in the line attractor networks requires an optimal alignment of the input vector, 

whereas optimal memory performance in the higher-dimensional attractors requires an 

optimal alignment of the readout vector. These results suggest that line attractor networks 

might be more useful if the stored memory needs to be used by multiple networks that each 

project activity along a different direction. By contrast, higher-dimensional attractors might 

be more useful in storing memories that arrive from multiple networks that each encodes the 

stimulus along a different direction.

For the feedforward networks, the optimal network architectures did not depend strongly on 

the presence of a resetting mechanism because the feedforward networks naturally remove 
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noise from the system when it exits from the end of the feedforward chain. Due to this 

inherent noise-removal mechanism, the feedforward networks could transiently amplify 

signals without excessive noise buildup (Ganguli, Huh et al., 2008) and, for linear networks 

with no reset or bounds on activity, perform better than the attractor networks. However, 

when the firing rates were bounded, the ability of the feedforward network to amplify inputs 

was limited, and the optimal feedforward networks propagated activity without amplification 

or decay (α = 1).

Comparing the networks, we found that the Fisher information for both the optimal attractor 

and feedforward networks increased linearly with the number of neurons N, reflecting that 

additional neurons allow more signal to be carried by the network. Additionally, the optimal 

networks in both cases exhibited a power law decay in memory performance. For the 

attractor networks and for feedforward networks in a discrete approximation, this decay was 

inversely proportional to time and reflected the linear increase in noise variance over time. 

Interestingly, we note that such a linear increase in variance has been observed 

experimentally in spatial working memory tasks (Ploner, Gaymard, Rivaud, Agid, & Pierrot-

Deseilligny, 1998; White, Sparks, & Stanford, 1994). Feedforward networks with 

continuous dynamics performed less well than those with discrete dynamics, reflecting two 

factors: the signals in continuous networks spread out over time, leading to a reduction in the 

signal gain; and due to this spreading, signals exit from the end of the chain before the end 

of the memory period. Together these factors lead to worse performance of the feedforward 

networks relative to the attractor networks when there is a noise reset, and quite likely 

(although we could only compute a lower bound approximation on the feedforward 

networks) even in the absence of such a reset.

4.1 Comparison to Previous Work

Many previous studies have proposed perfectly tuned attractor networks as a substrate for 

holding short-term memories in the absence of noise (for reviews, see Brody et al., 2003; 

Goldman, Compte, & Wang, 2009; Wang, 2001). Here, we have explicitly considered the 

effects of noise on both attractor and nonattractor (feedforward or functionally feedforward) 

networks. For networks with underlying linear dynamics and both a reset nonlinearity and a 

finite dynamic range on neuronal responses, our results are consistent with the optimality of 

perfectly tuned attractor networks. Similarly, we note that the perfectly tuned attractor 

network (integrator) was found in a recent study to be the optimal architecture for storing the 

running total of a continuously presented input in which noise likewise started with the 

arrival of the signal (Brown et al., 2005).

Perfect integrator networks face a fine-tuning problem of network connectivity in that the 

feedback connections must precisely offset intrinsic neuronal decay processes in order to 

sustain activity at a constant rate in the absence of external input. Several mechanisms have 

been suggested to lessen the strictness of this tuning requirement. These include the use of 

long intrinsic (Marder, Abbott, Turrigiano, Liu, & Golowasch, 1996) or synaptic (Hempel, 

Hartman, Wang, Turrigiano, & Nelson, 2000; Wang et al., 2006; Mongillo, Barak, & 

Tsodyks, 2008) time constants. In addition, bistability is a nonlinear mechanism for 

maintaining the robustness of memory storage (Camperi & Wang, 1998; Koulakov, 
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Raghavachari, Kepecs, & Lisman, 2002; Goldman, Levine, Major, Tank, & Seung, 2003) 

and homeostatic learning rules have been suggested to be able to keep short-term memory-

storing circuits tuned (Goldman, 2009; Renart, Song, & Wang, 2003). Further investigation 

is needed to analyze the robustness of different network architectures to synaptic weight 

changes.

In the absence of a reset nonlinearity, we find that noise buildup before the time of the 

stimulus presentation makes the perfect attractor network nonoptimal; instead, at least in the 

high signal-to-noise regime, we find that the optimal attractor networks must be forgetful in 

order to reduce noise accumulation. This result is similar to that of White et al. (2004), who 

considered the storage of temporal sequences in memory networks with discrete dynamics 

and who noted that forgetting was necessary in order to prevent the buildup of noise that 

arrived at all times before the stimulus onset.

For the feedforward networks, previous work that examined networks with a finite dynamic 

range of neural activity focused on network architectures with a fan-out structure (Ganguli, 

Huh et al., 2008; Ganguli & Latham, 2009). This previous work showed that under a finite 

dynamic range constraint, a fan-out network can achieve the same scaling as the optimal 

network; however, this study did not check whether other structures may achieve this bound 

or whether there exists a structure having better memory performance. By contrast, at least 

for storage of a one-dimensional stimulus, we explicitly calculated that the optimal network 

architectures for the (discrete) feedforward networks had a uniform structure and that the 

fan-out structure was suboptimal. A key difference between our study and that of Ganguli, 

Huh et al. (2008) is that they primarily focused their discussion on memory for sequences, 

whereas here we explicitly focus on memory for a single-dimensional input. Higher-

dimensional signals cannot be stored in attractor networks if the dimension of the attractor is 

lower than the dimension of the signal. Therefore, if the stimulus to be remembered is higher 

dimensional, such as remembering an entire sequence of inputs, this may favor a high-

dimensional or feedforward network in which time is explicitly represented by patterns of 

activity that are sequentially activated as signals propagate through the network (Ganguli, 

Huh et al., 2008; Goldman, 2009; White et al., 2004). Ganguli, Huh et al. (2008) showed 

that the duration T for which a network could reliably convey information about a temporal 

sequence increased only in proportion to . This contrasts with our result for storing a 

single-dimensional stimulus, in which memory increases proportional to the network size N. 

The reason for this difference is that for storage of a single-dimensional stimulus, our 

optimal networks (both attractor and functionally feedforward) could use their entire finite 

dynamic range to store this one dimension. By contrast, when the stimulus dimension scales 

with time, as in sequence memory, the network must divide its dynamic range among all 

stored dimensions. This leads to memory performance, which scales asN/T2, rather than 

N/T, so that the duration T for which a network reliably can convey information about a 

temporal sequence increases only in proportion to . Consistent with this observation, the 

memory performance of our optimal literally feedforward networks (which use 

approximately 1/T of the entire network’s range at any given time) scaled only asN/T2. 

Furthermore, literally feedforward networks might have an advantage over functionally 

feedforward networks or generic high-dimensional attractors because the literally 
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feedforward networks keep the elements of a sequence arriving at different times cleanly 

segregated.

4.2 Temporal Information in Memory Networks

In this work, we focused on mechanisms for storing the amplitude of a stimulus when the 

memory period is a fixed (or known) duration, so that there is no need for encoding the time 

since the pulse occurred. However, if the duration of the memory period is variable and 

unknown, then joint information about the amplitude of an input pulse and the time at which 

the pulse occurs needs to be encoded. A one-dimensional attractor network is not suitable to 

extract joint information about the amplitude and time of input since a one-dimensional 

network cannot represent such a two-dimensional quantity. Rather, at least a two-

dimensional network is required. Feedforward networks seem advantageous for processing 

time and storing signals since different sets of neurons or modes are used at different times. 

However, it is unclear whether time and amplitude are dependently encoded by the network 

activity, as in feedforward networks, versus encoded in independent modes of activity (either 

with time encoded in a completely separate network from amplitude, or with independent 

modes of activity that represent time and that represent amplitude, as suggested by the recent 

work of Machens, Romo, and Brody, 2010). For example, it has been suggested in the 

circuits underlying bird song that time is represented through a feedforward chain of bistable 

units that are more robust to temporal encoding than graded networks (but with loss of any 

representation of amplitude information; see Long, Jin, & Fee, 2010). Alternatively, high-

dimensional attractor networks have been suggested to encode both time and amplitude 

(Machens et al., 2010; Singh & Eliasmith, 2006). Further work, both experimental and 

theoretical, is needed to address the joint processing of amplitude and temporal information.

4.3 Effect of Correlated or Signal-Dependent Noise

In this study, we assumed for simplicity that the external noise received by each neuron was 

equal in amplitude and uncorrelated across neurons. However, similar to studies in sensory 

systems that have shown strong effects on neural coding in the presence of correlated noise 

(Abbott & Dayan, 1999; Averbeck, Latham, & Pouget, 2006; Latham, Deneve, & Pouget, 

2003; Sompolinsky et al., 2001; Zohary, Shadlen, & Newsome, 1994), we found that the 

correlation structure of noise received by the network may dramatically affect the optimal 

architecture of memory networks. As illustrated in Figure 11A, line attractor networks may 

be advantageous when noise is correlated: if the input direction can be chosen independent 

of the profile of the injected noise, then the attractor and the input direction can be oriented 

orthogonal to the directions of high noise and along directions with low noise. In contrast, 

activity in feedforward networks is passed through many different orthogonal patterns of 

activity (see Figure 11B), so that it may be difficult to take advantage of correlated noise that 

has a particularly non-noisy direction. If instead the input direction and the profile of 

injected noise are dependent, a more careful examination is required to determine the 

architectures of the best-performing attractor and feedforward networks.

We considered only additive noise in this study. When noise is instead multiplicative or 

signal dependent, different optimal architectures may be necessary. Although this question 

deserves much further study, multiplicative noise is more disruptive to higher firing rates 
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than additive noise and therefore might lead to better memory performance for networks 

with relatively faster decay of signals, with smaller amplitudes of input that drive neurons to 

less high firing rates, or with other differences in network architecture that decrease the use 

of high firing rates.

4.4 Nonlinear Dynamics

In this letter, we have modeled the finite range of neuronal activities in an analytically 

tractable manner by imposing a finite dynamic range on the mean firing rates and their 

variances and arranging the network inputs so that the trajectories of neuronal firing never 

exceed this range. More realistically, neurons have hard or soft limits on their observed 

firing rates that are best modeled with explicitly nonlinear network models. Having the 

underlying dynamics of the network be nonlinear rather than imposing the finite dynamic 

range as a simple constraint on a linear network may influence the memory performance in 

various ways. For example, explicit inclusion of nonlinear dynamics may reduce the buildup 

of noise relative to a network with linear dynamics, and even without an explicit reset 

mechanism, the optimal architecture of the attractor networks may become less forgetful. 

Furthermore, recent theoretical work shows that randomly connected nonlinear networks 

with sigmoidal neuronal input-output functions exhibit a sharp reduction of neural 

variability with the arrival of a stimulus (Rajan et al., 2010), suggesting a mechanistic 

explanation for the reset mechanism considered in our study. More dramatic, the presence of 

strong nonlinearity can lead to bistable responses, which may be useful in robustly 

maintaining memories in the presence of noise (Toyoizumi, 2010) or lessening the need to 

fine-tune synaptic connection weights (Camperi & Wang, 1998; Goldman et al., 2003; 

Koulakov et al., 2002). Further work is needed to explore the possibilities offered by 

nonlinear networks and to develop analysis methodologies that allow a rigorous 

understanding of networks in which the conveniences offered by linear analysis no longer 

apply.
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Appendix

A.1 Relation Between Fisher Information and (Signal Gain)-to-Noise Ratio in 

Linear Systems

Here, we prove that the Fisher information IF is greater than or equal to the (signal gain)-to-

noise ratio for a network with linear dynamics and linear readout of the network activity. 

Denoting the signal gain vector  as  and noise covariance matrix 

as , IF in equation 2.9 can be expressed as

(A.1)

If the network activity is read out linearly by projecting along a direction k⃗, then the mean 

activity and the noise variance along k⃗ become

(A.2)

(A.3)

The quantity of activity in the readout that is analogous to IF is the (signal gain)-to-noise 

ratio (SNR) defined as the square of the signal gain divided by the noise variance in the 

direction k⃗:

(A.4)

The relation IF ≥ SNR can be proven as follows. If C↔ is a diagonal matrix such that C↔ = 

diag(c1, c2, …, cn) with ci > 0, then from equations A.1 and A.4,
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The above relation is the Cauchy-Schwarz inequality, and the equality holds when ki ∝ gi/ci. 

For a nondiagonal matrix C↔, we can get the same result by changing to a coordinate 

system in which C↔ is transformed to a diagonal matrix and the condition for the equality 

becomes that k⃗ is along C↔−1g⃗.

An alternative proof of the relation between IF and the SNR (not shown) can be obtained 

using the Cramer-Rao bound relationship between IF and the maximum likelihood estimator 

of the stimulus.

A.2 Analytic Expression for the Fisher Information in Attractor Networks

A.2.1 Calculation of Fisher Information for Line Attractors

For the line attractor models, we assume the connectivity matrix is eigenvalue-decomposable 

such that

where the columns of Q↔ are the right eigenvectors of W↔, denoted by  such that 

. The rows of Q↔−1 are the left eigenvectors of W↔, denoted by  such that 

. We assume that the left eigenvectors have unit length. If W↔ is not 

normal, meaning that the left (or right) eigenvectors corresponding to different eigenvalues 

are not necessarily orthogonal to one another, it is also the case that the right and left 

eigenvectors corresponding to the same eigenvalue are not necessarily parallel to each other. 

In this nonnormal case, the length of the right eigenvector is equal to the inverse of the 

cosine of the angle between the corresponding right and left eigenvectors.

The eigenvalue decomposition of the matrix (−I↔ + W↔)/τ is given as

so that
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(A.5)

If the λi’s are arranged in descending order by their real parts and the real part of the first 

eigenvalue is much larger than the real parts of the remaining eigenvalues as in the line 

attractors, then for i > 1,  decays much more slowly than  so that . 

Furthermore, if the decay in the other modes relative to the activity along the line attractor is 

fast enough to overcome the nonorthogonality of the eigenvectors implicit in the length of 

, then the network activity in equation A.5 can be expressed approximately in terms of λ1 

and the corresponding left and right eigenvectors as

(A.6)

In a similar manner, noise also accumulates primarily along q⃗1r, and the Fisher information 

IF is approximately the (signal gain)-to-noise ratio along q⃗1r. The detailed calculation is

In the last expression for IF, the signal gain vector and the noise covariance are expressed in 

the coordinates of the right eigenvectors and computed as follows:

(A.7)

In equation A.7, [q⃗il · q⃗jl]i,j=1, …, n is the matrix whose elements are the inner products of the 

left eigenvectors, and the (i, j)th element of the matrix 

is computed as . If Q↔ is an 

orthogonal matrix, then all the off-diagonal terms become zero since q⃗il · q⃗jl = 0 for i ≠ j and 

the (1, 1)th element of the inverse matrix is the reciprocal of  where we 
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have used that ||q⃗1l|| = 1. If they are not orthogonal but  is large enough to overcome the 

nonorthogonal factor q⃗il · q⃗jl in equation A.7, then only the (1, 1)th element is of order , 

whereas all the other elements are of order  for some i > 1. Thus, the (1,1)th element of 

the inverse matrix is still close to .

Since the signal is predominantly along [1, 0, …, 0]T in the coordinates of the right 

eigenvectors, the Fisher information IF becomes the product of the square of the signal and 

the (1,1)th element of the inverse of the noise covariance matrix:

(A.8)

This approximation breaks down if the nonorthogonal factors q⃗il · q⃗jl become large, for 

instance, in feedforward networks that are not eigen-decomposable.

Above, we showed general conditions under which the Fisher information of the line 

attractor networks is approximated by the signal-to-noise ratio along the attractor. For ease 

of computation, in the calculations below for the attractor networks, we consider only the 

case of (normal) networks in which all modes of the attractor networks are orthogonal, 

Q↔Q↔T = Q↔TQ↔ = I↔. In this case, the left and right eigenvectors corresponding to a 

given eigenvalue are identical, and we denote the ith eigenvector by q⃗i.

A.2.2 Optimal Decay Time Constant for Line Attractors with or Without Reset

Here we show the expression for the Fisher information IF in line attractors with or without 

reset and obtain the optimal IF in each case. First, we consider the case of an attractor 

network with no reset. In this case, noise builds up at all times before the signal arrives, so 

that t0 = −∞, and IF is obtained from equation A.8 as

(A.9)

Differentiating equation A.9 with respect to , IF attains a maximum value at time T equal 

to (q⃗1 · v⃗)2/(eσ2T) when .

Alternatively, if we assume the existence of a reset mechanism and set the start of noise 

accumulation t0 as 0, then equation A.8 becomes
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(A.10)

Instead of taking a differential with respect to , which is undefined at λ1 = 1, taking the 

differential with respect to λ1 shows that IF monotonically increases with λ1. That is, it is an 

increasing function for both the signal-decaying regime, λ1 < 1, and the nondecaying 

regime, λ1 ≥ 1.

A.2.3 Fisher Information for Plane Attractors

In plane attractor networks, there are two prominent modes with strong recurrent feedback, 

q⃗1 and q⃗2, that together define a plane. We assume for simplicity that the recurrent feedback 

amounts and thus the effective time constants are the same in q⃗1 and q⃗2 and denote them as 

λ and τeff. Since any neural activity in the modes other than the plane attractor decays to 

zero after a transient time, the remaining neural activity lies along the projection of the input 

vector onto the plane, v⃗proj. Then for any mode q⃗x on the plane, the projection of neural 

activity onto this mode, denoted as x, evolves as

IF gives the maximal (signal gain)-to-noise ratio among these modes, which occurs when q⃗x 

is along v⃗proj. Then the form of IF in the plane attractor networks becomes

(A.11)

which is similar to IF for the line attractor (with ||v⃗proj||2 in place of (q⃗1l · v⃗)2 in equation A.

8).

A.2.4 SNR for Line and Plane Attractor Networks with a Linear Readout

Here we calculate the memory performance of line and plane attractor networks if neural 

activity is linearly read out by projecting along a direction k⃗.

First, we consider the line attractor networks. If the ratio of the signal in the nonattractor 

modes to that in the attractor mode decays to zero as in equation A.6, then the signal will be 

predominantly along q⃗1. Then its projection on k⃗ is closely approximated as 
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. Also, noise accumulates only along q⃗1 so that the signal-

to-noise ratio along k⃗ becomes

(A.12)

Second, we consider the plane attractor networks. In this case, the signal is stored in the 

direction of v⃗proj, and the amplitude of the projection along the readout becomes k⃗ · v⃗proj 

(=k⃗proj · v⃗proj) where k⃗proj is the projection of k⃗ onto the plane. Noise accumulates along all 

directions in the plane, and the projection of noise along k⃗ is proportional to ||k⃗proj||. Thus, 

the (signal gain)-to-noise ratio for the plane attractor network is

(A.13)

In line attractors, the (signal gain)-to-noise ratio is independent of the choice of k⃗ as long as 

it is not close to orthogonal to the attracting mode, since both the signal and noise 

accumulate almost exclusively along the one-dimensional attracting mode. However, in the 

plane attractor networks, noise develops isotropically in the plane, and in order not to collect 

noise in the noninput direction, the readout should match the input direction exactly such 

that k⃗proj || v⃗proj (see Figure 4).

A.3 Calculation of Noise Covariance Matrix of Feedforward Networks

Here, we describe how we obtain the noise covariance matrix of the feedforward networks 

for the computation of the Fisher information with or without reset. First, we consider the 

case without reset. Without reset, t0 in equation 2.4 is set to −∞ and C↔ can be written as

As noted in the supplement of Ganguli, Huhet al. (2008), a recursive relation for C↔ can be 

derived by differentiating the integrand above and using the fundamental theorem of 

calculus:
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(A.14)

This recursion relationship is in the form of a continuous Lyapunov equation and can be 

solved in Matlab using the lyap function.

For the case with a reset, in which t0 is set to 0, no simple recursive relation can be obtained. 

In this case, we obtain the analytical form of the noise covariance matrix directly from the 

explicit expression of neural variability at time t in equation 2.2. The expression for the 

neural variability at time t is given as follows:

In this expression, the variability in the ith neuron contains the filtered noise 

 generated from the kth neuron for k ≤ i. The (i, j)th component of the 

noise covariance matrix is the sum of correlation due to noise generated by all k neurons 

with k ≤ min(i, j) and is

where γ(i + j − 2k + 1, 2t/τ) is the lower incomplete gamma function.
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A.4 Analysis of Fisher Information of Attractor and Feedforward Networks 

with Reset

In section A.2, we derived analytical expressions for IF for attractor networks as a function 

of the strength of network feedback (or, equivalently, network time constant). In this section, 

we provide an analysis of IF as a function of the signal gain achieved by the network 

(Ganguli, Huh et al., 2008). Specifically, here we provide analytical bounds for the Fisher 

information IF and show which types of attractor and feedforward networks achieve these 

bounds.

First, to gain intuition and for comparison with previous work (Ganguli, Huh et al., 2008), 

we consider an approximation of continuous dynamics by discrete dynamics (see section 

2.1). With discrete dynamics, IF has an upper bound that can be expressed solely as a 

function of the magnitude of the signal gain vectors at time step m, W↔mv⃗:

(A.15)

For networks without a reset, Ganguli, Huh et al. (2008) showed that only feedforward 

networks satisfy the equality. However, with a reset, the condition for the equality is relaxed 

to (Ganguli, Huh et al., 2008)

(A.16)

In this condition, the operator  projects out the activity in the direction of the 

signal gain vector W↔iv⃗ at the ith step, so that the resulting activity is orthogonal to W↔iv⃗. 
Then equation A.16 gives that the evolution of any activity orthogonal to W↔iv⃗ after m − i 

steps, , remains orthogonal to the signal W↔m−i(W↔iv⃗) = W↔mv⃗ 
during the evolution of the dynamics.

To find the networks satisfying the above condition, we consider the W↔-cyclic subspace 

generated by v⃗ and defined as Z = span({v⃗, W↔v⃗, W↔2v⃗, …}). First, if we denote the 

space orthogonal to Z as Z⊥, then the above condition yields that the evolution by W↔ does 

not mix the two spaces, so W↔ can be decomposed into blocks of the form
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Moreover, the form of the upper-left submatrix of W↔, that is, the transformation of Z to 

W↔Z, is constrained by equation A.16. If we choose v⃗ as the first coordinate of Z and 

choose the remaining coordinates as vectors of Z orthogonal to v⃗, then equation A.16 

implies that for any power n, all columns of W↔nZ except the first column remain 

orthogonal to the first column W↔nv⃗.

Using the above considerations, it can be verified directly that the upper bound in equation 

A.16 is achieved by all orthogonal matrices, feedforward chains, and networks with a ring 

structure constructed by connecting the final element of a feedforward chain to the first (this 

list is not exclusive; other matrices can also satisfy the bound).

Attractor networks can also satisfy the upper bound exactly or very closely. If we assume 

that all modes of the attractor network are orthogonal and v⃗ is aligned to one of the modes, 

denoted as q⃗1, then the attractor networks satisfy equation A.16 with dim(Z) = 1 since 

(W↔q⃗i)TW↔q1⃗ = λ1λiq⃗iTq⃗1 = 0 for i ≠ 1 due to the orthogonality. If the modes are not 

orthogonal but there exists a mode with strong recurrent feedback compared to the other 

modes, we can treat the activity in the other modes as negligibly small so that the network 

performs similarly to a network with zero eigenvalues in the modes other than the attractor 

mode. Thus, the low-dimensional attractor networks also satisfy the upper bound closely.

Next, we consider networks with continuous dynamics. The bound for IF with continuous 

dynamics is obtained in the same way as for discrete dynamics:

(A.17)

where the equality condition is given as

(A.18)

As in the discrete networks, this equation holds for attractor networks with orthogonal eigen 

modes and for line attractor networks as long as the input vector is set along one of the 

attractor modes. For feedforward networks, equation A.18 does not strictly hold. However, 

we have checked that the feedforward networks come close to achieving the bound given in 

equation A.17. This is shown in Figure 12, where the numerically calculated ĨF (panel B, 

solid line) is compared to the bound of equation A.17 (panel B, dotted line) calculated 

numerically from the signal gain vector (panel A).
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A.5 Relation Between the Bounds on the Connectivity Strength Between 

Neurons and the Connectivity Strength Between Modes

Here, we calculate bounds on the connectivity strength between modes when synaptic 

strengths are bounded by a maximal strength wmax and the modes are orthogonal to each 

other. First, we consider the attractor networks. If q⃗i and λi denote the ith eigenvector and 

eigenvalue of W↔, respectively, then the connectivity matrix W↔ is decomposed into a 

diagonal matrix D↔ such that Q↔−1W↔Q↔ = D↔, where the diagonal matrix D↔ has 

the eigenvalues as the diagonal entries and the column vectors of Q↔ are the eigenvectors. 

If Q↔ is an orthogonal matrix, the Frobenius norms ||·||F of the two matrices, W↔ and 

D↔, are the same, which can be proven by using that the trace of the matrix is preserved 

under an orthogonal change of coordinates:

(A.19)

If wmax denotes the maximal synaptic strength, that is, if each element of W↔ is bounded 

above by wmax, then the Frobenius norm of W↔ is bounded above by Nwmax. From 

equation A.19, the Frobenius norm of D↔ has the same bound, and thus each eigenvalue λi 

is at most Nwmax. Furthermore, there exists an attractor network that reaches this bound: the 

matrix with all elements equal to wmax has a maximal eigenvalue equal to Nwmax.

Similarly, it can be shown that the bound on the synaptic connectivity between neurons leads 

to bounds on the strengths of the feedforward connectivity between the Schur modes. For the 

feedforward networks, q⃗i and M↔ denote the Schur modes and the Schur decomposition of 

W↔, satisfying Q↔−1W↔Q↔ = M↔. Since Q↔ is an orthogonal matrix for any Schur 

decomposition, the Frobenius norm of M↔ is equal to that of W↔, which is at most Nwmax 

as in equation A.19. The Frobenius norm of a lower triangular matrix M↔ is . 

Furthermore, not all mij can be Nwmax at the same time. As discussed in section 3.2, these 

bounds lead to the result that the attractor networks with a reset outperform the feedforward 

networks for a given bound on synaptic strengths.

A.6 Optimal Network Structures When Neuronal Activity is Bounded

Here we obtain the optimal arrangement of the attractor and feedforward networks and 

calculate their Fisher informations IF, under constraints on the dynamic range of neural 

activity. First, we consider a constraint on the mean firing rates in which each neuron is 

constrained to have the absolute value of its firing rate bound by a maximal value r0. 

Formally, such a bound on every element is expressed by the infinity norm of the vector of 

mean firing rates and denoted below by ||mean (r⃗)||∞ ≤ r0. If we assume that the stimulus 

strength to be remembered is in the range [−s0 s0], then the constraint on the signal gain is 

given as
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(A.20)

Geometrically, this constraint corresponds to limiting the signal gain vector to reside within 

a hypercube (see Figure 7). The magnitude of the signal gain vector is then bounded by the 

distance to the vertices of the hypercube as

(A.21)

In addition to the constraint on mean activity, we considered in the main text constraints on 

the variance of activity as a heuristic for constraints on the absolute size of fluctuations 

allowed in neuronal firing rates. The bound on variance is applied as follows. When the 

variance is less than the bound, the network dynamics proceeds normally (but still with 

bound on the mean). When the variance reaches the bound, the variability of neural activity 

is assumed to saturate and is set to the bound. Mathematically we assume that the neural 

activity has a larger dynamic range than the mean activity, so that the bound on the 

maximum standard deviation of activity can be modeled as a constant multiple of the 

maximum mean activity r0. Then the variance of activity is given as

(A.22)

where the second term is the amount of accumulated noise in the ith neuron when the 

dynamics are not constrained.

A.6.1 Attractor Networks

We first consider the line attractor networks without reset. In the following, we denote the 

attracting eigenmode simply by q⃗ and the time constant of this mode by τeff. If only the 

mean is constrained, we can obtain the maximal Fisher information from the expression for 

IF in equation A.9 and the constraint on the mean activity, equation A.20, as

(A.23)

Lim and Goldman Page 38

Neural Comput. Author manuscript; available in PMC 2017 July 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(A.24)

Without a reset, the network should have exponentially decaying dynamics (τeff positive) to 

prevent the infinite accumulation of noise. In this case, the magnitude of the signal gain 

vector decreases over time and is largest at time 0, so that equation A.24 can be replaced by 

a constraint on the initial gain, ||(v⃗ · q⃗)q⃗||∞ ≤ c0. IF can be maximized by separately 

maximizing the term (v⃗ · q⃗)2 and the term exp(−2T/τeff)/(σ2τeff /2) in equation A.23. As 

noted, the magnitude of the vector (v⃗ · q⃗)q⃗ attains its maximal value of  when q⃗ points 

to one of the vertices. Moreover, in section A.2.2, it was found the second term in IF 

achieves its maximum when τeff is equal to the optimal time constant of decay. Thus, 

altogether, the maximum of IF becomes

(A.25)

Next, we consider what happens when the maximal variability is also bounded, as in 

equation A.22. In this case, the maximum Fisher information is obtained as

where var(r⃗ · q⃗) denotes the noise along q⃗. Note that the accumulated noise in each neuron is 

not independent since it is the projection of noise in the attractor onto each neuron and var(r⃗ 
· q⃗) is the sum of the noise variances for each neuron. In the optimally arranged networks, in 

which q⃗ points along a vertex (i.e., has all components equal in magnitude), the maximal 

variance is equal for all neurons so that the maximal value of var(r⃗ · q⃗) equals . The 

variance of noise from the dynamics exceeds the maximal variability when 

 or, in terms of the feedback strength α when 

. Then IF becomes

(A.26)
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As discussed in the main text, we consider only the higher signal-to-noise regime in which 

the maximal Fisher information is obtained when the noise variance is not saturated. Here, 

we derive a simple estimate of when this regime is attained and show that the optimal value 

of the network feedback α is not different from that obtained without a bound on the noise 

variance. In this high signal-to-noise regime, α0 is greater than the value αopt = 1 − τ/(2T) 

(see Figure 8F, peak of dashed line) at which IF was maximized with only a constraint on the 

mean activity. Then, for α < α0, because the noise has not yet saturated, there is a maximum 

in IF at α = αopt of value  (see equation A.25). For α ≥ α0, the maximal IF is 

given from equations A.26 and A.21 as . This value is attained 

when the numerator of equation A.26 (the signal gain) has reached its maximal value, which 

occurs for α ≥ 1. Comparing the expressions for the variance-saturating and nonsaturating 

regimes, we see that the maximal IF is achieved in the nonsaturating regime α < α0 when 

, that is, for small σ or large N. Furthermore, we note as claimed above that this 

maximum occurs at the same α = αopt that was optimal without considering the finite 

variance of activity.

Next, we consider the line attractor with a reset and bounded mean activity. The maximal IF 

is calculated in a similar manner to the case without a reset. However, noise accumulates 

only during the memory period, so that exponential growth of activity is possible (τeff can be 

negative). IF with the constraint on mean activity is given from equations A.10 and A.20 as

(A.27)

(A.28)

To find the optimal τeff, we consider separately the cases of positive and negative τeff. For 

positive τeff (decaying attractor mode), the signal gain is maximal at t = 0 as in the case 

without reset, and IF is maximal for a perfect integrator (τeff = ∞) with q⃗ pointing to one of 

the vertices so that . For negative τeff (amplifying attractor mode), both the 

signal gain in the numerator and the noise variance in the denominator increase with τeff. 

However, the signal gain is limited by the constraint in equation A.28, so that the maximum 

of IF occurs when the noise variance is minimized. This occurs at τeff = −∞, corresponding 

to the perfect integrator. Combining the results for positive and negative τeff provides that 

the perfect integrator is optimal and its maximal IF is .

The optimal Fisher information for line attractors with a reset and bound on the variability, 

as well as the mean, can be computed analogously to the case without a reset. The variance 

of the noise reaches the bound when  and, for sufficiently 
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large N or small σ, the maximum IF over α still occurs at the same value α = 1, which was 

optimal without considering the finite variance of activity.

In summary, we have shown that the optimal IF for the line attractor networks occurs for the 

perfect integrator. Moreover, the perfect integrator with a reset has the optimal memory 

performance of any continuous-dynamics networks with a bounded firing rate. In section A.

4, we found the upper limit of IF in terms of the magnitude of the signal gain vector (see 

equation A.17). The uniform bound on the mean firing rate sets the upper limit on the 

magnitude of the signal gain vector to . Substituting this bound into the expression for 

the upper limit of IF, we obtain that , which (comparing to above) shows 

that the perfect integrator saturates the bound on memory performance.

A.6.2 Feedforward Networks

Here, we calculate the optimal structure of feedforward networks when the mean activity is 

constrained. For analytical tractability, we perform this calculation under a discrete 

dynamics approximation so that, as noted in section A.4, IF for the feedforward networks 

achieves the equality in equation A.15.

We first consider literally feedforward networks. We assume the number of stages l is equal 

to T/τ so that activity reaches the final stage at time T. In the literally feedforward networks, 

the maximal signal amplification in each stage is restrained to lie in an Nm-dimensional 

hypercube, where Nm denotes the number of neurons in the mth stage. Then the bound of IF 

becomes

(A.29)

where c0 is defined in equation A.20. Using the inequality  and 

noting that the equality holds when all Nm are equal with Nm = N/l, we find that IF attains a 

maximal value

(A.30)

Finally, we consider functionally feedforward networks. In this case, the maximal signal 

gain ||W↔mv⃗|| for the feedforward networks is , where N is the total number of 

neurons. Then the upper bound of IF is
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(A.31)

The equality holds when the signal gain at every stage achieves its maximal bound, that is, 

when each mode of the feedforward network points to the vertices of the hypercube in the 

state space (see Figure 9B). It is not obvious that this condition can be attained given that the 

states of the functionally feedforward network are additionally required to be orthogonal to 

each other. Below, we show that at least for the case when N is a power of 2, we can 

construct N mutually orthogonal modes that point to the vertices of the hypercube and use 

this result to show more generally that the maximal Fisher information of functionally 

feedforward networks is of order N/T if N is at least twice the number of feedforward stages. 

We next present the proof of the existence of N orthogonal modes pointing to the vertices of 

the N-hypercube when N = 2i, where i is a natural number:

Proof—We perform the proof by induction. For N = 2, (1, 1)T and (1,−1)T satisfy the 

condition. Now assume that there exist 2i orthogonal modes whose N = 2i elements are 

either −1 or 1. If we denote this set as (u1, u2, …, u2i), then for N = 2i+1, we can construct 

2i+1 orthogonal modes from the orthogonal modes corresponding to N = 2i as follows:

The pairs of modes [ ] are orthogonal due to the negative sign. The different 

groups constructed from different uj are orthogonal by definition of these being orthogonal 

modes from the case when N = 2i.

The above construction can also be used to show that for any N, the maximal Fisher 

information of functionally feedforward networks is of order N/T if N is larger than twice 

the number of feedforward stages l = T/τ. For general N, we can generate at least N/2 

orthogonal modes by applying the above construction to the maximal power of 2 less than 

N. This creates an N/2-length feedforward network that uses more than half of the full 

dynamic range. As in the calculation leading to equation A.31, the Fisher information of 

such networks is of order (N/2)/T when the number of neurons N is greater than twice l (N/2 

≥ l). Thus, for general N, the maximal Fisher information is still of order N/T for N ≥ 2l. By 

contrast, for a continuous (rather than discrete) feedforward network, the spreading out of 

activity over time implies that it is impossible for the network to maintain a signal gain 

vector pointing to a vertex at all times. Therefore, the continuous feedforward networks, 

unlike their discrete counterparts, strictly cannot attain the maximal bound on the Fisher 

information.
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Figure 1. 
Network models for short-term memory. (A) Schematic of network model that memorizes 

the amplitude of a transient stimulus. (B–D) Attractor networks. (B) A simple attractor 

network composed of two mutually excitatory neurons. (C) Eigenvalue decomposition of 

two-neuron attractor network. Network activity is decomposed into common and difference 

modes corresponding to the sum and difference of neural activities. The feedback strength of 

the mode onto itself represents the corresponding eigenvalue of each mode. The common 

mode is an attractor mode. (D) d-dimensional attractor network having d attractor modes. 

(E–G) Literally feedforward networks. (E) Two-neuron feedforward chain. The activity in 

the early neuron is passed on to the next neuron and is filtered. (F) Decomposition of 

feedforward networks. Feedforward networks cannot be decomposed into eigenvectors 

because there is only one eigenvector. Instead, they can be characterized by the Schur 

decomposition, which allows feedforward connections between orthogonal activity patterns. 

(G)Activity of a longer feedforward chain of neurons and a linear readout of this chain 

(dashed) giving persistent activity. (H–J) Functionally feedforward networks. (H) Recurrent 

network consisting of one excitatory and one inhibitory neuron. (I) Schur decomposition 

reveals the feedforward connection between the modes. In this network, the difference mode 

(black) is projected to the common mode (gray), and temporal profiles of these Schurmodes 

are the same as the neural activities in the literally feedforward network shown in F. (J) 

More neurons may implement a longer functionally feedforward chain. Note that 

superscripts here denote Schur modes, not powers.
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Figure 2. 
Competition between signal and noise accumulation. (A) Single neuron or eigenmode in 

attractor networks subject to two different stimuli s (black) and s +δs (gray), and noise. (B) 

Time course of noisy neural activities. The stimuli with different strengths generate 

different-size jumps. The mean trajectories given in the solid curves remain separated, 

whereas individual trajectories may overlap due to noise. (C) Mean neural activities with 

spread representing the variability across trials. The circle and the asterisk are the mean 

neural activities after the memory duration T. (D) Computation of Fisher information. 

Distributions of neural activities carry the information about the signal. The ratio between 

the square of the signal gain and noise gain is the normalized Fisher information, ĨF = σ2IF 

(PDF: probability density function).
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Figure 3. 
Memory performance of attractor networks without reset. (A–C) Mean and single-trial firing 

rate trajectories for different strengths of recurrent feedback α. For small α, the signal 

decays quickly to zero (A). For large α, noise accumulates infinitely, and distributions of 

trajectories have infinite variance (C). The optimal IF occurs when the signal decay and 

noise accumulation are appropriately balanced (B). T =2 s, τ = 0.1 s and σ = 2 Hz1/2 are 

chosen for illustration. (D) Fisher information ĨF as a function of α. ĨF attains a maximum at 

the optimal time constant of decay, τeff,opt = 2T.
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Figure 4. 
Comparison between line and plane attractor networks. (A–C) Profile of noise covariance 

matrix in two modes. We assume that eigenmodes are orthogonal to each other and plot the 

two eigenmodes, q⃗1 and q⃗2, with the two largest eigenvalues (dimensions orthogonal to q⃗1 

and q⃗2 are not shown). (A) Profile of covariance matrix of injected noise, which has equal 

strength in all directions. (B) Accumulated noise covariance matrix in line attractor 

networks. Noise except along the line attractor q⃗1 decays rapidly so that only noise along q⃗1 

is prominent. (C) Accumulated noise covariance matrix in plane attractor networks. Noise 

amplitude is equal in every direction on the plane defined by q⃗1 and q⃗2. (D–F) Fisher 

information ĨF for different arrangements of the input vector v⃗. (D, E) In the line attractor, 

the memory performance is proportional to the amplitude of the projection of v⃗ onto q⃗1, so 

that ĨF monotonically decreases as the angle between q⃗1 and v⃗ increases to π/2. (D, F) In the 

plane attractor network, the signal can be stored in any direction on the plane, and ĨF remains 

the same if v⃗ is on the plane attractor. (G–I) ĨF for different arrangements of the linear 

readout k⃗. (G, H) In the line attractor, only q⃗1 stores the signal and noise, and the signal-to-

noise ratio remains approximately constant for different k⃗ if noise in the other modes is 

small. (G, I) In the plane attractor, noise accumulates in all directions, and when the 

projection of k⃗ onto the plane is not along the projection of v⃗ onto the plane, noise in the 

non-readout directions lowers ĨF.
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Figure 5. 
Memory performance of feedforward networks without reset and comparison to attractor 

networks. (A, B) Trajectories without reset for different strengths of feedforward 

connectivity α. (A) For small α, the amplitude of activity of neurons or Schur modes decays 

quickly to zero as it propagates along the feedforward chain (smooth lines: mean activities; 

noisy lines: activities for one realization of noise). (B) For α > 1, activity is amplified until 

it reaches the end of the feedforward chain. For both α values, noisy trajectories are not 

highly different from the mean trajectories shown in the solid curves, reflecting lack of noise 

buildup. Network parameters are the same as in Figure 3, and the total number of stages is 

20. Only activities at stages 1, 3, 5, 10, 15, and 20 (different gray scales; different colors in 

Supplemental Figure S1) are shown. (C) Fisher information ĨF increases monotonically with 

α in linear feedforward networks, reflecting that feedforward networks are able to amplify 

signals without excessive accumulation of noise. (D)Comparison of ĨF between attractor and 

feedforward networks. (See Supplemental Figure S1 for a color version of this figure.)
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Figure 6. 
Effect of a reset mechanism on the memory performance of attractor and feedforward 

networks. (A, B) Trajectories of attractor networks when the neural activity is reset to zero 

near the stimulus onset. For the perfect integrator (α = 1; A) or an amplifying mode (α = 

1.02; B), trajectories for different stimuli are well separated. (C) Fisher information ĨF of 

attractor networks with or without a reset. With a reset, ĨF increases monotonically with the 

feedback strength α. (D, E) Trajectories of feedforward networks with a reset. With a reset, 

the variability is reduced for any α. (F) ĨF of feedforward networks with or without a reset. 

Including a reset increases ĨF but not as much as in attractor networks. (G) Comparison of 

activity of attractor and feedforward networks in discrete dynamics. Different grayscales 

(different colors in Supplemental Figure S2) represent activities in different neurons or 

modes. For α = 1, the signal amplitude is equal at all times for both networks, but activity 

remains in the same neuron or mode in the attractor networks, whereas the activity 

propagates along the chain in the feedforward networks. Activity in the feedforward 

networks shifts perfectly to the next stage without loss until exiting from the chain, in 

contrast to the spread of neural activity and corresponding signal loss in networks with 

continuous dynamics (panels D, and H). (H) Signal gain of attractor and feedforward 

networks with reset for α = 1. While the magnitude of the signal remains constant up to time 

T for the networks with discrete dynamics (circles and asterisks; red circles and blue 

asterisks in Supplemental Figure S2) and for continuous attractor networks (solid curve; blue 

curve in Supplemental Figure S2), it decreases toward zero in feedforward networks with 

continuous dynamics (dashed curve; dashed red curve in Figure S2). (I) ĨF of attractor and 

feedforward networks with reset. Due to lower signal gain (panel H), the feedforward 
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networks maintains less information ĨF than the attractor networks. (Parameters for this 

figure are the same as in Figure 3. See Supplemental Figure S2 for a color version of this 

figure.)
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Figure 7. 
Constraint on mean firing activity. (A) Schematic of the constraint on mean firing rates. The 

mean firing rates of each neuron are constrained to be less than or equal to r0 in magnitude. 

This defines an N-dimensional hypercube in activity space (gray square for N = 2). 

However, the actual neural activity may lie outside this bound due to noise (example 

probability distribution of activities outlined with solid lines, with mean indicated by dashed 

line and circle). (B) Optimal arrangement of attracting or Schur modes. The magnitude of 

neural activity is maximal when each attractor or Schur mode, denoted as q⃗, points to one of 

the vertices (open circles) of the hypercube.
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Figure 8. 
Optimal architecture of line attractor networks with a finite dynamic range. (A, B) Optimal 

recurrent feedback α (or equivalently τeff) in attractor networks without a reset under the 

constraint on mean activities. (A) Time course of the mean and standard deviation of activity 

along the attractor for different amounts of recurrent feedback (gray, α = 0.8 and 0.99; 

black, α = 0.975; other parameters are the same as in Figure 3). (B) Distribution of the 

activity at t = T. With a fixed bound on each mean firing rate, the memory performance 

without reset is maximized at τeff,opt = 2T as in the case (see Figure 3) without a constraint 
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on the mean firing rate. (C,D)Optimal recurrent feedback in attractor networks with a reset 

under the constraint on mean activities. With a reset, amplifications α > 1 are allowed, but 

the initial trajectory must be adjusted so that the whole trajectory lies under the bound (gray, 

α = 0.8 and 1.1; black, α = 1). In this case, the perfect integrator performs best. (E) Fisher 

information ĨF as a function of α under the constraint on the mean firing rate. (F) ĨF under 

the constraints on the mean firing rate and maximal variability. The minimum feedback 

strength that saturates the bound on the variance of firing rates is denoted by α0. For α > α0, 

the noise variance is set to a constant, and changes in ĨF only reflect changes in the signal 

gain (inset). Adding the bound on the maximal variance of noise prevents ĨF from being zero 

for large α but does not change the location of the maximum ĨF for sufficiently large N and 

small σ (see section A.6). (G) Linear growth of the maximal ĨF with increasing N (solid, 

with reset; dashed, without reset). The maximal ĨF with or without reset differs by a constant 

multiplicative factor e. (H) Maximal ĨF decays with increasing T as a power law with 

exponent −1. For networks without reset, the shown ĨF for a given value of T reflects the 

performance of a network with decay time optimized for this memory duration.
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Figure 9. 
Optimal architecture of feedforward networks with finite dynamic range. (A, B) Optimal 

architecture for feedforward networks with discrete dynamics. (A) Fisher information ĨF as a 

function of the feedforward strength α. ĨF for feedforward networks with discrete dynamics 

is the same for networks with and without a reset. As in the attractor networks with a reset, 

the optimal ĨF occurs for networks that maintain activity at a constant level. (B) For the 

optimal feedforward network, the Schur modes correspond to the vertices of the N-

dimensional hypercube (bottom), which give the maximal magnitude of neural activity 

within the bound (top, schematic of Schur modes in which networks attain their maximum 

and minimum firing activity within the bound). (C–E) Optimal literally feedforward 

networks with number of stages equal to the duration of the memory period. (C) Schematics 

of different architectures of literally feedforward networks. (D) ĨF for different fan-out rates. 

A fan-out rate equal to 1 corresponds to a uniform structure having an equal number of 

neurons at each stage (C, bottom). ĨF is maximal for this uniform structure in discrete 

dynamics. (E) Uniform structure in the activity space. The literally feedforward network 

with an equal number of neurons in each stage can be visualized as propagating activity 

from the previous to the next N/l-dimensional hypercubes where N and l are numbers of 

neurons and stages, respectively.
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Figure 10. 
Optimal memory performance of the attractor and feedforward networks with a finite 

dynamic range for different memory durations T. (A, C) Fisher information ĨF of attractor 

and feedforward networks with discrete dynamics as a function of T (A, without a reset; C, 

with a reset). The maximal ĨF in all cases decays as a power law with exponent −1. The total 

number of neurons N = 256. (B, D) ĨF in continuous dynamics without (B) or with reset (D). 

The maximal ĨF in attractor networks is compared to ĨF for functionally feedforward 

networks with architectures that optimize the memory performance in discrete dynamics. 

The attractor networks have an exponent −1 (solid line), and the feedforward networks 

approximately obey a power law but with an exponent less than −1 (dashed line). With or 

without reset, the attractor networks perform better.
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Figure 11. 
Effect of correlated noise on network structures. (A) Optimal arrangement of attractor mode 

for attractor networks in the presence of correlated noise. In the presence of noise having 

nonuniform noise variance (gray ellipse), the attractor networks can reduce noise most and 

maximize memory performance by setting the attractor mode and the input vector to be 

orthogonal to the largest noisy direction. (B) Arrangement of the Schurmodes in 

feedforward networks. Because activity sweeps between many different directions defined 

by the Schur modes, excluding specific noisy directions is more difficult in the feedforward 

networks.
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Figure 12. 
Calculation of the Fisher information ĨF in continuous dynamics. (A) The magnitude of the 

signal gain vector in attractor and feedforward networks with continuous dynamics. (B) 

Comparison of ĨF for feedforward networks with the upper bound given in equation A.17. ĨF 

of attractor networks can be calculated analytically for continuous dynamics (gray curve) 

and satisfies the upper bound. ĨF of feedforward networks obtained numerically (black solid 

curve) is close to the upper bound obtained semianalytically from the magnitude of the 

signal gain vector given in panel A (black dashed curve). Note that the upper bounds for the 

attractor and feedforward networks are different, because these networks have different 

signal gain.
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