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Abstract

We study the connections between conditional independence and causal relations
within the Settable Systems extension of the Pearl Causal Model. Our analysis clearly
distinguishes between causal notions and probabilistic notions and does not formally
rely on graphical representations. We provide definitions in terms of functional de-
pendence for direct, indirect, and total causality as well as for indirect causality via
and exclusive of a set of variables. We then provide necessary and sufficient causal
and probabilistic conditions for conditional dependence among random vectors of
interest in structural systems. We state and prove the conditional Reichenbach prin-
ciple of common cause, obtaining the classical Reichenbach principle as a corollary.
Finally, we relate our results to notions of graphical separation such as d-separation
and D-separation in the artificial intelligence and machine learning literature.
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1 Introduction

In the last two decades, graphical representations of probabilistic relations, and in particular

conditional independence relations (see e.g. Dawid, 1979, 1980), have been extensively
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studied in machine learning and statistics (e.g. Lauritzen and Spiegelhalter, 1988; Pearl,
1988, 2000; Lauritzen, Dawid, Larsen, and Leimer, 1990; Geiger, Verma, and Pearl, 1990;
Lauritzen and Richardson, 2002; Wermuth and Cox, 2004). A particularly fruitful approach
uses directed acyclic graphs (DAGs) to represent a collection of conditional independence
relations (e.g. Lauritzen et al., 1990; Geiger et al., 1990). DAGs are also widely used to
represent and even to define causal relations, as in Spirtes, Glymour, and Scheines (1993,
hereafter SGS) and the Pearl Causal Model (PCM) (Pearl, 2000, pp. 202-205).

The use of a DAG both to represent probabilistic relations among random variables on
the one hand and causal relations among variables on the other has been exploited to infer
interrelations between probabilistic and causal relations, leading to significant developments
in machine learning and causal inference (see e.g. SGS; Pearl, 1993, 1995, 2000; Shpitser
and Pearl, 2008). At the center of much of this interplay between association and causation
is Reichenbach’s (1956) “principle of common cause,” which states that if two variables are
associated (e.g., correlated) then either one “causes” the other or they both share a third
“common cause.” Although this principle has intuitive appeal and despite its venerated
status, its formal standing so far remains ambiguous (see e.g. Dawid, 2010a, p. 66).

Dawid (2002, 2010a, 2010b) warns that in order to represent causal concepts such as
“direct causal effect” using a DAG, these must be defined a priori “by other, necessarily
non-graphical, considerations not involving these terms” (Dawid, 2010, p. 66). The PCM
is a framework within which certain causal and probabilistic concepts have been defined
and represented by a DAG. However, Dawid (2002, 2010a, 2010b) argues that a clear sep-
aration of causal and probabilistic semantics and an explicit statement of the imposed
assumptions is needed to justify the simultaneous use of a DAG to appropriately represent
probabilistic and causal relations embodied in the PCM. Dawid (2002, 2010a, 2010b) ad-
vocates the use of “extended conditional independence” relations and their representations
using “influence diagrams” to achieve this. Similar concerns regarding the appropriateness
of the assumptions underlying DAGs are raised in Duvenaud, Eaton, Murphy, and Schmidt
(2010), leading them to adopt a “black box” view of causal models in which causality is
defined in functional terms but where causal models are evaluated in terms of their predic-
tive performance. Like Duvenaud et. al., we favor a function-based definition of causality,
although we concur with Pearl (2000, p. 61) that “fitness to data is an insufficient cri-
terion for validating causal theories,” as non-causal relations can easily deliver superior
predictions. We also completely agree with Dawid (2010a) that a rigorous treatment is
warranted that unambiguously distinguishes between notions of causality and of proba-

bilistic dependence and that also makes a clear separation between these notions and their



graphical representations (if any). Although Dawid (2002, 2010a, 2010b) presents a series
of instructive examples and discussions, these papers nevertheless do not put forward a
self-contained formal framework accomplishing this. Nor does this exist elsewhere.

A main goal of this paper, therefore, is to provide such a framework, by formally study-
ing the connections between conditional independence relations and causal relations within
the framework of settable systems proposed by White and Chalak (2009) (henceforth “WC”)
as an extension of the PCM. Rather than building on the properties of probabilistic DAGs,
we begin with definitions of causality based on functional dependence, defined within a
given settable system. From these naturally emerge graphical representations (directed
graphs and DAGs) that are helpful to heuristic understanding. While helpful for intuition,
graphs do not play a formal role in our analysis. We then study how the presence or absence
of causal relations in a given settable system give rise to specific independence and condi-
tional independence relations. We relate our results to criticisms and suggestions proposed
in Dawid (2002, 2010a, 2010b) to demonstrate how the settable system framework permits
addressing these, while preserving many of the appealing features of the PCM.

Our results thus shed light on two fundamental questions. First, what implications
for their joint probability distribution derive from knowledge of functionally defined causal
relationships between variables of interest? Conversely, what restrictions (if any) on the
possible functionally defined causal relationships holding between variables of interest follow
from knowledge of the probability distribution governing these variables? This contributes
to the understanding of empirical relationships by elucidating the linkage between causal
relations known or theorized to underlie a body of data and the joint probability distribution
of the data, especially as reflected in conditional independence relations.

This paper is organized as follows. In Section 2, we briefly discuss a number of related
strands of the literature that provide background and motivate several specific further con-
tributions of the present paper, e.g., our extension of prior notions of indirect causality and
our proof of the conditional Reichenbach principle of common cause. Section 3 provides
further motivation by illustrating certain problems and limitations, similar to those dis-
cussed in Dawid (2002, 2010a, 2010b), that arise when studying the connections between
probabilistic and causal relations using probabilistic DAGs, the PCM, and PCM DAGs.
For this, we use an example in which an expert advises an agent on an action influencing
an outcome of interest. Section 4 revisits this example, placing it in the settable systems
framework and showing how this overcomes limitations of the PCM discussed in Section 3.

Sections 5, 6, 7, and 8 formalize and extend Section 4’s material. Section 5 formally

introduces a version of WC’s settable systems conveniently suited to formulating rigorous



definitions, provided in Section 6, of direct causality based on functional dependence, as well
as notions of indirect causality via a set of variables and exclusive of a set of variables in
recursive systems. Sections 7 and 8 provide connections between causality and conditional
independence. Section 7 introduces and proves the conditional Reichenbach principle of
common cause. We then provide necessary and sufficient conditions for probabilistic condi-
tional dependence of certain vectors of random variables in recursive settable systems. The
traditional Reichenbach principle obtains as a corollary. In Section 8, we relate our results
to d-separation and D-separation (discussed in Geiger et. al., 1990), and we study proper-
ties of restricted settable systems analogous to Markovian and semi-Markovian PCMs. In
particular, we provide conditions sufficient for causal intuitions attributed to d—separation
or D—separation to hold in recursive settable systems. Section 9 concludes and discusses di-
rections for future research. Formal mathematical proofs are collected in the Mathematical

Appendix.

2 Background and Relation to the Literature

2.1 Probabilistic DAGs

An important contribution of the artificial intelligence literature is the introduction of
graphical criteria applicable to DAGs that characterize independence and conditional inde-
pendence relations among variables in “Bayesian Networks” or, more specifically, “directed
Markov fields.” In these DAGs, each node represents a random variable. For example, in
graph GG; we have 5 random variables X7, ..., X5. A DAG is said to represent a probability
distribution for these random variables when the joint density function exists and factorizes
as the product of the densities of each random variable conditional on its “parents” in the

graph. For example, in G; we have:

p(flfh T2,T3, T4, $5) = p1($1)P2($2)P3($3|$17 $2)P4($4|$2)p5($5|$4)7

where the left-hand term denotes the joint density and each right-hand term denotes the

density of one variable conditional on the value of its “parents.” Following Dawid (2002),



we refer to DAGs of this kind as “probabilistic DAGs.”

Graph 1 (Gy)

Lauritzen et. al. (1990, theorem 1) show that the joint density admits such a re-
cursive factorization if and only if the collection of conditional independence statements
that each variable is conditionally independent of its “non-descendants” given its “par-
ents” in the DAG holds. Lauritzen et. al. (1990) refer to the latter property as the
“directed local Markov property”; SGS (p. 54) refer to this as the “causal Markov prop-
erty”; and Pearl (2000, theorem 1.2.7) calls it the “parental Markov condition.” Using
Dawid’s (1979) notation L to denote independence, GG; implies, for example, that X; 1 X5
and X3 | X, | (X1, X3) for any distribution represented by Gj.

2.2 Attributing Causal Meaning to Probabilistic DAGs

A causal meaning is sometimes attributed to such DAGs. In particular, a directed arrow
from X5 to X3 in (&; is interpreted to mean that “X, is a direct cause of X3.” But there
is no formal basis whatsoever for such interpretations in probabilistic DAGs. As Dawid
(2002, p. 164) states, “there is absolutely nothing in the probabilistic semantics by which
such graphs are supposed to be interpreted that is relevant to such causal intuitions.”
Pearl (2000, definitions 3.2.1 and 4.5.1), however, provides definitions for “total” and
“direct” causal effects within the PCM, linking these concepts to the connectivity properties
of corresponding DAGs. Pearl (2001) and Avin, Shpitser, and Pearl (2005) similarly provide
definitions for "indirect" effects as well as “path-specific” effects. Related notions of direct,
indirect, and total effects have been proposed in Robins and Greenland (1992), SGS, Robins
(2003), Didelez, Dawid, and Geneletti (2006), and Geneletti (2007); see also Rubin (2004).
We resolve the apparent contradiction between the causal use of DAGs in the PCM and
Dawid’s cogent warnings by providing rigorous definitions of direct and indirect causality
based on functional dependence. These functional relations do not depend on graphs, but
they do lend themselves to convenient graphical representation. Our definitions extend pre-

vious notions of indirect causality to accommodate notions of causality via a set of variables
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and ezclusive of a set of variables in recursive systems. Although these extensions are of
interest in their own right, their larger significance is that they provide suitable foundations
for rigorously proving and extending Reichenbach’s (1956) “principle of common cause.”

Reichenbach’s principle is central to certain strands of the philosophy literature (e.g.,
Spohn, 1980; Hausman and Woodward, 1999; Cartwright, 2000) that examine the connec-
tions between causal structure and conditional independence relations. Reichenbach’s prin-
ciple states that if two variables are associated (e.g., correlated) then either one “causes” the
other or they both share a third “common cause.” For example, the assumption X; 1 X,
in (G; may be attributed to the lack of a common cause of X; and X5. Despite its intuitive
appeal and venerated status, this principle’s formal standing is nevertheless ambiguous (see
e.g. Dawid, 2010a, p. 66). Is it an axiom or a postulate, or is it a logical consequence of
assumptions as yet unformulated?

Another contribution of this paper is to provide a formal answer to this question. Specif-
ically, we show that Reichenbach’s principle follows as a logical consequence of the assump-
tions defining settable systems. In fact, Reichenbach’s principle follows as a corollary to a
more general result that we call the conditional Reichenbach principle of common cause.
This result leads to necessary and sufficient conditions for probabilistic conditional depen-
dence of certain vectors of random variables in settable systems. As immediate corollaries,
we obtain straightforward causal conditions sufficient to ensure or rule out independence

or conditional independence among random vectors in settable systems.

2.3 d-Separation

Using properties of conditional independence (e.g. Dawid, 1979; Studeny, 1993), one can
infer further conditional independence statements that hold among the variables repre-
sented in a probabilistic DAG. In particular, Geiger, et. al. (1990) (see also Verma and
Pearl, 1988; Geiger and Pearl, 1993; Pearl, 2000) provide a graphical criterion, called “d-
separation,” that can identify exactly the conditional independence relations implied by
a probabilistic DAG under the “graphoid” axioms'. Lauritzen et. al. (1990, proposition
3) provide a graphical criterion equivalent to d-separation and show that the implications
of these criteria when applied to a probabilistic DAG are equivalent to the directed local
Markov property (Lauritzen et. al., 1990, theorem 1).

For example, in probabilistic DAG G, one can inspect whether nodes X; and X; are
d-separated by a set of nodes W C {Xj,..., X5}/{X;, X;}. For this, let an (X;, X;)—trail

'In Geiger, et. al. (1990), the four graphoid axioms are properties of conditional independence relations
discussed, for example, in Dawid (1979).



in G be any sequence of arrows linking X; to X irrespective of their directionality. Then
W d—separates X; and X; in Gy if every (X;, X;)-trail in G; contains either (1) a node
W), € W that does not have converging arrows along the (X;, X;)-trail, or (2) a node Xj,
that has converging arrows along the (X, X,)-trail, such that neither Xj nor any of its
descendants are in W (Geiger et al., 1993; Pearl 2000, definition 1.2.3; see also Lauritzen
et. al., 1990 for an equivalent graphical criterion). For example, one can conclude from G
that X3 L X, | X5 since X3 and X, are d-separated by X», and that Xy | X5 | Xy since
X, d-separates Xy and X5.

2.4 Attributing Causal Meaning to d-Separation

Implications of d-separation have been ascribed causal intuition (see for e.g. Pearl, 2000,
p. 16-17). In example Gy, d-separation implies Xs L X5 | X4, which has been interpreted
to mean that conditioning on a variable X, that fully mediates the effect of a cause X5 on
a response X renders X, and X5 conditionally independent. Similarly, X3 1 X, | X5 has
been interpreted to mean that conditioning on the common cause X5 of the two effects X3
and X4 renders X3 and X, conditionally independent. Also, the fact that X; 1 X, | X3
is not implied by d-separation has been attributed to the notion that conditioning on a
common response X3 of causes X; and X, renders these conditionally dependent.

We emphasize that, consistent with Dawid’s warnings, there is no formal basis for such
causal interpretations in probabilistic DAGs. Our final contribution is to show that in
our settable systems framework, such causal statements are fully meaningful. That is,
causal statements motivated by graphical intuitions make sufficient sense that they can be
determined to be true or false. As we discuss, d-separation in probabilistic DAGs is neither
necessary nor sufficient for the presence or absence of specific causal effects. Nevertheless,
we describe certain restricted settable systems in which causal interpretations hold that are

similar to the causal intuitions derived from d-separation.

3 A Motivating Example

To motivate the formal results presented in the subsequent sections, we consider a simple
scenario where an expert e advises an agent a on an action that may influence an outcome
of interest to a. For example, e may be a physician recommending a medical treatment to

patient a, or e may be a financial expert recommending an investment plan to investor a.



3.1 A Probabilistic DAG

Consider the following simple probabilistic DAG involving variables Y/, Y5, and Yy denot-

ing? the advice of expert e, action of agent a, and outcome, respectively.

Graph 2 (G»)

Probabilistically, graph G5 shows that e’s advice is independent of the outcome given a’s
action, Y/° L Yy | Yy, This follows due to the lack of an arrow between Y® and Yy, implying

d-separation.

3.2 A Pearl Causal Model

A PCM (Pearl, 2000, definition 7.1.1) for this example assumes that each of the “endoge-
nous” variables (Y,° for advice, Y5 for action, and Yy for outcome), is determined as a
function of its “parents” and “background variables” that are “often unobservable” (Pearl,
2000, p. 203). For simplicity, let Uy, Uy, and Us be random background variables each
associated with the endogenous variables Y/°, Y5, and Y5 respectively as in Pearl (2000, p.

68), for example. In particular, suppose that

lec = gl(U1)7
Yéc = gQ(ch, UQ), and
Yy = g3(Yy, Us),

with g1, g2, and g3 denoting “potential response” functions. Observe that we assume that
Yy is not an explicit argument of the potential response function gs.

As discussed in WC, the PCM rules out any causal role for the background U’s, since
these are not subject to “counterfactual variation” (see Pearl 2000, definition 7.1.3). Since
g3 excludes Y} from its arguments, we assume that e’s advice does not “directly cause” the
outcome. Also implicit in the above PCM is the assumed exclusion of endogenous variables
other than Yy, Yy, and Yy. Dawid (2010b) argues for explicitly referencing the “causal
ambit,” that is, the set of variables which the subset of endogenous variables {Y{, Y5, Y5}
belongs to, in order to discuss notions such as unobserved “common cause,” etc.; we return
to this shortly.

2The superscript ““” denotes “canonical” variables arising from the “natural” (unmanipulated) opera-
tion of the system. This conforms with notation formally introduced below.
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3.3 d-Separation and Conditional Independence in PCM DAGs

How, if at all, can this PCM generate conditional independence relations among Y;°, Y5,
and Yy that coincide with those encoded by the probabilistic DAG G2? To answer this
question, suppose that background variables Uy, U, and Us corresponding to the advice, ac-
tion, and outcome are jointly independent. This assumption yields a “Markovian model,”
in which the jointly independent “arbitrary distributed random disturbances [...| repre-
sent independent background factors that the investigator chooses not to include in the
analysis.” (Pearl, 2000, pp. 68 - 69).

Now consider the PCM DAG associated with this Markovian model. In PCM DAGs,
arrows between endogenous variables denote “direct causal relations” (e.g. Pearl, 2000).
Thus, the assumption that e’s advice does not “directly cause” the outcome is represented
by a missing arrow from Y)° to Yy. Typically, only the endogenous variables Y, Yy, and
Yy are represented at the nodes of a Markovian PCM DAG (e.g. Pearl, 2000, chapters
3 and 5). This yields the PCM DAG depicted by G2 which is isomorphic (has identical
connectivity) to the probabilistic DAG also depicted by Gs.

Using this PCM structure and properties of conditional independence relations, it can
be shown® that Y* L Yy | Yy, as represented in probabilistic DAG Gs. In this case, the
PCM represented by the PCM DAG G4 generates conditional independence relations among
the endogenous variables Y,°, Y5, and Yy that coincide with the conditional independence
relations encoded via the d-separation criterion in probabilistic DAG G4 isomorphic to
PCM DAG Gs.

3.4 Conditional Independence without d-Separation

Suppose now that agent a fully complies with expert e’s advice. One way to represent this
is to exclude background variable U, from the arguments of g, so that Yy = go(Y)). In
this case, arguments similar to those in Section 3.3 give that outcome Yy is independent
of advice Y[ given action Yy. But now we also have that action Y5 is independent of
outcome Yy given advice Y, that is Yy L Yy | Y[, despite the fact that Yy and Yy
are not d-separated by Y;° in probabilistic DAG G,. Here, the PCM generates conditional
independence relations that are not encoded via d-separation in probabilistic DAG G,.
Because Yy is fully determined by Y[, Geiger, et. al. (1990) refer to Yy as a “deter-

3We refer to lemmas in Dawid (1979) in what follows. Since Y§ = g3(Yy,Us) we have that Y L
Y$|(Yy,Us). By mutual independence of the background variables and since Yy = ¢1(U1) and Yy =
92(91(U1),Uz), lemma 4.2(i) gives that (Y%, Yy) L Us and in particular that Yy* L Us|Yy by lemma 4.3.
The converse of lemma 4.3 then gives that Y° L (Us, Yy)|Yy. Last, lemma 4.2(i) ensures that Y° L Y|V



ministic node” and to YY) and Y5’ as “chance nodes.” Nevertheless, Y/°, Yy, and Y5 are all
random variables, and the distinction between deterministic and chance nodes is not im-
mediately readable from PCM DAG G5 because background variables are not represented
there. Rather, additional information regarding the nature of the dependence of the en-
dogenous variables on the background variables is needed in order to distinguish between
chance and deterministic nodes. Geiger, et. al. (1990) provide an alternative graphical
criterion called D-separation to infer conditional independence relations in a DAG that

modifies probabilistic DAG G5 to encode such distinctions at the nodes.

3.5 d-Separation without Conditional Independence

Now suppose that the background variables Uy, Us, and Us are not mutually independent.
Because we do not modify the causal relations among the endogenous variables, the arrows
linking endogenous variables in PCM DAG G5 remain unaltered. However, the arguments
from Section 3.3 to establish conditional independence of the advice and outcome given
the action are no longer valid and Yy £ Yy | Y5 may hold, despite the fact that Y,* and Yy
are d-separated by Yy in PCM DAG (5. One can choose a particular distribution for the
background variables and particular potential response functions to ensure the conditional
independence of the advice Y® and outcome Yy given the action Yy. Nevertheless, the
functions and underlying probability distribution needed for this are extremely special.

In the absence of such special conditions, Y £ Yy | Yy generally, so the PCM does
not generate conditional independence relations that are implied by d-separation in the
probabilistic DAG corresponding to the PCM DAG G5. Here, too, the PCM DAG must
be augmented with quite special structure to guard against incorrect inference based on
d-separation about probabilistic relations holding among the PCM’s endogenous variables.
To show dependence, the PCM DAG G5 is augmented with bidirected arcs between nodes
corresponding to endogenous variables whose background variables are not independent.

Since the PCM rules out “exogenous” causes, one way to accommodate these is to assign
certain background variables a causal status within the PCM so that they then become
endogenous. Indeed, to facilitate applying the d-separation criterion to PCM DAGs, a
bidirected arc linking two endogenous variables is often replaced in the PCM DAG by an
unobserved endogenous “common cause” of the two endogenous variables (see e.g. Pearl
2000, chapters 3 and 5). But this implies that to study the connections between conditional
independence relations and causal relations within the PCM framework, one must: (1)
specify the “causal ambit” discussed in Dawid (2010b); (2) specify which observables and

unobservables are endogenous; and, importantly, (3) assume independence or dependence
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relations among background variables that do not have a causal status.

The existence of these jointly independent background variables is a strong assump-
tion. Often, they do not emerge naturally from the system of interest; rather, they appear
artificial. As Dawid (2002, p. 183) observes, “when the additional variables are pure math-
ematical fictions, introduced merely so as to reproduce the desired probabilistic structure
of the domain variables, there seems absolutely no good reason to include them in the

model.”

4 Settable Systems Formulation

In this section, we place the example above within the settable system framework. This
permits a clear separation between causal and probabilistic semantics, thereby addressing
the difficulties arising for the PCM in connecting causal and probabilistic relations discussed
in Section 3.

A general model for our advice, action, and outcome scenario should represent an un-
certain environment in which a’s action may respond to a setting of e’s recommendation.
Throughout, all random variables are defined on a measurable space (2, F). We let the
space ) be sufficiently rich so that components of  := x%_,Q; = x3_Q, with each ; a
copy of the principal space €, underlie settings and responses, as we now discuss. A setting
of e’s recommendation is a random variable Z; : ; — S; with support S; C R. Because
agent a may or may not implement e’s recommendation, the model does not assume that
e’s recommendation entirely determines a’s action. A general way to capture this sort of

dependence is to express the response Y of a’s action by

Yo (w) := ra(wo, Z1(w1)),

where 75 is a real-valued measurable response function, and w := (wq, ..., ws) € Q represents
a “possibility,” with components w; determining the value of setting Z;, and wy, a “state of
nature,” determining the response value Y(w) given the setting value Z;(wq). The response
function ry can be determined by a governing principle, such as optimization. In this case,
it represents the action that is best for a in some sense given the recommendation setting
/1, and under uncertainty.

Similarly, a setting Zs : {29 — S, of a’s action and a setting Z; of e’s recommendation

may influence the response of a’s outcome, denoted Y3, so that

Y3(w) = r3(wo, Z1(w1), Za(ws)).
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Observe that unlike the PCM in Section 3.2, the setting Z, of a’s action need not coincide
with the response Y, of a’s action. In settable systems, these objects are distinct.

The PCM permits degenerate settings via submodels (Pearl, 2000, definition 7.1.2),
given a unique fixed point assumption (see WC); but it does not accommodate random
settings, such as Z5. In non-experimental situations, we may conceive of a setting Zs of a’s
action even if it is not implemented.

In settable systems, both the setting Z, and response Y3 refer to a’s action. Together,
they define the settable variable X5 : {0,1} x Q — S, for a’s action by

Xy(0,w) :=Ys(w) and As(l,w):= Za(w2), w €

Similarly, the outcome setting Z3 : {23 — S3 and response Y3 define the settable variable
X3 for a’s outcome given by X3(0,w) := Y3(w) and X3(1,w) := Z3(ws).

Observe that in this system, the expert’s recommendation is not influenced by set-
tings Zs in individual a’s action or Z3 in a’s outcome. Instead, the response Y; for e’s
recommendation is given by Yj(w) := 71(wg). This endows the settable variable for e’s
recommendation given by &;(0,w) := Y;(w) and &)(1,w) := Z;(w;) with the distinctive
feature that its response does not depend on any setting in the system other than its direct
dependence on wy. For this reason, we call X} a fundamental settable variable.

Last, it is useful to define the principal setting Zy as the identity mapping 7, : g —
Qo and the corresponding principal response Yy and principal settable variable X such
that Zy(wo) == Ap(1,w) = wg = Xp(0,w) := Yy(w). This obviates the need to introduce
“background variables,” as in the PCM, to induce randomness in the responses. Instead,
settable systems explicitly specify the dependence of the responses on other settings and
on elements of the principal space {2y, indexing “states of nature” (see also Heckerman
and Shachter, 1995). Nor can we dispense with this structure without dispensing with the
foundations needed to formalize stochastic behavior. Writing X' := {A&p, X1, X2, X3}, we
can represent this example as the settable system S := {(Q2, F), X'}.

In S, the responses Y; and Y5 of a’s action and outcome are determined separately,
as functions of all other system settings. Alternatively, we may consider what happens
when a’s action and outcome responses are jointly determined under uncertainty, given a
setting of e’s advice. To represent this, we partition the system’s n = 3 units into blocks.
Specifically, consider blocking together units 2 and 3, separately from a block including
just unit 1. This is represented by the partition I1 := {II;,1I5}, where II; = {1} and

I, = {2,3}. In this case, responses Yy and YJ! are jointly determined as

Y (w) := r{(Z](w1),w), for i € Iy,

3 (2
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with Z{! a setting of e’s advice under this particular partition. Thus, settings and response
I

functions r;" are partition-specific. This system contrasts with S, which is an elementary
partitioned settable system. In the elementary partition, each unit ¢ forms its own block
I1¢ = {i}. For the remainder of this example, we work with the elementary partition
IT1° = {II{,i = 1,2, 3} defining S = §° := {(Q, F), (II°, X°) }, where now the partition and
the partition dependence of the settable variables are made explicit.

An important feature of this particular system S¢ is the inherent ordering of the variables
such that settings of A; may determine responses of & only if ¢ < j. When this holds, we

say that the system is a recursive partitioned settable system.

4.1 Causality in Settable Systems

What does it mean for e’s recommendation &) to directly cause a’s action X5 in settable sys-
tem S? To formalize this notion, we first define an admissible intervention (zo, 21, 22, 23) —
(25,27, 23, 23) to (X, X1, Xe, As), to be two points (2o, 21, 29, 23) and (zg, 27, 23, 25) in the
admissible space Sy.3) C Qg X S X Sy X S3, the space of all jointly admissible setting values.
Underlying this intervention is a primary intervention w — w*, defined as two possibilities
w = (wp, w1, wa,ws) and w* = (w§, wi, ws, w}).

Often, we may hold constant all but one element in considering interventions, e.g.,
w — w*, where w* = (wy, Wi, wsy,ws), yielding setting values z; = Z;(wq) and 2] = Z;(w?)
of e’s recommendations in a state of nature zyp = wg. Due to the recursive structure,
any differences between (ws,ws3) and (w3, ws) are irrelevant. Thus, it suffices here just to
consider pairs of possibilities in Sp.;) € €y x S;. Generally, constraints on joint setting
values (29, 21) may imply that Sj.1) # Qo x Sy; otherwise Sy = Qo x Sy.

Causal relations in settable systems are defined as features of the response functions
over their domain. For example, we say that X; directly causes X5 in S if there exists an

admissible intervention (zg, z1) — (29, 27) such that ro(2q, 27) — 72(20, 21) # 0, and we write

X1 £>3 Xs. Otherwise, we say X does not directly cause Xy in S and write X 728 Xs.
We emphasize that this defines causal relations in terms of settable variables, rather
than in terms of arbitrary random variables or events. The latter have no necessary causal
structure beyond that arising from the fact that random variables are measurable functions
of some underlying w. In contrast, settable variables embody explicit structural relations
holding among the variables of the system. This further entails that causal relations are
always relative to a settable system, and, in particular, relative to the governing partition.

Similarly, we can formalize the notion of &) directly causing A3 in system S. Specifically,
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a setting Z; of e’s recommendation may directly influence a’s outcome Y3. For example, this
may represent a form of “placebo effect” in the physician/patient example. We say that X;
directly causes X3 in S if there exists an admissible intervention (2o, 21, 22) — (20, 27, 22)
to (Xp, X1, Ay) such that

r3(20, 21, 22) — r3(20, 21, 22) # 0,
and we then write X} £>5 X3. Otherwise, we say that X} does not directly cause X3 in

S, and we write A} 71‘; s 3. Below, we discuss the sense in which &) acts on X3 without
operating through any other system variable; in such cases we say that X} causes A3
exclusive of Xy in S, written &) Nz{g}g Xj3. These two concepts are closely related, but it
will be important to distinguish between them in what follows.

It can be useful to visually represent causal relations in S using a direct causality graph.
This consists of a collection of nodes corresponding to settable variables and a collection
of directed arrows between nodes. A directed arrow links one node to another if and only
if the first is a direct cause of the second. For example, graph GG3 visualizes possible direct
causality relations in system S. We emphasize that direct causality graphs are neither
probabilistic DAGs nor PCM DAGs.

4.2 Conditional Independence in Settable Systems

We now consider conditional independence relations among certain random variables in
settable system S. Here, we focus on the responses of settable variables in “idle regimes”
(Pearl, 2000; Dawid, 2010a), that is, in an observational environment where intervention or
control are absent and the system evolves on its own. In particular, we focus on canonical
settings of e’s recommendation and a’s action and outcome, denoted by Z7, Z5, and ZS,

that are identical to responses to predecessor’s settings?:

Zi(w1) = Y{(wo) = ri1(wo)
Zy(we) = Yy (wo) = ra(wo, Z1(w1))

Zs(ws) = Yi(wo) = ra(wo, Z7(w1), Z5(w2)).

Thus, given a possibility w, expert e recommends Y*(wg) based solely on the state of nature
20 = wop, and a responds with Y5 (wg) = ra(wo, Y (wo)), yielding an outcome Y5 (wg) =

r3(wo, Y (wo), Yo (wp)). We call Y, Yy, and Yy canonical responses. These correspond to

4Note that w,ws, and w3 appear as arguments of Z{, Z§, and Z§, respectively. Thus, w1,ws, and w3
must be functions of wg. Without loss of generality, we may take w1 = wo = w3 = wy.
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the PCM endogenous variables discussed in Section 3.2. We may also refer to the principal
canonical setting and response Z§ = Y = Z.

Because we are interested in non-experimental environments, we focus here on condi-
tional independence among canonical responses and not among arbitrary responses or set-
tings, although these relations play a key role in other contexts. By focusing on canonical
settings, we specify the “regimes” underlying canonical responses, similar to the discussion
in Dawid (2002, 2010a, 2010b). Nevertheless, we maintain that response functions are “in-
variant” to different settings of a system’s settable variables. This is essentially without
loss of generality, as the response function fully embodies the consequences for the response
of any change in the argument settings.

Now let P be a probability measure on (2, F). How can conditional independence
relations hold among canonical responses Y[, Yy, and Y57 We distinguish between two
possibilities. First, we consider conditional independence relations that hold among canon-
ical responses for any probability measure. Second, we consider conditional independence
relations that may hold only for some probability measures on (€2, F).

To illustrate, suppose that e’s recommendation fully determines a’s action, such as when
patient a fully complies with doctor e’s advice. In this case, Xy has no impact on X, except

through X;. (Now that we are considering canonical systems, it is meaningful to speak of
~{1}

“via” other settable variables.) In this case, we have Xy # ¢ b, so

effects “through” or

that for all admissible interventions to (Xy, X;) we have
ra(25, 21) — 12(20,21) = 0,

D

Here, this also corresponds to Xy &g X (see graph G4). Thus, we can write Y3(w) =
ro(wo, Z1(w1)) = To(Z1(wy)) for some measurable function 7. In particular, canonical
settings Z§ and Z{ yield the canonical response Yy = ro(Yy, YY) = 72(YY). It follows that

for any probability measure P, &) N;é;} s Ao implies that Y5 1Yy | Y. In this circumstance,
we say that A5 and X are causally isolated given X;. The “isolation” is from the potential
common cause Xy. Because Gy is a direct causality graph and not a probabilistic DAG, the
notion of d-separation does not apply to it. Naively (mis)applying d-separation to G4, we

see that Xy and A5 are not d-separated by X there.
~{2}
Similarly, suppose that a’s action fully determines the outcome. Then Xy # ¢ X3 so

that for all admissible interventions to (Xp, X7, X2) we have

r3(29,1(2), 22)) = 73(20,71(20), 22) = 0,
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and now we say that X; and Xj are causally isolated given X>. We can then write Y3(w) =
r3(wo, Z1(w1), Z2(wa)) = 73(Z2(wq)) for some measurable function 75. In particular, the

canonical response Yy is given by Yy = r3(Y{, Y, YY) = 75(Yy), and therefore for any
~{2}
probability measure P, Xy # g A5 implies that Y°LYy | Yy, A sufficient condition for
~{2} D D
Xy # s A3 is that Ay A ¢ A5 and &) A5 A3, as depicted in direct causality graph Gf.

O~ e‘: o

Graph 3 (G3) Graph 4 (Gy) Graph 5 (Gs)

These examples demonstrate that, for any probability measure P, conditional causal
isolation is sufficient for conditional independence among canonical responses. It follows
that failure of conditional causal isolation is a necessary requirement for conditional de-
pendence for some P. In particular, settable variables X5 and X3 must share the principal
settable variable X as a common cause exclusive of the third variable X} in order for the
canonical responses Y5 and Y3 to be conditionally dependent given Y;°. We term this result
the conditional Reichenbach principle of common cause.

The unconditional counterpart of this result formally establishes Reichenbach’s principle
of common cause in recursive settable systems. This states that, trivially, the principal
settable variable Ay must be a common cause of two settable variables say X; and X, in
order for their canonical responses Y;° and Y5 to be dependent. Otherwise, either Y,° or Yy
(or both) is a constant. Observe that we do not need to employ nor do we employ notions
of d-separation in the above discussion, as these are irrelevant here.

On the other hand, conditional causal isolation is not necessary for conditional indepen-
dence. The latter may arise for specific probability measures and causal relations. Systems
analogous to Markovian and semi-Markovian PCM’s fall into this category (the distinction
between Markovian and semi-Markovian systems is that all common causes of canonical
responses are observable in the former but not in the latter). Settable systems can accom-
modate such special systems but need not be confined to them. To illustrate, consider a
Markovian-type settable system Sy, for the same example as above. In Sj;, the principal
settable variable X does not directly cause settable variables Xy, X5, and Xj, correspond-

ing now to e’s recommendation, a’s action, and the outcome. Instead, S;; assumes the
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existence of fundamental settable variables X, X5, and X3 (so that Sy has n = 6 units)

such that (see direct causality graph Gg):

Finally and importantly, the probability measure P ensures that the canonical settings
75, 7§, and Z§ are mutually independent (securing the Markov property).

Now consider the probabilistic DAG G7, isomorphic to the subgraph involving Xy, X,
and X in Gs. In G7, we replace settable variables with canonical responses Y, Yy, and
Y at the nodes. Arguments similar to those in Section 3.3 demonstrate that conditional
causal isolation, together with the independence assumption imposed on Zf, Z5, and Z$ via
P imply that the local Markov property holds in DAGs such as G;. Hence, in this particular
case, one can apply d-separation to learn about conditional independence relations among

canonical responses Yy, Yy, and Y.

Graph 6 (Gg) Graph 7 (G-)

)
&

X

D
For instance, if Xy #5 =~ A&s as in direct causality graph Gy, we conclude that Y LY
Y¥, since Y d-separates Y and Y{ in probabilistic DAG Gy. This result formalizes the
5 5 4 6

intuition that conditioning on a variable that fully mediates the effects of a cause on an

effect render the cause and effect conditionally independent. Similarly, if X5 7l£)> sy X6 as
in direct causality graph Gjg, we conclude that Y LYy | Y, since Y d-separates Y, and
Yy in probabilistic DAG Gy;, also formalizing the rough intuition that conditioning on a
common cause of two variables renders these conditionally independent.

When, as is true here, canonical responses are such that Y, LYy | Y even though
Xy and X are not causally isolated given X5, we say that X; and Xy are P-stochastically
1solated given Xs. In such cases, conditional independence holds only for specific probability

measures, such as for the Markovian system of the present example.
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Next, suppose that X} 72 s, U5 as in direct causality graph G13. Then Y and Y are not
d-separated given Y in probabilistic DAG G13. Although lack of d-separation does not gen-
erally ensure that Y;© /Y | Y, it is often assumed that this is the case. For example, SGS
(pp. 35, 56) refer to distributions in which failure of d-separation implies conditional de-
pendence as “stable” and Pearl (2000, pp. 48-49;) refers to such distributions as “faithful.”
Below, we give general conditions, valid for both Markovian and non-Markovian systems,
under which this conclusion holds (see also Wermuth and Cox, 2004). When Y Y Y | Y
holds, the heuristic intuition that conditioning on a common response induces dependence

among independent common causes is made formal.

Graph 8 (Gy) Graph 10 (Gyo) Graph 12 (Gyy)
Graph 9 (Gy) Graph 11 (Gyy) Graph 13 (Gy3)

We emphasize that the assumptions about (1) the existence of fundamental variables
X1, Xp, and Aj; (2) the (lack of) causal relations involving these fundamental variables;
and (3) the canonical settings Z¢, Z5, and Z5 being jointly independent are very strong
assumptions that need not hold in general and that must be carefully justified if imposed.
Nor are these assumptions and graphical criterion assumptions essential to the study of

causal and probabilistic relations, as discussed above.

5 Settable Systems

In the next several sections, we formalize and extend the content of the foregoing example to

arrive at a general framework connecting causal relations and conditional independence. For
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this, we use settable systems, introduced by WC as an extension of the PCM where response
functions can arise from optimization, equilibrium, and/or learning. In this section, we
briefly describe specialized versions of WC’s definition that are sufficient for our purposes.
We refer the interested reader to WC for a detailed discussion of settable systems, their
relationship to the PCM (Pearl, 2000), and several examples.

Heuristically, a stochastic settable system is a mathematical framework that describes
an environment in which a countable number of units interact under uncertainty. A unit
is construed broadly. It could be a neuron, person, machine, firm, market, or a player-
decision pair in decision or game theory, for example. There may be a countable infinity
of units i, i = 1,...,n, where n € N* := N* U {oo} and N* denotes the positive integers.
When n = oo, we interpret ¢ = 1,...,m as ¢ = 1,2,... . Random variables are defined on
a measurable space (£, F); this provides the foundation for probabilistic statements. For
settable systems, it is convenient to define a principal space )y and let Q := x7_€2;, with
each €2; a copy of £29. An often convenient choice is 2y = R.

In settable systems, there is a settable variable X; for each unit 7. A settable variable &;
has a dual aspect. It can be set to a random variable denoted by Z; (the setting), where
Z;: Q; — S; and S;, the admissible setting values for Z;, is a multi-element subset of R. Or it
can be free to respond to settings of other settable variables in the system. In the latter case,
it is denoted by the response Y; : 0 — §;. The response Y; of a settable variable &; to the
settings of other settable variables is determined by a response function, r;. For example, r;
can be determined by a governing principle such as optimization, determining the response
for unit ¢ that is best in some sense, given the settings of other settable variables. The dual
role of a settable variable &; : {0,1} x Q — S;, distinguishing responses X;(0,w) := Y;(w)
and settings &;(1,w) := Z;(w;), w € €, enables us to formalize the directional nature of
causal relations, whereby settings of some variables (causes) determine responses of others.

The principal unit i = 0 plays a key role in understanding and formalizing the con-
nections between probabilistic and causal relations. We let the principal setting Z, and
principal response Yy of the principal settable variable X be such that Z, : Qg — )y is
the identity map, Zy(wo) := wo, and we define Yp(w) := Zp(wp). The setting Z, of the
principal settable variable may directly influence all other responses in the system, whereas
its response Y; is unaffected by other settings. Thus, A, introduces an aspect of “pure
randomness” to responses of settable variables.

WC’s definition explicitly accommodates attributes, i.e. fixed objects (e.g., numbers
such as 7 or sets such as S;) associated with each unit i. For conciseness and without

essential loss of generality here, we leave attributes implicit.
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5.1 Elementary Settable Systems

In elementary settable systems, the response Y; is determined (actually or potentially) by
the settings of all other variables in the system, denoted Z(;. Thus, in elementary settable
systems, Y; = r;(Z(;)). The relation Y; = r;(Z(;)) corresponds to a structural equation in
the classical formulation of systems of structural equations (see, e.g., Heckman, 2005).

The settings Z(;) take values in S;;) C Qg x;»; S;. We have Sy C gy Xz S; if there
are joint restrictions on the admissible settings values, such as in “mixed-strategy” static
games of complete information, for example, where certain elements of S;) might represent
probabilities that must sum to one (see WC).

We now give a formal definition of elementary settable systems.

Definition 5.1 Elementary Settable System Let (2, F) be a measurable space such
that 0 := xS, with each €; a copy of the principal space )y, containing at least
two elements. Let the principal setting Z, : 0y — €y be the identity mapping. For
i =1,2,...,n, n € Nt let S; be a multi-element Borel-measurable subset of R and let
settings Z; : Q; — S; be surjective measurable functions. Let Z;y be the vector including
every setting ewcept Z; and taking values in S C o X2 Sj, Sy # . Let response
functionsr; : S — S; be measurable functions and define responses Y;(w) := r;(Zy;(w)).
Define settable variables X; : {0,1} x Q@ — S, as

X(0,w) =Y (w) and X(1,w):=Z(w;), w e

Define Yy and Xy by Yo(w) := Xp(0,w) := Xp(1,w) := Zp(wyp), w € Q.
Put X := { Xy, X1,...}. The pair S := {(Q,F), X} is an elementary settable system.

A stochastic settable system is thus composed of a “stochastic” component, i.e., the
measurable space (€2, F), and a structural or causal component X', resting on the stochastic
component and consisting of settable variables whose properties are crucially determined

by response functions r := {r;}.

5.2 Partitioned Settable Systems

In Definition 5.1, a single response Y; is free to respond to settings of all other variables in
the system. We also wish to consider systems in which responses of several settable variables
jointly respond to settings of the remaining variables in the system (see e.g. Wermuth and
Cox, 2004). This can occur, for example, when responses are determined as a solution

to a joint optimization problem. Such specifications are formally implemented in settable
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systems by partitioning the system under study to group jointly responding variables into

Y

specific blocks. The system in Definition 5.1 is called “elementary,” as every unit ¢ forms

a block by itself. We now define general partitioned settable systems.

Definition 5.2 Partitioned Settable System Let (2, F), Xo, n, and S;, i =1, ...,n, be
as in Definition 5.1. Let 11 = {II,} be a partition of {1,...,n}, with cardinality B € N*
(B := #I1). Fori = 1,2,...,n, let Z* be settings and let Z(Hb) be the vector containing
Zy and Z1,i ¢ 11, and taking values in Sg) C Qo Xgm, S, ng) #+ @,b=1,...B. For
b=1,....B and i € Iy, suppose there exist measurable functions r}® : S?b) — S;, specific to

I such that responses Y (w) are jointly determined as

Y=l (ZG).

(2

Define the settable variables X : {0,1} x Q —'S; as

XM0,w) =Y w) and X"(1L,w):=ZNw) we

7

Put X1 = { X, XL, X}, The pair S := {(, F), (I, X™)} is a partitioned settable

system.

The settings Z (111)) are allowed to be partition-specific; this is especially relevant when the
admissible set S(ri) imposes restrictions on the admissible values of Zg). Crucially, response
functions and responses are partition-specific. In Definition 5.2, the joint response function
r[lg] := (rl',i € II,) specifies how the settings Z(Hb) outside of block II, determine the joint
response Yy = (Y;",i € IT), ie., Yyi = rjj(Zg).

Below, it will also be convenient to let IIy = {0} represent the block corresponding to

the principal settable variable.

5.3 Recursive Settable Systems

In what follows, we often consider recursive partitioned settable systems, defined next. For
0 < a < b, we define ) := I, U ... UIl,_y UIL,. (For a < b, Iy := @.)

Definition 5.3 Recursive Partitioned Settable System Let S be a partitioned settable
system. For b = 0,1,...,B, let Z[lg:b] denote the vector containing the settings Z' for
i € Ijo,y) and taking values in Sy C X i€y Si, Sjo) # @. Forb=1,...,B and i € 11,

suppose that ™ := {rl'} is such that the responses Y' = X\(1,-) are determined as

V= ()



Then we say that 11 is a recursive partition, r'' is recursive, and the pair S := {(Q, F),

(I, X} is a recursive partitioned settable system or simply that S is recursive.

We employ the convenient structure of recursive systems to provide definitions of in-
direct and total causality. This also facilitates the comparison between our results and
the DAG-related literature. We leave the study of the interrelations between (conditional)
independence and indirect and total causal relationships in non-recursive systems (see, e.g.,
Lauritzen and Richardson, 2002) for other work.

6 Causality in Settable Systems

Settable systems provide a suitable framework for the study of causality. We now give
definitions of several notions of causality within this framework, based on functional de-
pendence: direct causality, indirect causality via and exclusive of a given set of variables,
and total causality. These notions refine and extend related concepts referenced below. Of
particular note is that we define causality in terms of settable variables rather than random
variables or events, as is typical elsewhere. For notational convenience, we may suppress
explicit reference in what follows to the superscript II in Z', 1, V! and X}l it should

nevertheless be borne in mind that these functions are partition-specific.

6.1 Direct Causality and Direct Causality Graphs

Direct causality can be defined for both recursive and non-recursive settable systems.
Heuristically, we say that a settable variable &;, ¢ ¢ II,, directly causes X;, j € I, in
S when the response for & differs for different settings in Xj, while holding all other
variables corresponding to units outside of II, to the same setting values. There are two
main ingredients to this notion of direct causality. Let z();) denote the vector contain-
ing all elements of setting values z() except z;. The first ingredient is an admissible in-
tervention, (zw)a), %) — (21)a), % ). We define this to be a pair of elements of Sy, i.e.,
(Zwya)s 2) = (2w)6), 27) = ((2w)6), %), (2m)4), 27)), Where we abuse notation somewhat by
reordering the vector arguments for convenience. The intervention references only setting
values corresponding to units outside of II,. Note also that it differs only in the final
component. The second ingredient is the behavior of the response to this intervention.

We formalize this notion of direct causality as follows.

Definition 6.1 Direct Causality Let S be a partitioned settable system. For given posi-
tive integer b, let j € II,. (i) For given i ¢ 11, X; directly causes X; in S if there exists
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an admissible intervention (2)@), %) — (2)G), 2;) such that

ri (2w, 21) — 75 (20, 2) # 0,

and we write X £>5 X;. Otherwise, we say X; does not directly cause X; in S and write

D D
Xi 7£>3 Xj. (ZZ) For Z,j S Hb,Xi 7£>S Xj.

We emphasize that even though we follow the literature in referring to “interventions,”
with their mechanistic or manipulative connotations, the mathematical concept only in-
volves the properties of a response function on its domain.

According to this definition, direct causality may fail either because the set S?b) is
so constrained that it does not possess an admissible intervention of the desired form,
or because it does, but the response is the same for both elements of every admissible
intervention of the specified form. The latter is perhaps the more common or intuitively
appealing possibility, but we need not distinguish further between these possibilities.

Note that, by definition, variables within the same block do not directly cause each

other. In particular A; 723 AX;. Also, Definition 6.1 permits mutual causality, so that
X; :D>5 X; and X} :D>3 AX; without contradiction for i and j in different blocks. Mutual
causality is ruled out in SGS (p. 42), for example, where it is an axiom that if A causes B
then B does not cause A.

An important aspect of Definition 6.1 is the explicit causal role permitted for Xy. The
background variables of the PCM are analogous to Xj, as they are not determined by other
system variables, but background variables explicitly cannot act as causes in the PCM.

We call the response value difference in Definition 6.1 the direct effect of X; on X; in S
of the specified intervention. This corresponds to the notion of “controlled” direct effect in
Pearl (2001). Nevertheless, the PCM requires a unique fixed point, a requirement absent
here; the PCM also does not have a notion of partitioning, so the PCM notion pertains
only to elementary partitions; and the PCM does not account for possible joint restrictions
on setting values, and thus effectively assumes that Sy = Qy xz; S;.

Direct causality relations have a convenient graphical representation. For this, we intro-
duce notions of paths, successors, predecessors, and intercessors, adapting graph theoretic

concepts discussed, for example, by Bang-Jensen and Gutin (2001).

Definition 6.2 Paths, Successors, Predecessors, and Intercessors Let S be a par-
titioned settable system. For given positive integer b let j € 11, and i ¢ 1I,. We call the
collection of settable variables {X;, X;,, ..., X, X;} an (X}, X;)-walk of length m + 1 if
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X; £>3 X £>3 £>5 X, £>5 X;. When the elements of an (X;, X;)-walk are distinct,
we call it an (X;, X;)-path. We say X; precedes X; or X; succeeds X; if there exists at
least one (X;, X;)-path of positive length. If X; precedes X;, we call X; a predecessor of
X, and we call X; a successor of X;. If X; precedes X; and X; succeeds X;, we say X;
and X; belong to a cycle. If X; and X; do not belong to a cycle, X}, succeeds X;, and X},
precedes X;, we say X, intercedes X; and X;. If X intercedes X; and X;, we call X}, an
(X;, X;)—intercessor. We denote by I,.; the set of (X;, X;)—intercessors.

The direct causality graph for a given partitioned settable system S is a directed graph
G = (V, E) with a non-empty countable set of vertices V = {X; :i=0,1,...,n} and a set
of arcs £ C V x V of ordered pairs of distinct vertices such that an arc (&;, X;) belongs to
E if and only if X; £>3 X;. From Definition 6.1, there exists at most one (X;, X;) arc, so

G need not contain nor can it contain “parallel arcs.” Since X; 7[‘; s i, there can be no arc
(X;, X;) in E, so G need not and can not contain self-directed arcs or “loops.””

Direct causality graph G4 illustrates the concepts of Definition 6.2. We have that
{ X, X1, Xo, X3, Xy, Xy, As, Xy} and { Xp, Ay, X, X3, Xy} are an (X, Xy)-walk of length 7 and
an (Xy, Xy)-path of length 4, respectively. We also have that X precedes Xy, X5 succeeds
X1, and that A} and A5 belong to a cycle, as do Xy and X5. The set of (X7, X;)—intercessors
is given by Zy.4 = {Xs, X3}. We use the term “intercessor” instead of the possible descrip-
tor “mediator,” as the latter may connote transmission; we want to avoid this, because

intercessors need not transmit effects, as we further explain below.

Graph 14 (Gy4)

We emphasize that these direct causality graphs differ from other graphs in the litera-
ture. Nodes in direct causality graphs represent settable variables, not random variables or

events; arcs represent direct causality relations, not functional or probabilistic dependence.

Loops and parallel arcs can nevertheless be useful in other contexts; see, for example, Golubitsky
and Stewart (2006). With loops or parallel arcs permitted, one may have a “directed pseudograph” or a
“directed multigraph” (see Bang-Jensen and Gutin, 2001, p. 4). These are not relevant here.
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6.1.1 Direct Causality in Recursive Settable Systems

We now consider how Definition 6.1 (direct causality) specializes to recursive systems. For
this, let 0 < by < by and take @ € 1I,, and j € II;,. We write values of settings corresponding
to Ijas) as zjap). We also let zjp4(;) denote a vector of values for settings for all settable
variables corresponding to Il except &j. Since S is recursive, we can express response
values for & as 7;(2]0.,—1)). We abuse notation somewhat to permute the arguments of r;
in a way that emphasizes their recursive relation to the argument corresponding to A;. In
particular, we write
75 (20010 Zis Zbn+1:0o-11) = 75 (20:2-1)-
Definition 6.1 then concludes that X; :D>$ & if there exists an admissible intervention
(Z10:1)(0)» 205 Zlbn+1:02-11) = (Z(0:01]0)5 25 Z[or+1:5,-1]) Such that
75(210:01)(6)» 25 » Z[br+1:b2—1]) — T3 (Z10:01)6) » Zis Zby+1:b9—1]) 7 O-

Clearly if S is recursive, successors do not directly cause predecessors; that is, if ¢ € I,
and j € II, with by < by, then &; 723 &;. In particular, if X; £>5 AX; then & 7[4;5 X;. Thus,
recursive systems do not admit mutual causality. For the direct causality graph, this means
that we cannot have both arcs (&;, X;) and (X}, X;) belonging to £. In addition, a recursive
system S is acyclic: it does not admit cycles of the form X; £>5 X, £>3 £>3 2 £>5 X;.
Thus, when S is recursive, its corresponding direct causality graph G is a DAG.

In the expression above for recursive settable system direct causality, the values for
successors to X; (corresponding to blocks H[blﬂzbz_l}) are set to the same arbitrary value
2[by+1:b,—1] 0 both argument lists. Sometimes it is of interest to evaluate the direct effect on
X of &; when values of X;’s successors are set in both argument lists to the response value
obtained when A&j is set to z;. When a setting is given by the response to its predecessors’

settings, we call it canonical. Thus, the canonical setting for &}, ¢ € Il,, is
Zi =Y; = Ti(Z[O:b—l})-

Then setting values z[cbl Fliba1] determined as responses Y, 41:5,—1) to the admissible

values of their predecessors’ settings are

Ylbr+1:bo—1] = T[br+1:b2—1] (Z[0:b1]) -

The elements of this response vector obtain by recursive substitution. Any given element
of this vector depends only on its corresponding predecessors. The direct effect associated

with this configuration is then evaluated as
Tj(z[():bl](i)7 Zfa y[b1+1:b2—1]> - Tj(Z[o:bl](i), Zis y[b1+1:b2—1])-
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Pearl (2001) refers to this as the “natural” direct effect. Although Pearl (2001) does
not assume recursiveness, he employs the PCM, with its unique fixed point requirement.
As mentioned above, we do not require a fixed point, unique or otherwise, so just as for our

prior notion of direct causality, this concept of direct causality does not depend on this.

6.1.2 Relation to Other Notions of Direct Causality

Now consider the following system of three settable variables (see direct causality graph
G15) to illustrate the relationships between our Definition 6.1 of direct causality and several

other notions of direct effects discussed in the literature.

X1 (0,-) =11 (X(1,-))

Y

25(0,) = ra(Xo (1, ), Xy (1, ). R R

Graph 15 (G15)

Definition 6.1 concludes that X} £>5 X if there exists an admissible intervention (zg, 21) —
(25, z1) such that
ro(zg, 21) — r2(20, 21) # 0.

When this difference is non-zero, it justifies the link from A to X,. This difference corre-
sponds to the notion of “controlled direct effect” in Pearl (2001).

If z; is restricted to a specific suitable value, then we obtain a notion in the spirit of the
“standardized direct effect” of Didelez, Dawid, and Geneletti (2006) and Geneletti (2007).
In particular, the canonical choice 2§ = 71(2g) yields Pearl’s (2001) previously mentioned

natural direct effect
7”2(28, 7“1(20)) — 7”2(20, 7”1(20)).

This also is what Robins and Greenland (1992) and Robins (2003) call the “pure” direct

effect. These same authors refer to

ra(25,71(25)) — 12(20,71(25))

as the “total direct effect.”
In other cases, the literature considers notions of direct effects defined as a contrast in

some aspect of the distributions of responses for different settings. For example, let P be
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a probability measure on (2, F); then the “average” direct effect of X; on X, in the above
example is given by
Elry(Zo, 27) — r2(Z0, 1)),

where E is the expectation operator associated with P.

Here, we consider direct effects to be differences in response values for any admissible
intervention of the specified form. As Holland (1986) notes, these effects need not be iden-
tifiable absent other assumptions. Nevertheless, the direct causality concept of Definition
6.1 is in a precise sense the simplest and most general of the alternatives discussed. It is
simplest, in that direct causality is well defined even in the absence of recursive structure

or fixed points. It is most general, as it is necessary but not sufficient for the others.

6.2 Indirect Causality in Settable Systems

We next define notions of indirect causality for recursive systems. We distinguish notions of
indirect causality via and exclusive of specified variables. These definitions extend notions
of indirect causality in Robins and Greenland (1992), SGS, Pearl (2001), Robins (2003),
Didelez, Dawid, and Geneletti (2006), and Geneletti (2007), and notions of “path-specific”
effects in Pearl (2001) and Avin, Shpitser, and Pearl (2005). Although these extensions
are of interest in their own right, their greater significance is that they provide appropriate
tools for establishing the conditional Reichenbach principle of common cause, as well as

later results on d—separation and D —separation.

6.2.1 Indirect Causality Via Given Variables

Motivating Examples The basic idea of indirect causality adopted here is straightfor-
ward. Consider, for example, the system illustrated in GG15. There, Xj indirectly causes X5

via A if there exists an admissible intervention (zq,r1(20)) — (20,71(23)) such that

r2(20,71(25)) — r2(20,71(20)) # 0.

In the first case, Zj is set to the value zy and Z; to the canonical value 71 (zp). In the second
case, Z is set to the value zg and Z; is set to the canonical value r;(2j) that obtains when
Zp is set to z. This corresponds to the notion of “natural indirect effect” in Pearl (2001)
and Didelez, Dawid, and Geneletti (2006) and to the notion of “pure indirect effect” in
Robins and Greenland (1992) and Robins (2003).

It is necessary but not sufficient for our notion of indirect causality that A, directly

cause X; and that A, directly cause X5. We emphasize that transitivity of causation is
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not guaranteed here, unlike classical treatments such as SGS (p. 42), where transitivity
of causation is axiomatic. Instead, transitivity depends on the response functions. For
example, if r1(z9) = max(2o,0) and 72(29, 21) = min(z1,0), then X Bs X and X Bg X,
but Xy does not indirectly cause Xa, as 72(z2q,71(25)) = min(maz(z§,0),0) = 0 for all zj.
With transitivity, &; is an indirect cause of X if there exists an (&}, X;)-path of length
greater than 2 (SGS, pp. 44-45). Although this example conveys the basic idea, we work
with more refined notions of indirect causality, elaborated below.

In G5, & is the only (Xp,Xs)—intercessor. In the presence of multiple intercessors,

we may be interested in indirect causality via just one specified variable. Consider, for

example, the system illustrated in Gyg.

Graph 16 (Gye)

We say that A indirectly causes X3 via A} if there exists an admissible intervention

(20,71(20), 22) — (Zo,T‘l(ZS),Zg) such that

r3(20,71(25), 22) — r3(20,71(20), 22) # 0.

If we restrict 2o to the value ra(2p) in the above difference, we essentially obtain the “path-
specific effect transmitted through the path {Xp, A}, A5}’ in Pearl (2001) and Avin, Sh-
pitser, and Pearl (2005).

More generally, we may consider notions of indirect causality via not just one but several

settable variables, as illustrated in G17.

g\

Graph 17 (G7)

Here, we say that &} indirectly causes X, via A} or A3 if there exist an admissible interven-

tion (r9(20,71(20)), 73[7r1(20), 72{20, 71 (20) }]) — (r2(20,71(25)), 73[71(25), r2{ 25, 71(25) }]) such
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that

ra(ra(20,71(25)), 73[r1(20), 72420, 11(20) }]) — ra(r2(20, 71(20)), 73[71(20), T2{ 20, 71(20) }]) # 0.

(Note that here and elsewhere we simplify notation by omitting response function ar-
guments corresponding to variables that are not direct causes of the specified response.)
Setting the first arguments of 74 to 72(z0, 71(25)) and 72(z29, 71(20)) in the response functions
above ensures that the difference in the response for X is not due to effects transmitted
through the path { Xy, Ay, Xy}.

The General Case In the general case, the idea underlying indirect causality in recursive
systems is essentially the same as in these examples, but to express this rigorously demands
careful attention to a perhaps daunting mass of detail. Roughly speaking, however, we say
that &; indirectly causes &; via (AX;, X;)—intercessors Xy, if the response of X differs when
the effects of setting A} to the value z; as opposed to z; are not transmitted directly, but
only through X,.

In order to study the response of X; under the relevant scenarios, we partition the
(&X;, X;)—intercessors in a recursive manner relative to X4. We distinguish the (&;, X;)—
intercessors that belong to paths through X4 from those that don’t. Among the former,
we distinguish: (i) the variables that strictly precede X4; (i7) X4; (iii) the variables that
intercede elements of X4; and (iv) the variables that strictly succeed X4.

For illustration, we employ system Sig, with direct causality relations illustrated in
graph Gig, where Iy = {1,2} and II, = {b+ 1} for b = 2,...,8. The complexity of this
example is not capricious. This is the simplest system permitting a full illustration of the

relationships that must be considered in a general definition of indirect causality.

Graph 18 (Gyg)
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To begin the illustration, take by < by, ¢ € Il;,, 7 € II,. For example, in Sig, let by =1
and by = 8, let i = 2 (the second element of II; = {1,2}), and let j = 9 (the sole element
of IIg). We denote by ind(Z;;) the indexes of the elements of the (&, X;)—intercessors
T.j. For example, in S5, we have ind(Z.9) = {3,4,5,6,7,8}. We treat elements of IIj.,
that do not correspond to (X, X;)—intercessors as elements of Iljo,; or II;, without loss of
generality. Here, ind(Z;.;) = p, 41:0,—1]-

Let A be a subset of ind(Z;;). In Sis, we can let A = {5,7}, say. In what follows
we order the arguments of response values r;(2(.,-1]) for X; to emphasize their recursive
ordering in relation to X; and X 4.

For given k € A, let I}, := Z;;U {X),} U Z;; denote the (X;, X;)—intercessors for paths
through Xy, and for X4 := Ugea{ A%}, let Iif‘j = UkeAIﬁj denote the (X;, X;)—intercessors
for paths through X,. (For A = @ we let I/, = @.) Thus, in S5 we have ind(Z3,y) =
ind(Z34) = {3,5,6,7,8} and it follows that ind(Zs,) = {3,5,6,7,8} as well.

Let Xy := Z;;\Z;; denote the (X;, X;)—intercessors not belonging to paths through
X4 and let A denote the set of indexes of the elements of X4. In system Sz, A =
ind(Zy)\ind(Isly) = {3,4,5,6,7,8}\{3,5,6,7,8} = {4}. Thus, we have ind(Z;,;) = ind(Z;};)U
Aand ind(Z}) NA= .

We now partition ind(I{f‘j) into four mutually exclusive and collectively exhaustive sub-
sets. First, Let Xy 1= Uk eaZy\Xa denote the inter-X,4 intercessors excluded from X,
and let A denote the set of indexes of the elements of X5. In Sig, we have A = {6}.

Next, we distinguish between the (X;, X;)—intercessors for paths through X, that

strictly precede or succeed X4. We define the X4 predecessors excluded from X4 U Xy

Pf‘j = Ugea{Xs € I{f‘j and X; ¢ (X4 U Xy) @ A precedes Xy},

(2

and the X4 successors excluded from X4 U X5 :
Sfj = Ugea{Xl € Z{f‘j and X} ¢ (X4 U Xy) @ &) succeeds Xy}

In the example illustrated in Gig, we have ind(Psy) = {3} and ind(Ssly) = {8}.

By construction, ind(Z;;) = ind(P{) UAUAUInd(S;;), and these subsets are mutually
exclusive. In our example, ind(Z5y) = {3,5,6,7,8} and ind(Psy) U AU A U ind(S5y) =
{3} U{5,7} U {6} U {8}. Thus, ind(P;}), A, A, A, and ind(S;}) partition ind(Z.;).

We now use this partition to represent response values for X; in a convenient form.
Recall that z|o.4,1(;) denotes a vector of values for settings for the vector of settable variables
Xo:b,](i) corresponding to Iy, \{i}. Thus, in Sis, 2j0.1)(2) denotes values of settings for X

and X;. Similarly, let z;.4, 24, 24, 25, and z4.; denote vectors of values of settings for
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elements of P, X4, Xa, Xy, and S;f‘j respectively. We now slightly abuse notation to

279
represent response values for X; (recall j € II;,) as

rj(z[O:bﬂ(i) y Ry Rt Ay RAS RAS 24 ZA:j) =T (Z[O:bz—l])7

where the arguments of r; have been reordered in a particular way, so as to focus attention
on settings z; and z4 of &; and X,.
Observe that when A = ind(Z;;), the sets ind(Pg;), A, A, and ind(S;;) are empty, and

we write r;(2jo:1)(:), %, 24) = Tj(20:,—1]). Alternatively, when A = &, the sets ind(P{f‘j),

A, and md(S;f‘j) are empty, whereas A = ind(Z;;), and we write 7;(2[5,]4), Zi» 24) =
Tj<z[0:b2—1})-
We use the recursiveness of S and the definitions above to represent vectors of response

values for elements of P2, X4, X4, Xy, and Sfj respectively in the following form, useful

250
for general definitions of indirect causality:

Ti:A(Z[ozbl](z‘), Zi)

T A(2(0:61](3)» %is ZizA)
TA(Z[O:bl](i)a Ziy Ziz Ay Zz)
74(Zj0:01)()» %is Ziz, 24)  and

T 415 (Z[0:011(6)» Zis ZizAs ZA5 245 7))

Here too, the elements of these response vectors obtain by recursive substitution. Any
given element of one of these vectors depends only on its predecessors. Thus, although 24
appears as an argument in 74, only the predecessor elements of z4 for a given response
determine that response. By definition, an element of X4 can not directly cause elements
of P;f‘j, X4, or X3, nor can it be directly caused by elements of X4, X5, or Sfj.

Finally, we introduce a notation for canonical settings defined as responses to specific

setting values:

Yid = Ti:A('Z[O:bﬂ(i)’ Zz) yz*A = ri:A(Z[O:bl](i)a Z:)

Ya = TA(Z[O:bl](i)ﬂ Ziy yi:A) yg - TA(Z[O:bl](i)’ Z;(’ yZ*A)
and

Ya = 1a(2(0:01]G)» Zis YicAs Y7) va = ralzomio, 7 via ¥)

Yz = TA(Z[O:bl](i)a Ziy YizAs yA) y% = 7NA(Z[O:bl](i)’ Z’Zk’ y;A’ yj:l)

We can now state our first formal definition of indirect causality.
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Definition 6.3 Indirect Causality via X4 Let S be recursive. For given mon-negative
integers by and by with by < by, let i € II,,, let j € II;,, and let A be a subset of ind(Z;.;).
Then X; indirectly causes X; via X, in S if there exists an admissible intervention to

(Xo1103) )C},P;f‘j, Xa, Xa, Xy, Sfj) with corresponding responses for X; such that

75 (210:01)(6)» Zis ZizAs 245 Yoa, TA(Z[0:01](3) > Zi ZicAs Ya)»
7 asi 201 Zis Zicas 245 Yo Ta(Z0a] ) %0 Zias Ya)])
=15 (20:1]0)» Zis ZiAs 24, YA, TH(Z[0:01)(6)» Zi» ZiAs YA)
T 4:5[20:0](0) > Zis ZizAs 24, YA, TA(Z[0:01)()» Zi> ZiAs Ya)]) 7 0

(4]

and we write X; I:ég &X;. Otherwise, we say that X; does not indirectly cause X; via X4

I1A]
in S and we write X; # ¢ X;. When A = ind(Z;;) and X; ié]g X;, we say &; indirectly

I1A]
causes X; in S and we write X; :I>5 X;; when A =ind(Z;.;) and X; # s X;, we say that

I
&, does not indirectly cause X; in S and we write X; s X;.

Again, consider system Sig illustrated in Gis. With A = {5, 7}, Definition 6.3 states
A
that X, igg Xy if there exists an admissible intervention (z1, z4,76(22,95),7s(y7)) —

(21, 24, 76(22, ¥5), s(y%)) such that

ro(21, 24,7622, Y5 ), T8(y7)) — ro(21, 24, 76(22, y5), 78(y7)) # 0.

Intuitively, Definition 6.3 concludes that X, Ig]g Xy if the response of Xy differs when the
effects of setting X, to the value 2, as opposed to z; are not transmitted directly, but only
through X4. Thus, setting values for A} and X are z; and z4 in both responses of Ay. On
the other hand, setting values for X5 and A§ differ across the two responses of Xy only in
response to different settings of (X5, X7).

When X; :I>3 &, it follows that for some non-empty A C Z;.; we have &; ijg]g &;. The
converse need not hold, because X; can indirectly cause &; through each of two distinct
intercessors whose associated effects may cancel each other. For example, it may be that
X, indirectly causes Xy via Xy as well as via Xy in S1g but that X5 does not indirectly cause

Xg via {X4, Xﬁ} in 818-

6.2.2 Indirect Causality Exclusive of Given Variables

We now introduce an indirect causality concept complementary to that above. For example,

in the system illustrated in GG14, we say that Xj indirectly causes X exclusive of A} if there
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exists an admissible intervention (2o, 21, 72(20)) — (20, 21, 72(25)) such that

r3(20, 21, 72(25)) — r3(20, 21, 72(20)) # 0.

Similarly, for G17 we say that A} indirectly causes X, exclusive of X} and Aj if there

exists an admissible intervention (72(zo, 21)), 23) — (r2(2§, 21), 23) such that

ra(re(zy, 21), 23) — Ta(r2(20, 21), 23) # 0.

More generally, we say that &; indirectly causes X; exclusive of (&, X;)—intercessors X4
if the response of X; differs when the effects of setting X; to the value z; as opposed to z;
are transmitted indirectly through all succeeding variables except Xj4.

These examples are instances of the following definition.

Definition 6.4 Indirect Causality Exclusive of X, Let S and A be as Definition 6.3.

Then X; indirectly causes X; exclusive of X4 in S if there exits an admissible in-

tervention to (X[O;bl](i),%,Pfj,XA, Xa, X, Sfj) with corresponding responses for X; such
that
75 (Z10:04](0)» Zi> Vi a> Yo 245 TA(Z10:811(6)5 21> Yisa» 24),
T A5 [210:5:)(6) s 21 > Yisa> Yo 245 TA(Z10:61](6)» 20 > Yiias 24)])
—Tj(z[o;bl](i), ZiryYi: Ay YA, ZA, Tz(z[o;bl](i), Ziy Yiz A, ZA),
T A:j [Z[ozbl}(i), Ziy Yi: Ay YA, ZA, Tz(z[o:bl](i), Ziy Yi: Ay ZA)]) # 0;
~A . .
and we write X; I[:> ]3 &X;. Otherwise, we say that X; does not indirectly cause X; ex-

I[~A]
clusive of X, in S and we write X; # s X}.

In system Sig with A = {5, 7}, Definition 6.4 says that X, el

admissible intervention (21, vs, r6(22, 25), 78(27)) — (21, Vs, 76(25, 25), rs(27)) such that

s Xy if there exists an

7”9(21,yZ,T6(Z§»Z5)>T8(Z7)) - 7"9<21,y4>7“6(2272'5)77“8(27)) 7"é 0.

Intuitively, Definition 6.4 concludes that A5 1[;;4}5 Xy if the response of Xy differs when the
effects of setting X, to the value 2o as opposed to 2 are transmitted indirectly through all

succeeding variables, except through X'4.

33



6.3 Total Causality in Recursive Settable Systems

In analyzing relations between causality and conditional independence, it turns out to be
important to keep track of channels of both indirect and direct causality. Consider the
system illustrated in G5 for example. There, we say that X; (totally) causes X, via A if

there exists an admissible intervention (zg,71(z0)) — (25, 71(2)) such that

r2(29,71(25)) — r2(20,71(20)) # 0.

Intuitively, the response of &5 differs when the effect of setting Z; to the value zy as opposed
to z; is transmitted fully, taking into account both direct and indirect effects. Similarly, in
the system illustrated in G5 we say that X (totally) causes X3 via A) if there exists an

admissible intervention (zo,71(20), 22) — (25, 71(25), 22) such that

ra(25,m1(20), 22) — r2(20,71(20), 22) # 0.
We now provide formal definitions of (total) causality via and exclusive of a set of variables.

Definition 6.5 A—Causality Let S and A be as Definition 6.3. Then X; causes X; via

X4 (or X; A—causes X;) in S if there exists an admissible intervention to (Xjo.p,)¢), X PH, Xa,
Xa, X7, Sl-:j) with corresponding responses for X; such that
75 (2[0:01)(0)s 21 > ZicAs 24, Yo T2(205 2[1:00)(3) > Zis Zi:As YA )
T as[20m1)0)s %05 Zizas 25 Yo Ta(20, 21> Zis Zizas Ya)])
—75(210:01)(6)» Zis ZizA» 245 YA, TT(205 2[1:01)(6)» Zis ZizA> YA)s
T 4:5[200:1](0) Zis ZizAs 24, YA, T (20, 211061 (0) Zis ZizA, Ya)]) 7 05
and we write X [24;5 X;. Otherwise, we say that X; does not A—cause X; in S and we

[A]
write X; #g X;. When A = ind(Z;,;) and X; [é>]s X;, we say X; causes X; in S and we

[A]
write X; =g X;; when A = ind(Z;;) and X; # s X;, we say that X; does not cause X; in
S and we write X; #s X

Definition 6.6 ~ A—Causality Let S and A be as Definition 6.3. Then X; causes X
exclusive of X4 (or X; ~ A—causes X;) in S if there exists an admissible intervention
to (X[O :b1](2) Xl? P

i Xa, Xa, X7, Sfj) with corresponding responses for X; such that
75 (2(0011(0)> 27 > Yinas Yo 245 TZ(Z0:00)(0) s 27 5 Yioas ZA),s

7 asi 200000 25 Yieas Yo 24, T2 (20 (0) 225 Yieas Z4)])
=15 (20:b11(6) » Zis YirAs YA, 245 TH(2(0:61)(0)» Zi> YirA» 24),

TAJ[Z[O b1](3)s iy Yir Ay YA, ZA, TA( 2[0:b1](3)» %> Yi: A ZA)]) # 07
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and we write X; szg X;. Otherwise, we say that X; does not cause X; exclusive of X,

~A
(or X; does not ~ A—cause X;) in S, and we write X; # ¢ X.

Thus, Definitions 6.5 and 6.6 are analogous to Definitions 6.3 and 6.4 with the difference

that the direct effect of &; on & is now further taken into account.

6.4 Relations among Total, Direct, and Indirect Causality

We now relate the various causality notions defined above. These relations are completely
intuitive, but it is important that they be made rigorous. Moreover, their plausibility
suggests that the foregoing definitions are natural in an important sense.

First, we link A—causality, direct causality, and indirect causality via X4. This relates
to some useful basic results on (indirect) causality via or exclusive of X4 for the special

cases A = @ or A =ind(Z;;), given in Proposition 10.1 of the appendix.

Proposition 6.1 Let S and A be as Definition 6.3 and suppose that X; @5 X;. Then

A
X; £>5 X; or & %}5 X or both.
An important special case of Proposition 6.1 occurs when A = ind(Z;;).

Corollary 6.2 Let S and A be as Definition 6.3 and suppose that X; =s X;. Then
X; £>5 X or & :I>5 X; or both.

Corollary 6.2 verifies the plausible claim that if &; causes &, it does so directly, in-
directly, or both. Significantly, the converse need not hold, as direct and indirect causal
channels can cancel one another. Proposition 6.1 extends this proposition to A—causality.

A similar result holds for ~ A—causality:

Proposition 6.3 Let S and A be as Definition 6.3, and suppose that X; NiAS X;. Then
I[~A]

X; gs X or Xy = s & or both.

It is possible and of interest to study even more refined notions of (indirect) causality
using this framework. For example, for disjoint subsets A and B of ind(Z;.;), we can study
the notions of &; (indirectly) causing & (a) via A and via B; (b) via A and exclusive of B;
(c) via A or exclusive of B; and (d) exclusive of A or exclusive of B. For brevity, we leave

a formal treatment of these causal notions to other work.
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7 Conditional Independence in Recursive Systems

In this section, we begin formal study of the connections between conditional independence
and the settable system notions of causality introduced in Section 6. Our first result
relates causality and conditional dependence by establishing the conditional Reichenbach
principle. This implies the traditional unconditional Reichenbach principle. We then extend
conditional Reichenbach to give necessary and sufficient conditions relating conditional
independence and causality in recursive settable systems. Among other things, this enables
us to relate graphical separation and causality, taken up in the next section.

We focus on canonical systems. Recall that the canonical setting for X;, ¢ € I, is
Zf =Y = ri(Z[O:bfl})-

Letting this expression recursively define the canonical settings Z[%:b_l], b=1,...,B, with

2§ = Zy =Yy =: Yy, we also define canonical responses

7

Yi=ri(Zgy-y), i€y, b=1,..,B.

In what follows, whenever we reference canonical responses, we implicitly assume their

existence.

7.1 The Conditional Reichenbach Principle of Common Cause

So far, none of our definitions or results have required any probabilistic elements. To relate
causality and probabilistic dependence, we now explicitly introduce probability measures

P on (2, F). Our next result formalizes a conditional version of Reichenbach’s principle.

Proposition 7.1 The Conditional Reichenbach Principle of Common Cause (I)
Let § be a recursive partitioned settable system, and for a,b > 0, let 1 € II, and j € 11,
i # j. Let X; and X; be settable variables with canonical responses Y and Y. Let A
C II\{i,j}, and let X4 be the corresponding vector of settable variables with canonical
responses Y. For every probability measure P on (0, F), if Y L Y | Y then either:

(i) i =0 and Xy causes X; exclusive of A; = ANind(Zy,;), i.e., Xo N:A;jg X;; or

(17) j =0 and Xy causes X; exclusive of A; := ANind(Zy,), i.e., Xy Nzéig X;; or

(idi) i, £ 0 and Xy ='s X; and Xy L5 X,.

The traditional Reichenbach principle of common cause follows by putting A = &.
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Corollary 7.2 The Reichenbach Principle of Common Cause Let S, &;, and X; be
as in Proposition 7.1. For every probability measure P on (0, F), if Y, Y Y, then either:
(i) i =0 and Xy causes X;, i.e., Xy =s Xj; or
(17) j =0 and Xy causes X;, i.e., Xy =s X;; or
(14i) i, # 0 and Xy =s X; and Xy =5 Xj.

This provides fully explicit conditions, both causal and probabilistic, under which the
Reichenbach principle of common cause holds — that is, under which it is true that when
canonical responses for two settable variables are probabilistically dependent, either one
causes the other or there exists an underlying common cause. Note that while the possibility
that one variable causes the other is not explicit in (ii7), it is nevertheless implicit, as one
way in which we may have X, =s Xj is via the indirect channel Xy =5 &; =5 &. If this
fails in (i77), then there nevertheless must be a common cause, Xj.

This analysis reveals that the traditional unconditional Reichenbach principle is not
a deep fact. The reason is that the principal settable variable Xy can always serve as a
universal common cause. Moreover, because the principal setting values z, are identified
with the underlying elements wq of the principal universe 2y, one cannot dispense with
this universal common cause without dispensing with the underlying structure supporting
probability statements. This demonstrates the indispensable and dramatically simplifying
role played by the principal variable X as a universal common cause. Once this role is
understood, the content of the unconditional Reichenbach principle is no longer mysterious.
Its previously perplexing status can be understood as a consequence of the lack of a proper
context for its formulation. The settable system framework supplies this context.

The conditional Reichenbach principle is substantive, however, as it implies that in
recursive causal systems, knowledge of conditional dependence relations such as Y;© £ Y
| Y is informative about the possible causal relations holding between settable variables
A&; and Xj;. Proposition 7.1 implies that in recursive systems, in order for two canonical
responses Y, and Y” to be conditionally dependent given a vector of canonical responses
Y§, it must be that the principal variable X, causes at least &; or X; exclusive of the
relevant subsets of 4. Otherwise, we can express Y;° or Y (or both) as a function of the
relevant sub-vector of Y. As Proposition 7.1 has A C I1\{¢, j}, it is necessary that 0 ¢ A;
Ye L Yf | Y5 cannot hold otherwise.

Further, the possibility that one variable causes the other is again implicit in (i7i):
one way in which we may have X N:A>j5 X, and Ay N—_A;is X; is via the indirect channel
Xo N:Ais X, Ni”g X; with A;; :== ANind(Z;;). But even if this fails in (i), then there

nevertheless must be a common cause, Aj.
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It is a useful fact that if the conclusion of Proposition 7.1 holds (regardless of whether
the stated conditions hold) then the direct causality graph G associated with a system S
has the following simple property.

Proposition 7.3 Let S, &;, X;, and X4 be as in Proposition 7.1, and let G' be the asso-
ciated direct causality graph. Suppose that conclusions (i) — (iit) of Proposition 7.1 hold.
Then there exist an (X, X;) path (if i # 0) and an (X, X;) path (if j # 0) that does not
contain elements of Xy.
~ A ~A;

Thus, it suffices for V¢ 1 Y | Y{ that Xy # 5 &j or Ay # s X, which in turn is implied
by the absence of an (X}, &;) path or an (&p, X;) path that does not contain elements of
Xa.

To illustrate, we apply Proposition 7.3 to system Sis. We have Y L Y© | Yy for

~{2} ~{1,2}
i=3,..,8,as Xy # g & fori=3,...,8 Similarly, Y7 L Yy | (Y], YS), as &y # g Ao.

~{3}
Also, we have that Yy | Y| Yy, since Xy # g A5. In addition, we have that Yy L Y| Yy,
~(2} ~(2}
as Xy # ¢ X3 and Xy # g As. These facts hold for every P.

These examples only require knowledge of direct causality relations. The direct causality
graph suffices for this. But specific properties of the response functions, not indicated by
the graph, may also be important. To illustrate, consider determining whether Y5 L Y5 in
Sis. Corollary 7.2 gives that either Xy A5 Xy or Xy A5 X3 (or both) is sufficient for this
to hold. We know from G.g that Xy =5 X5, but determining whether Xy #As X5 requires
additional information about the functional form of response functions r, and r;.

Similarly, consider whether Yy L Yy | Yy holds in Si5. From the contrapositive of
~{3}
Proposition 7.1 we know that this will hold if Xy # g A7. Nevertheless, determining
~{3}
whether &y # s A&7 holds requires additional information about the functional forms of

the response functions not contained in G1g.

Thus, similar to the situation for PCM DAGs, settable system direct causality graphs do
not provide complete information about the causal relations needed for resolving questions
of conditional independence. Indeed, as argued in Dawid (2010a), nongraphical representa-
tions of causality are indispensable here. Our function-based definitions of causality supply
just the information needed to relate causality to conditional independence.

Because a direct causality graph is not a probabilistic DAG, there is no reason to expect
d-separation to be informative about conditional independence in direct causality DAGs,

such as Gys. For example, although Yy 1 Y | Yy, A5 and X5 are not d-separated by X» in
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~{3}
G1s. Similarly, we have Yy 1 Y| (Y5, YY), since Xy # ¢ X5, whereas Xy and X5 are not

d-separated by (X3, Xs) in Gig, due to the “collider” Xy — Xg < Xs. There is no paradox
here: d-separation may imply conditional independence in a certain class of probabilistic
DAGs, but it does not generally apply to direct causality graphs.

Note also that because the path {5, X5, X7} does not contain X3, we have that X, and
X7 are not d—separated by X3 in Gig. To conclude that Yy J Y{ and Yy J Y| Y in
such situations in PCM DAGs, Pearl (2000, p. 48-49) and SGS (pp. 35, 56) introduce
the assumptions of “stability” or “faithfulness” of the probability measure P. In sharp
contrast, Proposition 7.1 imposes no restrictions on P; instead the properties of the response

functions play the key role in determining the presence or absence of causal relations.

7.2 Characterizing the Conditional Reichenbach Principle

The conditional Reichenbach principle gives necessary but not sufficient causal conditions
for conditional dependence. Thus, its contrapositive gives sufficient but not necessary
conditions for conditional independence. Specifically, Y;* L Y | Y{ can hold even when

the conclusion of Proposition 7.1 holds. Examples of this are easy to construct.

Example 7.4 Consider system Sig in G1 and suppose that Y and Yy are jointly normal
with mean zero, variance one, and correlation p. Then Y and Yy are independent if and

only if p=0. When p =0, Y L Yy even though X; and X5 share the common cause Xj.

It is also easy to construct examples in which independence holds between directly

causally related variables.

Example 7.5 Consider system Si6 in Gig and suppose that Y° and Yy are jointly normal

D
with mean zero, variance one, and correlation p. Suppose also that Xy # ¢ X5, with
Y})C — Y'lc + @Y;'

Then Yy and Y5 are also jointly normal, with mean zero. Let a = —p. Then Y5 and Yy
have zero correlation, so they are independent, even though X 2 Xs. (Note that Y5 has

non-zero variance as long as |a| < 1.)

It is thus useful to refine the possibilities for conditional independence to distinguish (a)
situations in which causal restrictions among settable variables ensure that their canonical

responses are conditionally independent for any probability measure and (b) those where
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conditional independence holds only for some choice of P. Direct causality restrictions may
be sufficient but are not necessary for (a) to obtain, as seen above. Also, (b) can hold due
to: (i) a particular choice of P only; or (i7) both a particular configuration of response

functions and a particular choice of P. The following definitions are useful for this.

Definition 7.1 Conditional Causal Isolation and Conditional P-Stochastic Iso-
lation Let S, Y, Y/, and Y} be as in Proposition 7.1. Suppose that the conclusion of
Proposition 7.1 fails; then X; and X; are causally isolated given X,. Let P be a prob-
ability measure on (0, F) and suppose that Y;* LY | Y5 when X; and X; are not causally

isolated given X4; then we say that X; and X; are P-stochastically isolated given X,.

From Definition 7.1, we have that &; and &) are causally isolated given X4 when
~A; ~A;
Xy # 5 A& or Xy 75>J s ;. The “isolation” is from the potential cause Xy. When A = &, we

say that &; and & are causally isolated when the conclusion of Corollary 7.2 does not hold,
that is, when Xy #s &) or Ay A s &;. Conditional causal isolation arises when, for one or
the other of X; and &, the response functions channel the effects of the principal cause &
in just the right way so as to yield canonical responses Y;* or Y (or both) expressible just
as a function of the relevant subsets of Y (i.e., Y or Y ).

Conditional P-stochastic isolation is just conditional independence without conditional
causal isolation. It can arise either from P alone, as in Example 7.4, or from just the right
combination of P and functional relations between multiple causes (common or direct),
as in Example 7.5. In fact, if the conditional distributions of Y and Y} given Y} are

7

each regular (see e.g. Dudley, 2002, p. 341-344), then there is always a joint probability
measure P* ensuring that Y,* and Y are conditionally independent given Y, regardless
of the causal relations involving &;, &), and X4 (see proposition II1.2.1 of Neveu, 1965,
p. 74-75). P-stochastic isolation is, however, a nontrivial restriction. Thus, the utility of
this concept is that it permits us to distinguish between guaranteed sources of conditional
independence (conditional causal isolation) and more special or exceptional cases.

For the same reason, conditional P-stochastic isolation should not be casually assumed.
Instead, it should be empirically subjected to falsification whenever feasible, by testing the
conditional independence(s) it may be thought to justify. See White and Chalak (2010) and
the references given there for results delivering empirical tests of conditional independence.

We can now characterize the relation between causality and conditional independence
for canonical responses Y;° and Y in recursive settable systems given any vector of canonical

responses Y §. For clarity, we state this in the contrapositive.
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Corollary 7.6 Conditional Reichenbach Principle of Common Cause (II) Sup-
pose the conditions of Proposition 7.1 hold. For given probability measure P on (2, F),
Y LY | YSif and only if either (a) X; and X; are causally isolated given Xa; or (b) X;

and X; are P-stochastically isolated given X,.

When A = @, Corollary 7.6 strengthens Reichenbach’s principle of common cause to give
necessary and sufficient causal conditions for probabilistic dependence. For the empirically
relevant case where the canonical responses may all be vectors, Theorem 10.4 of the appen-

dix formally characterizes the relations between conditional independence and causality.

8 Settable Systems and Graphical Separation

As we discuss in Section 2, implications of d-separation in probabilistic DAGs have some-
times been ascribed causal intuition (e.g., Pearl, 2000, p. 16-17). Absent other causal
relations and expressed in the present notation and nomenclature, these can be stated for
canonical responses Y, and Y as:

d.1 Yo LYf | YR, provided X4 fully mediates the effect of Xi on Xj;

d.2 Yo LYF | Y, provided Xa denotes the common causes for X and X;, or fully
mediates the effects of these common causes on either (or both) X; or X;;

d.3 Yo L Y| YS, provided Xy is caused by both X; and X;.

We reiterate that in the context of probabilistic DAGs, such causal interpretations are
problematic. In contrast, causal semantics are well defined in settable systems, allowing the
truth values of d.1 — d.3 to be assessed. As the examples of Sections 3 and 7 show, d.1 and
d.2 may or may not hold. Similarly, d.3 may or may not hold. In this section, we provide
conditions ensuring that these statements do indeed hold, paying particular attention to
the strength of the conditions required to ensure each property.

First, we consider a quite special subclass of settable systems, directly analogous to
Markovian and semi-Markovian PCMs, in which the directed local Markov property and
hence d-separation holds, so that d.1 and d.2 hold. Next, we discuss other quite special
settable systems where conditional independence relations additional to the local Markov
property may hold, as encoded by the D—separation criteria discussed in Geiger et. al.
(1990). This ensures d.1 and d.2, as well as other statements that generally fail in Markovian
systems. Finally, we provide an extended version of d.3 for settable systems. The conditions
for this are fairly general. In particular, neither the local Markov property nor notions of

stability or faithfulness are required.
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Notions of d-separation and D-separation, as well as their underlying assumptions, are
therefore not fundamental to establishing the connections between functionally defined
causal relations and conditional independence, nor are they a natural starting point or
context for this study. Nevertheless, as we show, they can be helpful for verifying or
falsifying conditional independence relations in suitably restricted settable systems.

In this section, we will always reference canonical responses. Accordingly, we drop the

explicit superscript ““” and write Y; in place of Y[, etc., for notational convenience.

8.1 Conditioning on Predecessors

8.1.1 The Markovian PCM and d—Separation in Settable Systems

Although d.1 and d.2 do not hold in settable systems generally, we now provide conditions
under which they are true. Our next result describes a settable system analogous to the
Markovian PCM that generalizes the examples illustrated in G¢ through G13. In particular,
we show that here the local Markov property holds for certain random variables analogous

to endogenous variables in the PCM.

Proposition 8.1 Let S be recursive. Suppose that X 2 Xy for all k € 11, and that the

elements of I1; are in one-to-one correspondence with those of Iljg.p), such that for each

© € lp.p), there 1s a unique k € 11y such that X} 2 X;. Suppose further that X, 72 X;
for all i € Ilp.p). For given i € Iy, b > 2, let C' := {l € Hpp_q) : & EEG X;} and let
A= {j € Hp.p\C : &; does not succeed X;}. Let Y;, Yo, and Yy be canonical responses of
X, Xo, and X4. If P is a probability measure on (2, F) such that {Yy, : k € 111} are jointly
independent, then Y L Y5 | Y.

A special case of Proposition 8.1 obtains for C' = @, in which case Y; 1L Y, follows.

Here, conditional independence holds but not conditional causal isolation, an example
of P—stochastic causal isolation. Such systems are very special indeed, in that probability
measures P ensuring the joint independence of {Y} : k € II;} are shy in the set of all joint
probability distributions.’ Shyness is the function space analog of being a subset of a set
of Lebesgue measure zero.

It is easy to construct a probabilistic DAG compatible with the distribution of canonical
responses {Y; : i € Il }. This DAG is isomorphic to the subgraph of the settable system
direct causality graph corresponding to elements of IIjy.5), substituting canonical responses

for settable variables at the nodes. Further, Lauritzen et. al. (1990, proposition 3) ensures

SFor a discussion of shyness, see Corbae, et. al. (2009).
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that for such systems, d-separation or equivalent graphical criteria can identify exactly the
conditional independence relations implied by the directed local Markov property.

For example, consider the agent/expert example illustrated in direct causality graph
(g, where the expert’s advice does not directly affect the outcome. With no restrictions
on P, the expert’s advice, Yy, and the outcome, Yy, need not be conditionally independent
given the canonical agent action, Ys, since Xy and Ay need be not causally isolated given
Xs. This is despite the fact that the agent’s action X5 fully mediates the effect of the
advice Xy on the outcome Xys. Nevertheless, if we impose the strong assumption that the
causal structure is as depicted in Gg with (Y7, Y5, Y3) jointly independent, then Proposition
8.1 ensures Y | Yg | Vs, so that Xy and Ay are P-stochastically isolated given Xs. This is
illustrated in the probabilistic DAG G associated with this “Markovian” structure. There,
Y5 d-separates Y, and Y.

8.1.2 Deterministic and Chance Nodes and D—separation

Geiger et. al. (1990) study DAGs that distinguish between “deterministic” and “chance”
nodes. A deterministic node corresponds to a random variable that is conditionally inde-
pendent of all other random variables given its DAG parents, whereas a chance node cor-
responds to a random variable that is conditionally independent of its “non-descendants”
(non-successors) given its parents.

Geiger et. al. (1990) call the conditional independence statements corresponding to de-
terministic and chance nodes an “enhanced basis” and provide an analogue to d—separation
for these DAGs called “D—separation” that ensures conditional independence under the
graphoid axioms. Similar to probabilistic DAGs, these DAGs do not contain any necessary
causal content. In traditional Markovian PCM graphs (such as (), none of the nodes
are fully determined by their parents, so it follows that d—separation and D—separation
coincide in such DAGs.

Suitably restricted settable systems can embody D—separation. For example, consider
the probabilistic DAG G* corresponding to the direct causality graph G for a recursive

system S that substitutes canonical responses for settable variables. Theorem 10.4 says

~C
that if C' C ind(Zy.;) is such that Xy A5 &; and A = (ITUTI)\({i}UC), then Y; L Y, | Ye.
~C
In particular, Xy # ¢ &; holds when the set C' corresponds to all direct causes (i.e., the

“parents”) of A;. In this sense, Yj is a chance node in G*, whereas the nodes Y;, i # 0, in
G* are deterministic.

It can be verified that for disjoint sets D, FE, and F' in I1 U Iy, Yp and Yz are not
D-separated given Yr in G* if and only if: (a)(i) 0 € D and (i) for some j € E, there
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exists an (AXp, X;) path in G that does not contain elements of Xp; or (b)(7) 0 € E and (i7)
for some ¢ € D, there exists an (Xp, X;) path in G that does not contain elements of Xr;
or (¢)(i) 0 ¢ DU E and (i7) (a.ii) and (b.ii) hold.

Although the graphical D-separation criteria are sufficient for Yp L Yg | Yp, they
are not necessary. A more general sufficient condition for Yp L Yy | Yr is the failure of
Theorem 10.4’s condition (a), as this is implied by, but does not imply, D-separation in
G*. This is a further example of the limitations of graphical criteria.

Our next result describes a restricted settable system similar to that in Proposition 8.1

that generates random variables forming an enhanced basis.

Proposition 8.2 Let S be recursive. Suppose that Xy 2 Xy for all k € Iy and that
for each k € 1Il,, there is a unique ¢ € lljg.p such that X} £ X;. Suppose further that

Xo 7[‘; X; for all i € Ijp.p). For given i € Iy, b > 2, let C' := {l € g1y : & EEG X;}. Let
Ay = {l € Hpp\(C U{i})} and Ay := {j € Hp.p\(C U{i}) : X; does not succeed X;}.
Let P be a probability measure on (£, F).

(1) Suppose that X, 72 X; for allk € TI;. ThenY; L Ya, | Ye.

(17) Suppose that (a) X 2 X, for some k € T, and (b) P is such that {Y} : k € I}
are jointly independent. Then Y; L Y4, | Ye.

Part (i) ensures conditional causal isolation. Part (ii) gives P—stochastic isolation when
elements of {Y} : k € II;} are jointly independent, generating an enhanced basis involving
{Y;, i € ;5.5 }. This is represented in the probabilistic DAG G' isomorphic to the subgraph

for ¢ € Iljp.p) of G, substituting canonical responses for settable variables at the nodes. If

X 71; A&; for all k € II;, then Y; is represented by a (dashed) deterministic node in GT.
Otherwise, Y; is represented by a (solid) chance node. Applying the D-separation criteria
to GT identifies exactly the conditional independence relations implied by this enhanced
basis under the graphoid axioms.

To illustrate, consider the canonical responses of the expert/agent example illustrated
in direct causality graph G19 where the expert’s advice, X3, has no effect on the outcome,

X5, and the agent fully complies with the expert’s advice.
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Since Ay &5 Ay in 819, Lemma 10.2 ensures that the agent’s action canonical response
Y, is determined as a function of the expert’s advice canonical response Ys. Thus, Y, is
represented by a deterministic (dashed) node in probabilistic DAG Ggy. On the other
hand, Y3 and Y; are represented by chance (solid) nodes in Ggg. Proposition 8.2 gives that
Yy L Ys | Y3 for any P, a consequence of conditional causal isolation. If Y; and Y; are
independent, then X3 and X5 are P-stochastically isolated given X; and Y3 1 Y5 | Y.

Such structures impose very strong restrictions on both the causal relationships of the
system and on the distribution of the responses in the first block, {Y} : k € I, }.

8.2 Conditioning on Successors

Unlike properties d.1 and d.2, which concern the independence of successors conditioning
on predecessors, d.3 is a statement about the (lack of) conditional independence of prede-
cessors, conditioning on successors. Without further conditions, there is no guarantee that

d.3 holds in recursive settable systems. For example, for canonical responses in system S,
~{3}
we have that Ya L Y5 | (Y3, Ys) since Xy # ¢ A5 even though X £ Xs and X 2 Xs.

Nevertheless, d.3 may follow from the conditional Reichenbach principle for special cases
under further assumptions. For instance, the local Markov property holds in Markovian
systems as described in Section 8.2; thus, d.3 holds in such systems provided faithfulness
(SGS, pp. 35, 56) or stability (Pearl 2000, p. 48-49) holds. But these notions do not
provide satisfying insight, as they amount to assuming whatever might be needed to ensure
that d.3 holds. Moreover, the local Markov property is quite a strong restriction.

Our next result gives general conditions ensuring that an extension of d.3 holds for
systems that need not be Markovian (see also Wermuth and Cox, 2004, section 7). We

extend d.3 by allowing conditioning on both successors and non-successors.
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Theorem 8.3 Let S be recursive. Let A, B,C, and D be disjoint subsets of I such that
foralli e D and j € AUBUC, &, does not precede X;. Suppose that there exist canonical
responses Y, Y, Yo, and Yp taking values in supports S, Sg, Sc, and Sp respectively, such
that Yp = f(Ya, YR, Yc). Suppose further that there exist 0 < o, f < 1 and sets Sx C Sa,
S C Sg, and Sc.p € Se¢ x Sp such that (i)

P[(Ye,Yp) € Sc.p] > 0,
PlYy € Sa,(Ye,Yp) € Scp| = a,
PlYs € Sg,(Ye,Yp) € Se,p] = B;

and (ZZ) P[YA c SA,YB S SB, (Yc,YD> € SC,D] 7é Oéﬁ. Then Y4 l Ys | (Yc,YD).

A straightforward way to ensure conditions (i) and (i) is to choose Sa, Sp, and S¢ p such
that o > 0, and Y, € Sy and Y € Sp imply (Yo, Yp) € Scp.

For the successors only case (C' = &), Theorem 8.3 gives general conditions under which
d.3 holds, involving f and the distributions of Y4, Yz, and Yp. To illustrate the usefulness
of the general result in this case, our next result provides simple informative primitive
conditions for d.3.

To state this, we introduce two convenient definitions. First, we specify what we mean
by saying that predecessors (Y7, Ys) are jointly continuously distributed at a point (v, y3).
For simplicity, we let Y; and Y5 be scalar. For given ¢ > 0, y; € R, and y5 € R, define
neighborhoods N (€) := [y; — €, y5 + €], Na(e) := [y — €, y5 + €], and N (e) := Ny (€) x Ny(e).

Definition 8.1 We say Y7 and Y, are jointly continuously distributed at (yi,y5) if there
exists € > 0 such that if A C N (€) is Borel measurable, then \(A) > 0 implies P[(Y1,Y2) €

A] > 0, where \ denotes Lebesque measure on R?.

Assuming that Y] and Y5 are jointly continuously distributed ensures that both Y; and Y3
exhibit non-trivial random variation and that neither completely determines the other.

Next, we state a mild restriction on the response function.

Definition 8.2 Let f : R X R — R be such that there exist y; € R, y5 € R, and € > 0
such that for all y; in Ny(€), f(y1,-) is strictly monotone on Ny(€) and for all yo in Na(e),
f(-,y2) is strictly monotone on Ni(€). Then f is locally strictly monotone at (yi,v3).

As special cases, locally strictly monotone functions can be locally strictly increasing or

decreasing. The definition also covers mixed cases where, e.g., for all y; in Ni(€), f(y1,-) is
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strictly decreasing on N3(€) and for all yo in Na(€), f(+, y2) is strictly increasing on N (e).
Local strict monotonicity is a mild restriction, sufficient to ensure that A; and X5 both

cause X3 with canonical response Y3 = f(Y1,Y3).

Corollary 8.4 Let S be as in Theorem 8.3, with A = {1}, B = {2},C = @, and D = {3}.
Suppose that Ys = r3(Y1,Y2). Suppose further that for some (yi,ys), Y1 and Yy are jointly
continuously distributed at (y5,ys) and that r3 : R X R — R is both continuous and locally
strictly monotone at (yi,v3). Then Y1 L Yy | V3.

This delivers d.3 without imposing the local Markov property. For brevity, we leave further

investigation of d.3 and its conditional extension to future work.

9 Conclusion

We study the connections between conditional independence and causal relations within
the settable systems extension of the Pearl Causal Model. We address concerns raised by
Dawid (2002, 2010a, 2010b) to demonstrate how the settable systems framework permits a
clear separation between causal and probabilistic concepts and that, while helpful, graphi-
cal representations are not essential for the study of these concepts and their interrelations.
We provide formal function-based definitions of direct and indirect causality as well as no-
tions of causality via a set of variables and exclusive of a set of variables. These definitions
complement and extend the definitions provided in Robins and Greenland (1992), SGS,
Pearl (2000, 2001), Robins (2003), Avin, Shpitser, and Pearl (2005), Didelez, Dawid, and
Geneletti (2006), and Geneletti (2007). We state and prove the conditional Reichenbach
principle of common cause, formally establishing the classical Reichenbach principle as a
corollary. We introduce concepts of conditional causal and stochastic isolation to distin-
guish between situations in which causal restrictions among settable variables ensure that
their responses are conditionally independent for any probability measure and those where
conditional independence is due to a particular choice of probability measure. These no-
tions yield necessary and sufficient conditions for conditional dependence among specified
random vectors in settable systems. We relate our results to the (Markovian) PCM and
concepts of d-separation and D-separation, and we provide conditions under which the
causal intuitions these notions support fail or hold.

Taken together, our results show that recursive settable systems provide an effective

formal framework for studying the relations between functionally defined causal relations
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and conditional independence, and that background variables, the Markov properties, en-
hanced bases, chance and deterministic nodes, and the assumption of faithfulness or sta-
bility are not fundamental to establishing these connections. Nevertheless, we demonstrate
that these notions may be helpful for understanding conditional independence relations in
certain restricted settable systems.

We focus attention here primarily on recursive systems. An interesting direction for
further research is to extend our concepts and results to non-recursive systems (see, e.g.,
Lauritzen and Richardson, 2002; Wermuth and Cox, 2004; WC). Our framework also con-
stitutes an appropriate foundation for studying the identification and estimation of direct,
indirect, and “path-specific” causal effects (See Avin, Shpitser, and Pearl, 2005; Didelez,
Dawid, and Geneletti, 2006; Geneletti, 2007).

The results of this paper have direct relevance for empirical research by, among other
things, providing foundations enabling researchers to identify, justify, and test the validity
of covariates in treatment effect estimation, of instruments in instrumental variables esti-
mation, and of predictors in forecasting models. Specifically, White and Lu (2010) study
the choice of covariates for treatment effect estimation using the present framework and
results. Chalak and White (2007, 2010) use these to study the choice of instruments in
extended instrumental variables estimation. White (2006) and White and Chalak (2010)
use this framework to analyze the choice of predictors and to provide tests of unconfound-
edness. These studies only represent a start on the many evident opportunities; we intend

to pursue these in future research.
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10 Mathematical Appendix

Proof of Proposition 6.1 We prove the contrapositive. We have:

75 (210:01)(6)» 25 » ZicAs 24, Yas TA(205 Z[bn](3) > Zi ZicAs Y)s
7 asi 2o 0) 200 Zias 245 Yo Ta{ 20, 205 205 Zizas Ya b))
—'f’j(z[O:bl}(z‘), Ziy Zi:As A5 YA, 4 (20, Z[1:b1](3) s Ziy RiAs Ya),
TA:j [Z[O:bl](i), Ziy Zi:As ZA, YA, Tz{zo, R1:b1](3) 5 iy Fiz A yA}])
= 75(201]00) 20> ZicAs 245 Yoao T2(205 2[1:01)(6) Zi> ZicAs Yk
TA:j [Z[O:bl](i)a Ziy Zi:Ay ZA, yj:p Tz{zo, Z1:b1](3)» iy %A, yﬁZ}])
=15 (Z[0:011(6)» Zis ZizAs 245 Yon> T7(205 2[1:01)(6)» Zis ZizA> Ya)s
7 a2 0) 200 Zias 245 Yo Ta{ 20, 205 205 Zizas Ya b))
+75(2(0:0)(0)» Zis 24 24, Y, T7(205 2[1:01)(0) s Zis Zi:4, Y4),
T 4:5[200:1](0) > Zis ZiAs 245 Vs TAL 205 21100 ()s Zi ZisA> YA )
=15 (2(0:b](3) > Zis ZizAs 24> YAs TH(205 Z[1:00) ()5 Zi ZizAs YA),
T 435 2[0:b1](6) > Zis ZiAs ZAs YA, TAR 205 2[101](6) > Zis ZisAs YAY])-
Suppose X; 72 s «j. Then by Definition 6.1, for all admissible interventions with the fol-
lowing corresponding responses for X;, we have
75 (210:01)0)s 27 » 24 245 Yoas TE(205 2[101]() s Zis ZicAs Yu)s
T asiZ00))» %5 Zisas 245 Yoo Ta{ 20, 2100a)0)s Zis Zina, Ya b))
=15 (2101](3)s Zi» Zi:A> 245 Yoas TE(205 2[1:01)()» Zis ZicAs Y

T A:j [Z[O:bl](i); Ziy ZitAy RA» yﬁp 7’2{20, Z1:b1](i)» iy Ri:A, yz}]) = 0.

114]
Also, suppose &; # g &;. Then by Definition 6.3, for all admissible interventions with the

following corresponding responses for X;, we have
75 (Z[0:01)(3)» Zi» Zizs 245 Yo TA( 20, 2[1:1)(6)» Zi» ZicA> YA
TA:j [Z[O:bl](i)v Ziy ZitAs ZA, yjzl? TZ{Z(L 2L:b1](i)> iy ZizA, y;}}])
_Tj<z[0:b1}(i)) Ziy ZiAy RA, YA, TX(Z(% Z[l:bl](i)u Ziy Ziz Ay yA)7
T 4:5[200:1](0) > Zis ZizAs 24, YA, TH{ 205 Z11:00) ()5 i Ziza, Ya}]) = 0.
Since the space of jointly admissible setting values of the form
(Z[O:bl}(i), Ziy ZitAy A, 3/2, 7“;(20, Z[1:b1](i) s %y RizAs yZ),

TA:j [Z[O:bl](i)a Riy Rit Ay RA, ?/:Za 7’2{20, R[1:b1](3) 5 %y Fiz A yz}]),
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includes the space of jointly admissible setting values of the form

(Z[o:bl}(i), Ziy ZitAy RA YA, Tz(zo, Z[1:b1)(3) s Fis Riz Ay yA),
TA:j [Z[O:bl](i)a Riy Rt Ay RA, YA, TZ{207 Z[l:bl](i)a Ziy it A yA}])v

it follows that for all admissible interventions with the following corresponding responses

for &, we have

* * *
(2010 20 > ZicAs 245 Yo T2(205 2[1:01)(6) Zis ZicAs Yk )
* . *
T A5 [Z[O:bl](i)a Ziy ZitAy FAy Y A TA{ZO, Z[1:b1](3) 5 iy Ziz A, yA}])
—Tj(z[o:bl}(i), Ziy Zi:Ay ZA5 YA, 77(20, Z[1:b1](5) s Fiy ZizAs yA)v

TA:j [Z[O:bl](i)a Riy Zi: Ay RA, YA, TZ{ZOa Z[1:b1](4) 5 iy Ziz A, ZJA}]) = 07

(4]
that is, &; #¢ X;. This verifies the contrapositive, so the claimed result follows. l
Proof of Corollary 6.2 Apply Proposition 6.1 with A = ind(Z;,;). B

Proof of Proposition 6.3 The proof is analogous to that for Proposition 6.1 and is
omitted. W

We next collect together useful basic results on (indirect) causality via or exclusive of
X4 for the special cases A = @ or A = ind(Z;.;).

Proposition 10.1 Let S, i,and j be as Definition 6.3. Let A = @ and B = ind(Z;;).
Then

X, "S5 X if and only if X Bs x;

(
(
(d) X Zs X if and only if X B x;;
(e) X; =s X if and only if X; Nzég X;;
(f) & =s &; if and only if X; £>5 Xj.

It follows from (e) and (f) in Proposition 10.1 that @—causality and ~ A—causality
with A = ind(Z;.;) are equivalent to direct causality in recursive systems.

Proof of Proposition 10.1

(a) We have ind(Z;;) = A, and thus r;(20.4,-1]) = 75(2[0:01](:), 2> 24). It follows from

I[A]
Definition 6.3 that X; # s X since 1;(20:61)5)s Zi» 24) — 75 (2[0:01](3)» %i> 24) = 0 for all function

arguments.

20



(b) We have B = ind(Z;,;), and thus 7;(2jop,-1]) = 7j(2j0:01)(5)» %> 2B). It follows from
I[~B]
Definition 6.4 that X; # ¢ X; since rj(2jo,16), %i> 2B) — 75(2/0:61) ()5 2> 28) = 0 for all
function arguments.
(¢) Definition 6.4 gives that A; IgA]S A&; if there exists an admissible intervention

(2[0:61](’[)’ Zi yA) - (z[U:bl](i)v Ziy y*A) such that

75 (Z10:b1](0)» Zi> Ya) — T3 (Zj0b11(6)» 26 Ya) # 0.

Also, Definition 6.3 gives that &; i

(Z{0:0](2)» Zi> YB) — (Zj0:64](3)» Zi» Y33) such that

s A if there exists an admissible intervention

Tj(Z[o:bl](i), Ziy yg) - Tj(Z[O:ln](i), Ziy ?/B) # 0.

But we have A = ind(Z;;) = B. The claim is verified, as the two definitions coincide.
(d) Definition 6.6 gives that X; = X; if there exists an admissible intervention
(Z[O:bl](i)a Zi,yA) - (2[0;51](2‘), Zf,y*é) such that
i (#0116)> % Ya) = 75 (Zo1)6)» 20 Ya) 7 0.
Also, Definition 6.5 gives that &; @5 A if there exists an admissible intervention
(Z[O:bl](i)a Zi, yB) - (2[0:51](i)7 Z;ka y*B) such that

Tj(Z[ozbl](z‘), Z;‘k? y*B) - Tj(Z[ozbl](i), Ziy ?JB) # 0.

But we have A = ind(Z;,;) = B. The claim is verified, as the two definitions coincide.
(e) Definition 6.5 gives that AX; [:A>]S X if there exists an admissible intervention

(Z[0:01](3)» % 24) — (Z[o:1](3)» 27> 24) such that

75 (210:61)(0)» %7 > 24) — T3 (Z[0:00)3)» %> 24) 7 0.

Also, Definition 6.6 gives that X; ’;]fg X if there exists an admissible intervention

(Z[0:b1)(5)» %> 2B) — (Z[0:b1)(5)» 27 #B) such that

i (20110 21> 2B) — T (Z0](3)» 2i5 2B) F 0.

But we have A = ind(Z;,;) = B. The claim is verified, as the two definitions coincide.
(f) Definition 6.5 gives that X; @3 A& if there exists an admissible intervention

(Z[O:bl](i)7 Ziy ZA) - (2[0:b11(¢)7 z7, zA) such that
75 (Z[0:01)i)s 21 > 24) — T5(2(0:61)(6)» %> 24) 7 0.
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Also, Definition 6.1 gives that &; £>5 A if there exists an admissible intervention

(2(0:61)0)» Zis 2o +1:62—1]) = (2[0:61)(3)s 27+ 2(br+1:05—1]) Such that
Tj(Z[O:bl](i)a Z;'k’ Z[b1+1:b2—1]) - Tj(Z[O:bl](i)a Ziy Z[b1+1:b2—1]) # 0.

But we have A = ind(Z;;;) = Hp,4+1.4,—1). The claim is verified, as the two definitions

coincide. H

We next state a lemma that plays a key role in formalizing the conditional Reichenbach
principle of common cause. For i € II;,, j € II;,, b1 < by, and A C ind(Z;;), we let the

elements of ya.; = 74.(20:61](5)s %> Yiz4, YA, YA, Y1) obtain by recursive substitution.

Lemma 10.2 Let S be recursive, j € I1,, and A a subset of ind(Zy.;). Let X; have canonical

~A
response Y. If Xo #s X, then there exists a measurable function 7; such that for all

admissible setting values

Tj (307 Yo:4, YA, ZA, TZ('ZOa Yo:A, zA)a TA:j [ZO> Yo:A,YA, 24, TZ(Z(L Yo:A, ZA)]) = fj (ZA)7

and in particular

Y5 = 15(20, Yo:A, YA, YA, Y, Yag) = T5(Ya)-
(Recall that here i = 0, so that 2o, Y0.4, Y4, Y4, Yz, Ya:; are canonical setting/response

values.)
~A
Thus, if Xy # s &; then, provided it exists, we can express a canonical response Y as

a function of canonical responses Y.

Proof of Lemma 10.2 Denote by S* the space of jointly admissible settings for (Xjp, P({}j,
Xa, Xa, X7, Sg);) of the form (25, y5.4, Y, 24, T2(255 Yoear 24), T 51265 Yoo, Yo 24> T2(255 Uoeas 24)])-
Since Y[ exists, S* is not empty.

First, suppose that S* is a singleton. Then there does not exist an admissible inter-
vention to (Xo, Pg;, Xa, Xa, X5, S§;) of the specified form and thus Ay ;éés X;. It follows

trivially that there exists a measurable function 7; such that

Tj (ZO7 Yo:A,YA, ZA, TZ(’ZOu Yo:A, ZA)7 TA:j [ZOJ Yo:A,YA, ZA, TZ('Z(L Yo:A, ZA)]) — 7:] (ZA)7

and in particular

c _

y] Tj<20a Yo:A, YA, YA, YA, yA]) - f] (y,CA)
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~A
Second, suppose that S* is a multi-element set and that X, #s &;. Then by Defi-
nition 6.6 for all admissible interventions to (Xp, Pé‘}j, Xa, Xa, X7, S(fj) with the following

corresponding responses for X; we have
* * * * * * * * * *
Tj(z(h Yo:4>Yas 2A; TZ('ZOJ Yo:A> zA)? T A5 [zO’ Yo:.4> YA 2A; TX('ZO? Yo.A> ZA)])
_Tj(ZOa Yo:A,YA, ZA, TZ(ZCH Yo:A, zA)a TA:j [207 Yo:A,YA, %A, TZ(Z(N Yo: A, ZA)D = 0.

Therefore there exists a measurable function z4 — 7;(24) such that for all elements of S*

Tj(Zoyyo:A,yA, ZA,Tz(Zo, Yo:A, ZA)yrA:j[ZOa Yo:A,YA, ZA,Tz(Z(),yo;A, ZA)]) = fj(ZA)-

In particular, for all (2o, Yo.4, Y4, Y4, Y7, Ya:j) € S* we have
75(20, Yo:4, Y, Yas Y, Ya) = T5(ya) = 75(y%). W
A special case of Lemma 10.2 occurs when A = &.

Corollary 10.3 Let S and Y; be as in Lemma 10.2. If Xy #s X; then Y[ is constant.

~A
Proof of Corollary 10.3 Let A = @. Proposition 10.1(d) gives that X, #¢ &; if and

only if Xy #s &. Since 7;(z4) must be constant, the result follows from Lemma 10.2. W

Proof of Proposition 7.1 Apply Theorem 10.4 (see below) with A = {i} and B = {j}.
|

Proof of Corollary 7.2 Apply Proposition 7.1 with A = &. The result follows from
Corollary 10.3.

Proof of Proposition 7.3 We prove the contrapositive.

(i) Suppose that ¢ = 0 and that there does not exist an (Ap, X;) path that does not
contain elements of X4. Let A; = ANind(Zy.;). Denote by S* the space of jointly admissible
settings to (Ap, P(fj, Xay, Xaj, X, S(fj) of the form

* * * * k * * * * *
(Zoa Yo:a,0Ya;s #A;s Tfj(zov Yo:4;> ZAj)’ TAj:j [207 Yo:a,5Ya;s #A;s T/Tj(zOv Yo:4,5%A; )])

Since Y[ exists, S* is not empty.

First, suppose that S* is a singleton. Then there does not exist an admissible inter-
. , ~A;
vention to (AXp, P{f}, Xa,, Xajy X7, S(f;) of the specified form and thus X, # 5 &j, a

contradiction.
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Second, suppose that S* is a multi-element set. By construction, for all admissible
interventions to (X, P(fj, Xy, Xaj, X, Sé;) with the following corresponding responses

for X; we have

* * * * * * * * * *
Tj (207 Yo:4;> yﬁa RA; ) T/TJ-(ZO’ Yo:4,> ZAj)’ TAj:j [207 Yo:4,> yﬁa RAj» Tfj(207 Yo:4;> ZA]')])

—Tj(Zo, Yo:A; yAiﬁ A rfj(207 Yo:A;» ZA].), TAjj [Z[b Yo:4; yAiﬁ A rfj(207 Yo:A;» ZA].)]) =0.

Otherwise, it follows from Definition 6.1 of direct causality that there must exist an (Xp, X;)

path that does not contain elements of X4, and therefore of X4 by definition of A;. It follows
NAj
from Definition 6.6 that Xy # s &), a contradiction.

(i7) Suppose that j = 0 and that there does not exist an (Xp, X;) path that does
not contain elements of X4. Then an argument parallel to (i) leads to Ap N:A;ig X; (with
A; = ANind(Zy.;)), a contradiction.

(74) Suppose that i, j # 0 and that there does not exist (a) an (Xp, &;) path that does
not contain elements of X4 or (b) an (Xp, A;) path that does not contain elements of X4 (or
both). Then arguments parallel to (i) or (i7) (or both) imply that A} NzA;jS X; or X His A,

(or both), a contradiction. H

Proof of Corollary 7.6 The result is immediate from Proposition 7.1 and the contrapos-

itive of the definition of conditional stochastic isolation. l

Conditional Reichenbach for the Vector Case

In applications, we are often interested in conditional independence relations between vec-

tors. For this, we first extend the meaning of the notations X; £>s X, and X; 72 s Xj to
accommodate disjoint sets of multiple settable variables appearing on the right and left
hand sides. For example, if A and B are non-empty disjoint collections of indexes, we let
X4 be a vector of settable variables whose indexes belong to A and similarly for Xz, and we
write X4 £>3 Xp if X £>5 &; for some ¢ € ANII, and j € BNII, with a < b. Otherwise,

D D
we write Xy # s Ap indicating that X; A5 X for all i € ANII, and j € B NIl with
a < b. Observe that even though § is a recursive system, it is possible to have X4 £>5 Xp
D
and X B =S X A
o . 114] 1[~A] [A] ~A . .

Similarly, we extend the notations =, =, =, and = and their negations to accom-
modate disjoint sets of multiple settable variables appearing on the right and left hand
sides. To do this requires some further notation. Let Za.5 = Ujca Ujep Zi;j\(Xa U Xp)
denote the set of (X4, Xp)—intercessors and let C' C ind(Z4.5). For giveni € A and j € B,
let Ci; = C Nind(Z;;;). Then, we say that X4 gs Xp if there exists 1 € ANII, and
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[C]
7 € BN1Il, with a < b, such that &; [%“J]S &X;. Otherwise, we write Xy # ¢ X5, indicating
[Ci:j]
that &; # ¢ &) for alli € ANII, and j € BNII, with a < b. The notations other than

(4]
[é‘>]3 and # s in the list above are defined analogously for vectors of variables.

The definitions of conditional causal isolation and conditional P-stochastic isolation
generalize to the vector case in the obvious way. Thus, if Y L Y5 | VS when X4 and Xz
are not causally isolated given X (that is, condition (a) in Theorem 10.4 below holds),

then we say that X4 and X'z are P-stochastically isolated given A(.

Theorem 10.4 Conditional Reichenbach Principle of Common Cause (III) Let S
be recursive. Let A and B be non-empty disjoint subsets of I1UIly and C' C II\(AUB). Let
X4, X, and X¢o be the corresponding vectors of settable variables with canonical responses
Y5, Y5, and YS. For given probability measure P on (2, F), Y5 L Y5 | Y& if and only if
(a) either:
(i) 0 € A and Xy causes Xp exclusive of Cp := C Nind(Zioy:p), i.e., Xo ~:C>BS Xg; or
(ii) 0 € B and Xy causes Xy exclusive of Cy := C Nind(Zioy.a), i.e., Xy N:C>A$ Xy; or
(i) 0 ¢ AU DB and Xy "S's Xy and Xy " Xp;
and (b) X4 and Xp are not P—stochastically isolated given Xc.

Proof of Theorem 10.4 Let P be any probability measure. First, we prove that if

Y§ L YSIYS then Xy and Xp are not causally isolated given Xe.
~C ~Co.;
(1) Suppose that 0 € A and A} 7$>BS Xp. Then &, # ¢ &) for all j € B. For given

J € B, let X¢,, be a vector of settable variables and let Y¢,, denote the corresponding
canonical responses. By Lemma 10.2, it follows that Y = 7;(Y{, ) for all j € B. Let Xc,
be a vector of settable variables and let Y5, denote the corresponding canonical response;
then we have Y5 = 75(Y§5,). Let O = C\Cp, let Xoe be a vector of settable variables,
and let Y. denote the corresponding canonical responses; then Y5 = (YCCB,YCC%). Since
Vg = 7p(YS,), we have that (Y, V¢ ) L Y5 | Y&, We then have that Y L Y | (Y&, Y )
(see, for example, Dawid, 1979, section 4; Dohler, 1981, lemma 3; Smith 1989, property
3; and Florens, Mouchart, and Rolin 1990, theorem 2.2.10), that is, Y{ L Y5 | Y5, a
contradiction. (Note that when Cz = C' the result is immediate. Also, when Cp = @, Yp
is constant and the result is trivial.)
~C

(1) Suppose 0 € B, and that Aj 75>A s Xa. The result is symmetric to (i) yielding that

Y5 L YS | Y, a contradiction.
~C ~C
(73) Suppose that 0 ¢ AU B, and that X 75>AS Xy or Xy 75>BS Xp. Suppose that

~Ca
Xo # g Xa; then an argument similar to (i) gives that Y{ L Yj | Y§, a contradiction.
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Alternatively, suppose that Xj N;B s &B. Then by a parallel argument, we obtain that
Y5 LYS | YES, a contradiction.

That X4 and X are not stochastically isolated given X follows by the definition of
conditional stochastic isolation. The rest of the proof follows from (the contrapositive of)

the definition of conditional stochastic isolation. W

Proof of Proposition 8.1 Let & € II; such that A} 2 AX;. By construction we have
~CU{k}
that Xy # g A;. Theorem 10.4 gives that Y; L Y4 | (Yo, Ys). Further, since since

elements of Xy and X4 do not succeed X, there exists a set D C II;\{k} such that

Xo ;él; s (Xo, Xa). It follows from Lemma 10.2 that there exists a measurable function 7¢ 4
such that (yo,ya) = Foa(yp). Since {Y) : k € II;} are jointly independent we have that
Yy L Yp. It follows from Dawid (1979, lemma 4.2(i)) that Y3 L (Ye, Ya). Also, Dawid, 1979,
section 4 (see also Dohler, 1981, lemma 3; Smith 1989, property 3; and Florens, Mouchart,
and Rolin 1990, theorem 2.2.10) gives that Y3 L Y4 | Y. Given that Y; L Yy | (Yo, Yi),
Dawid (1979, lemma 4.3) gives that ¥; L Y4 | Yo. B

~C
Proof of Proposition 8.2 (i) By construction we have that Xy # ¢ X;. It follows from
Theorem 10.4 that Y; L Ya,|Ye. (44) An argument similar to Proposition 8.1 gives that
Vi LYy |Ye. R
Proof of Theorem 8.3 Since P[(Y¢,Yp) € Scp| > 0, it follows that
P[YA S SA, (YC,YD) € SQD] «

PlYa € Sa|(Yo,Yp) € Sep| = P[(Ye,Yp) € Se.p) B P[(Ye,Yp) € Se,p) and
o P[YB S SBJ <Y07YD) € SC:D] _ ﬁ
PYp € Sp|(Ye,Yp) € Sep] = P[(Ye,Yp) € Sc,p] ~ P|(Ye,Yp) € Sep]’
SO
af

P[YA € SA ’ (Yc,YD) - SQD] X P[YB € SB’(Yc,YD) (- SQD} = P[(YC YD) c SCD].

Now P[YA € SA,YB € SB, (YC,YD) (- SQD] 7é Oéﬂ and P[(YC,YD) - SC’,D] >0 imply

P[YA - SA,YB € SB; (YCayD) € SQD]
P[(Ye,Yp) € Se.p]

P[YA c SA,YB € SB ’ (YC,YD) < SC’,D] =

af
P[(YC, YD> S SQD] .

£

It follows that

P[YA € SA ‘ (Yc,YD) c SC,D] X P[YB c SB | (Y07YD> € SQD]
# P[Ya€ S84, Yp € Sp|(Ye, YD) € Sopl,
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which implies that Y4 £ Y5 | (Yo, Yp). R

Proof of Corollary 8.4 For brevity, we consider only the locally strictly increasing case.
The other cases are similar. We choose sets S, Sz, and S3 such that P[Y; € S3] > 0,
P[Y; € 51,Y3 € S3] =a >0, P[Ys € S5,Y; € S3) = >0, and P[Y; € 51,Y2 € S5, Y3 €
S3] = 0. The result then follows from Theorem 8.3.

For the given ¢ > 0, yi, and v3, let Ny (€) = [yf — e,47), Ny (€) == [y}, 9 + €],
Ny (€) :== [y3 — €,43), and N5 (e) := [y3,y5 + ¢]. We let S; = N[ (€), So = Ny (¢), and
Ss 1= [y3, Us], where y3 := r3(y7,y3) and

g3 = min{rs(yy, y5 +€),r3(y] +€,y5)}.

By the local strictly increasing property, y5 < ¥s.

We have P[Yz € S3] > P[Y; € N (e),Ys € Ny (e),Ys € S3] > 0, as r3 is locally
strictly increasing at (y7,ys) and the specified event has positive Lebesgue measure. Next,
PlY; € S1,Y3 € S3] > P[Y1 € N{ (6),Ys € Ny (¢),Y3 € S3] > 0 for the same reasons.
Similarly, P[Ys € Sy, Y3 € S3] > P[Y; € Ny (€),Ya € Ny (€),Y3 € S3] > 0. This verifies (i)
of Theorem 8.3.

But P[Y; € S1,Ys € 55,Y; € S5] = P[Y; € Ny (¢), Y2 € N (€),Ys € Ss5] = 0 by the local

strictly increasing property. This verifies (i7) of Theorem 8.3, and the proof is complete. B
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