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Abstract

Exploratory tools that are sensitive to arbitrary statistical variations in spike train observa-
tions open up the possibility of novel neuroscientific discoveries. Developing such tools,
however, is difficult due to the lack of Euclidean structure of the spike train space, and an
experimenter usually prefers simpler tools that only capture limited statistical features of the
spike train such as mean spike count or mean firing rate. We explore strictly positive definite
kernels on the space of spike trains to offer both a structural representation of this space and
a platform for developing statistical measures that explore features beyond count or rate. We
apply these kernels to construct measures of divergence between two point processes, and use
them for hypothesis testing, that is, to observe if two sets of spike trains originate from the
same underlying probability law. Although there exist positive definite spike train kernels in
the literature, we establish that these kernels are not strictly definite, and thus, do not induce
measures of divergence. We discuss the properties of both these existing non-strict kernels
and the novel strict kernels in terms of their computational complexity, choice of free param-
eters, and performance on both synthetic and real data through kernel principal component
analysis and hypothesis testing.

1 Introduction

Detecting changes in spike train observations is fundamental to the study of neuroscience at
both neuronal and systems levels. For example, when studying neural coding, it is critical to
ensure that the target neuron is encoding the stimulus (or behavior) of interest, which may be
reflected in arbitrary statistical changes in its spiking pattern. This requires deciding if two



sets of spike trains originate from the same probability law (point process). However, this
seemingly benign task is technically daunting since the space of spike trains lacks Euclidean
structure, making direct application of standard tests for equality of distribution such as y?-
test, Kolmogorov-Smirnov test or Kullback-Leibler divergence unusable [Park and Principe,
2010, Seth et al., 2010a, Naud et al., 2011]. Therefore, most analyses on spike trains are
done by observing changes in simpler statistics such as mean spike count [Hubel and Wiesel,
1959], mean firing rate [Perkel et al., 1967], time to first spike [Johansson and Birznieks,
2004], interspike interval distribution [Kang and Amari, 2008, Churchland et al., 2010], or
average pairwise spike train distance [Naud et al., 2011]. Such partial quantification blinds
the experimenter to other quantifiable statistical structures, which results at least in poor
data utilization but can even have rather dire consequences in experimental science. For
instance, searching for neurons in vivo using a typical statistical feature associated with a
neural code results in selection bias in favor of that specific neural code. In this paper, we
follow an alternate approach of designing a two-sample test on point processes through the
use of strictly positive definite kernels on spike trains, since such test does not limit itself to
a particular statistical feature [Gretton et al., 2007, Sriperumbudur et al., 2008].

The popularity of positive definite kernels stems from the observations that, first, they are
inner products in some feature space that is often nonlinearly related to the input space, sec-
ond, they can be defined on rather abstract spaces such as non-Euclidean space, and third, they
implicitly impose a structure of the space. These simple observations allow the extension of
many standard linear algorithms designed on the Euclidean space to nonlinear algorithms on
abstract spaces by merely substituting the linear inner product with a suitable kernel, known
as the kernel trick. This approach has been widely exploited in the context of text mining,
bioinformatics and information retrieval where kernels have been defined on strings, bag of
words, and graphs [Scholkopf and Smola, 2002]. The usefulness of kernel methods has not
gone unnoticed in the neuroscience literature, where several successful attempts have been
made on designing positive definite kernels on spike trains [Shpigelman et al., 2005, Eich-
horn et al., 2004, Schrauwen and Campenhout, 2007, Paiva et al., 2009], and applying them
in practical problems such as classification for brain machine interface [Shpigelman et al.,
2005, Eichhorn et al., 2004], and somatosensory stimulation [Li et al., 2011]. Positive def-
inite kernels, however, may fall short in the context of representing an arbitrary probability
law—Xkernels with such a property has recently been explored and are called characteristic
kernels [Sriperumbudur et al., 2008]—and therefore, they cannot be readily applied for test-
ing equality of distributions. As we will demonstrate in detail later, the available spike train
kernels in the literature are not characteristic. It has, however, been shown that strictly posi-
tive a’eﬁnite1 (spd) kernels (a subset of positive definite kernels) are characteristic [Sriperum-
budur et al., 2010]. Given this recent development, and other interesting aspects of positive
definite kernels, we focus on exploring such kernels for spike trains.

We consider two separate approaches for designing spd kernels, where both approaches
follow two simple steps; first, we injectively map the spike trains to a more structured space,
and second, we define spd kernels on the latter spaces that induces a kernel in the spike train
space. The proposed approaches differ in their respective representation of the spike trains:

1Strict in a measure theoretic sense which is stronger than the usual countable summation sense (see defini-
tion 1).



(i) a stratified space which is formed by a disjoint union (direct sum) of Euclidean spaces,
and (i) a functional space where they are represented as functions over time in L. In the
stratified space approach, we utilize a novel family of kernels in the Euclidean space to form
spd kernels on spike trains, while in the functional space we exploit novel kernels in L,. We
submit that these kernels should also, (i) involve as few parameters as possible, since, from
a practical standpoint, a user is forced to perform an exhaustive search (evaluation) over all
possible combinations of these parameters to achieve the best (statistically correct) result, and
(i1) be computationally efficient. Finally, we also explore what attributes of the point process
these kernels are sensitive to.

The rest of the paper is organized as follows. In Section 2, we discuss the notion of
kernel based divergence and dissimilarity measures, and briefly explore the existing positive
definite kernels in the literature based on binning. In Section 3, we introduce a family of
novel strictly positive definite kernels by representing the space of spike trains as a direct
sum of Euclidean spaces. Although these kernels are efficient to compute, they suffer from
estimation issues in practice. In order to alleviate this drawback, we introduce another family
of strictly positive kernels in Section 4, by representing a spike train as a function in an
appropriate Lo space. We also examine a few existing kernels on this representation and
discuss their non-strictness. In Section 5 we explore the characteristics of the existing and
proposed kernels using kernel principal component analysis, and compare their performance
on simulated data in the context of hypothesis testing. In Section 6, we apply these kernels
on real neural recordings, and in Section 7, we conclude the paper with discussions on the
practical aspects of these kernels and their applicability, as well as other uses of such kernels.

A MATLAB implementation of the kernels and methods introduced in this paper can be

found onlinez.

2 Background

2.1 Kernel based divergence and dissimilarity

We start our discussion in an abstract topological space for technical completeness. Later
we will introduce a topological space for spike trains. Let (X, 7) be a topological space
and F = B(7) be the Borel o-algebra. We will focus on measures on the measurable space
(X, F).

Definition 1 (Strictly positive definite kernel) Let (X, F) be a measurable space, and K :
X xX — Cbea (F® F/B(C))-measurable function. The kernel K is called pos-
itive definite if and only if for any finite non-zero complex Borel measure nn : F — C,
[[ K(z,y)du(z) du*(y) > 0, where (-)* denotes complex conjugation. Furthermore, if the
inequality is strict, then the kernel K is called strictly positive definite.

Notice that this definition of (integrally) strict positive definiteness [Sriperumbudur et al.,
2009] is a generalization of the usual definition that involves countable summation rather
than integration [Pinkus, 2004].

2
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Let M denote the set of probability measures on (X, 7). When X is the space of spike
trains, M, is the space of point processes (random process that generates spike trains). Given
a positive definite kernel K : X x X — C, we define a measure of dissimilarity D :
M, x M, — R{ as,

D (P.Q) = / / K (2, y) dp() dpa(y), (1)

where ;1 = P — (). Due to the positive definiteness of K, Dk (P, Q) is non-negative, and P =
Q implies D (P, Q) = 0. A divergence measure Dy (P, Q) : M, x M, — R{, on the other
hand, can be constructed by incorporating a spd kernel instead of a pd kernel in (1) [Gretton
et al., 2007]. Due to the strict positive definiteness of K, Dx (P, () is non-negative, and
zero if and only if P = (). As a matter of fact, one can show that the resulting divergence
(dissimilarity) is a squared (pseudo-)metric induced from the distance in the reproducing
kernel Hilbert space (RKHS) [Diks and Panchenko, 2007, Sriperumbudur et al., 2009].

A dissimilarity measure is a nonnegative statistic that assumes zero value if two probabil-
ity laws are identical [Pekalska and Duin, 2005]. For example, if X = R and K (z,y) = z -y,
then Dk (P, Q) = (Ex~p[X] — Ey.o[Y])?, ie. the pd kernel K (z,y) = z - y only com-
pares the means of the random variables X ~ P and Y ~ (). A dissimilarity statistic, thus,
creates an equivalence class where two probability laws are indistinguishable even if they are
not the same, and the statistical inference only operates on the quotient space. A divergence
measure, on the other hand, is a nonnegative statistic that assumes zero value if and only if
two probability laws are identical [Sriperumbudur et al., 2009], thus it compares the entire
probability law. Therefore, divergence is a stricter and a stronger statistic than dissimilarity.

This feature of an spd kernel can be better explained in terms of the characteristic kernel
[Sriperumbudur et al., 2008]. Mathematically, a kernel K is called characteristic if the map
P +— Ex.p[K(-, X)]isinjective. This condition implies that a characteristic kernel generates
a unique functional representation of the probability law in the reproducing kernel Hilbert
space, which cannot be achieved by a pd kernel as shown in the case of K(z,y) = z -y. In
terms of characteristic kernel, therefore, a measure of divergence can be derived by measuring
the distance between these unique functional representations of the corresponding probability
laws. This distance is exactly given by the square root of eq (1). It has been recently shown
that spd kernels are characteristic in nature, and that explains the advantage of spd kernels
over pd kernels in the context of hypothesis testing [Sriperumbudur et al., 2009].

2.2 Binned kernel

One of the main difficulties of dealing with spike trains is the lack of a natural structural
representation, such as a Euclidean structure [Seth et al., 2010a]. Among several existing
approaches of inducing structure in this space, the simplest and most popular is binning
[Victor, 2002]. In simple terms, binning counts the number of spikes that appear in prefixed
segments of time referred to as bins, thus effectively representing a spike train on a grid
in a Euclidean space where the dimensionality of the space is governed by the number of
bins. Although this approach is widely used in practical applications for its simplicity and
effectiveness, it has disadvantages that it only considers the number of spikes within a bin
rather than their exact locations, and introduces discontinuity in time. The exact locations
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can be, in principle, captured by reducing the size of these bins; however, it also increases the
dimensionality of the Euclidean representation, increasing the data requirements for proper
estimation.

Since the binned representation projects a spike train in a Euclidean space, a kernel on
spike trains can be easily implemented using kernels on the Euclidean space such as /5 inner
product or the Gaussian kernel. However, this approach is not preferred in practice since the
dimensionality of this space i.e. the number of bins is usually high, making the realizations
relatively sparse. In addition, the kernels cannot easily incorporate the similarity of spikes in
temporally neighboring bins — spikes from different bins do not interact. The count kernel
Kcount defined as the product of total number of spikes is an extreme case where there is
only one bin. Note that the dissimilarity induced by the count kernel is simply the squared
difference between the mean number of spikes.

Shpigelman et al. [2005] has considered a different approach of designing kernels on
binned representation, where the resulting non-trivial kernel has been referred to as spikernel.
Spikernel is, perhaps, the earliest kernel designed for spike trains that has been explored in the
literature. The biologically motivated design of this kernel relies on measuring the similarity
between arbitrary segments (of equal lengths) of the binned spike trains. Spikernel is positive
definite by design since it explicitly constructs a mapping to the feature space, and computes
the inner product between two mapped spike trains to evaluate the kernel. However, this
kernel is not strictly positive definite. Consider two spike trains such that one is a jittered
version of the other, but they both have the same spike counts given a certain bin resolution.
Then the Gram matrix formed by these two spike trains has zero determinant. In fact, any
kernel defined on the binned representation is only positive definite but not strictly positive
definite due to this restriction.

It should be noted that spikernel involves five free parameters, including bin size, and it is
computationally expensive. Although the appropriate value of the bin size can be estimated
from the time resolution of the spike train, there are no formal method of choosing the other
parameters. Therefore, it is suggested that a user perform an exhaustive search over the
parameter space, making the kernel difficult to use in practice. We observe in our simulation
that this kernel performs very well compared to other strictly positive definite kernels. A
possible explanation of this observation is the higher degrees of freedom.

A similar approach has also been explored by Eichhorn et al. [2004] by using edit distance
(alignment score) between two strings to binned spike trains to construct an explicit mapping
to the feature space. This approach has very similar advantages and disadvantages.

3 Stratified kernel

Due to the lack of strict definiteness of the binned representation, it is essential to investigate
other richer representations of the spike train space. In this section, we follow the stratified
representation and introduce a set of strictly definite kernels on spike trains.

Stratified representation Let () be the set of all finite length spike trains, that is, each
w € ) can be represented by a finite set of (distinct) action potential timings {t1, s, ...,t,}
where n is the number of spikes. Assuming finite number of action potentials within the time
interval of interest 7 C R, one can partition the non-Euclidean spike train space €2 in disjoint



partitions {2, {24, - - - such that 2,, contains all possible spike trains with exactly n action po-
tentials within 7. We call this method stratification [ Victor, 2002]. Notice that Q = J~, ..
{2y has only one element representing the empty spike train (no action potential). For n # 0,
(2, is essentially 7", since n action potentials can be fully described by n (ordered) time
instances and vice versa. Without loss of generality, let {2, = 7", hence obtaining Euclidean
space representation of each (2,,. Define a Borel algebra of 2 by the o-algebra generated by
the union of Borel sets defined on the interval; B(Q2) = o (U, —, B(2,)). Note that any
measurable set A € B(2) can be partitioned into {A, = AN Q,}°°, each measurable in
corresponding measurable space (£2,,,5(€2,)). Any finite point process can be defined as a
probability measure P on the measurable space (€2, 5((2)) [Daley and Vere-Jones, 1988].

Generic kernel design Although the stratification approach has been used by [Victor,
2002] to estimate the mutual information, this approach has not been explicitly exploited to
design kernels. However, it provides an opportunity to build kernels on {2 by combining
kernels on R™ using the following theorem.

Theorem 1 (Stratified strictly positive definite kernel) Let { K™} be a family of bounded
strictly positive definite kernels K™ : R* x R" — C for every n € N. Define,

K(”)(wi,wj) if both w;, w; € ),

0 otherwise

Ks(wi,wj) = { ()

Then K is a strictly positive definite kernel on spike trains,

Proof 1 For any non-zero Borel measure |1, we can decompose it as (p = . fi|n.
[ Elios) ) ) = [ 57 KO i) i 2) o)
=3 [ KO o) dpla ) ) > 0

where -|,, denotes the restriction of the measure to JF,,, and the interchange of sum and integral
is justified by the boundedness of spd kernels.

The corresponding divergence measure can be simplified as

D.P.Q) = Y [ [ KO e dul) ) @)

where p = P — Q.
Class of kernels The individual kernels on each strata can be chosen from a generic kernel
as follows.

Definition 2 (G-admissible functions) Let G be the Schwarz space of rapidly decreasing
functions. g : R" x R*™ — R is G-admissible if for every h € &, the following integral
equation has a solution f, [ g(x,u)f(u)du = h(z).



Theorem 2 (Composition kernels) If g : R"” x R" — C is a G-admissible or a strictly
positive definite function, & is a measure, and supp(§) = R", then the following kernel is
strictly positive definite on R", K (z,y) = [ g(z,u)g* (y, u) d&(u).

Proof 2 The proof of this theorem can be found in [Seth et al., 2010b, Theorem 1].

Examples of basis functions g(x,u) used for composition kernels are %, I(x < u), and

e~@=?* for R. In R", we can use the tensor product kernels: IL g(xi, w).

There are a few notable special cases of this type of kernels. Notice that, if & f”) =1 for
all n € N, which induces a positive definite kernel, the dissimilarity becomes, D; (P, Q) =
>, (P(,) — Q(9,))?, which corresponds to the Cramér—von-Mises (C-M) statistic for the
count distributions [P(£2,)], and [Q(€2,)], . Intuitively this kernel only compares if two
spike trains have the same number of spikes, and therefore, it is not spd. On the other hand,
Gaussian kernels on R™ can be used to construct spd kernels on the space of spike trains.
However, this process requires choosing kernel sizes for each strata.

An interesting kernel is found by using the following composite kernels on R",

K ny) = [ T <l <) dw)

where I(w; < w;) = [[,1(w! < wf),andw = [w',...,w]. The corresponding divergence is
given by,

D, = Z/ [P(Qn)FP<w(n)) — Q(Qn)FQ(w("))]2 d(w™) )

n

where /' denotes the cumulative distribution function in R”. Intuitively, this kernel not only
compares if two spike trains have the same spike counts, but it also compares the positions of
the spikes. Notice that it is very similar to the Cramér—von-Mises type divergence proposed
in [Seth et al., 2010a]. The advantage of this type of kernel is that it is parameter free, unlike
the Gaussian kernel.

Computational issues The kernels defined on the stratification space are efficient to com-
pute, and easy to design. However, this type of kernels suffer from estimation issues for
small sample size, especially when the count distribution is flat (not concentrated). In such
circumstances the samples become scattered in different strata €2,,, and the divergence become
difficult to evaluate for a particular strata. In addition, the stratification approach suffers from
the curse of dimensionality, when the number of spikes in a spike train is large. Hence, it
may be necessary to reduce the time window of observation to reduce this dimensionality.

4 Functional kernel

It is somewhat obvious that the estimation issues of stratified kernel are a direct consequence
of the fact that for such kernels two spike trains with different spike counts do not interact.
To alleviate this issue we follow a different representation.

Functional representation Let § be the space of all L integrable functions over T i.e. § =
Ly(T). Given w = {t1,...,t,}, define a mapping G : @ — Fas G(w)(t) = >, g(t. t;)|r
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such that G is injective. When ¢ is a translation invariant function that decays at co, G(w)
can be considered a smoothed spike train [van Rossum, 2001].

There are many different ¢’s that make the mapping G injective. For example, when
g(z,y) is a bounded strictly positive definite function. To see this, consider two spike trains
wy = {t],...,tLandwy = {t,...,t2 } such that all spike timings are distinct i.e. w; Nwy =
(), and assume that G( wl) = G(w2), Wthh implies that |G(w;) — G’(oJ2)|L2 =eKe' =0

where e = [1,. —1 and [K|;; = g(t;,t;) where t;,t; € wy Uws and §(z,y) =

[ g(u,z)g(u, y)du. Now since K is full rank (by the virtue of strict positive definiteness of
9), G(wy)(t) = G(w)(t) for all t € wy U wy implies that w; = wo. Popular continuous-time
spike train smoothing by linear filtering with rectangular function or alpha-function [Dayan
and Abbott, 2001] are also injective, given the width of the rectangular function is not more
than length of 7.

We consider the o-algebra of Ly(7) to be the one that makes the map G : Q — Lo(T)
measurable. Since G is measurable, we can define an induced probability measure U such
that U(Ly(T)\G(S2)) = 0 and U(G(A)) = P(A) for A € o(§2). A (strictly) positive definite
kernel & (w1, w;) on § can be defined using a (strictly) positive definite kernel /' (A1, A2) on
the L, space since,

/ K{wn,02) 4P () 4Q(uz) = [ K (R, 32) dU(hy) dV (i)

where A = G(w).
Existing pd kernels Paiva et al. [2009] has proposed the following kernel using exponen-
tial smoothing function,

Kopoq(wn, ) = / R (0)3(t) dt. )
T

If the smoothing function is non-negative and locally centered around the spike, the condi-
tional mean | K,cp(w, ) dP(w) can be interpreted as an estimate of the marginal firing rate
(intensity function). The kernel K1 is generated by the trivial inner product kernel in the
L4 space, thus the name memoryless cross intensity (mCI). Notice that several smoothing
functions can also be used in this context. For example, the use of exponential smoothing
function is biologically motivated [van Rossum, 2001], and it is computationally simpler due
to the characteristic of Laplacian function [Rao et al., 2011, Section 4.1]. The Laplacian func-
tion is found by taking the inner product of two exponential functions [Paiva et al., 2009],
while the inner product of two Gaussian functions results in a Gaussian function. Notice that,
K1 induces a spike train RKHS where a van Rossum like distance [van Rossum, 2001] is
induced by the inner product, and this kernel involves only one free parameter i.e. the size of
the smoothing function. Similar kernels have been proposed in [Schrauwen and Campenhout,
2007, Houghton, 2009, Paiva et al., 2010]. However, it is easy to see that these kernels are not
strictly positive definite. For example, consider the spike trains {1,2}, {1}, and {2}. Then
Gram matrices generated by these kernels are singular. Therefore, the dissimilarity statistic
Dk, 1s not a divergence.

Paiva et al. [2009] has also proposed a nonlinear, and a richer, extension of this kernel
referred to as the nonlinear cross intensity (nCI). Direct sum of positive definite kernels de-
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fines a positive definite kernel, and this has motivated the following construction [Paiva et al.,
20091,

Kper(wr,ws) = /TGXP {—% (5\1@) - 5\2(75))2} dt. (6)

This kernel performs better than K1, a possible explanation being the nonlinear nature
of the kernel. However, it should be noted that it involves one more free parameter i.e. the
kernel width of the outer Gaussian kernel. Also, this kernel is difficult to compute, and a
rectangular smoothing function is used to reduce the computational complexity Paiva et al.
[2009]. However, this kernel is again not strictly positive definite, and that can be again
shown by a counter example. Consider the following spike trains {1, 2,3}, {1,3}, {1,2},
and {1}, then the resulting Gram matrix is singular.

Schoenberg kernel In order to establish a strictly positive definite kernel on this represen-
tation, we generalize the radial basis type kernel on Euclidean space.

Definition 3 (Completely monotone functions [Schaback and Wendland, 2001]) A func-
tion ¢ : (0,00) — R is said to be completely monotone on [0, 00) if ¢ € C*(0, 00), contin-
uous at zero, and (—1)'¢(r) >0, 1 € N,r > 0 where ¢\ denotes the I-th derivative.

Examples of completely monotone functions on [0, oc) are a, e~ **

are constants [Berg et al., 1984].

, m where « and 3

Theorem 3 (Strictly positive definite Schoenberg kernels on L) Ifafunction ¢ : [0,00) —
R is completely monotone on [0, 00) but not a constant function, then K (x,y) = ¢(||z — y||*)
is strictly positive definite on a separable and compact subset of Ly where ||-|| denotes the Lo
norm.

Proof 3 (Sketch) Since ¢ is a completely monotone function, it has a Laplace transform
representation, ¢(z fo ~# dm/(t) where m is a finite positive Borel measure on R. Fol-
lowing [Chrlstmann and Steinwart, 20]0, Theorem 2.2] exp (—t||z — y||?) is universal on a
separable compact subset of Ly for t > 0, and it implies strictly positive definiteness [Sripe-
rumbudur et al., 2010].

Note that proof relies on the restriction of maximum number of spikes within a compact
interval 7, which is a biological and experimental restriction, the space of spike trains {2 is
compact (and separable), ane hence, the image of €2 in § is also compact (and separable).

Instances of Schoenberg kernel A typical instance of Schoenberg kernel considers both ¢
and the smoothing function g to be exponential function i.e.

K (wn,w) = exp {— /T % () - 5\2(75)>2 dt} | %

We refer to this kernel as Schoenberg (e). Notice that this kernel has been mentioned by
[Paiva et al., 2009], but it has not been explored further, and its strict definiteness has not
been established. On the other hand, Paiva et al. [2009] has suggested the kernel Kt as a
substitute and simplification of K¢, . Notice that if the smoothing process is a linear filter,
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the bounded norm of the smoothing process holds when the smoothing filter is bounded and
the total number of spikes is bounded. This condition virtually holds for bounded duration
spike trains.

Kg, also involves an extra free parameter besides the smoothing parameter. However,
the proposed approach allows other alternatives which might not involve any parameter. One
such option is the Heaviside function. It is easy to see that the smoothed representation of a
spike train using a Heaviside function is simply the realization of the corresponding counting
process. To differentiate the use of Heaviside function, we refer to the resulting kernel as
Schoenberg (i).

Kgay(ori) =0 (=1 [ (10 - L0 ar)

where 1,(t) = >, I(t > ¢¥). Notice that using Heaviside function is also computationally
simpler since the inner product of two smoothed functions simply depends on the locations
of the spikes in an ordered set. Conceptually, however, due to the cumulative temporal count-
ing nature of this approach, the resulting kernels depend on the initial spikes more than the
latter ones. However, we observe that this kernel nonetheless work well in practice with the
advantage of using one less free parameter.

Notice that compared to stratified kernel, functional kernels do not suffer from estimation
issues in extreme conditions of high counts and low sample size, since they can compare two
spike trains involving different spike number of spikes. But this is achieved at the cost of
higher computational complexity. We provide detailed description of these kernels in Table
1. This table also includes a recently proposed kernel K. [Fisher and Banerjee, 2010], spe-
cialized for spike response model O with reciprocal exponential exponential function (REEF)
activation. This kernel integrates out the unknown parameters, hence eliminates the need
to estimate any free parameters. However, the strict definiteness of the kernel has not been
pursued.

5 Features

So far we have discussed kernels and induced dissimilarities and divergences, but we have not
addressed what they are actually sensitive to when applied to data. In principle dissimilarities
are only sensitive to certain statistical differences, while divergences are sensitive to arbitrary
statistical differences, however, in practice their sensitivity depends on the choice of kernel
and 1s limited by data. We explore the issue of sensitivity in two aspects: (1) decomposition
of divergence in orthonormal projections using KPCA, and (2) sensitivity analysis for explicit
features using hypothesis testing.

5.1 Kernel PCA based decomposition

Principal component analysis (PCA) is widely used to extract “features”, linear projections
of data in a finite dimensional Euclidean space obtained by finding directions of greatest
variances. These features, or principal components (PCs), are simply obtained by the eigen-
decomposition of the data covariance matrix. Likewise, in kernel PCA (KPCA), one decom-
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poses the covariance operator of the Hilbert space to find PCs that are now “feature function-
als”, nonlinearly related to the input space [Scholkopf et al., 1998]. Each PC is orthogonal to
each other, and depends on the data as well as the kernel. Each kernel gives a different set of
features, and the set of features for the same kernel depends on the spike trains in hand. This
makes the interpretation of “features” difficult, yet it provides a useful qualitative insight of
interpreting kernel induced divergence.

Divergence and KPCA projections These KPCA features can be used to decompose the
kernel induced divergences. Given a set of orthonormal basis {®;}5°, and eigenvalues \;
provided by KPCA i.e.

/ny )d(P +Q)(y).

the dissimilarity or divergence (1) can be trivially decomposed as,
De(P.Q) = [ [ K. - Q@) dP - Q)
= [[ Zre@rwar-owar-w

—ZA ( / z)dP(z) / ;i (y) dQ(y))z- (8)

Hence, the total divergence (dissimilarity) is a sum of squared distances between the means
J ®;(x) dP(x) and [ ®;(x)dQ(x) of each PC direction weighted by the eigenvalues. This
allows us to Vlsuallze the dlfferences of two point processes in each PC direction.

In practice KPCA and decomposition of divergence can be computed with simple matrix
algebra. Let X = {:vgl) o, $§2), . ,a:g)} be the set of spike trains originating from
two point processes, and let K be the Gram matrix generated by these spike trains i.e. K;; =
x(x;, ;) where £ is a pre-defined kernel as discussed in the previous section. Then it can be
easily seen that the estimated divergence (dissimilarity) is,

.=e Ke wheree=1[1,...,1,—1,...,—1].

Now, let A = [ay, ..., a(m+n)] be the matrix of eigenvectors obtained from the eigendecom-
position related to KPCA i.e. KA = A A where A is a diagonal matrix containing the eigen-
values of the respective eigenvectors, and corresponding eigenfunctions in the RKHS are sim-
ply @5.(-) = 3=, a(i)k(2;, ) where 2;’s are elements of X. Next, let B = [by, ...  Bimin)]
where by is simply the projection of the spike trains in X on the k-th eigenfunction i.e.

k(zi, ) = Y, br(i)Pk(-), then by, = Kay/\; = a;. Notice that the normalizing factor ),
is essential since the eigenfunctions simply orthogonal but not orthonormal in this formula-
tion, and (®(-), ®x(-)) = Ar. Then, sum of squared distances between the means of the
projections is

m-+n m-+n
Z(eTbk, e'by) = Z )\keTbkbk e=e'BAB'e=e'AAATe = e Ke =D,,
k=1 k=1
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Figure 1: Two dimensional visualization of a periodic spike trains with a phase and period
distribution using kernel PCA (KPCA). Horizontal axis corresponds to the projection on the
eigenvector for the largest eigenvalue (PC1), and the vertical axis for the second largest (PC2).
The inset bar graphs show the first ten normalized eigen-spectrum.

where the \;s appear again since the projections exist on a orthogonal basis and not orthonor-
mal. Therefore, while discriminating two distributions through the KPCA projections we plot
v/ Arby, for the best two eigenvectors for which A\ye " byb/ e are maximum since they explain
away most of the divergence. Also, notice that KPCA is usually performed on the centered
matrix K, = HKH where H = I,,, ) — 1(m+n)1(Tm n) /(n + m). However, centering does
not change the relation between divergence and the projections since H is simply absorbed
in the eigenvector matrix A.

Spike trains with count and location features In Figure 1, we visualize how a set of peri-
odic spike trains with varying period and phase are embedded in the RKHS induced by each
kernel. The dataset consiststs of 16 spike trains for each of 6 different periods each shifted
such that the spike times uniformly spans the interval (total 96 spike trains). The two dimen-
sional projection shows most kernels preserve the following “features”, (i) count (number
of spikes, or equivalently period) and (ii) phase. Notice that for each kernel we choose the
free parameters from a grid of values that provides maximum value of the divergence (see
the section 5.2 for details). The count kernel captures the first feature with PC1, and no other
eigenvalue is significant, since the centered kernel matrix is rank 1. Kgpixernels Kmcr: Kncr

§ h’ and K qef also seem to favor having the count feature as PCI1, and in addition, PC2
mostly represents the phase feature i.e. the positions of the projections in this direction are
ordered according to their phase. However, such interpretation should be made cautiously,
since count and phase are not necessarily orthogonal in the RKHS. For example, K é o, Mixes
the two features along many PCs, and stratified reveals strata as maximally separated clusters.

Next, we form two sets of spike trains by dividing the periodic spike trains of Figure 1
in two different ways to focus on each feature. Set A divides them in terms of count while
maintaining the uniformity over phase within each condition. Set B divides the spike trains
within each strata (of equal number of spikes) into early phase and late phase ones, thus
maintaining count feature to be constant. Therefore, set A and B have the same KPCA
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Figure 2: Visualization of maximally divergent PC for difference in the count statistic. The
spike train distribution of Figure 1 is divided into two subsets with same phase distribution,
but different count distribution — upper half of the raster has higher rate. Spike trains from
each distribution conditioned on the count is plotted with different symbol, and the condi-
tional mean is plotted as a solid symbol. Inset bar plots show the first ten normalized diver-
gence (see (8)) per PC in the same order as eigenspectrum in Figure 1. Hypothesis testing
rejected for all kernels with p < 0.01.

features, but the difference within are due to independent features (count statistic and location
statistic [McFadden, 1965, Daley and Vere-Jones, 1988]).

All kernels successfully rejects the null for Set A as could be expected from sensitivity
to count shown in Figure 1. In Figure 2, spike trains from each condition is projected to
the PCs with highest divergence components. Interestingly, the PC1 captured the difference
the most except for stratified kernel where the divergence was spread in several PCs. The
projections show clear separation of the two clusters, however, individual projections show
distinct structure of feature space.

For Set B (Figure 3), the count statistic was held constant, therefore K¢qunt trivially fails
to discriminate them. Except for count kernel, the separation is clearly made, and again the
distinct structure of feature space contains the phase information. For stratified kernel, since
the difference in phase are present in each of six strata, the divergence components are also
spread. Note that the set of PCs with high divergence are oftentimes disjoint for set A and
set B—Kgpikernel> KnCl> £ ZS op and K¢y, and Kgrar—which is an indication that the count
feature and location features are not mixed for this dataset.

Although in this example the two sets of spike trains were disjoint, and hence separable
in features space, it is not crucial. We emphasize that it is not necessary for the kernel to
cluster the sample points to derive a good divergence measure, but only the distance between
the mean element matters i.e. even if the support of the projection of each class completely
overlays on each other, theoretically, the difference between the probability laws will be
captured in the distance between the corresponding mean elements if the kernel is spd.
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Figure 3: Visualization of maximally divergent PC for difference in the location statistic.
The spike train distribution of Figure 1 (and Figure 2) is divided into two subsets with same
count distribution, but different phase distribution. Hypothesis testing (as described in sec-
tion 5.2) rejected the null for all kernels (p < 0.05) except for Kcount (p > 0.9). Note that
the scatter plot for count kernel is merely showing numerical error.

5.2 Hypothesis testing

In previous section, we used KPCA analysis to qualitatively assess feature sensitivity. Next,
we quantify the power of each kernels with hypothesis testing i.e., given two sets of spike
trains, we decide if the underlying point process that generated each of them are distinct. By
comparing the performance for the detection of different statistics, we can quantify which
features of interest the kernels are sensitive to. We also compare Wilcoxon rank sum test
which a is non-parametric test widely used in neuroscience.

Surrogate test To generate a distribution of the statistic under the null hypothesis, we use
the pooled observations as surrogate: Given realizations {z;}!; and {y;}",, we randomly
divide the pooled observations {xy, ..., Z,, Y1, .., Ym} in segments of size n and m to gen-
erate the surrogate values. This procedure can be implemented efficiently by shuffling the
Gram matrix generated by the pooled observations appropriately [Gretton et al., 2007, 2009].
Each bootstrapping had 9999 random shufflings of the kernel matrix. For the simulation
studies, we report the rejection rate of the hypothesis from 200 independent trials.

Parameter selection Although strictly positive definite kernels provide an efficient way
of inducing measures of divergence in the space of spike trains, an appropriate hypothesis
testing requires choosing a suitable value for the free parameters, since the discriminability of
two distributions heavily relies on the characteristics of the underlying kernel. Unfortunately,
there are no established method for this task. A trivial solution to this problem could be to
test the hypothesis over different values of the parameters and choose the one that provides
best discriminability. But this approach faces the problem of multiple testing. To avoid
such situation we consider a different approach proposed by Sriperumbudur et al. [2009] by
re-defining the measure of divergence as Dy = max,cx D, where K is a set of kernels, e.g.
kernels over different parameter values. It has been shown that Dy is a measure of divergence
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if at least one « in K is strictly positive definite [Sriperumbudur et al., 2009]. We exploit this
fact, and use Dy instead of D, to avoid multiple testing. We employ a grid of parameter
values to construct K from a certain « as follows.

As mentioned before, spikernel uses binned representation. To reduce computational
load, we fix the bin size such that the number of bins would be 20 for the time interval of
interest. Besides bin size, spikernel has four extra parameters [Shpigelman et al., 2005]. We
fix p; = 1, and evaluate the kernel for twelve different parameter settings by combining
A € {0.5,0.9}, n € {0.7,0.9},n € {3,5,10} which are part of the range of parameters the
authors chose [Shpigelman et al., 2005]. We use the implementation in C provided in the
Spider package 3,

The free parameters for the other kernels are chosen to be 0.1, 0.5 and 0.9 quantiles of the
numerator by random subsampling of spike trains, in addition to half of 0.1 quantile and twice
the 0.9 quantile (total of 5 choices). This is a variation of common practice in kernel methods
to match the kernel size to the scale of the data [Scholkopf, 1997]. When the parameters are
nested (K¢, /£g,) the overall scale parameter was chosen for each value of the parameter
inside (e.g. size of the smoothing), thus resulting in 25 choices of parameter pairs in total.

For the stratified kernel Kgat, we use a Gaussian kernel for each dimension. For each
dimension we scale the kernel size such that it matches the empirical mean [, distance of
a homogeneous Poisson process conditioned on the total number of spikes. The mean [
distance of a homogeneous Poisson process in each strata is a slowly growing function of
dimension, where the rate of growth quickly reduces. The performance of such scaling is
similar to using a single kernel size for all dimensions and does not change the conclusions.

5.2.1 Homogeneous Poisson processes

The most common feature is the mean count, or homogeneous mean firing rate. We test the
discriminability on homogeneous Poisson processes with rate 2 and 4 spikes within the in-
terval where the randomness is maximizes given the mean rate [Rényi, 1964]. In Figure 4A,
Wilcoxon test, and dissimilarities induced by Kcount> Kgpikernels X mcr> and Kieer performs
well in this task, rejecting more than 90% with just 24 trials. Note that spd kernels, espe-
cially stratified kernel performs poorly compared to Wilcoxon for this task. However, as we
have discussed before, features other than count distribution are not captured by Wilcoxon
test nor divergence induced by the count kernel. Therefore, for the subsequent experiments,
we intentionally keep the mean firing rates of the two point processes constant, in order to
emphasize that the spd kernels are indeed sensitive to other statistical properties of the point
processes.

3http://people.kyb.tuebingen.mpg.de/spider

Figure 4 (following page):. Performance of each kernel quantified by rejection rate of hy-
pothesis testing. There are 5 artificially generated point processes A to E (see section 5.2 for
details). Raster plots on the left shows 20 realizations from each point process. For each pair
of point processes, the bar plots show the rejection rates as a function of number of samples
for each kernel. n is the number of spike trains in each class.
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5.2.2 Inhomogeneous Poisson process

As firing rate modulation over time is an abundantly observed phenomenon in neural code
experiments, we test the relative performance of each measure. We use two inhomogeneous
Poisson processes with same mean rate (5 spikes in the interval) but with different rate profile.
The interval is divided into half, and a step change in the intensity function was introduced
such that the first half and second half are constant rates. The rates were chosen to be 2 and
3 spikes per half interval for the two halves respectively for one process, and 3 and 2 for the
other process.

Due to the high dispersion of count distribution that is identical for both processes, Ktrat
poorly performs but does not completely fail (Figure 4B). K1 is designed to be sensitive to
the (smoothed) mean rate, hence performs well as expected. K. spikernel’ Kyt K § ch’ K ZS ch
performs on par with K.

5.2.3 Two spikes with correlation

Neurons can integrate and hence be history dependent on firing, or can have a short membrane
time constant and forget the past spiking. We explore a simple and instructive example to
show if the divergences can detect such differences in temporal correlations. We investigate
two point processes having at most two spikes each, where the processes share the same
marginal intensity function but have different correlation structures [Seth et al., 2010a]. In
the first process, the two event timings are correlated i.e. the interspike interval (ISI) has a
narrow distribution, whereas in the second process the two event timings are independent i.e.
each action potential has its own precise timing distribution. Both point processes have a
lossy noise i.e. each action potential has a probability of missing with probability p = 0.1.
The temporal jitter of each spike is 100 ms and the interval is 300 ms. Since the highest
dimension of the problem is 2, this problem is easier for the stratified kernel (Figure 4C).
Nevertheless, all spd kernel induced divergences quickly catch up as the number of sample
increases while pd kernels are unable to discriminate.

5.2.4 Renewal vs Poisson process

In neural systems, spike timing features that deviate from Poisson process, such as refractory
period, oscillation and bursting, are often modeled with renewal process [Nawrot et al., 2008].
In this experiment, we compare a stationary renewal process with gamma interval distribu-
tion and an equi-rate homogeneous Poisson process (Figure 4D). We observe that Kyixerne]
performs the best, and K ¢, perform on par with the spd kernels. However, recall that this
performance of K spikernel COmes at the price of more computational cost.

5.2.5 Precisely timed spike trains

When the same stimulation is presented to a neuronal system, the observed spike trains some-
times show a highly repeatable spatio-temporal pattern at the millisecond time scale. Re-
cently these precisely timed spike trains (PTST) are abundantly reported both in vivo and in
vitro preparations [Reinagel and Reid, 2002, DeWeese et al., 2003, Johansson and Birznieks,
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2004]. Despite being highly reproducible, different forms of trial-to-trial variability have also
been observed [Tiesinga et al., 2008].

We model a precisely timed spike train in an interval by L pairs of probability density
and probability pairs {(f;(t),p;)},. Bach f;(t) corresponds to the temporal jitter, and p;
corresponds to the probability of generating (otherwise missing) the spike. Each realization
of the PTST model produces at most L spikes i.e. L determines the maximum dimension for
the PTST. The equi-intensity Poisson process has the rate function A\(¢) = > . p;fi(t). We
test if the kernels can differentiate between the PTST and the equi-intensity Poisson process
for L = 3. We choose f;(t) to be equal variance Gaussian distributions on a grid sampled
from a uniform random variable, and set p; = 0.9.

We observe that the spd kernels again succeed in correctly rejecting the null hypothesis
(Figure 4E). However, several pd kernels, Kpikerne] and Ky also performs on par, while
the other pd kernels fail similarily to the renewal process experiment. The success of these pd
kernels can be explained in terms their rather extensive construction than the simpler kernels
such as Ky that are linear in nature.

6 Real data

6.1 Retinal spiking response

To test the practical effectiveness of knerel induced point process divergences, we applied
them to publicly available sensory response data*. We used the rat retinal ganglion cell
recordings from Nirenberg’s lab [Jacobs et al., 2006]. There were 22 stimulus conditions
repeated 30 times while recording 3.1 seconds long spike trains from 15 neurons. The task is
to discriminate different stimulus conditions given the spike trains from a single neuron.

We compute the rejection rate of the result of hypothesis testings. If an experimenter were
to select neurons that were sensitive to differences in the stimulus conditions, the rejection
rate can be interpreted as the probability that he or she would categorize the neuron as being
sensitive correctly (given a fixed false positive rate of 10%). The rejection rate of the null
hypothesis is shown in Figure 5. We organized the stimulus conditions in two ways: we
randomly paired the 22 stimulus conditions to form 11 hypothesis tests, or for each neuron,
we paired the stimulus conditions to have close median firing rate response by sorting the
conditions and pairing neighbors for the test. The latter pairing is to emphasize detectability
for features other than mean count.

For spikernel, we spanned 24 parameters (same as simulation section, but allowing bin
size of 50 ms as well as 150 ms). Despite being most optimized, Kgpikernel Was the slowest
kernel, and yet did not perform as well as K 1. The difference between spikernel and
mCl, nCI, Schoenberg kernels was more pronounced for the neighboring rate pair condition.
Overall K¢, and Ky were the best, getting close to rejecting all responses due to different
stimuli. Stratified kernel performed the worst due to large number of spikes (on average 20
to 50 spikes per trial).

4Available from http://neurodatabase.org [Gardner, 2004].
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Figure 5: Performance on spike trains recorded from retinal ganglion neurons. (A) Rejection
rate of each divergence measure for neighboring rate conditions. Dashed line is the test size
(p = 0.1). Error bar shows standard error over 165 tests. (B) Rejection rate for randomized
stimulus conditions. (C) 30 spike trains from two neighboring stimulus conditions for cell
113. Mean number of spikes per trial was 30. Only Schoenberg (e) and nCI rejected (p <

0.05). mCI was the next closest to rejecting (p = 0.11).

6.2 Directionality detection task in monkey MT
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Figure 6: Distinguishing the preferred direction from the null direction stimulus from sin-
gle neuron responses in MT. (A) high coherence trials (B) low coherence trials. Gray area
represents fraction of rejections that agrees with Wilcoxon rank sum test.

Area MT (middle temporal) of the visual system is known to have neurons tuned to di-
rectional visual flow. The classical theory of MT is that the mean firing rate of these neurons
encode the strength of directional motion [Albright, 1984]. Detecting such a tuning without
any underlying assumptions, and with small number of repeats is often crucial for the neuro-
scientists. We apply the proposed kernel based divergences to single MT neuron recordings
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from a detection task performed by monkeys [Britten et al., 1996].

We extracted dataset from a freely available online repository5 to obtain responses from
180 direction sensitive MT neurons [Britten et al., 1996]. We select 30 trials for high coher-
ence level 12.8% and 25.6% (or low coherence 3.2% and 6.4% for a more difficult task) each
for the preferred direction and null direction. Constant strength motion stimulus is presented
for 2 seconds, and we select a window at the end of 2 seconds that corresponds to average 3
spikes over the selected set of trials (for both directions).

Consistent with the rate coding under constant stimuli, the hypothesis testing for both
pairs of conditions suggest mean spike count to be the main feature for discrimination (Fig. 6).
The high coherence task is easier to the monkey, as well as for the hypothesis test.

Interestingly the kernels that showed better performance for simulations and results from
retina performed worse in this dataset, compared to Wilcoxon rank sum test, and count, spik-
ernel, mCI, and REEF kernel. This dataset is collected from single electrode electrophysi-
ology where the experimenter explorered the neurons in MT and selected direction selective
cells [Britten et al., 1996]. We argue that this selection bias could have resulted in strong dis-
criminability feature in the mean count, and therefore simpler tests performed better, while
spd kernels are distracted by other features of the data.

7 Conclusion

In this paper, we have studied strictly positive definite kernels on the space of spike trains. A
strictly positive definite kernel is more powerful than a positive definite kernel in the sense
that it offers a unique functional representation of a probability law. Therefore, the former
induces a divergence —a tool that can be applied in testing equality of distribution—while
the latter only a dissimilarity. However, the performance of a kernel is not only governed
by its mathematical properties, but also by its computational simplicity and choice of free
parameters. We have performed an extensive set of simulations to empirically compare the
performance and complexity of both the existing positive definite kernels and the proposed
strictly definite kernels, qualitatively, through kernel PCA, and quantitatively, through hy-
pothesis testing, on both synthetic as well as real data. These results reveal useful insight
regarding the characteristics of these kernels, and also explore their practicality.

The simulation results reveal that some pd kernels often perform equally well compared
to spd kernel. This observation is counter-intuitive but not surprising, since while spd kernels
should asymptotically perform better in theory, this does not guarantee good performance
for the small sample regime. In fact, it is natural that a pd kernel designed to capture the
exact discriminating statistical feature to outperform a generic spd kernel. For example, if
a neuronal system exhibits a rate coding scheme then it is sufficient and perhaps the best to
use a kernel that is only sensitive to the rate of the neural signal. Therefore, when studying
neural codes, the choice of kernel should depend on how information is encoded and what
the trial-to-trial variability structure is. However, the assuming a neural code beforehand can
lead to bias in the analysis, therefore when in doubt, it is advantageous to have a generalist
spd kernel.

5Neural Signal Archive http://www.neuralsignal.org/
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We have also observed that for the real datasets, the count kernel, which fails for all but
one artificial datasets by design, often performs on par or better compared to the sophisticated
kernels in many datasets including one shown in section 6.2. We believe that this is because
the neurons were selected under the assumption that the mean firing rate, which is the statis-
tic that the count kernel or Wilcoxon test is sensitive to, is modulated. It is possible that for
neurons that modulate responses in different ways are overlooked due to the unavailability of
state-of-the-art analysis tools. Therefore, the use of strictly positive definite kernels would
potentially allow new discoveries through observing these seemingly irrelevant neuronal re-
sponses. We would like to conclude the paper by stating two partially novel aspects of this
framework that we have not explicitly addressed in the paper.

1. An spd (or a pd) kernel induces a (pseudo-) metric, since the kernel can be treated as
an inner product in a reproducing kernel Hilbert space [Scholkopf and Smola, 2002].
Therefore, in essence, this approach also provides families of distance measures. This
attribute relates this paper to the work on spike train metrics (e.g. [Victor and Pur-
pura, 1997, van Rossum, 2001]). However, both Victor and Purpura [1997] and van
Rossum [2001] restrict themselves to designing distance measures between two spike
train realizations of point processes whereas our work is more general since it intro-
duces distance between two point processes (or collection of spike trains).

2. The use of strictly positive definite kernels is not merely restricted to the design of
divergence, but the characteristic nature of such kernels allow them to embed a proba-
bility law—a point process in our case—as an element in the reproducing kernel Hilbert
space [Smola et al., 2007]. This in turn allows probabilistic operations such as Bayesian
inference to be performed in terms of functional operations without the need of esti-
mating or approximating the probability law [Song et al., 2010]. Therefore, the content
of the paper naturally links these advance machine learning tools to neuroscience.

We leave exploring these directions as future work. Code for spike train kernels and diver-

gence tests are available at the author’s website.
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