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Abstract
Several authors have discussed previously the use of loglinear models, often called maximum
entropy models, for analyzing spike train data to detect synchrony. The usual loglinear modeling
techniques, however, do not allow for time-varying firing rates that typically appear in stimulus-
driven (or action-driven) neurons, nor do they incorporate non-Poisson history effects or covariate
effects. We generalize the usual approach, combining point process regression models of
individual-neuron activity with loglinear models of multiway synchronous interaction. The
methods are illustrated with results found in spike trains recorded simultaneously from primary
visual cortex. We then go on to assess the amount of data needed to reliably detect multiway
spiking.
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1 Introduction
Synchrony is widely believed to play a fundamental role in neural computation (e.g. Uhlhaas
et al., 2009), but its statistical assessment is subtle (for reviews see Grün (2009) and
Harrison et al. (2011)). To analyze multi-way synchrony among simultaneously-recorded
multiple spike trains that are represented as binary time series, across many trials, it is
natural to consider well-established loglinear modeling technology (Gütig and Aertsen,
2003; Martignon et al., 2000; Nakahara and Amari, 2002; Schneidman et al., 2006). The
standard approach, however, has two shortcomings. First, it assumes stationarity of firing
rates across suitable time intervals. Second, it does not incorporate spiking history, or other
covariates, and therefore effectively assumes Poisson spiking. While previous authors have
been aware of these issues (e.g., Martignon et al. (2000)) they have not offered specific
methods for dealing with them. In addition, the standard approach ignores the inherent
relative sparsity of two-way and higher-order synchronous spiking. Here we provide a
modification of the usual loglinear modeling methodology to deal with the case of
inhomogeneous non-Poisson firing rates that result from stimulus-driven (or action-driven)
recordings, and we give a straightforward procedure for parameter estimation, which is a
variant of maximum likelihood via iterative proportional fitting. Tests for pairwise and
multiway synchrony may then be based on the bootstrap.

To explain more fully the problem we are trying to solve, and the idea behind our proposed
solution, let us suppose we have simultaneously-recorded spike trains from some particular
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3 neurons, which we label (1, 2, 3), for which spiking patterns take the form (a, b, c), where
a, b, c ∈ {0, 1} so that, for instance, (1,1,0) would signify that the first two neurons fired but
the third did not. The probability of obtaining the pattern (a, b, c) at some time t on trial r
may depend on the history Ht,r of spiking patterns prior to time t and it may also depend on
some other covariates (such as a measurement of network activity, as in Kass et al. (2011),
or variables representing trial-to-trial variation, as in Ventura et al. (2005a)), which we here
take to be a vector ut,r. We then write the probability of pattern (a, b, c) at time t on trial r as

. If we were to treat the spike trains as jointly stationary, and ignore history,
covariates, and additional sources of trial-to-trial variation, we could omit t and r and write
the usual model for 2-way, but not 3-way interaction as

(1)

where the parameters satisfy certain constraints (e.g., Σpabc = 1, , etc.). In computer
science and physics models such as (1) are often called maximum entropy models
(Schneidman et al., 2006). In the statistics literature the parameters are usually standardized
by subtracting means (Agresti, 2002). Using (1), for a given set of data the loglikelihood
function may be maximized iteratively to produce fitted parameters and probabilities. The
problem we solve here is to introduce a variant of (1) that allows both non-stationarity and
the use of history and other covariates.

1.1 Overview of approach
Suppose we have spike trains from n neurons recorded simultaneously over a time interval
of length T, across R trials. We consider spiking patterns at a relatively fine time resolution,
denoted by δ. In Section 3, we report an analysis of simultaneous spiking data recorded from
primary visual cortex where we took δ to be 5 milliseconds. The spike train data may be
represented as binary arrays with dimensionality (T/δ) × R × n. For the data analysis
reported in Section 3 we used arrays of dimension 200 × 120 × 3 to estimate 200 × 120 × 8

probabilities . In full generality there are more parameters than data values.
Furthermore, non-stationarity and history dependence could, in their most general
conception, be very complicated. The approach we take here simplifies the situation greatly
by assuming

1. for every neuron i, the firing probability varies smoothly across time and depends

on spiking history Ht,r only through the history  for neuron i, together with the
covariate vector ut,r; and

2. excess joint pairwise spiking, above that expected under independence, does not
depend on either spiking history or the covariate vector.

Importantly, assumption 2 defines excess synchrony relative to “independence,” which here
means independence conditionally on all history and covariate effects mentioned in
assumption 1. In specifying these assumptions we aim to emphasize the way synchrony is
judged against a backdrop of explanatory covariates. For example, it is widely appreciated
that a pair of neurons may exhibit excess pairwise spiking relative to what might be
expected from their time-averaged firing rates because they respond to given stimuli with
roughly similar temporal profiles—this would be synchrony due to their individual firing-
rate functions, as seen through overlapping PSTHs. Various methods may be used to adjust
or “normalize” pairwise spiking to account for the individual time-varying firing rate
functions (e.g., Aertsen et al. (1989)). Many other possible sources of pairwise spiking may
be present in particular cases, including global network activity. One of our purposes here is
to introduce a general framework for quantifying the contributions of alternative sources of
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pairwise spiking, while assessing statistical evidence and uncertainty. A second purpose is to
examine excess multi-way spiking relative to that expected from pairwise spiking. The
approach we develop melds loglinear modeling, as in (1), together with point process
regression modeling (which usually comes under the rubric of generalized linear models) as
in numerous articles (e.g., Kass and Ventura (2001), Kelly et al. (2010a), Okatan et al.
(2005), Pillow et al. (2008), Stevenson et al. (2009), Trucculo et al. (2005), Zhao et al.
(2011)). We use point process regression to model the behavior of each individual neuron;
we then overlay the structure of loglinear models to account for synchronous connections.

For notational simplicity we concatenate the history and covariate vectors as a single vector

When we consider only the spiking history  of neuron i at time t on trial r we write

Let  be the probability of neuron i spiking at time t on trial r. The central object in

the point process framework is the conditional intensity function, , which is the
firing rate function in continuous time, and the relationship between the continuous and
discrete time representations is summarized by

(2)

the approximation being justified by passage to the limit as δ → 0. The corresponding key
statistical result is that the likelihood function based on the continuous-time representation,
in terms of the conditional intensity function, is approximately equal to the likelihood

function based on the binary data and the probability of spiking . We use x in the

notation  to connote regression-style modeling of probability in terms of explanatory
covariates, including history.

Now let  be the probability that neurons i and j will both spike at time t on trial r.
Under assumption 1, above, we use the spike trains from each neuron i to fit that neuron's

firing probabilities  across time and across trials. Let us write such fits

as . Under assumptions 1 and 2 we may define

(3)

so that  represents the excess pairwise spiking above that predicted by independence (as

in Ventura et al., 2005b). We have written  with the argument t and subscript x to

indicate that  is a function only of time but, because it is defined through (3), it depends

indirectly on the covariates used in the individual neuron firing probabilities . For
example, we may evaluate excess synchrony with and without a covariate that measures
network activity. Kass et al. (2011) gave an example in which the data indicated that

 when a covariate for network activity was included in xt,r while  when it
was omitted. This suggested that excess synchrony above that expected from time-varying
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firing rates, while present, was due to global network activity rather than a local circuit that
affected the particular pair of neurons.

We may now summarize the steps of the strategy we have implemented for estimating
multi-way spiking probabilities based on all combinations of excess pairwise spiking,
thereby generalizing (1) to account for non-stationarity, history, and covariates. We consider
first the case of n = 3 neurons labelled i, j, k:

1.
For all i and all t, and for every trial r, fit  to get ;

2. For all i, j estimate  to obtain ;

3.
Based on the (T/δ) × R sets of estimated values , , ,

, ,  from steps 1 and 2, use an iterative algorithm to obtain the

complete set of (T/δ) × R × 8 estimates  of .

Once we have all the fitted probabilities  we are able to use them to estimate

quantities defined in terms the probabilities . We can also use the set of fitted

probabilities  to simulate artificial spike trains that reflect all of the estimated
multi-neuron dependence, and we can thereby use bootstrap simulation to obtain confidence
intervals for estimated quantities; these confidence intervals incorporate the statistical
uncertainty from all three steps of the fitting procedure. Similarly, we can test the null
hypothesis of 2-way interaction, but no 3-way interaction, against the alternative that also
includes 3-way interaction. The bootstrap hypothesis tests also incorporate uncertainty from
all the steps of the fitting procedure.

The same steps may be followed for more than 3 neurons. For example, for 4 neurons we

would again use the 2-way probabilities in (5) to fit probabilities of the form 
and thereby test the null hypothesis of pairwise interaction against both 3-way and 4-way
interaction. Thus, according to the approach described here, large numbers of spiking
probabilities having potentially complicated forms are estimated by first fitting to each
neuron a smooth conditional intensity function and any relevant covariates, then fitting 2-
way excess synchronous spiking terms, then finding multiway probabilities by iterative
optimization.

To help fix ideas, Figure 1 displays a simple situation involving time-varying firing rates
from 3 artificial neurons (dotted lines in panels A–C) where 2-way synchronous spiking
occurs more often than predicted by independence (dotted lines in panels D–F), and 3-way
interaction occurs more often than that predicted by a 2-way model. We simulated a large
number of trials from this model. When a 2-way interaction model was fitted to the
simulated data, the 1-way and 2-way firing rates were estimated accurately (solid lines in
panels A–F), but the amount of 3-way spiking was underestimated (solid line in panel G).

1.2 Overview of article
In Section 2 we provide methodological details. We begin in Section 2.1 by briefly
summarizing the fitting methods for individual-neuron probabilities, then go on to pairwise
probabilities in Section 2.2, giving procedures for bootstrap confidence intervals in Section
2.3. In Section 2.4 we present the algorithm for fitting multi-way probabilities under the
assumption of pairwise interaction but not higher-order interaction, in Section 2.5 we
discuss bootstrap confidence intervals for functions of these probabilities, and in Section 2.6
we describe bootstrap hypothesis tests. In Section 2.7 we review the essential motivation for
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the three-step approach outlined in Section 1.1 in terms of what we call hierarchical sparsity.
In Section 3 we provide a real-data illustration by analyzing some simultaneous spiking data
recorded from primary visual cortex. We then, in Section 4, use the framework described
here to address a fundamental question: how much data would be needed to distinguish 3-
way interaction from the 3-way spiking that occurs by chance from pairwise interaction
models? In Section 5 we add remarks about the utility of this method in practice.

2 Methodology
Here, and for the remainder of the article, we omit explicit reference to the trial r, leaving it

implicit. We also omit the subscript x on .

2.1 Fitting 1-way probabilities
Individual-neuron (1-way) firing probabilities may be fitted by invoking smooth point
process models, where each neuron i has firing rate governed by a conditional intensity

function  Kass and Ventura (2001) and Kass et al. (2003) discussed spline-based
fitting of conditional intensity functions and Pillow et al. (2008) used an alternative set of
smooth basis functions that incorporate both rate variation and history dependence.
Sometimes history and covariate effects may be ignored, and then the PSTH may be
smoothed by Gaussian filters (kernel smoothers), fixed-knot splines, or more sophisticated
methods such as BARS (DiMatteo et al., 2001). The first step of the approach suggested

here is to apply one of these individual-neuron models in order to obtain estimates 
for all t.

2.2 Fitting pairwise probabilities
We now move on to pairwise probabilities, considering neurons i and j as in (3). While we
could incorporate time-varying excess spiking effects as in (3), here, instead, we further
specialize by assuming the excess pairwise spiking probability effects are constant across
time. We therefore take ζij(t) = ζij and define

(4)

This is helpful when there are not large numbers of joint spikes, and it also allows us to use

a simple and intuitive estimator  of  given in equation (9). By inserting the estimates

, and  into the right-hand side of (4) we obtain estimates of the 2-way

probabilities  as follows:

(5)

These estimates, for i, j = 1, 2, 3, give us all of the 2-way probabilities needed to fit a 2-way
interaction model analogous to (1) that, instead, incorporates time-varying, history-
dependent, and covariate-dependent firing probabilities.
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To estimate ζij we fix the values of  to be . Using the point process
representation of joint spiking for neurons i and j derived by Kass et al. (2011) we replace
ζij with ξij and write the synchronous-spike likelihood function as

(6)

where tij are the times of the joint (synchronous) spikes and where

(7)

Equation (7) is the conditional-intensity analogue of (4). Setting the derivative of log L(ξij)
to zero and solving gives the MLE

(8)

where Nij is the total number of joint spikes for neurons i and j and the denominator is the
expected number of joint spikes under independence, after taking account of the covariate x.
This corresponds to equation (22) of Kass et al. (2011). The formula we use in practice
replaces the integral in (8) with a sum:

(9)

To interpret (9) let us re-emphasize the covariate x by restoring its use as a subscript: on the

left-hand side of (9) we replace  by . If , the value of  represents the
proportionate excess synchronous spiking beyond that explained by the covariate x, while if

 the value of  is the proportionate diminution of synchrony, below that explained by

x. When  it is helpful to consider the reciprocal

(10)

which ranges from 0 to 1 and represents the proportion of synchronous spikes explained by
the covariate vector x (including its time-varying trial-averaged firing rate). For example, if

 when x contains only the time-varying trial-averaged firing rate, then Ex = .5 and we
would say the time-varying trial-averaged firing rate explains half the synchronous spikes.
This gives us a way of interpreting the relative effects of various alternative covariate

vectors x, as we illustrate in Section 3. If we can define the inhibitory measure 
which then represents proportion of observed spikes relative to the number predicted by x.

2.3 Confidence intervals for pairwise effects
Standard errors and confidence intervals associated with the pairwise estimates in (9) may
be obtained by a parametric bootstrap using (5). That is, equations (5) specify a set of
multinomial spiking probabilities at each time t (and for each trial, separately, due to
separate spiking history or covariate effects) for every spiking pattern (1,1),(1,0),(0,1),(0,0).
It is straightforward to generate G complete sets of pseudo-data pairwise spike trains based
on these probabilities, each set of pseudo-data replicating the layout of the original data (a
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typical value of G being 500). Let us use g = 1, …, G to index the sets of pseudo-data. If we
wish to obtain a 95% bootstrap confidence interval for a parameter ϕ (such as ϕ = ζij), we

use the pseudo-data set g to obtain  for g = 1, …, G; that is, for every g we obtain  by

applying (9) to the pseudo-data, where all the terms  are computed from the pseudo-

data. We then order the values of , find the .025 and .975 percentiles, and use them as
endpoints of the 95% confidence interval. A standard error is similarly obtained as the

standard deviation of the values of . When summarizing results with estimates and
standard errors we prefer to work with ϕ = log ζij, rather than ϕ = ζij, because the log
transform tends to symmetrize the distribution (and thus make it closer to normal, as it

should be when one interprets standard errors). Because we include the re-fitting of 
to the pseudo-data, the bootstrap confidence intervals account for the uncertainty in that first
step of the fitting procedure.

2.4 Fitting higher-order probabilities
For n = 2 neurons, equations (5) completely determine the estimated probabilities we need
for statistical analysis. For n = 3 neurons, pairwise interaction models do not provide

analogous closed-form expressions for all the necessary probabilities , and the
same is true for n > 3. Even in the simpler stationary Poisson setting, where the data become
counts aggregated across time and model (1) may be applied, it is well known (e.g. Agresti,
2002) that maximum likelihood estimation of the two-way interaction model requires
iterative methods. The standard algorithm in that context is iterative proportional fitting
(IPF) (Agresti, 2002; Schneidman et al., 2006).

Before reviewing IPF and the modification of it we employ here, we wish to make sure it is
clear what model we are referring to as the “2-way interaction model” that we are fitting to
the spike train data. It is helpful to return to the simpler model (1) and explain how our
approach would apply in that setting. The complete model for 3-way probabilities pabc,
including 3-way interactions (in statistics it is often called “saturated”), has 8 − 1 = 7 free
parameters: the 8 values pabc must satisfy the constraint Σpabc = 1. The 2-way interaction
model (1) omits the 3-way interaction and has 6 free parameters. (In (1) there are1 7

parameters with non-zero multipliers α, , , , , ,  and, again, there is the
constraint Σpabc = 1.) In our approach we do not need to use the parameters that appear in
(1). Instead, we effectively use a different set of 6 free parameters. We define

(11)

and then parameterize (1) using ( , , , ζ12, ζ13, ζ23). We are not able to write a closed-

form expression for pabc in terms of the parameter vector ( , , , ζ12, ζ13, ζ23) for the

1In the usual way (1) is presented in the statistics literature there are 19 parameters and 13 constraints.
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same reason that we are unable to write closed-form maximum likelihood estimates for pabc

in (1). However, any particular value of the vector ( , , , ζ12, ζ13, ζ23) does define a
particular set of values of pabc according to (1) based on the non-linear equations in (11). In

the general case we are concerned with here we similarly use ( , , ,
ζ12, ζ13, ζ23), to define, for every t, a 2-way interaction model of the form (1) that we are
fitting to the data.

Now, to explain the modified IPF that achieves the desired fitting, let us begin with IPF in
the standard setting involving counts, with nabc being the number of time bins in which the
pattern (a, b, c) occurred, and mabc being the expected number according to the two-way
interaction model (1) where mabc = npabc and n = Σnabc is the total number of spikes. IPF
produces estimates  of mabc. With nab+ being the number of bins in which the first two
neurons have the pattern (a, b), and na+c, and n+bc defined similarly, the first cycle of the IPF
algorithm, as in Agresti (2002), involves three steps:

Iterating these steps produces convergence to the maximum likelihood estimates under very
general conditions (Haberman (1974)).

To fit our general time-varying and/or history-dependent and/or covariate-dependent 2-way
interaction model we replace the counts in the standard IPF above with the probability

estimates given by (5), and the expected values by the probabilities . Here, IPF will

produce a set of estimates , which we will write as

Let

and let  and  be defined analogously. Given values  at iteration g,
we obtain the next 3 updates as
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(12)

For iteration g the values of the form  are obtained from

Because there are T/δ time values and R trials, (12) produces RT/δ sets of 3 equations, e.g.,
for each of the data analyses in Section 3 there were 24,000 sets of 3 equations, which were
iterated to convergence. There are many ways to initialize the algorithm, including taking

. We have found, in practice, that the algorithm converges in only a few
iterated sets of the three steps in (12). We summarize the fitting algorithm in the box below.

Algorithm for Fitting the Generalized 2-Way Interaction Model

1.
For all i and all t, and for every trial, fit  to get ;

2. For all i; j use (9) to obtain ;

3. Initialize, then iterate (12) to convergence.

The output of this algorithm is the complete set of T/δ × R × 8 estimated

probabilities 

When there are n > 3 neurons we may apply the same method for fitting the 2-way
interaction model, thereby obtaining T/δ × R × 2n estimated probabilities. Clearly as n
grows it quickly becomes infeasible to compute a multiple of 2n quantities. We mention this
again in Section 5.

2.5 Estimates and confidence intervals for functions of probabilities

Once we have these fitted probabilities  we may also estimate any quantity ϕ
that may be written as a function of them

simply by plugging in the probability estimates:

We may then compute standard errors and confidence intervals using a parametric bootstrap

as in the n = 2 case, outlined following equation (9), using the probabilities  to
generate the 3-way pseudo-data spike trains.
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One of the benefits of 2-way models such as (1) is that the 2-way interaction coefficients
may be used to provide definitions of the specific functional connectivity between two
neurons after taking account of a third neuron (e.g., Martignon et al., 2000). For this purpose
let us define

(13)

and denote other marginal probabilities by analogous notations, then consider 
defined by

(14)

which we estimate with

(15)

where  is the total number of (1, 1, 0) spike patterns. The estimator  gives us
measure of the excess spiking activity of neurons i and j that is unrelated to the activity of
neuron k. We do not mean to suggest that this particular measure has some special stature—
others might be envisioned—but it is intuitive and easily computed within the framework we
are describing here.

We may also define the excess 3-way spiking, and estimate it. For this purpose let 
denote the 3-way spiking probability under the general 3-way model, which includes 3-way
interaction. We define ζijk by

(16)

and estimate it with

(17)

where Nijk is the total number of triplet joint spikes for neurons i, j, k and  is
obtained from fitting the 2-way interaction model. Formula (17) is analogous to (9) and may
be derived by an analogous argument.2 Once again, standard errors and confidence intervals
may be obtained from the parametric bootstrap, but now the 3-way interaction term is

included in the model. Specifically, the spike trains are generated from the 
estimates obtained from using (17):

2Formula (17) is asymptotically equivalent, as δ → 0, to equation (23) of Kass et al. (2011), but it may differ in practice and seems
preferable because of the direct connection between (16) and (1).
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(18)

We illustrate by applying (15) and (17), together with bootstrap confidence intervals, in
Section 3.

2.6 Hypothesis tests
When n = 2 the null hypothesis concerning ζij in (4) is that of independence, H0 : ζij = 1. To
test H0 we may use a parametric bootstrap, with spike trains generated by the fitted
independence model

(19)

which simply requires that we generate the neuron i and neuron j spike trains independently

using  and . There are several choices for the test statistic. Let us suppose we

use Nij and let  denote the value computed from the data. We generate bootstrap pseudo-

data, with the same number of trials as the real data, based on  and , and
repeat this procedure G times (e.g., we might take G = 10,000). We let g = 1, …, G label the
pseudo-data and for set g of pseudo-data we compute Nij and label its value Nij(g). The
bootstrap p-value is then

(20)

This p-value satisfies the usual properties of the parametric bootstrap, i.e., it furnishes
approximately the correct probability of rejecting H0 under the assumed null model. In
practice, if the numerator is 0 we do not report p = 0 but rather say p < 1/G. Some authors
prefer to add 1 to both the numerator and denominator of (20).

When n = 3, to test whether the 2-way interaction model is adequate to explain all the 3-way
spikes, we take the general 2-way interaction model as H0. We may then use a parametric

bootstrap by generating pseudo-data spike trains according to the probabilities 
of Section 2.4, and can use the total number of 3-way spikes Nijk as the test statistic. If we
again label the sets of pseudo-data with g = 1, …, G and the data-based value of Nijk with

 we obtain the p-value by replacing the numerator in (20) with the number of values of g

such that .

When n > 3 we may apply the bootstrap test not only to the triplet spikes from all
combinations of 3 neurons using Nijk, but also the quadruplet spikes from all combinations
of 4 neurons using Nijkl, and so forth, in principle up to Nijk…n.
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The p-value in (20) is one-sided in the sense that only excess joint spiking is being assessed.

To check for either excess joint spiking or diminished joint spiking we could instead use 

as the test statistic. Then, with  being the value computed from set g of the pseudo-data

and  being the value computed from the real data we would define

(21)

as a p-value for the two-sided test. When , Equation (21) finds the proportion of sets

of pseudo-data for which either  or . Higher-order tests may be
modified similarly.

2.7 Motivation from hierarchical sparsity
Central to the strategy in Sections 2.1–2.5 is the idea that we may perform fitting
hierarchically, using the three steps articulated in Section 1.1 and realized in the algorithm
of Section 2.5. The main justification for this procedure is based on the rate at which
pairwise and multiway spikes occur.

For small binwidth δ (e.g., δ = .005 seconds), each firing probability , is also small
and, as δ → 0 we have

(22)

According to (4), we then have

(23)

Equations (22) and (23), together with higher-order counterparts such as

provide a formal expression of hierarchical sparsity. Kass et al. (2011) applied hierarchical
sparsity in deriving point process representations that approximate discrete-time models,
analogously to Equation (2). We use the idea here to motivate our hierarchical fitting
procedure. Under hierarchical sparsity there is likely to be good information (many spikes)
available to estimate 1-way probabilities, but as we move up the hierarchy of interactions the
information degrades: there are much fewer 2-way spikes, and then even fewer 3-way
spikes, etc. Although we do not offer a more precise theoretical statement, it is apparent that,
under hierarchical sparsity, the hierarchical fitting procedure should produce estimates of the
multiway probabilities that capture well the available information in the data.

3 Data Analysis
We illustrate the approach by analyzing two sets of 3 neurons recorded from primary visual
cortex, as described in (Kelly et al., 2010b) and (Kass et al., 2011). In each case the neural
responses were recorded from an anesthetized monkey while sinusoidal gratings were
moved across the visual field. The data in Figures 2 and 3 correspond to one second of the
recordings, and there are 120 repeated trials. Both figures display raster plots from 3 cells,
with dark circles superimposed to indicate triplet firing within 5 millisecond time bins. The
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3 cells chosen for Figure 2 are different from the 3 cells chosen for Figure 3, except that cell
3 in Figure 2 is the same as cell 2 in Figure 3. In Figure 2 there are 11 such triplets in total,
across the 120 trials, while in Figure 3 there are 12 triplets. To implement step 1 of the
fitting procedure, in which we fit time-varying individual-neuron firing rate functions (see
Section 2.1), we used a Gaussian filter with bandwidth σ = 75 milliseconds to smooth each
PSTH, as shown at the bottom of panels A, B, and C in Figures 2 and 3. Results were not
sensitive to choice of bandwidth. In related analyses we used spline fits, including BARS,
but chose Gaussian filters here for speed of implementation which was important for the
simulation study reported in Section 4. Panel D in each figure shows the bootstrap

distribution of the number of triplets obtained under the null model using , as
described in Section 2.6. (We used G = 500 bootstrap samples.) For the neurons

corresponding to Figure 2,  is in the extreme tail of the bootstrap distribution and,
applying (20), the test has a significant p-value with p = .002. On the other hand, for the

neurons corresponding to Figure 3,  is in middle of the bootstrap distribution and
the test is not significant (p = .52).

For the neurons in Figure 2, applying (17) and then bootstrapping based on (18), we

obtained the estimate of ζ123 is  with approximate 95% confidence interval

(1.7,4.3). We also computed estimates and confidence intervals for each  using (15) and
then again bootstrapping3 based on (18). We obtained

Thus, interestingly, the estimates were all statistically indistinguishable from the null value
of 1. This indicates that once the 3-way interactions are considered there are no longer any
significant 2-way effects. We suspect the excess 3-way spiking among these neurons is due
to the slow-wave activity discussed by (Kelly et al., 2010b) and (Kass et al., 2011). For the
neurons in Figure 3 all the corresponding estimated effects and confidence intervals were
consistent with null values of 1.

The results given above did not include individual-neuron history terms. When we included
history, based on spike count in the preceding 100 milliseconds, the 3-way hypothesis test
results were essentially unchanged: individual-neuron history effects apparently picked up
network activity so that pairwise interactions became non-significant, but the 3-way
interaction for the neurons in Figure 2 remained highly sig nificant. (This was not sensitive
to the width of history window.)

A related example of the approach presented here, focusing on 2-way interaction, was given
in Kass et al. (2011). Two alternative pairs of neurons were analyzed, with and without

3We used (18) rather than the 2-way model because the test of H0 : ζ123 = 1 was significant.
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covariates  that had two components: the spike count for neuron i in the previous 100
milliseconds and the total spike count among all neurons k ≠ i, j in the previous 100

milliseconds. Thus,  represents the recent network history, including that of neuron i itself

but not including that of neuron j. We may summarize the results in terms of , as in
(10), the proportion of synchronous spikes explained by covariates x as follows:

Proportion Ex of Synchronous Spikes Explained by x

covariate x Pair 1 Pair 2

average firing rate .52 .40

time-varying firing rate .50 .42

network history ≈ 1 .48

Here we have written ≈ 1 to indicate that the bootstrap test of H0 : ζij = 1 was not rejected
for pair 1 when the network history covariates were included. The bootstrap 95% confidence
intervals for ζij were Pair 1: (.79,1.4) and Pair 2: (1.4,3.6). The main findings are, first, for
both pairs there is highly significant synchronous activity beyond that due to firing rate (p
≈ .001 for pair 1, p < .0001 for pair 2) with only about 50% and 40% of the synchronous
spikes explained by firing rate4 for the two pairs; and, second, for pair 1, network activity
appears to explain synchronous spiking, but for pair 2 it does not (p = .0002 from the
bootstrap test of H0). Indeed, from the pair 2 values of Ex above, the network activity
explains only a very small additional proportion of spikes beyond the time-varying firing
rate. For pair 2 there is excess synchronous spiking that is presumably associated with the
stimulus.

For these two pairs of neurons we have also examined whether there is evidence of time-
varying synchrony. The interesting case would be time-varying synchrony within a
particular stimulus epoch. We considered the 300 milliseconds corresponding to each
stimulus and decomposed these into the first 100 ms and the latter 200 ms, then used (9)
within each of these time intervals, and computed confidence intervals for both the early part
of the time interval and the later part of the time interval. In every case these two confidence
intervals strongly overlapped, indicating no evidence in favor of time-varying synchrony.
This may have been due to the relatively small number of synchronous spikes available
within these 300 millisecond stimulus conditions across the 120 trials.

4 The Power of Tests for 3-way Interaction
We next investigate the amount of data needed to reliably detect 3-way interaction. We
chose 4 data-generating scenarios. For the first two we used a model representing
individual-neuron contributions together with 3-way interaction,

(24)

while for the latter two we used a model representing 2-way interaction together with 3-way
interaction,

4The values of Ex are similar for the overall time-averaged firing rate (a constant firing rate) and for the time-varying firing rate; this
depends on the “signal correlation,” i.e., the overlap of the PSTHs, with the latter typically being bigger than the former when there is
substantially shared time-varying response to the stimulus and, thus, relatively large signal correlation.
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(25)

For each model we simulated spike trains across 1 second, using bin width δ = .005 (5
milliseconds), with individual-neuron firing rates adjusted to be either 5 Hz or 10 Hz. In (25)
we then adjusted the coefficients βij so that the 2-way excess firing would be ζij = 2. The
combination of the two models with the two firing rates constituted our four scenarios. For
each scenario we chose a grid of values of excess 3-way synchrony ζ123 given by (16), and a
grid of values R for the number of trials. For each combination of ζ123 and R we computed
the probability of rejecting H0 after fixing the rejection cutoff so that the probability of
rejection under H0 (the α-level) was .05, as is customary. The results are shown in Figure 4,
with black lines indicating the combinations of ζ123 and R that produce the customary
minimally-acceptable power values of .8. The figure is based on 1000 replications of each
simulation. Specifically, for each ζ123 and R, the figure displays smoothed proportions, out
of 1000, of the replications that rejected H0.

The plots in Figure 4 indicate that in order to have substantial probability of detecting 3-way
interaction one needs either a large value of ζ123 or a large number of trials R, or both. For
example, when there are, on average, twice as many triplets than would occur under H0
(ζ123 = 2), in order to reject H0 with power .8 in the 5 Hz scenario of panel A one would
need more than 700 trials (of 1 second duration). For values of ζ123 clearly below 2, which
could be realistic, it becomes extremely difficult to reliably reject H0. More than 1000 trials
would be needed, and the extrapolation of the power curves indicates the number grows
quickly as ζ123 decreases. When the number of three-way spikes is larger, the situation is
more favorable. When the firing rates are higher for the 10 Hz scenario of panel B, but even
there one needs about 150 trials to reliably reject H0 when ζ123 = 2. Panels C and D show
the same two firing rates, but with injected pairwise correlation. The pairwise correlation
effectively increases the number of three-way spikes and thus the power is larger when
pairwise correlation is present. For the scenario in panel C, 200 trials are need to reliably
reject H0, and in the most favorable situation of panel D, 75 trials are needed.

5 Discussion
Our main purpose has been to generalize statistical assessment of synchrony based on
loglinear modeling (using maximum entropy models) so that it can accommodate time-
varying firing rates and/or non-Poisson history effects and/or time-varying covariates. We
have presented methodological details to supplement the theoretical treatment of Kass et al.
(2011), which served to provide a point process foundation for discrete-time modeling. The
hierarchical approach described here is sufficiently simple that the generalized 2-way model,
together with multiway estimates and hypothesis tests, can be implemented relatively easily
and effectively. We have produced Matlab code that may be accessed at
http://www.cnbc.cmu.edu/~rkelly/code/synchrony. The code includes inputs for user-
defined history and covariate effects.

The chief theoretical novelty in our approach is to recognize the strong heuristic of
hierarchical sparsity, as articulated in Section 2.7: if multi-way spikes are relatively rare
compared to individual-neuron spikes, then it should be useful to conceptualize excess
spiking as involving multi-way gain factors, and to combine these with individual-neuron
firing probabilities described by point process regression models. The strategy adopted here
is different than other statistical treatments of multiple binary time series, such as in Liang
and Zeger (1989), which are not aimed at point processes and do not consider the special
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circumstance, and opportunity, presented by hierarchical sparsity; they would be
considerably more cumbersome in this setting. On the other hand, hierarchical sparsity is not
universally valid. It may happen that population-level activity produces substantial bursts of
multiway spiking, as illustrated in panel C of Figure 5. The data in this figure come from the
same experiment as the data used here in Section 3. Our approach assumes the individual-
neuron conditional intensity functions account for this kind of shared activity. If conditional
intensity functions failed to include appropriate covariates to identify population activity
then multiway spiking might no longer be rare compared with individual-neuron spiking and
hierarchical sparsity might no longer be applicable. Also, network activity such as that in
Figure 5 would be an example source of trial-to-trial variation; in our approach all important
sources of trial-to-trial variation must be included by defining suitable covariates. It would
be interesting to consider incorporating into the framework described here latent variables to
accommodate network bursting (Chen et al., 2009; Tokdar et al., 2010; Wu et al., 2009), but
that is a topic for future research. In Kass et al. (2011) a covariate based on population spike
counts was used in point process regression models to analyze synchrony, following the
approach specified in greater detail here.

The usual parameters in (1) have some statistical virtues, as do the orthogonalized
parameters discussed by Amari (2009). We have worked with a different parameterization,
given in (11), with the ζij chosen due to interpretability as a gain factor for increased

synchronous firing rate. This also led to our suggestion of  in (14) as a measure of
functional connectivity of neurons i and j in the presence of neuron k. One could, instead,

introduce a generalized version of the usual parameters  in (1) to account for time-

varying firing rates, etc. In the context of synchrony investigation we find  more directly
interpretable, but this is a matter of taste and convenience.

We also conducted a power study, the main conclusion of which is that large numbers of
trials are likely needed in order to detect realistic multiway spiking above that determined by
2-way interactions. In the most favorable case we examined, where cells fire at 10 Hz,
approximately 75 1-second trials are needed to reliably detect excess 3-way spiking that
produces double the number of spikes expected under the 2-way model (and this assumed
that diminished 3-way spiking is not of interest so that a one-sided test could be used; a two-
sided test would require considerably more data). When there are lower firing rates, or less
dramatic excess firing, the ability to reliably detect excess 3-way spiking deteriorates and
very long recording sessions will be needed. With the code we have made available,
additional scenarios may be investigated so that the power of new experiments to find
excess 3-way synchrony could be considered carefully.

We have assumed that excess multiway spiking is constant in time. At least in the case of 2-
way spiking there will be opportunities to examine stimulus-related time-locked increases in
synchrony, with modest amounts of data, which could have important physiological
relevance (Riehle et al., 1997). In our framework, this would require estimating ζij(t) in (3),
and an illustration of such an estimate was given by Ventura et al. (2005b) based on low-
order spline fitting. An alternative would be to apply formula (9) repeatedly across distinct
time intervals, and a continuous-time estimate could also be obtained by windowing or
smoothing the numerator and denominator of (9), analogously to what was done in Kass et
al. (2003). From our power results in Section 4, however, we would expect time-varying
multi-way interactions to require either high firing rates or extended recording sessions.
Indeed, when we examined data from 2 pairs of neurons in Section 3 and found no evidence
in favor of non-constant ζij(t), we observed that we had relatively few synchronous spikes to
work with, and thus little statistical power to detect non-constant ζij(t). In the context of
time-varying synchrony it is also worth pointing out that, in the presence of time-varying
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individual-neuron firing rates, alternative models of excess synchrony are not equivalent (Ito

and Tsuji, 2000). In particular, the assumption in (1) that  is constant in time is not
equivalent to the assumption that ζij(t) is constant in time.

We have applied the IPF procedure of Section 2.2 to triples of neurons. It could be applied
to larger sets of n > 3 neurons, but the number of probabilities that must be fitted is 2n so as
n grows the computation will quickly become infeasible. We believe it remains possible to
treat n neurons, even when n is large, but this will require additional methods and is a
subject for future investigation. An important alternative to the parametric bootstrap
described here is based on spike jittering, as in Harrison and Geman (2009). The jitter null
hypothesis, however, is different than the bootstrap null of Section 2.3 (see Harrison et al.,
2011). In future work we also plan to investigate the use of jitter in conjunction with the
model-based approach described here.

Finally, no discussion of synchrony is complete without some reference to the problem of
spike sorting, which undoubtedly can have an impact on synchrony detection. Considerable
effort went into the characterization of spike waveforms in the data analyzed here (Kelly et
al., 2007), but the problem is difficult (Harris et al., 2000; Ventura, 2009). We trust spike
misclassification will be mitigated as recording technologies advance.
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Figure 1.
Illustration of time-varying 2-way interaction model in the presence of 3-way spiking. In all
panels, the dotted line is the simulated rate, and the solid line is the estimated rate based on
the fitting algorithms discussed in Section 2. A–C: Three simulated cells, each with a
different firing rate profile. Each cell has an elevation of the firing rate at a different point in
the trials. D–F: Coincidence rates for pairwise synchronous events, which are uniformly
elevated above those predicted by independence. D corresponds to coincidences between
neurons shown in A,B; E to coincidences between A,C; and F to coincidences between B,C.
G: Three-way coincidence rates. The pairwise model underestimates the number of three-
way synchronous events.
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Figure 2.
A,B,C: Raster plots, with PSTHs shown below, for 3 neurons recorded simultaneously from
primary visual cortex. Dark circles indicate 3-way synchronous spikes. D: Histogram of

bootstrap values Nijk(g). The value  is in the tail of this distribution.
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Figure 3.
A,B,C,D: Same as Figure 2, except the data are from 3 different neurons. In this case the

value  is in the middle of the bootstrap histogram in D.
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Figure 4.
Power analysis for detecting 3-way interaction. Results for four scenarios are given in the
four plots. Model (24) was used for panels A and B while model (25) was used for panels C
and D. For A and C the individual-neuron firing rates were set to 5 Hz and for B and D they
were set to 10 Hz. The pairwise synchrony coefficient for C and D is 2. In each panel the x-
axis is the value of the excess 3-way firing rate ζ123, e.g., ζ123 = 2 indicates twice as many
triplet spikes as would be observed under the null model. The y-axis is the number of trials
R. The bold lines indicate the values of ζ123 and R for which the power was .8.
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Figure 5.
Neural spike train raster plots for repeated presentations of a drifting sine wave grating
stimulus (from Kass et al. (2011)). Recordings were made in V1. (A): Single cell responses
to 120 repeats of multiple sinusoidal grating stimuli. At the top is a raster corresponding to
the spike times, and below is a peri-stimulus time histogram (PSTH) for the same data. (B):
Same as (A), for a different cell. (C): Population responses to the same stimulus, for 5
repeats. Each block, corresponding to a single trial, is the population raster for n = 125 units.
On each trial there are several dark bands, which constitute bursts of network activity.
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