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We present a reduction framework from ordinal ranking to binary clas-
sification. The framework consists of three steps: extracting extended
examples from the original examples, learning a binary classifier on the
extended examples with any binary classification algorithm, and con-
structing a ranker from the binary classifier. Based on the framework,
we show that a weighted 0/1 loss of the binary classifier upper-bounds
the mislabeling cost of the ranker, both error-wise and regret-wise. Our
framework allows not only the design of good ordinal ranking algo-
rithms based on well-tuned binary classification approaches, but also
the derivation of new generalization bounds for ordinal ranking from
known bounds for binary classification. In addition, our framework uni-
fies many existing ordinal ranking algorithms, such as perceptron rank-
ing and support vector ordinal regression. When compared empirically
on benchmark data sets, some of our newly designed algorithms enjoy ad-
vantages in terms of both training speed and generalization performance
over existing algorithms. In addition, the newly designed algorithms lead
to better cost-sensitive ordinal ranking performance, as well as improved
listwise ranking performance.

1 Introduction

We work on a supervised learning problem, ordinal ranking, which is also
referred to as ordinal regression (Chu & Keerthi, 2007) or ordinal clas-
sification (Frank & Hall, 2001). For instance, the rating that a customer
gives on a movie might be one of “do not bother,” “only-if-you-must,”
“good,” “very good,” and “run to see.” Those ratings are called the ranks,
which can be represented by ordinal class labels like 1, 2, 3, 4, 5. The ordinal
ranking problem is closely related to multiclass classification and metric re-
gression. It is different from the former because of the ordinal information
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encoded in the ranks and different from the latter because of a lack of the
metric distance between the ranks. Since rank is a natural representation
of human preferences, the problem lends itself to many applications in the
social sciences and information retrieval (Liu, 2009).

Many ordinal ranking algorithms have been proposed from a machine
learning perspective in recent years. For instance, Herbrich, Graepel, and
Obermayer (2000) designed an approach with support vector machines
based on comparing training examples in a pairwise manner. Har-Peled,
Roth, and Zimak (2003) proposed a constraint classification approach that
works with any binary classifiers based on the pairwise comparison frame-
work. Nevertheless, such a pairwise comparison perspective may not be
suitable for large-scale learning because the size of the associated optimiza-
tion problem can be large. In particular, for an ordinal ranking problem
with N examples, if at least two of the ranks are supported by !(N) exam-
ples (which is quite common in practice), the size of the pairwise learning
problem is quadratic to N.

There are some other approaches that do not lead to such a quadratic
expansion. For instance, Crammer and Singer (2005) generalized the on-
line perceptron algorithm with multiple thresholds to do ordinal ranking.
In their approach, a perceptron maps an input vector to a latent poten-
tial value, which is then thresholded to obtain a rank. Shashua and Levin
(2003) proposed new support vector machine (SVM) formulations to han-
dle multiple thresholds, and some other SVM formulations were studied
by Rajaram, Garg, Zhou, and Huang (2003), Chu and Keerthi (2007), and
Cardoso and da Costa (2007). All of these algorithms share a common prop-
erty: they are modified from well-known binary classification approaches.
Still some other approaches fall into neither of the perspectives above, such
as gaussian process ordinal regression (Chu & Ghahramani, 2005).

Since binary classification is much better studied than ordinal ranking,
a general framework to systematically reduce the latter to the former can
introduce two immediate benefits. First, well-tuned binary classification ap-
proaches can be readily transformed into good ordinal ranking algorithms,
which saves a great deal of effort in design and implementation. Second,
new generalization bounds for ordinal ranking can be easily derived from
known bounds for binary classification, which saves tremendous effort in
theoretical analysis.

In this letter, we propose such a reduction framework. The framework is
based on extended binary examples, which are extracted from the original
ordinal ranking examples. The binary classifier trained from the extended
binary examples can then be used to construct a ranker. We prove that the
mislabeling cost of the ranker is bounded by a weighted 0/1 loss of the
binary classifier. Furthermore, we prove that the mislabeling regret of the
ranker is bounded by the regret of the binary classifier as well. Hence, binary
classifiers that generalize well could introduce rankers that generalize well.
The advantages of the framework in algorithmic design and in theoretical
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analysis are both demonstrated in the letter. In addition, we show that
our framework provides a unified view for many existing ordinal ranking
algorithms. The experiments on some benchmark data sets validate the
usefulness of the framework in practice for improving cost-sensitive ordinal
ranking performance and helping improve other ranking criteria.

The letter is organized as follows. We introduce the ordinal ranking
problem in section 2. Some related work is discussed in section 3. We illus-
trate our reduction framework in section 4. The algorithmic and theoretical
usefulness of the framework is shown in section 5. Finally, we present ex-
perimental results in section 6 and conclude in section 7.

A short version of the letter appeared in the 2006 Conference on Neu-
ral Information Processing Systems (Li & Lin, 2007b). The paper was then
enriched by the more general cost-sensitive setting as well as the deeper
theoretical results that were revealed in the 2009 Preference Learning Work-
shop (Lin & Li, 2009). For completeness, selected results from an earlier
conference work (Lin & Li, 2006) are included in section 5.2. These publica-
tions are also part of the first author’s Ph.D. thesis (Lin, 2008). In addition
to the results that have been published in the conferences, we point out
some important properties of ordinal ranking in section 2, have added a
detailed discussion of the literature in section 3, show deeper theoretical
results on the equivalence between ordinal ranking and binary classifica-
tion in section 4, clarify the differences among different SVM-based ordinal
ranking algorithms in section 5, and strengthen the experimental results to
emphasize the usefulness of cost-sensitive ordinal ranking in section 6.

2 Ordinal Ranking Setup

The ordinal ranking problem aims at predicting the rank y of some input
vector x, where x is in an input space X ⊆ RD and y is in a label space Y =
{1, 2, . . . , K}. A function r : X → Y is called an ordinal ranker, or a ranker for
short. We shall adopt the cost-sensitive setting (Abe, Zadrozny, & Langford,
2004; Lin, 2008), in which a cost vector c ∈ RK is generated with (x, y) from
some fixed but unknown distribution P(x, y, c) on X × Y × RK. The kth
element c[k] of the cost vector represents the penalty when predicting the
input vector x as rank k. We naturally assume that c[k] ≥ 0 and c[y] = 0.
Thus, y = argmin1≤k≤Kc[k]. An ordinal ranking problem comes with a given
training set S = (xn, yn, cn)N

n=1, whose elements are drawn independent and
identically distributed (i.i.d.) from P(x, y, c). The goal of the problem is to
find a ranker r such that its expected test cost,

E(r) ≡ E
(x,y,c)∼P

c[r(x)],

is small.
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The setting looks similar to that of a cost-sensitive multiclass classifica-
tion problem (Abe et al., 2004) in the sense that the label space Y is a finite
set. Therefore, ordinal ranking is also called ordinal classification (Frank
& Hall, 2001; Cardoso & da Costa, 2007). Nevertheless, in addition to rep-
resenting the nominal categories (as the usual classification labels), those
y ∈ Y also carry the ordinal information. That is, two different labels in Y
can be compared by the usual < operation. Thus, those y ∈ Y are called the
ranks to distinguish them from the usual classification labels.

Ordinal ranking is also similar to regression (for which y ∈ R instead
of Y), because the real values in R can be ordered by the usual < opera-
tion. Therefore, ordinal ranking is also popularly called ordinal regression
(Herbrich et al., 2000; Shashua & Levin, 2003; Chu & Ghahramani, 2005;
Chu & Keerthi, 2007; Xia, Zhou, Yang, & Zhang, 2007). Nevertheless, un-
like the real-valued regression labels y ∈ R, the discrete ranks y ∈ Y do not
carry metric information. For instance, we cannot say that a five-star movie
is 2.5 times better than a two-star one; we also cannot compute the ex-
act distance (difference) between a five-star movie and a one-star movie.
In other words, the rank serves as a qualitative indication rather than a
quantitative outcome. Thus, any monotonic transform of the label space
should not alter the ranking performance. Nevertheless, many regression
algorithms depend on the assumed metric information and can be highly
affected by monotonic transforms of the label space (which are equivalent
to change-of-metric operations). Thus, those regression algorithms may not
always perform well on ordinal ranking problems.

The ordinal information carried by the ranks introduces the follow-
ing two properties, which are important for modeling ordinal ranking
problems:

• Closeness in the rank space Y : The ordinal information suggests that
the mislabeling cost depends on the closeness of the prediction. For ex-
ample, predicting a two-star movie as a three-star one is less costly than
predicting it as a five-star one. Hence, the cost vector c should be V-shaped
with respect to y (Li & Lin, 2007b), that is,

{
c[k− 1] ≥ c[k], for 2 ≤ k ≤ y;
c[k + 1] ≥ c[k], for y ≤ k ≤ K − 1.

(2.1)

A V-shaped cost vector says that a ranker needs to pay more if its prediction
on x is further away from y. We shall assume that every cost vector c
generated fromP(c|x, y) is V-shaped with respect to y = argmin1≤k≤Kc[k]. In
other words, one can decomposeP(y, c|x) = P(y|c)P(c|x) where c ∼ P(c|x)

is always V-shaped and P(y|c) satisfies y = argmin1≤k≤Kc[k].
In some of our results, we need a stronger condition: the cost vec-

tors should be convex (Li & Lin, 2007b), which is defined by the
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condition1

c[k + 1]− c[k] ≥ c[k]− c[k− 1], for 2 ≤ k ≤ K − 1. (2.2)

When using convex cost vectors, a ranker needs to pay increasingly more if
its prediction on x is further away from y. Provably, any convex cost vector c
is V-shaped with respect to y = argmin1≤k≤Kc[k].

The V-shaped and convex cost vectors are general choices that can be
used to represent the ordinal nature of Y . One popular cost vector that has
been frequently used for ordinal ranking is the absolute cost vector, which
accompanies (x, y) as

c(y)[k] = |y− k|, 1 ≤ y ≤ K.

Because the absolute cost vectors come with the median function as its
a population minimizer (Dembczyński, Kotl!owski, & Sl!owiński, 2008), it
appears to be a natural choice for ordinal ranking, similar to how the tra-
ditional 0/1 loss is the most natural choice for classification. Nevertheless,
our work aims at studying more flexible possibilities (costs) beyond the
natural choice, similar to the more flexible weighted loss beyond the 0/1
one in weighted classification (Zadrozny, Langford, & Abe, 2003). As we
shall show in section 6, the flexible costs can be used to embed the desired
structural information in Y for better test performance.

• Comparability in the input space X : Note that the classification cost
vectors

c(")[k] = [[" += k]], 1 ≤ " ≤ K,

which checks whether the predicted rank k is exactly the same as the desired
rank ", are also V-shaped.2 If those cost vectors are used, an immediate
question is: What distinguishes ordinal ranking and common multiclass
classification?

Let r∗ denote the optimal ranker with respect to P(x, y, c). Note that r∗
introduces a total preorder in X (Herbrich et al., 2000), that is,

x <∼ x′ ⇐⇒ r∗(x) ≤ r∗(x
′).

The total preorder allows us to naturally group and compare vectors
in the input space X . For instance, a two-star movie is “worse than” a

1When connecting the points (k, c[k]) from a convex cost vector c by line segments, it
is not difficult to prove that the resulting curve is convex for k ∈ [1, K].

2[[·]] is 1 if the inner condition is true, and 0 otherwise.
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Table 1: Properties of Different Learning Problems.

Weak closeness Strong closeness
Comparability (classification cost vectors) (other V-shaped cost vectors)

Comparable Degenerate ordinal ranking Usual ordinal ranking
Not comparable Multiclass classification Special cases of cost-sensitive

classification

three-star one, which is in turn “worse than” a four-star one; movies of less
than three stars are “worse than” movies of at least three stars.

The simplicity of the grouping and the comparison distinguishes or-
dinal ranking from multiclass classification. For instance, when classify-
ing movies, it is difficult to group {action movies, romantic movies} and
compare with {comic movies, thriller movies}, but “movies of less than
three stars” can be naturally compared with “movies of at least three
stars.”

The comparability property connects ordinal ranking to monotonic clas-
sification (Sill, 1998; Kotl!owski & Sl!owiński, 2009), which is also referred
to as ordinal classification with the monotonicity constraints and is an im-
portant problem on its own. Monotonic classification models the ordinal
ranking problem by assuming that an explicit order in the input space
(such as the value-order of one particular feature) can be used to directly
(and monotonically) infer about the order of the ranks in the output space
(y ≤ y′). In other words, monotonic classification allows putting thresholds
on the explicit order to perform ordinal ranking. The comparability prop-
erty shows that there is an order (total preorder) introduced by the ranks.
Nevertheless, the order is not always explicit in general ordinal ranking
problems. Therefore, many of the existing ordinal ranking approaches,
such as the thresholded model, which is discussed in section 5, seek the
implicit order through transforming the input vectors before respecting
the monotonic nature between the implicit order and the order of the
ranks.

In Table 1, we summarize four different learning problems in terms of
their comparability and closeness properties. As discussed, usual ordinal
ranking problems come with strong closeness in Y (which is represented
by V-shaped cost vectors) and simple comparability in X . The classification
cost vectors can be viewed as degenerate V-shaped cost vectors, and hence
introduce degenerate ordinal ranking problems.

Multiclass classification problems, on the other hand, do not allow exam-
ples of different classes to be naturally grouped and compared. If we want
to use cost vectors other than the classification ones, we move to special
cases of cost-sensitive classification. For instance, in the attempt to recog-
nize digits {0, 1, . . . , 9} for written checks, a possible cost is the absolute one
(to represent monetary differences) rather than simply right or wrong (the
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classification cost). The absolute cost is V-shaped and convex. Nevertheless,
the digits intuitively cannot be grouped and compared, and hence the
recognition problem belongs to cost-sensitive multiclass classification
rather than ordinal ranking (Lin, 2008).

A good ordinal ranking algorithm should appropriately use the compa-
rability property. In section 4, we show how the property serves as a key to
derive our proposed reduction framework.

3 Related Literature

The analysis of ordinal data has been studied in statistics by defining a
suitable link function that models the underlying probability for generat-
ing the ordinal labels (Anderson, 1984). For instance, one popular model
is the the cumulative link model (Agresti, 2002), which we discuss in sec-
tion 5. Similar models can be traced back to the work of McCullagh (1980).
Much of the earlier work in statistics, which usually focuses on the effec-
tiveness and efficiency of the modeling, influences ordinal ranking stud-
ies in machine learning (Herbrich et al., 2000), including our work. An-
other related area that studies the analysis of ordinal data is operations
research, especially in the subarea of multicriteria decision analysis (Greco,
Sl!owiński, & Matarazzo, 2000; Figueira, Greco, & Ehrgott, 2005), which
contains work that focuses on reasonable decision making with ordinal
preference scales. Our work tackles ordinal ranking problems from the
machine learning perspective—improving the test performance—and is
different from work that takes the perspective of statistics or operations
research.

In machine learning (and information retrieval), there are three ma-
jor families of ranking algorithms: pointwise, pairwise, and listwise (Liu,
2009). The ordinal ranking setup presented in section 2 belongs to point-
wise ranking. Next, we discuss some representative algorithms in each
family and relate them to the ordinal ranking setup. Then we compare the
proposed reduction framework with other reduction-based approaches for
ranking.

3.1 Families of Ranking Algorithms

3.1.1 Pointwise Ranking. Pointwise ranking aims at predicting the rel-
evance of some input vector x using either real-valued scores or ordinal-
valued ranks. It does not directly use the comparison nature of ranking.

The ordinal ranking algorithms studied in this letter focus on comput-
ing ordinal-valued ranks for pointwise ranking. For obtaining real-valued
scores, a fundamental tool is traditional least-squares regression (Hastie,
Tibshirani, & Friedman, 2001). As discussed in section 2, however, when
the examples come with ordinal labels, the ordinal ranking algorithms
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studied in this letter can be more useful than traditional regression by
taking the metricless nature of labels into account.

3.1.2 Pairwise Ranking. Pairwise ranking aims at predicting the rela-
tive order between two input vectors x and x′ and thus captures the local
comparison nature of ranking. It is arguably one of the most widely used
techniques in the ranking family and is usually cast as a binary classifica-
tion problem of predicting whether x is preferred over x′. During training,
such a problem translates to comparing all pairs of (xn, xm) based on their
corresponding labels. One representative pairwise ranking algorithm is
RankSVM (Herbrich et al., 2000), which trains an underlying support vec-
tor machine using those pairs. RankSVM was initially proposed for data
sets that come with ordinal labels, but is also commonly applied to data
sets that come with real-valued labels.

Note that even when all the labels take ordinal values, as long as two of
the classes contain !(N) examples, there are !(N2) pairs. Such a quadratic
number of pairs makes it difficult to scale up general pairwise ranking
algorithms, except in special cases like the linear support vector machine
(Joachims, 2006) or RankBoost (Herbrich et al., 2000; Lin & Li, 2006). Thus,
when the training set is large and contains ordinal labels, the ordinal ranking
algorithms studied in this letter may serve as a useful alternative over
pairwise ranking ones.

3.1.3 Listwise Ranking. Listwise ranking aims at ordering a whole finite
set of input vectors S ′ = {x′m}M

m=1. In particular, the (listwise) ranker tries
to minimize the inconsistency between the predicted permutation and the
ground-truth permutation of S ′ (Liu, 2009). Listwise ranking captures the
global comparison nature of ranking. One representative listwise ranking
algorithm is ListNet (Cao, Qin, Liu, Tsai, & Li, 2007), which is based on
an underlying neural network model along with an estimated distribution
of all possible permutations (rankers). Nevertheless, there are M! permu-
tations for a given S ′. Thus, listwise ranking can be computationally even
more expensive than pairwise ranking.

Many listwise ranking algorithms try to alleviate the computational bur-
den by keeping some internal pointwise rankers. For instance, ListNet uses
the underlying neural network to score each instance (Cao et al., 2007) for the
purpose of permutation. The use of internal pointwise rankers for listwise
ranking further justifies the importance of better understanding pointwise
ranking, including the ordinal ranking algorithms studied in this letter.

3.2 Reduction Approaches for Ranking. Because ranking is a relatively
new and diverse problem in machine learning, many existing ranking ap-
proaches try to reduce the ranking problem to other learning problems.
Next, we discuss some existing reduction-based approaches that are re-
lated to the framework proposed in this letter.
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3.2.1 From Pairwise Ranking to Binary Classification. Balcan et al. (2007)
propose a robust reduction from bipartite (i.e., ordinal with two outcomes)
pairwise ranking to binary classification. The training part of the reduction
works like usual pairwise ranking: learning a binary classifier on whether x
is preferred over x′. The prediction part of the reduction asks the underlying
binary classifier to vote for each example in the test set in order to rank those
examples. The reduction is simple but yields solid theoretical guarantees.
In particular, for ranking M test examples, the reduction uses !(M2) calls
to the binary classifier and transforms a binary classification regret of r to
a bipartite ranking regret (measured by the so-called AUC criterion) of at
most 2r.

Ailon and Mohri (2008) improve the reduction of Balcan et al. (2007)
and propose a more efficient reduction from general pairwise ranking to
binary classification. The prediction part of the reduction operates by taking
the underlying binary classifier as the comparison function of the popular
QuickSort algorithm. In the special bipartite ranking case, for ranking M
examples, the reduction uses O(M log M) calls to the binary classifier in
average and transforms a binary classification regret of r to a bipartite
ranking regret of at most 2r.

3.2.2 From Listwise Ranking to Regression (Pointwise Ranking). The subset
ranking (Cossock & Zhang, 2008) algorithm can be viewed as a reduction
from listwise ranking to regression. In particular, Cossock and Zhang (2008)
prove that regression with various cost functions can be used to approxi-
mate a Bayes optimal listwise ranker. In other words, low-regret regressors
can be cast as low-regret listwise rankers.

3.2.3 From Listwise Ranking to Ordinal (Pointwise) Ranking. McRank (Li,
Burges, & Wu, 2008) is a reduction from listwise ranking to ordinal rank-
ing with the classification cost. The main theoretical justification of the
reduction shows that a scaled classification cost of an ordinal ranker can
upper-bound the regret of the associated listwise ranker. That is, low-error
ordinal rankers can be cast as low-regret listwise rankers. Li et al. (2008) em-
pirically verified that McRank can perform better than the subset ranking
algorithm (Cossock & Zhang, 2008).

3.2.4 From Ordinal Ranking to Binary Classification. The proposed frame-
work in this letter and in the associated shorter version (Li & Lin, 2007b)
is a reduction from ordinal ranking to binary classification. We will show
that the reduction is both error and regret preserving. That is, low-error
binary classifiers can be cast as low-error ordinal rankers; low-regret binary
classifiers can be cast as low-regret ordinal rankers.

The data replication method, which was independently proposed by
Cardoso and da Costa (2007), is a similar but more restricted case of the
reduction framework. The data replication method essentially considers
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Table 2: Comparison of General Reductions from Ranking to Binary Clas-
sification.

Reduction

Size of
Transformed Set
During Training

Number of Calls to Binary
Classifiers During

Prediction
Evaluation
Criterion

The proposed framework O(KN) O(KM) Ranking cost
Balcan et al. (2007) O(N2) O(M2) AUC
Ailon and Mohri (2008) O(N2) O(M log M) AUC

the absolute cost. In addition, the focus of the data replication method
(Cardoso & da Costa, 2007) is on explaining the training procedure of the
reduction. The proposed framework in this letter is more general than the
data replication method in terms of the cost considered, as well as the
deeper theoretical analysis on both the training and the test performance of
the reduction.

The proposed reduction framework for pointwise ranking and existing
reductions in pairwise ranking (Balcan et al., 2007; Ailon & Mohri, 2008) take
very different views on the ranking problem and considers different eval-
uation criteria. As a consequence, when learning N examples and ranking
(predicting on) M instances with K ordinal scales, the proposed framework
results in a transformed training set of size O(KN) and a prediction pro-
cedure with time complexity O(KM). Both the size of the training set and
the time complexity of the prediction procedure are more efficient than
the state-of-the-art reduction from pairwise ranking to binary classification
(Ailon & Mohri, 2008), as shown in Table 2.

Note that the work of Li et al. (2008) revealed an opportunity to use
the discrete nature of ordinal-valued labels to improve the listwise ranking
performance over subset ranking when using a heuristic ordinal ranking
algorithm. The proposed framework is a more rigorous study on ordinal
ranking that can be coupled with McRank to yield a reduction from listwise
ranking to binary classification, which allows state-of-the-art binary classifi-
cation algorithms to be efficiently used for listwise ranking. We demonstrate
the use of this opportunity in section 6.4.

4 Reduction Framework

We first introduce the details of our proposed reduction framework. Then
we demonstrate its theoretical guarantees. Consider, for instance, that we
want to know how good a movie x is. Using the comparability property of
ordinal ranking, we can then ask the associated question, “Is the rank of x
greater than k?”
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For a given k, such a question is exactly a binary classification problem,
and the rank of x can be determined by asking multiple questions for k = 1,
2, until (K − 1). The questions are the core of the dominance-based rough set
approach in operations research for reasoning from ordinal data (Sl!owiński,
Greco, & Matarazzo, 2007). From the machine learning perspective, Frank
and Hall (2001) proposed to solve each binary classification problem in-
dependently and combine the binary outputs to a rank. Although their
approach is simple, the generalization performance using the combination
step cannot be easily analyzed.

The proposed reduction framework works differently. First, a simpler
step is used to convert the binary outputs to a rank, and generalization
analysis can immediately follow. Moreover, all the binary classification
problems are solved jointly to obtain a single binary classifier.

Assume that g(x, k) is the single binary classifier that provides answers to
all the associated questions above. Consistent answers would be g(x, k) =
+1 (“yes”) for k = 1 until ("− 1) for some ", and −1 (“no”) afterward.
Then a reasonable ranker based on the binary answers is rg(x) = " = 1 +
min {k : g(x, k) = +1}. Equivalently,

rg(x) ≡ 1 +
K−1∑

k=1

[[g(x, k) > 0]]. (4.1)

The binary classifier g that produces only consistent answers would be
called rank-monotonic.3

For any ordinal example (x, y, c), we can define the extended binary
examples (X(k),Y(k)) with weights W (k) as

X(k) = (x, k), Y(k) = 2[[k < y]]− 1, W (k) = (K − 1) · |c[k]− c[k + 1]|

(4.2)

The extended input vector X(k) represents the associated question, “Is the
rank of x greater than k?” The binary labelY(k) represents the desired answer
to the question; the weight W (k) represents the importance of the question
and will be used in our theoretical analysis. Here X(k) stands for an ab-
stract pair, and we discuss its practical encoding in section 5. If g(X(k)) ≡
g(x, k) makes no errors on all the associated questions, rg(x) equals y by

3Although equation 4.1 can be flexibly applied even when g is not rank monotonic, a
rank-monotonic g is usually desired in order to introduce a good ranker rg.
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equation 4.1. That is, c[rg(x)] = 0. In the following theorem, we further
connect c[rg(x)] to the amount of error that g makes.

Theorem 1 (per example cost bound). For any ordinal example (x, y, c), where c
is V-shaped and c[y] = 0, consider its associated extended binary examples
(X (k),Y(k),W (k)) in equation 4.2. Assume that the ranker rg is constructed from a
binary classifier g using equation 4.1. If g(X (k)) is rank-monotonic or if c is convex,
then

c[rg(x)] ≤ 1
K − 1

K−1∑

k=1

W (k) ·
[[

Y(k) += g(X (k))
]]
. (4.3)

Proof. Because g is rank-monotonic, g(X(k)) = +1 for k < rg(x) and g(X(k)) =
−1 for k ≥ rg(x). Thus, the cost that the ranker rg needs to pay is

c[rg(x)] =
K−1∑

k=rg(x)

(c[k]− c[k + 1]) + c[k]

=
K−1∑

k=1

(c[k]− c[k + 1])[[g(X(k)) < 0]] + c[k]. (4.4)

Because the cost vector c is V-shaped, Y(k) equals the sign of (c[k]− c[k + 1])
if the latter is not zero. Continuing from equation 4.4 with c[y] = 0,

(K − 1) · c[rg(x)]

=
y−1∑

k=1

W (k) · Y(k) · [[g(X(k)) < 0]] + (K − 1) · c[k],

K−1∑

k=y

W (k) · Y(k) · (1− [[g(X(k)) > 0]]),

=
y−1∑

k=1

W (k) · [[Y(k) += g(X(k))]]+ (k−1) · c[y]+
K−1∑

k=y

W (k) · [[Y(k) += g(X(k))]]

=
K−1∑

k=1

W (k) · [[Y(k) += g(X(k))]]. (4.5)

When g is not rank-monotonic but the cost vector c is convex, equation 4.5
becomes an inequality that could be alternatively proved by replacing
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equation 4.4 with

K−1∑

k=rg(x)

(c[k]− c[k + 1]) ≤
K−1∑

k=1

(c[k]− c[k + 1])
[[

g(X(k)) < 0
]]
.

The inequality above holds because (c[k]− c[k + 1]) is decreasing due to
the convexity, and there are exactly (rg(x)− 1) zeros and (K − rg(x)) ones
in the values of [[g(X(k)) < 0]] according to equation 4.1.

We call equation 4.3 the per example cost bound, which says that if g
makes only a small amount of error on the extended binary examples
(X(k),Y(k),W (k)), then rg is guaranteed to pay only a small amount of the cost
on the original example (x, y, c). The bound allows us to derive the follow-
ing reduction method, which is composed of three stages: preprocessing,
training, and prediction.

Algorithm 1: Reduction to Extended Binary Classification

1. Preprocessing: For each original training example (xn, yn, cn) ∈ S and
for each k = 1, 2, . . . , K − 1, generate an extended training example
(X(k)

n ,Y(k)
n ,W (k)

n ) and include it in SE , where

X(k)
n = (xn, k),Y(k)

n = 2[[k < yn]]− 1,

W (k)
n = (K − 1) · |c[n][k]− c[n][k + 1]|.

2. Training: Use a binary classification algorithm on SE and get a binary
classifier g on a concrete encoding (discussed in section 5) of X ×
1, 2, . . . , K − 1. Let g(x, k) ≡ g(X(k)).

3. Prediction: For any x ∈ X , estimate its rank with equation 4.1.

4.1 Cost Bound of the Reduction Framework. Consider the follow-
ing probability distribution Pb(X

(k),Y(k),W (k)) that generates the extended
binary examples:

1. Draw a tuple (x, y, c) independently from P(x, y, c), and draw k uni-
formly from the set 1, 2, . . . , K − 1.

2. Generate
(
X(k),Y(k),W (k)

)
by equation 4.2.

The extended training set SE contains examples that are equivalent (in terms
of expectation) to examples drawn independently from Pb(X

(k),Y(k),W (k)).
For any given binary classifier g, define its out-of-sample error with respect
to Pb as

Eb(g) ≡ E(X,Y,W )∼Pb
W · [[Y += g(X)]].



1342 H.-T. Lin and L. Li

Using the definitions above, we can prove the first theoretical guarantee of
the reduction framework.

Theorem 2 (cost bound of the reduction framework). Consider a ranker rg that
is constructed from a binary classifier g using equation 4.1. Assume that c is
V-shaped and c[y] = 0 for every tuple (x, y, c) generated from P(c|x, y). If g(x, k)

is rank-monotonic or if every cost vector c is convex, then E(rg) ≤ Eb(g).

Proof. From equation 4.3,

c[rg(x)] ≤ 1
K − 1

K−1∑

k=1

W (k) ·
[[

Y(k) += g(X(k))
]]
.

Take the expectation over P on both sides and use ∼u to mean the uniform
sampling:

E(rg)≤ E
(x,y,c)∼P

1
K − 1

K−1∑

k=1

W (k) ·
[[

Y(k) += g(X(k))
]]

= E
(x,y,c)∼P

E
k∼u{1,...,K−1}

W (k) ·
[[

Y(k) += g(X(k))
]]

= E
(X,Y,W )∼Pb

W · [[Y += g(X)]]

= Eb(g).

4.2 Regret Bound of the Reduction Framework. Theorem 2 indicates
that if there exists a decent binary classifier g, we can obtain a decent
ranker rg. Nevertheless, it does not guarantee how good rg is in compar-
ison with other rankers. In particular, if we consider the optimal binary
classifier g∗ under P[b](X,Y,W ), and the optimal ranker r∗ under P(x, y, c),
does a small regret Eb(g)− Eb(g∗) in binary classification translate to a small
regret E(rg)− E(r∗) in ordinal ranking? Furthermore, is E(rg∗

) close to E(r∗)?
Next, we introduce the reverse-reduction technique, which helps to answer
these questions.

The reverse-reduction technique works on the binary classification prob-
lems generated by the reduction method. It goes through the preprocessing
and the prediction stages of the reduction method in the opposite direc-
tion. In the preprocessing stage, instead of starting with ordinal exam-
ples (xn, yn, cn), reverse reduction deals with weighted binary examples
(X(k)

n ,Y(k)
n ,W (k)

n ). It first combines each set of binary examples sharing the
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same xn to an ordinal example by






yn = 1 +
K−1∑

k=1

[[
Y(k)

n > 0
]]
;

cn[k] =
K−1∑

"=1

W (")
n

K − 1
· [[yn ≤ " < k or k < " ≤ yn]].

(4.6)

It is easy to verify that equation 4.6 is the exact inverse transform of equation
4.2 on the training examples under the assumption that c[y] = 0. These
ordinal examples are then given to an ordinal ranking algorithm to obtain a
ranker r. In the prediction stage, reverse reduction works by decomposing
the prediction r(x) to K − 1 binary predictions, each as if coming from a
binary classifier:

gr(X
(k)) = 2[[r(x) > k]]− 1. (4.7)

Then a lemma on the out-of-sample cost of gr immediately follows (Lin &
Li, 2009).

Lemma 1. With the definitions of P(x, y, c) and Pb(X
(k),Y(k),W (k)) in

theorem 2, for every ordinal ranker r, E(r) = Eb(gr).

Proof. Because gr is rank-monotonic by construction, the same proof for
the first part of theorem 2 leads to the desired result.

The stages of reduction and reverse reduction are illustrated in Figure 1.
Next, we show how the reverse-reduction technique allows us to draw
a strong theoretical connection between ordinal ranking and binary
classification. By the definition of r∗ and g∗, for any ranker r and any binary
classifier g,

E(r) ≥ E(r∗), Eb(g) ≥ Eb(g∗). (4.8)

Then the reverse-reduction technique yields a simple proof of the regret
bound.

Theorem 3 (regret bound of the reduction framework). If g(x, k) is rank-monotonic
or if every cost vector c is convex, then

E(rg)− E(r∗) ≤ Eb(g)− Eb(g∗). (4.9)
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Proof.

E(rg)− E(r∗)≤Eb(g)− E(r∗) (from theorem 2)

= Eb(g)− Eb(gr∗
) (from lemma 1)

≤Eb(g)− Eb(g∗) (from equation 4.8).

The cost bound (theorem 2) and the regret bound (theorem 3) provide
different guarantees for the reduction method. The former describes how
the ordinal ranking cost is upper-bounded by the binary classification error
in an absolute sense, and the latter describes the upper bound in a relative
sense.

4.3 Equivalence Between Ordinal Ranking and Binary Classification.
The results thus for suggest that ordinal ranking can be reduced to binary
classification without any loss of optimality. That is, ordinal ranking is no
harder than binary classification. Intuitively, binary classification is also no
harder than ordinal ranking, because the former is a special case of the latter
with K = 2. Next, we formalize the notion of hardness with the probably ap-
proximately correct (PAC) setup in computational learning theory (Kearns
& Vazirani, 1994) and prove that ordinal ranking and binary classification
are indeed equivalent in hardness. We use the following definition of PAC
in our upcoming theorems (Valiant, 1984; Kearns & Vazirani, 1994).

Definition 1. In cost-sensitive classification, a learning model G is efficiently
PAC-learnable (using the same representation class) if there exists a (possibly
randomized) learning algorithm A satisfying the following property: for every
distribution P(x, y, c) being considered, where

c[g∗(x)] = c[y] = cmin = 0,

with some g∗ ∈ G; for all 0 < ε and 0 < δ < 1
2 , if A is given access to an oracle

generating examples (x, y, c) from P(x, y, c), as well as inputs ε and δ, then A
outputs g ∈ G such that E(g) ≤ ε with probability at least 1− δ, as well as with
time polynomial in 1

ε
and 1

δ
.

The definition assumes that the target function g∗ is within the learning
model G and is of cost 0 (the minimum cost). In other words, it is the
noiseless setup of learning. We shall focus on only this case while pointing
out that similar results can also be proved for the noisy setup (Lin, 2008).

Theorem 4 (equivalence theorem of the reduction framework). Consider a learning
model R for ordinal ranking, its associated learning model G = {gr : r ∈ R} for
binary classification, and distributions P(x, y, c) such that all cost vectors c are
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V-shaped. Then R is efficiently PAC-learnable if and only if G is efficiently PAC-
learnable.

Proof. If G is efficiently PAC-learnable using algorithm AG , we can
convert AG to an efficient algorithm AR for ordinal ranking as follows:

1. Transform the oracle that generates (x, y, c) from P(x, y, c) to an oracle
that generates (X(k),Y(k),W (k)) by picking k uniformly and applying
equation 4.2.

2. Run AG with the transformed oracle until it outputs some g(X(k)).
3. Return rg.

It is not hard to see that AR is as efficient as AG , and the cost guarantee
comes from theorem 2 using the fact that gr are all rank-monotonic.

Now we consider the other direction. If R is efficiently PAC-learnable
using algorithm AR, we can convert AR to an efficient algorithm AG for
binary classification:

1. Transform the oracle that generates (X(k),Y(k),W (k)) from
Pb(X

(k),Y(k),W (k)) to an oracle that generates (x, y, c) by

x = (X(k)[1], X(k)[2], . . . , X(k)[D]);

c =






W (k)

K − 1
· (0, . . . , 0︸ ︷︷ ︸

k

, 1, . . . , 1) for Y(k) = −1,

W (k)

K − 1
· (1, . . . , 1︸ ︷︷ ︸

k

, 0, . . . , 0) for Y(k) = +1;

y = argmin
1≤"≤K

c["] , with ties arbitrarily broken.

That is, x copies the 1st to the Dth elements of X(k). Let P̃(x, y, c) be
the underlying distribution of the constructed oracle.

2. Run AR with the transformed oracle until it outputs some r(x).
3. Return gr.

Note that AG is as efficient as AR. In addition, we see that plugging P̃ into
equation 4.2 introduces Pb. Thus, if we take Ẽ(r) as the expected test cost
with respect to P̃ , by lemma 1,

Eb(gr) = Ẽ(r) for all r ∈ R.

Therefore, Eb(gr) < ε after running AG .

Theorem 4 demonstrates that ordinal ranking is theoretically as easy
(hard) as the associated binary classification problem. Recall that we com-
pare four different kinds of learning problems in Table 1. At first sight,
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theorem 4 appears to suggest that all four problems can be conquered with
the reduction framework, because the only required assumption of the
theorem is that the cost vectors are V-shaped. Nevertheless, note that the
necessary and sufficient condition in the theorem is, “The associated learn-
ing model G is efficiently PAC-learnable.” Then the different comparability
properties of the different problems make a difference. In particular, for
multiclass classification problems, the associated binary question, “Is the
class of x greater than k?” can be complicated and is thus difficult to learn,
In other words, the associated G may not be efficiently PAC-learnable. Then
more complicated binary questions (Abe et al., 2004; Beygelzimer, Daniand,
Hayes, Langford, & Zadrozny, 2005; Beygelzimer, Langford, & Ravikumar,
2007; Lin, 2008) are needed to reduce from the general (cost-sensitive) mul-
ticlass problem to binary classification ones.

On the other hand, for the special case of cost-sensitive ordinal ranking,
in whichG is efficiently PAC-learnable, the reduction framework establishes
a tight connection between the learnability of G and R—the ranking model
of interest. The tight connection motivates us to design ordinal ranking
algorithms from popular binary classification algorithms, as we show in
the next section.

5 Applications of Reduction Framework

So far the reduction works only by assuming that X(k) = (x, k) is an abstract
pair understandable by the binary classification algorithm. With proper
choices of the cost vectors, the encoding scheme of (x, k), and the binary
classification algorithm, many existing ordinal ranking algorithms can be
unified in our framework, and their theoretical justifications can immedi-
ately follow.

In this section, we briefly discuss some of those algorithms and their
theoretical justifications. It happens that a simple encoding scheme for (x, k)

via a coding matrix M of (K − 1) rows works for all the algorithms. To
form X(k), the vector mk, which denotes the kth row of M, is appended after
x. We mostly work with M = γ · IK−1, where γ is a positive scalar and IK−1
is the (K − 1)× (K − 1) identity matrix.

5.1 Perceptron for Ordinal Ranking. The perceptron ranking (PRank)
algorithm proposed by Crammer and Singer (2005) is an online ordinal
ranking algorithm that employs the thresholded linear model,

r(x) = min{k: 〈v, x〉 ≤ θk},

where the thresholds θ1, θ2, . . . , θK−1, θK are ordered such that θ1 ≤ θ2 ≤
· · · ≤ θK−1 ≤ θK = ∞. Whenever a training example is not predicted cor-
rectly, the current v and θ are updated in a way similar to the perceptron
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learning rule (Rosenblatt, 1962). The algorithm was proved to keep the
thresholds ordered along with a mistake bound (Crammer & Singer, 2005).

Let X(k) = (x, mk) with the simple encoding scheme M = IK−1. Then,

r(x) = min{k: 〈v, x〉 ≤ θk} = 1 +
K−1∑

k=1

[[〈(v,−θ), X(k)〉 > 0]].

Consider an ordinal ranking problem such that P(x, y, c) only generates ex-
amples (x, y, c(y)), where c(y) is the absolute cost vector with respect to y. We
see thatW (k) = K − 1 (a constant) for all the extended binary examples. Then
we can simply interpret PRank as a specific instance of the reduction frame-
work with a modified perceptron learning rule as the underlying binary
classification algorithm. That is, PRank uses the perceptron learning rule to
find a weight vector (v,−θ) for classifying the extended binary examples
(x, mk).

4 The mistake bound is a direct application of the well-known per-
ceptron mistake bound (see Freund & Schapire, 1999). Our framework not
only simplifies the derivation of the mistake bound, but also allows the use
of other underlying perceptron algorithms, such as batch-mode algorithms
(Li & Lin, 2007a) rather than online ones.

5.2 Boosting for Ordinal Ranking. In our earlier work (Lin & Li, 2006),
we proposed the thresholded ensemble model

r(x) = min{k: HT (x) ≤ θk}, where HT (x) =
T∑

t=1

αtht (x), (5.1)

for ordinal ranking. Each confidence function ht : X → [−1,+1] reflects
a possibly imperfect ordering preference. Note that a special instance of
the confidence function is a binary classifier X → {−1,+1}. The ensemble
linearly combines the ordering preferences with α. We allow αt to be any
real value, which means that it is possible to reverse the ordering preference
of ht in the ensemble when necessary.

Ensemble models in general have been successfully used for classifica-
tion and regression (Meir & Rätsch, 2003). They not only introduce more sta-
ble predictions through the linear combination, but also provide sufficient
power for approximating complicated target functions. The thresholded
ensemble model extends existing ensemble models to ordinal ranking and
inherits many useful theoretical properties from them. Next, we discuss one
such property: large-margin bounds.

4To precisely replicate the PRank algorithm, the (K − 1) binary examples sprouted
from a same ordinal example should be considered altogether in updating the perceptron
weight vector.
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We first list the definition of the margins for a thresholded ensemble (Lin
& Li, 2006). Intuitively, we expect the potential value HT (x) to be in the
desired interval (θy−1, θy), and we want HT (x) to be far from the thresholds.

Definition 2. Consider a given thresholded ensemble r in equation 5.1. The nor-
malized margin ρ̂k(x, y) is defined as

ρ̂k(x, y) = (2[[k < y]]− 1)(HT (x)− θk)

/(
T∑

t=1

|αt | +
K−1∑

k=1

|θk|
)

.

Definition 2 is similar to the definition of the support vector machine
(SVM) margin made by Shashua and Levin (2003) and is analogous to
the definition of the "1-margins in binary classification (Schapire, Freund,
Bartlett, & Lee, 1998). A nonpositive ρ̂k(x, y) indicates an incorrect predic-
tion. We now define the )-absolute margin cost as

Ein(r,))≡ 1
N

N∑

n=1

K−1∑

k=1

[[ρ̂k(xn, yn) ≤ )]].

Consider an ordinal ranking problem such that P(x, y, c) generates ex-
amples only with the absolute cost vectors. The associated binary classifica-
tion problem would then be based on an underlying probability distribution
P[b](X,Y,W ) that generates only W = K − 1 (a constant value). Then we can
obtain a large-margin bound of E(r):

Theorem 5 (large-margin bound for thresholded ensemble rankers). Consider a
negation complete5 setH, which contains only binary classifiers h : X → {−1,+1}
and is of VC-dimension d. Assume that δ > 0, and N > d + K − 1 = dE. Then,
for an ordinal ranking problem with the absolute cost vectors, with probability at
least 1− δ over the random choice of the training set S, every thresholded ensemble
ranker defined from equation 5.1 satisfies the following bound for all ) > 0:

E(r) ≤ Ein(r,)) + O



 K√
N

(
dE log2(N/dE )

)2 + log
1
δ

)1/2


 .

Proof. See appendix A.

The bound above can be generalized when H contains confidence func-
tions rather than binary classifiers using another existing result (Schapire
et al., 1998, theorem 4) in the proof. The bound motivates us to design the

5H is negation complete if and only if h ∈ H⇐⇒ (−h) ∈ H, where (−h)(x) = −(h(x))
for all x.
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ORBoost-All algorithm (Lin & Li, 2006), which can be viewed as coupling
the reduction framework with a variant of the popular AdaBoost algorithm
(Schapire et al., 1998; Schapire & Singer, 1999). ORBoost-All provably mini-
mizes the term Ein(r,)) exponentially fast if the underlying base learner is
strong enough. The proof can be made by applying the training error theo-
rem of AdaBoost (Schapire et al., 1998, theorem 5) on SE, another application
of the reduction framework.

5.3 SVM for Ordinal Ranking. SVM is a popular binary classification
algorithm (Vapnik, 1995; Schölkopf & Smola, 2002). It maps the feature vec-
tor x to φ(x) in a possibly higher-dimensional space and implicitly computes
the inner products with a kernel function K(x, x′) = 〈φ(x), φ(x′)〉.

Using a similar set of notations for perceptions (see section 5.1), we
denote the parallel hyperplanes in the higher-dimensional space by (v,−θ)

with an additional bias term b. Now, if we encode (x, k) with the matrix
M = γ · IK−1, we can then compute the inner products of the extended
examples (X(k),Y(k)) by

KE ((x, k), (x′, k′)) = 〈(φ(x), γ 1k), (φ(x′), γ 1k′ )
′〉=K(x, x′)+γ 2[[k=k′]].

With the reduction framework, we can plug in KE and O
(
NK

)
extended

training examples into the standard SVM to obtain a hyperplane ranker,

r(x) = 1 +
K−1∑

k=1

[[〈v, φ(x)〉 + b− θk > 0]],

based on an optimal solution to

min
v,b,θk,ξ

(k)
n

1
2
〈v, v〉 + 1

2γ 2 〈θ, θ〉 + κ

N∑

n=1

K−1∑

k=1

W (k)
n ξ (k)

n , (5.2)

subject to Y(k)
n (〈v, φ(x)〉 + b− θk) ≥ 1− ξ (k)

n ,

ξ (k)
n ≥ 0, for n = 1, . . . , N, and k = 1, . . . , K − 1.

If θ1 ≤ θ2 ≤ · · · ≤ θK−1 or if the cost vectors considered are convex,
theorems 2 and 3 can guarantee the expected out-of-sample cost of r(x)

based on the expected out-of-sample cost of the binary classifier:

g(x, k) = sign(〈v, φ(x)〉 + b− θk).

The oSVM approach of Cardoso and da Costa (2007) is an instance of
equation 5.2 with the absolute cost vectors, in which all W (k)

n are equal.
The SVOR-IMC approach of Chu & Keerthi (2007) can also be thought of as



Reduction from Ordinal Ranking to Binary Classification 1351

a modified instance of the formulation with the absolute cost vectors, except
that the 1

2γ 2 〈θ, θ〉 term is dropped. Their SVOR-EXC approach is another
modified instance using the classification cost vectors plus an additional
constraint to guarantee that θ1 ≤ θ2 ≤ · · · ≤ θK−1.

Our proposed algorithm, reduction-to-SVM (RED-SVM) unifies the
above algorithms under a generic formulation, equation 5.2, with the cost-
sensitive reduction framework. RED-SVM can deal with any convex cost
vectors by changing W (k)

n and feeding the weighted binary examples to a
standard SVM solver, regardless of whether θ1 ≤ θ2 ≤ · · · ≤ θK−1. Interest-
ingly, our earlier work (Li & Lin, 2007b) proved that the ordering property
always holds at the optimal SVM solution.

On the other hand, if the cost vectors are ordinal but not convex, solving
equation 5.2 is more complicated. We adopt a coordinate-descent procedure
that switches between optimizing (v, b) (using the standard SVM solver)
and optimizing θ under the constraints (a small quadratic programming
problem with an analytic solution) in the experiments.

Chu and Keerthi (2007) empirically found that SVOR-EXC performed
better in terms of the classification cost, and SVOR-IMC preceded in terms
of the absolute cost. They explain so by noting that SVOR-EXC minimizes
an in-sample loss function that upper-bounds the classification cost, while
SVOR-IMC minimizes a loss function that upper-bounds the absolute cost.
The explanation is echoed by the study of loss functions for ordinal ranking
(Rennie & Srebro, 2005; Dembczyński et al., 2008). The proposed reduc-
tion framework offers a more direct explanation than the loss-based one.
Because the binary SVM is designed to target for decent out-of-sample
binary classification error, reduction with the classification cost (SVOR-
EXC) targets for decent out-of-sample classification cost and reduction with
the absolute cost (SVOR-IMC) targets for decent out-of-sample absolute
cost.

Note that Chu and Keerthi (2007) spent a great deal of effort in designing
and implementing suitable optimizers for the modified formulation that
does not contain the 1

2γ 2 〈θ, θ〉 term. If we use the standard soft-margin
SVM instead when considering the convex cost vectors like the absolute
cost, we can directly and efficiently use the state-of-the-art SVM software to
deal with the ordinal ranking problem. The formulation of Chu and Keerthi
(2007) can be approximated by using a large γ . As we shall see in section 6,
even a simple assignment of γ = 1 performs similarly to the approaches of
Chu and Keerthi (2007) in practice.

In addition to the algorithmic benefits, the reduction framework can be
used theoretically for SVM. For instance, we demonstrated how we can
derive a novel large-margin absolute-cost bound of thresholded ensemble
rankers in section 5.2. Next, we extend the bounds to SVM-based formula-
tions and to a wider class of cost functions. While Shashua and Levin (2003)
derived one such bound with a specific cost function, their bound is not data
dependent and hence does not fully explain the out-of-sample performance
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of SVM-based rankers in reality (Bartlett & Shawe-Taylor, 1998). Our bound,
on the other hand, is not only more general but also data dependent:

Theorem 6 (large-margin bound for SVM-based rankers). Consider a collection

F = { f (x, k) = 〈v, φ(x)〉+b−θk : ‖v‖2 +‖b−θ‖2 ≤ 1, ‖φ(x)‖2 +1≤R2}.

Let Bmax = maxc∈C (c[1] + c[k]), Bmin = minc∈C (c[1] + c[k]), and β = Bmax/

Bmin. If θ1 ≤ θ2 ≤ · · · ≤ θK−1, or if every c is convex, for any ) > 0, with prob-
ability at least 1− δ, and for every f in F , the associated ranker rg(x) with
g(·) = sign( f (·)) satisfies

E(rg)≤
β

N · (K − 1)

N∑

n=1

K−1∑

k=1

W (k)
n

[[
Y(k)

n f (X (k)
n ) ≤ )

]]

+ O

(
logN√

N
,

R
)

,

√
log

1
δ

)

.

Proof. See appendix B.

Thus, if the binary classifier g achieves large margins (≥)) on most of
the extended training examples (X(k)

n ,Y(k)
n ,W (k)

n ), E(rg) is guaranteed to be
small.

Theorem 6, which is based on the proposed reduction framework, is quite
general and applies to a wide class of cost functions. In the special case of
the absolute cost function (which results in W (k)

n = 1 and β = 1), theorem 6
can be simplified to an order-wise comparable bound that has been inde-
pendently derived by Agarwal (2008) using a similar proving technique.

Note that we can also choose to encode (x, k) differently. For instance,
define

K̄E ((x, k), (x′, k′)) = [[k = k′]]〈φk(x), φk(x
′)〉 = [[k = k′]]Kk(x, x′).

That is, different kernels can be used for different binary classification
sub-problems. Recently Chang, Chen, and Hung (2011) explored such a
possibility and proposed the ordinal hyperplanes ranker that achieved
promising performance on the age-estimation application. The ordinal
hyperplanes ranker can be theoretically justified through the reduction
framework using the choice of encoding above. The promising performance
suggests the possibility of application opportunities within the proposed
general framework.

5.4 Summary. We have briefly introduced several ordinal ranking
algorithms that can be explained as special instances of the reduction
framework. We have also derived new cost bounds of the ordinal ranking
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Table 3: Instances of the Reduction Framework.

Ordinal ranking Cost Binary Classification algorithm

PRank Absolute Modified perceptron rule
(Crammer & Singer, 2005)

Kernel ranking Classification Modified hard-margin SVM
(Rajaram et al., 2003)

SVOR-EXC Classification Modified soft-margin SVM
SVOR-IMC Absolute

(Chu & Keerthi, 2007)
ORBoost-LR Classification Modified AdaBoost
ORBoost-All Absolute

(Lin & Li, 2006)
oSVM Absolute Standard soft-margin SVM
oNN Absolute Standard neural network

(Cardoso & da Costa, 2007)
RED-C4.5 Any convex Standard C4.5
RED-AdaBoost Any convex Standard AdaBoost
RED-SVM Any convex Standard soft-margin SVM
RED-SVM Any V-shaped Modified soft-margin SVM

(Li & Lin, 2007b; Lin, 2008)
AdaBoost.OR Any V-shaped Standard AdaBoost coupled

(Lin & Li, 2009) with special base learners
CLM Implicitly depends on Maximum likelihood on

(Agresti, 2002) assumed distribution assumed distribution

algorithms via reduction. There are some other existing algorithms that
can be viewed as special instances of the reduction framework, as listed in
Table 3.

Note that the thresholded linear model is commonly used in statistics
for ordinal ranking (Agresti, 2002) and is called the cumulative link model
(CLM), which assumes

(
〈v, x〉 − θk

)
to link to the cumulative probability

P
(
y ≥ k|x

)
. CLM can then be coupled with some more assumptions on

the underlying probability distribution to reach a maximum likelihood
solution. The proposed framework treats the thresholded linear model
(CLM) as a rank-monotonic special case of the general prediction rule,
equation 3.1. CLM and the proposed framework take very different views
on modeling the ordinal ranking problem and hence reach different results.
In particular, CLM focuses on deriving from the assumed underlying dis-
tribution appropriately, while the proposed framework focuses on using
the given cost vectors appropriately.

6 Experiments

We validate the proposed reduction framework by performing experiments
with eight benchmark ordinal ranking data sets (Chu & Keerthi, 2007):
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Table 4: Test Absolute Cost of Ordinal Ranking Algorithms.

Data Reduction to: SVOR-IMC
Set C4.5 AdaBoost-St SVM-Perc Gaussian

pyr. 1.565 ± 0.072 1.360 ± 0.054 1.304 ± 0.040 1.294 ± 0.046
mac. 0.987 ± 0.024∗ 0.875 ± 0.017∗ 0.842 ± 0.022∗ 0.990 ± 0.026
bos. 0.950 ± 0.016 0.846 ± 0.015 0.732 ± 0.013∗ 0.747 ± 0.011
aba. 1.560 ± 0.006 1.458 ± 0.005 1.383 ± 0.004 1.361 ± 0.003
ban. 1.700 ± 0.005 1.481 ± 0.002 1.404 ± 0.002 1.393 ± 0.002
com. 0.701 ± 0.003 0.604 ± 0.002 0.565 ± 0.002∗ 0.596 ± 0.002
cal. 0.974 ± 0.004∗ 0.991 ± 0.003∗ 0.940 ± 0.001∗ 1.008 ± 0.001
cen. 1.263 ± 0.003 1.210 ± 0.001 1.143 ± 0.002∗ 1.205 ± 0.002

Notes: Those within one standard error of the lowest one are marked in bold. Those better
than SVOR-IMC are marked with an asterisk.

pyrimdines, machine, boston, abalone, bank, computer, california, census.
The data sets were constructed by quantizing some metric regression data
sets with K = 10. We use the same training-to-test ratio and also average
the results over 20 trials. Thus, we can fairly compare our results with those
of SVOR-IMC and SVOR-EXC (Chu & Keerthi, 2007), the state-of-the-art
algorithms.

6.1 The Absolute Cost. We first test the reduction framework with the
absolute cost vectors, M = γ · IK−1 with γ = 1, and three different binary
classification algorithms. The first binary algorithm is the C4.5 decision
tree (Quinlan, 1986).6 The second is AdaBoost-St, which uses AdaBoost
(Schapire et al., 1998) to aggregate 500 decision stumps. The third one is
SVM-Perc, which is SVM (Vapnik, 1995) with the perceptron kernel (Lin
& Li, 2008). The parameter κ of the soft-margin SVM is determined by a
five-fold cross-validation procedure with log2 κ ∈ {−17,−15, . . . , 3} (Hsu,
Chang, & Lin, 2003), and LIBSVM (Chang & Lin, 2001) is adopted as the
solver.

We list the mean and the standard error of the test absolute costs in
Table 4, with entries within one standard error of the lowest one marked
in bold.7 With the proposed reduction framework, all three binary learn-
ing algorithms, even the simplest C4.5 decision tree, could be better than
SVOR-IMC with the gaussian kernel on some of the data sets. The re-
sults demonstrate that all the algorithms can achieve decent out-of-sample

6C4.5 can directly take the extended input vector (x, k) without encoding. We choose
to still encode (x, k) by the matrix M = γ · IK−1 to make a simple and fair comparison
with the other two algorithms that need the encoding.

7Note that the results from Chu and Keerthi (2007) include the standard deviation;
here we compute the standard error instead.
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Table 5: Test Absolute Cost of SVM-Based Ordinal Ranking Algorithms.

Data RED-SVM RED-SVM SVOR-IMC SVOR-IMC
Set Perceptron Gaussian Perceptron Gaussian

pyr. 1.304 ± 0.040 1.277 ± 0.037 1.315 ± 0.039 1.294 ± 0.046
mac. 0.842 ± 0.022 0.914 ± 0.026 0.814 ± 0.019 0.990 ± 0.026
bos. 0.732 ± 0.013 0.752 ± 0.015 0.729 ± 0.013 0.747 ± 0.011
aba. 1.383 ± 0.004 1.361 ± 0.003 1.386 ± 0.005 1.361 ± 0.003
ban. 1.404 ± 0.002 1.395 ± 0.002 1.404 ± 0.002 1.393 ± 0.002
com. 0.565 ± 0.002 0.588 ± 0.001 0.565 ± 0.002 0.596 ± 0.002
cal. 0.940 ± 0.001 0.945 ± 0.001 0.939 ± 0.001 1.008 ± 0.001
cen. 1.143 ± 0.002 1.167 ± 0.002 1.143 ± 0.002 1.205 ± 0.002
car 0.061 ± 0.003 0.050 ± 0.002 0.064 ± 0.003 0.051 ± 0.002
red. 0.357 ± 0.005 0.425 ± 0.004 0.357 ± 0.005 0.429 ± 0.004

Note: Those within one standard error of the lowest one are marked in bold.

performance. Among the three algorithms, reduction to SVM-Perc is usu-
ally better than the other two.

Note, however, that Chu and Keerthi (2007) use the gaussian kernel
rather than the perceptron kernel in their experiments. For a fair compar-
ison, we implement SVOR-IMC with the perceptron kernel by modifying
LIBSVM (Chang & Lin, 2001) and conduct experiments with the parame-
ter selection procedure introduced earlier in this section. We also couple
RED-SVM with the gaussian kernel and the parameter selection procedure
of SVOR-IMC (Chu & Keerthi, 2007).

In addition, to examine the performance of different SVM-based ap-
proaches on real-world ordinal ranking problems, we include two more
data sets: car and the red wine subset (redwine ) of the wine quality set from
the UCI machine learning repository (Hettich, Blake, & Merz, 1998). The
car problem aims at ranking cars according four conditions: {unacceptable,
acceptable, good, very good }; the redwine problem ranks red wine sam-
ples to 11 different levels between 0 and 10, while the actual data contain
only samples with ranks between 3 and 8. We randomly split 75% of the
examples for training and 25% for testing, and conduct 20 runs of such a
random split. The training input vectors are first scaled to [0, 1] linearly,
and the test input vectors are scaled accordingly.

Table 5 lists the results, which suggest that direct reduction to the stan-
dard SVM (RED-SVM) performs similar to SVOR-IMC when using the same
kernel. RED-SVM nevertheless is much easier to implement. In addition,
RED-SVM is significantly faster than SVOR-IMC in training. The speed dif-
ference is illustrated in Figure 2 using the four largest data sets. We make
a fair comparison by implementing both algorithms under the same code
and data structure of LIBSVM. The CPU time was gathered on a 1.7 G Dual
Intel Xeon machine with 1 GB RAM. After a careful comparison, we find
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Figure 2: Training time (including automatic parameter selection) of SVM-
based ordinal ranking algorithms with the perceptron kernel.

that the main cause for the time difference is the speed-up of heuristics.
While, to the best of our knowledge, not much has been done to improve
the original SVOR-IMC algorithm, plenty of heuristics, such as shrinking
and advanced working selection in LIBSVM, can be seamlessly adopted by
RED-SVM because of the reduction framework. The newly designed SVOR-
IMC does not enjoy the same advantage. The difference demonstrates an
important property of the reduction framework: any improvements to the
binary classification approaches can be immediately inherited by reduction-
based ordinal ranking algorithms.

6.2 The Classification Cost. We also test the reduction framework with
the classification cost vectors. Because the classification cost vectors are V-
shaped but not convex, the reduction framework guarantees to work only
when the obtained binary classifier is rank-monotonic. Such a condition is
not easily met by C4.5 or AdaBoost. Thus, we test the reduction framework
only using a variant of RED-SVM that respects the constraint θ1 ≤ θ2 ≤ · · · ≤
θK−1 (see section 5.3), and compare the variant with SVOR-EXC.

We list the mean and the standard error of the test classification costs in
Table 6, with entries within one standard error of the lowest one marked in
bold. RED-SVM with the perceptron kernel is better than RED-SVM with
the gaussian kernel on most of the benchmark data sets and redwine, while
RED-SVM with the gaussian kernel is better on car. RED-SVM with the
gaussian kernel is in term slightly better than SVOR-EXC with the gaussian
kernel on most of the data sets. The results again justify the usefulness of
the proposed reduction framework.8

8We do not have the results of SVOR-EXC with the perceptron kernel because it is
difficult to use LIBSVM to implement and compare SVOR-EXC fairly with RED-SVM.
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Table 6: Test Classification Cost of SVM-Based Ordinal Ranking Algorithms.

Data RED-SVM RED-SVM SVOR-EXC
Set Perceptron Gaussian Gaussian

pyr. 0.762 ± 0.021 0.787 ± 0.021 0.752 ± 0.014
mac. 0.572 ± 0.013 0.637 ± 0.016 0.661 ± 0.012
bos. 0.541 ± 0.009 0.565 ± 0.008 0.569 ± 0.006
aba. 0.721 ± 0.002 0.708 ± 0.002 0.736 ± 0.002
ban. 0.751 ± 0.001 0.746 ± 0.001 0.744 ± 0.001
com. 0.451 ± 0.002 0.461 ± 0.001 0.462 ± 0.001
cal. 0.613 ± 0.001 0.612 ± 0.001 0.640 ± 0.001
cen. 0.688 ± 0.001 0.686 ± 0.001 0.699 ± 0.000
car 0.064 ± 0.003 0.050 ± 0.002 0.054 ± 0.002
red. 0.327 ± 0.005 0.392 ± 0.004 0.403 ± 0.004

Note: Those within one standard error of the lowest one are marked in bold.

6.3 Other Costs. Next we use different cost vectors for evaluation to
demonstrate the power of the proposed cost-sensitive ordinal ranking
framework. We consider two kinds of cost vectors. First, we define the
asymmetric cost vector for rank " as

c(")[k] =






2k−" if
(

"− K + 1
2

)
("− k) > 0

1
2
|k− "| otherwise

.

That is, for K = 10, an asymmetric cost vector for (x, 3) would be

c(3) = [1, 0.5, 0, 1, 2, 4, 8, 16, 32, 64].

The asymmetric cost vector combines two different cost vectors. For in-
stance, when " < K+1

2 , the asymmetric cost vector includes a fast-growing
cost vector when k > " and a slow-growing one when k ≤ ". A potential use
of the asymmetric cost vector is to tolerate the cases when k is on the “same
side” of " while penalizing the cases when k is far from ".

Another cost vector that we consider is called two-gaussian (2Gauss),
which combines two (reverted) gaussian functions. The formal definition
of the 2Gauss cost is

c(")[k] =
(

1− exp
(
−1

8
(k− ")2

))
·





5 if

(
"− K + 1

2

)
("− k) > 0

1 otherwise
.



1358 H.-T. Lin and L. Li

Table 7: Test Asymmetric Cost of SVM-Based Ordinal Ranking Algorithms.

Data RED-SVM
Set Asymmetric Absolute Classification SVOR-IMC SVOR-EXC

pyr. 1.716 ± 0.182 1.593 ± 0.118 4.522 ± 1.505 1.665 ± 0.140 2.309 ± 0.321
mac. 0.873 ± 0.056 0.820 ± 0.034 0.814 ± 0.051 0.898 ± 0.046 1.011 ± 0.062
bos. 0.762 ± 0.038 0.759 ± 0.030 0.750 ± 0.029 0.784 ± 0.049 0.822 ± 0.063
aba. 1.992 ± 0.022 1.995 ± 0.018 2.700 ± 0.035 1.952 ± 0.015 2.580 ± 0.024
ban. 1.937 ± 0.009 1.923 ± 0.009 2.558 ± 0.032 1.948 ± 0.010 2.490 ± 0.013
com. 0.492 ± 0.003 0.508 ± 0.002 0.507 ± 0.003 0.533 ± 0.002 0.535 ± 0.003
cal. 1.183 ± 0.007 1.141 ± 0.005 1.223 ± 0.008 1.208 ± 0.007 1.318 ± 0.009
cen. 1.587 ± 0.010 1.552 ± 0.007 1.778 ± 0.019 1.746 ± 0.019 2.023 ± 0.021

Note: Those within one standard error of the lowest one are marked in bold.

Note that the 2Gauss cost vectors are V-shaped but not convex. They also
penalize the two sides of cases differently.

Table 7 lists the mean and standard error of the test asymmetric costs.
For RED-SVM, we consider three kinds of costs for training: asymmetric,
absolute, and classification. We then compare the three variants of RED-
SVM with the state-of-the-art SVOR-IMC and SVOR-EXC. First, RED-SVM
with the asymmetric cost and RED-SVM with the absolute cost generally
perform better than SVOR-IMC or SVOR-EXC, which demonstrates that the
proposed cost-sensitive framework could achieve decent test performance
in a cost-sensitive setting.

The classification cost vectors are very different from the asymmetric
ones, and thus RED-SVM with the classification cost cannot perform well
when evaluated with the asymmetric cost vectors. The absolute cost vectors
are closer to the asymmetric ones. In fact, Table 7 suggests that RED-SVM
with the absolute cost is often better than RED-SVM with the asymmetric
cost. Thus, when evaluating with convex cost vectors like the asymmetric
ones, training with the absolute cost vectors could be a useful firsthand
choice.

Table 8 lists the mean and standard error of the test 2Gauss costs. For
RED-SVM, we also consider three kinds of costs during training: 2Gauss,
absolute, and classification. Note that RED-SVM with the 2Gauss cost is
not only better than the state-of-the-art SVOR-IMC and SVOR-EXC but
also better than other RED-SVM variants. One possible explanation is that
RED-SVM with the absolute cost cannot perform well because the abso-
lute cost is convex while 2Gauss is not; RED-SVM with the classification
cost also cannot perform well because the classification cost is symmetric
on both sides of the desired label " while 2Gauss is not. The results
justify the importance of the proposed cost-sensitive ordinal ranking
framework.
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Table 8: Test 2Gauss Cost of SVM-Based Ordinal Ranking Algorithms.

Data RED-SVM
Set 2Gauss Absolute Classification SVOR-IMC SVOR-EXC

pyr. 0.760 ± 0.055 0.961 ± 0.040 1.025 ± 0.071 0.930 ± 0.047 0.932 ± 0.047
mac. 0.456 ± 0.019 0.505 ± 0.019 0.466 ± 0.020 0.552 ± 0.024 0.540 ± 0.030
bos. 0.383 ± 0.015 0.434 ± 0.013 0.435 ± 0.013 0.434 ± 0.014 0.425 ± 0.012
aba. 0.935 ± 0.006 1.032 ± 0.004 0.943 ± 0.005 1.006 ± 0.004 0.936 ± 0.005
ban. 0.912 ± 0.003 1.069 ± 0.003 1.015 ± 0.004 1.051 ± 0.003 0.997 ± 0.003
com. 0.227 ± 0.001 0.279 ± 0.002 0.263 ± 0.002 0.287 ± 0.001 0.274 ± 0.002
cal. 0.542 ± 0.002 0.607 ± 0.001 0.577 ± 0.003 0.602 ± 0.002 0.578 ± 0.002
cen. 0.713 ± 0.001 0.786 ± 0.002 0.737 ± 0.002 0.799 ± 0.002 0.765 ± 0.003

Note: Those within one standard error of the lowest one are marked in bold.

6.4 Improving NDCG with Cost-Sensitive Ordinal Ranking. We
demonstrate another useful characteristic of cost-sensitive ordinal ranking
by designing a cost vector that could help improve the normalized dis-
counted cumulative gain (NDCG), a criterion commonly used in listwise
ranking (Liu, 2009). The design uses a bound from the McRank work of Li
et al. (2008), who showed that for any set of test input vectors {x′m}M

m=1 with
ideal ranks ym,

1−NDCG ≤ const ·

√√√√
M∑

m=1

c(ym )r(x′m), where c(")[k] = (2" − 2k)2.

(6.1)

Nevertheless, the original McRank algorithm was not designed with the
bound above, but was derived by replacing c with (2K − 1)2 times the
classification cost—a much looser upper bound. Next we examine whether
we can use the tighter cost vector in equation 6.1 to achieve better (higher)
NDCG performance.

We transform the benchmark data sets to listwise ranking by randomly
generating 10,000 subsets of size 10. Then, we evaluate NDCG at the 10th
position for each subset and report the average. Note that the original
McRank algorithm (Li et al., 2008) is very similar to reduction with the
absolute cost, with a possibly weaker underlying learner (boosting tree) and
slightly different rule of converting g to rg.9 Thus, in addition to the ndcg
cost, equation 6.1, we also couple the absolute cost (similar to the actual

9Although McRank is designed from the classification cost, a closer inspection from the
reduction perspective reveals that the algorithm can be interpreted better by the absolute
cost.
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Table 9: Test NDCG of Ordinal Ranking Algorithms.

Data RED-SVM
Set ndcg Absolute Classification SVOR-IMC SVOR-EXC

pyr. 0.924 ± 0.008 0.934 ± 0.008 0.917 ± 0.011 0.933 ± 0.008 0.922 ± 0.010
mac. 0.973 ± 0.002 0.973 ± 0.002 0.976 ± 0.001 0.961 ± 0.003 0.956 ± 0.004
bos. 0.958 ± 0.002 0.957 ± 0.002 0.957 ± 0.002 0.956 ± 0.003 0.953 ± 0.003
aba. 0.872 ± 0.001 0.865 ± 0.001 0.869 ± 0.002 0.868 ± 0.001 0.864 ± 0.001
ban. 0.902 ± 0.000 0.879 ± 0.000 0.881 ± 0.001 0.879 ± 0.000 0.880 ± 0.001
com. 0.961 ± 0.000 0.961 ± 0.000 0.962 ± 0.000 0.959 ± 0.000 0.959 ± 0.000
cal. 0.934 ± 0.000 0.931 ± 0.000 0.932 ± 0.000 0.930 ± 0.000 0.931 ± 0.000
cen. 0.929 ± 0.000 0.919 ± 0.000 0.922 ± 0.001 0.914 ± 0.000 0.917 ± 0.001

Note: Those within one standard error of the highest one are marked in bold.

McRank algorithm) and the classification cost (similar to the theoretical
backbone of McRank) with RED-SVM for comparison. We then compare the
three variants with the state-of-the-art SVOR-IMC and SVOR-EXC. Table 9
lists the mean and standard error of the test NDCG on the eight data sets.
We see that RED-SVM with the ndcg cost often achieves better NDCG
performance than the other two variants of RED-SVM, including RED-
SVM with the classification cost. Also, RED-SVM with the ndcg cost is
often better than SVOR-IMC and SVOR-EXC. The results demonstrate the
potential of cost-sensitive ordinal ranking on improving listwise ranking,
which echoes the recent finding of a related work (Tsai et al., 2010) toward
the Yahoo! Learning to Rank Challenge.

7 Conclusion

We presented the reduction framework from ordinal ranking to binary
classification. The framework is accompanied by the flexibility to work
with any reasonable cost vectors and any binary classifiers. We showed
the theoretical guarantees of the framework, including the cost bound, the
regret bound, and the equivalence between ordinal ranking and binary
classification.

We also demonstrated the advantages of the framework in designing
new algorithms, explaining existing ones, and deriving new generalization
bounds for ordinal ranking. Furthermore, the usefulness of the framework
was empirically validated by comparing the newly proposed algorithms
constructed from the framework with the state-of-the-art SVOR-IMC and
SVOR-EXC algorithms. In particular, the proposed cost-sensitive ordinal
ranking algorithms were observed to not only improve over SVOR-IMC
and SVOR-EXC when using common evaluation criteria like the absolute
or the classification costs, but also superior over SVOR-IMC and SVOR-EXC



Reduction from Ordinal Ranking to Binary Classification 1361

when evaluated with other costs, as well as the NDCG criteria for listwise
ranking.

Appendix A: Proof of Theorem 5

Consider the extended training set

SE =
{(

X(k)
n ,Y(k)

n ,W (k)
n = K − 1

)
: 1 ≤ n ≤ N, 1 ≤ k ≤ K − 1

}

with N(K − 1) elements. If we directly draw from Pb, each element is a
possible outcome. Note, however, that these elements are not all indepen-
dent outcomes. For example, (X(1)

n ,Y(1)
n ,W (1)

n ) and (X(2)
n ,Y(2)

n ,W (2)
n ) are de-

pendent because they sprout from the same (xn, yn, cn). Thus, we cannot
directly use the whole SE as a set of independent outcomes from Pb.

Nevertheless, some subsets of SE contain independent outcomes fromPb.
One way to extract such a subset is to choose one kn uniformly and indepen-
dently from 1, . . . , K − 1 for each training example (xn, yn, cn). The resulting
subset would be

SI =
{(

X
(kn )
n ,Y

(kn )
n ,W

(kn )
n = K − 1

)}N
n=1.

We use a simple encoding scheme of M = IK−1 to represent X(k) = (x, k).
Consider a binary classification ensemble g(X(k)) defined by a linear com-
bination of the functions in

G =
{
h̃ : h̃

(
X(k)

)
= h(x), h ∈ H

}
∪ {s"}K−1

"=1 . (A.1)

Here s"(X
(k)) is a decision stump on dimension d + " (Holte, 1993). If the

output space of s" is {−1, 1}, it is not hard to show that the VC-dimension
of G is no more than dE = d + K − 1. Since the proof of Schapire et al. (1998,
theorem 2), which will be applied on G later, requires only a combinatorial
counting bound on the possible outputs of s", we let

s"

(
X(k)

)
= −

sign
(
X(k)[d + "]− 0.5 + 1

)

2
= −[[k = "]] ∈ {−1, 0}

to get a cosmetically cleaner proof. Some different versions of the bound can
be obtained by considering s"(X

(k)) ∈ {−1, 1} or by bounding the number
of possible outputs of s" directly by a tighter term.
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Without loss of generality, we normalize r such that
∑T

t=1

∣∣αt

∣∣ +
∑K−1

"=1

∣∣θ"

∣∣
is 1. Then consider an ensemble function,

g(X(k)) = HT (x)− θk =
T∑

t=1

αt h̃t
(
X(k)

)
+

K−1∑

k=1

θ"s"

(
X(k)

)
.

For every (X(k),Y(k),W (k)) derived from the tuple (x, y, k), the term (Y(k) ·
g(X(k))) = ρ̂k(x, y). Furthermore, we can easily see that r = rg. Thus, by
theorem 2,

E(r) = E(rg) ≤ Eb(g). (A.2)

Because SI contains N independent outcomes fromPb(X,Y,W ), the large-
margin theorem (Schapire et al., 1998, theorem 2) states that with probability
at least 1− δ

2 over the choice of SI,

Eb(g) = E
(X,Y,W )∼Pb

W · [[Y += g(X)]]

≤ K − 1
N

N∑

n=1

[[
Y

(kn )
n · g

(
X

(kn )
n

)
≤ )

]]

+ O



 K√
N

(
dE log2(N/dE )

)2 + log
1
δ

)1/2


 . (A.3)

Define a Boolean random variable:

bn ≡
[[

Y
(kn )
n g

(
X

(kn )
n

)
≤ )

]]
=

[[
ρ̂kn

(xn, yn) ≤ )
]]
.

We see that bn comes with mean 1
K−1

∑K−1
k=1 [[ρ̂k(xn, yn) ≤ )]]. Using Ho-

effding’s (1963) inequality, when each bn is chosen independently, with
probability at least 1− δ

2 over the choice of bn,

1
N

N∑

n=1

bn ≤
1
N

N∑

n=1

1
K − 1

K−1∑

k=1

[[ρ̂k(xn, yn) ≤ )]] + O

(
1√
N

(
log

1
δ

)1/2
)

= 1
K − 1

Ein(r,)) + O

(
1√
N

(
log

1
δ

)1/2
)

. (A.4)

The desired result can be proved by combining equations A.2 to A.4 with a
union bound.
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Appendix B: Proof of Theorem 6

For every example (x, y, c), by the same derivation as theorem 2,

(K − 1) · c[r(x)]

≤
K−1∑

k=1

W (k)
[[

Y(k) f (X(k)) ≤ 0
]]

≤ (K − 1) ·
(
c[1] + c[k]

)

·
K−1∑

k=1

W (k)

(K − 1) ·
(
c [1] + c[k]

)
[[

Y(k) f
(
X(k)

)
≤ 0

]]
.

Note that

P(k) = W (k)

(K − 1) ·
(
c[1] + c[k]

)

sums to 1. Then, for each example (x, y, c) obtained from P(x, y, c), we
can randomly choose k according to P(k) and form an unweighted binary
example (X(k),Y(k)). The procedure above defines a probability distribution
Pu(X(k),Y(k)). Integrating over all (x, y, c), we get

E(r f )≤Bmax E
(X(k),Y(k) )∼Pu

[[
Y(k) f

(
X(k)

)
≤ 0

]]
.

When each kn is chosen independently according to P(k)
n , we can

generate N independent examples (X
(kn )
n ,Y

(kn )
n ) from Pu(X(k),Y(k)) and S.

Then, using a cost bound for SVM in binary classification (Bartlett &
Shawe-Taylor, 1998), with probability at least (1− δ

2 ) over the choice of

{(X(kn )
n ,Y

(kn )
n )}N

n=1,

E
(X(k),Y(k) )∼Pu

[[
Y(k) f (X(k)) ≤ 0

]]

≤ 1
N

N∑

n=1

[
[Y(kn )

n f
(
X

(kn )
n

)
≤ )]

]
+ O

(
log N√

N
,

R
)

,

√
log

1
δ

)

.

Using the same technique as the proof of theorem 5 with bn =
[[Y(kn )

n f (X
(kn )
n ) ≤ )]] and a union bound, with probability > 1− δ,

E(r f )≤
Bmax

N

N∑

n=1

[[
Y

(kn )
n f

(
X

(kn )
n

)
≤ )

]]
+ O

(
log N√

N
,

R
)

,

√
log

1
δ

)
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≤ Bmax

N

N∑

n=1

1
(K − 1) ·

(
cn[1] + cn[K]

)
K−1∑

k=1

W (k)
n ·

[[
Y(k)

n f
(
X(k)

n
)
≤ )

]]

+ O

(
log N√

N
,

R
)

,

√
log

1
δ

)

+ O

(
1√
N

,

√
log

1
δ

)
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)
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