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Abstract

We present a new learning algorithm for Boltzmann Machiteas tontain many layers of hid-
den variables. Data-dependent statistics are estimateg avariational approximation that tends
to focus on a single mode, and data-independent statisgcssimated using persistent Markov
chains. The use of two quite different techniques for ediimyahe two types of statistic that enter
into the gradient of the log likelihood makes it practicaldarn Boltzmann Machines with multiple
hidden layers and millions of parameters. The learning eamé&de more efficient by using a layer-
by-layer “pre-training” phase that initializes the weiglsensibly. The pre-training also allows the
variational inference to be initialized sensibly with agisnbottom-up pass. We present results on
the MNIST and NORB datasets showing that Deep Boltzmann MasHearn very good genera-
tive models of hand-written digits and 3-D objects. We alsovgthat the features discovered by
Deep Boltzmann Machines are a very effective way to in@the hidden layers of feed-forward
neural nets which are then discriminatively fine-tuned.

1. A Brief History of Boltzmann Machine Learning

The original learning procedure for Boltzmann Machine (section 2) makes use of the fact that
the gradient of the log likelihood with respect to a conrmttiveight has a very simple form: it is
the difference of two pair-wise statistics (Hinton and $ejeki (1983)). The first statistic is data-
dependent and is the expectation that a pair of binary sstichanits are both on when a randomly
selected training case is clamped on the “visible” units #redstates of the “hidden” units are
sampled from their posterior distribution. The secondadatiependent statistic is the expectation
that the two units are both on when the visible units are nastained by data and the states of
the visible and hidden units are sampled from the joint ihigtion defined by the parameters of the
model.

Hinton and Sejnowski (1983) estimated the data-dependkigtss by clamping a training vec-
tor on the visible units, initializing the hidden units tctlom binary states, and using sequential
Gibbs sampling of the hidden units (Geman and Geman (1984pproach the posterior distri-
bution. They estimated the data-independent statistidhkeénsame way, but with the randomly
initialized visible units included in the sequential Gilbdemmpling. Inspired by Kirkpatrick et al.
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(1983) they used simulated annealing from a high initialgerature to a final temperature of one
to speed up convergence to the stationary distribution.y Teenonstrated that this was a feasible
way of learning the weights in small networks, but even wii# belp of simulated annealing, this
learning procedure was much too slow to be practical fomiegrlarge, multi-layer Boltzmann
machines. Even for small networks, the learning rate mustelog small to avoid an unexpected
effect: the high variance in the difference of the two estedastatistics has a tendency to drive
the parameters to regions where each hidden unit is almeayslon or almost always off. These
regions act as attractors because the variance in the gtaaiémate is lower in these regions, so
the weights change much more slowly.

Neal (1992) improved the learning procedure by using persiddarkov chains. To estimate the
data-dependent statistics, the Markov chain for eachit@icase is initialized at its previous state
for that training case and then just run for a few steps. @iyilfor the data-independent statistics,
a number of Markov chains are run for a few steps from theiviptes states. If the weights have
only changed slightly, the chains will already be close tirtilstationary distributions and a few
iterations will suffice to keep them close. In the limit of yesmall learning rates, therefore, the
data-dependent and data-independent statistics willestlunbiased. Neal did not explicitly use
simulated annealing, but the persistent Markov chainsempht it implicitly, provided that the
weights have small initial values. Early in the learning th@ins mix rapidly because the weights
are small. As the weights grow, the chains should remain thesr stationary distributions in
much the same way as simulated annealing should track ttienstey distribution as the inverse
temperature increases.

Neal (1992) showed that persistent Markov chains work qui# for training a Boltzmann
Machine on a fairly small dataset. For large datasets, hexvévis much more efficient to update
the weights after a small “mini-batch” of training examples by the time a training example is
revisited, the weights may have changed by a lot and thedsgiede of the Markov chain for that
training case may be far from equilibrium. Also, once theghé&s become large, the Markov chains
used for estimating the data-independent statistics meg havery slow mixing rate since they
typically need to sample from a highly multimodal distrilout in which widely separated modes
have very similar probabilities but the vast majority of jbant states are extremely improbable.
This suggests that the learning rates might need to be irtigalg small for the persistent chains to
remain close to their stationary distributions with onlyesvfstate updates per weight update. For-
tunately, the asymptotic analysis is almost completeblévant: there is a subtle reason, explained
later in this section, why the learning works well with a lgiag rate that is much larger than the
obvious asymptotic analysis would allow.

In an attempt to reduce the time required by the samplinggssidPeterson and Anderson Pe-
terson and Anderson (1987) replaced Gibbs sampling witmplsimean field method that approx-
imates a stationary distribution by replacing stochastaty values with deterministic real-valued
probabilities. More sophisticated deterministic appnaoiion methods were investigated by Gal-
land (1991) and Kappen and Rodriguez (1998), but none oéthpgroximations worked very well
for learning for reasons that were not well understood atithe.

It is now well-known that irdirectedgraphical models learning typically works quite well when
the statistics from the true posterior distribution that eequired for exact maximum likelihood
learning are replaced by statistics from a simpler appraimy distribution, such as a simple mean-
field distribution (Zemel (1993); Hinton and Zemel (1994l and Hinton (1998); Jordan et al.
(1999)). The reason learning still works is that it follovi®e tgradient of a variational bound (see
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section 3.1). This bound consists of the log probabilityt tha model assigns to the training data
penalized by the sum, over all training cases, of the KukHagibler divergence between the ap-
proximating posterior and the true posterior over the hidegriables. Following the gradient of the

bound tends to minimize this penalty term thus making the prasterior of the model similar to the

approximating distribution.

An undirected graphical model, such as a Boltzmann Machia&an additional, data-independent
term in the maximum likelihood gradient. This term is theigigive of the log partition function
and, unlike the data-dependent term, it has a negative Slya.means that if a variational approxi-
mation is used to estimate the data-independent stafiiiesesulting gradient will tend to change
the parameters to make the approximation worse. This plpledplains the lack of success in
using variational approximations for learning Boltzmanadlines.

The first efficient learning procedure for large-scale Bolinn machines used an extremely
limited architecture, first proposed in Smolensky (1986 ivas designed to make inference easy.
A Restricted Boltzmann Machine (RBM) has a layer of visibiétsiand a layer of hidden units
with no connections between the hidden units. The lack oheotions between hidden units elim-
inates many of the computational properties that make gémmitzmann Machines interesting,
but it makes it easy to compute the data-dependent statistizctly, because the hidden units are
independent given a data-vector. If connections betwesihlgiunits are also prohibited, the data-
independent statistics can be estimated by starting Markains at hidden states that were inferred
from training vectors, and alternating between updatihgfahe visible units in parallel and updat-
ing all of the hidden units in parallel (Hinton (2002)). Ithard to compute how many alternations
(half-steps) of these Markov chains are needed to apprdexistationary distribution and it is
also hard to know how close this approach must be for leantingake progress towards a better
model. It is tempting to infer that, if the learning workeetMarkov chains used to estimate the
data-independent statistics must have been close to aduiti, but it turns out that this is quite
wrong.

Empirically, learning usually works quite well if the altexting Gibbs sampling is run for only
one full step starting from the sampled binary states of tdddn units inferred from a data-vector
(Hinton (2002)). This gives very biased estimates of tha-itadependent statistics, but it greatly re-
duces the variance in the estimated difference betweerdggiendent and data-independent statis-
tics (Williams and Agakov (2002)), especially when usingiirfiatch learning on large datasets.
Much of the sampling error in the data-dependent statisiiassed by using a small mini-batch
is eliminated because the estimate of the data-indepersfatistics suffers from a very similar
sampling error. The reduced variance allows a much higlagnileg rate. Instead of viewing this
learning procedure as a gross approximation to maximurtiied learning, it can be viewed as a
much better approximation to minimizing the differencewb tdivergences (Hinton (2002)) and so
it is called Contrastive Divergence (CD) learning. The gualf the learned model can be improved
by using more full steps of alternating Gibbs sampling asntbights increase from their small ini-
tial values (Carreira-Perpignan and Hinton (2005)) andhwhis modification CD learning allows
RBMs with millions of parameters to achieve state-of-thieparformancé on a large collaborative
filtering task (Salakhutdinov et al. (2007)).

1. The performance is comparable with the best other singléefs, such as probabilistic matrix factorization. By
averaging many models it is possible to do better and the ystems with the best performance on Netflix both use
multiple RBMs among the many models that are averaged.
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The architectural limitations of RBMs can be overcome byigshem as simple learning mod-
ules that are stacked to form a deep, multilayer networkerAfaining each RBM, the activities of
its hidden units, when they are being driven by data, areddeas training data for the next RBM
(Hinton et al. (2006); Hinton and Salakhutdinov (2006)).wéwer, if multiple layers are learned
in this greedy, layer-by-layer way, the resulting compmsitodel isnot a multilayer Boltzmann
Machine (Hinton et al. (2006)). It is a hybrid generative relochlled a “Deep Belief Net” that has
undirected connections between its top two layers and danshdirected connections between all
adjacent lower layers.

In this paper we present a fairly efficient learning procediar fully general Boltzmann Ma-
chines. To estimate the data-dependent statistics, we eaga-field variational inference and rely
on the learning to make the true posterior distributions lbsecto the factorial distributions as-
sumed by mean-field. To estimate the data-independerdtitative use a relatively small number
of persistent Markov chains and rely on a subtle interadbetween the learning and the Markov
chains to allow a small number of slow mixing chains to sangpliekly from a highly multimodal
energy landscape. For both sets of statistics, the facthlegbarameters are changing is essential
for making the sampling methods work.

We then show how to make our learning procedure for genertitiBann machines consider-
ably more efficient for Deep Boltzmann Machines (DBMs) thavdr many hidden layers but no
connections within each layer and no connections betweearadfacent layers. The weights of
a DBM can be initialized by training a stack of RBMs, but withmedification that ensures that
the resulting composite model is a Boltzmann Machine rathem a Deep Belief Net (DBN). This
pre-training method has the added advantage that it pr@ddast, bottom-up inference procedure
for initializing the mean-field inference. We use the MNISTdaNORB datasets to demonstrate
that DBMs learn very good generative models of images of Hariiten digits and 3-D objects.
Although this paper is primarily about learning generativedels, we also show that the weights
learned by these models can be used to initialize deep @®a@fd neural networks. These feed-
forward networks can then be fine-tuned using backpropamg&ti give much better discriminative
performance than randomly initialized networks.

2. Boltzmann Machines (BMs)

A Boltzmann Machine is a network of symmetrically coupledcsiastic binary units. It contains a
set of visible unitsy € {0,1}", and a set of hidden units € {0,1}” (see Fig. 1, left panel), that
learn to model higher-order correlations between the kasibits. The energy of the stafe, h} is
defined as:

1 1
E(v,h;0) = —v'Wh — §VTLV - 5hTJh, 1)

wheref = {W, L, J} are the model parametérs¥, L, J represent visible-to-hidden, visible-to-
visible, and hidden-to-hidden symmetric interaction terfihe diagonal elements éfand.J are

2. We have omitted the bias terms for clarity of presentati®inses are equivalent to weights on a connection to a unit
whose state is fixed dt, so their derivatives can be inferred from the derivativasweights by simply setting the
state of one of the two units b
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set to 0. The probability that the model assigns to a visiBldarv is:

P(v:0) = P}Z’ %) Zexp E(v,h;0)), )

ZZexp E(v,h;0)), )

where P* denotes unnormalized probability, ai(#) is the partition function. Theonditional
distributions over hidden and visible units are given by:

i m#j

phj =1v,h ;) = g (Z Wijvi + Y Jjmh; ) 4
plo;=1h,v_;) = g (ZW”h +ZLM) : (5)

J k#i

whereg(z) = 1/(1 + exp(—z)) is the logistic function anc_; denotes a vectax but with x;
omitted. The parameter updates, originally derived by éfiritnd Sejnowski (1983), that are needed
to perform gradient ascent in the log-likelihood can be ioleiéh from Eq. 2:

AW = (Eplata [VhT] - EPmodel [VhT]) ’

AL =« <EPdata [VVT] - EPmodel [VvT]> Y

AJ = <EPlata [hhT] - EPmodel [hhT]) ’

wherec is a learning rate. E . [-], the data-dependent term, is an expectation with respeheto
completed data distributioRy.t, (h, v; 6) = P(h|v;0) Pyata(Vv), With Pyaa(v) = % Yo, 0(v—=v")
representing the empirical distribution, and E _[-], the data-independent term, is an expectation
with respect to the distribution defined by the model (Eqg. 2).

Exact maximum likelihood learning in this model is intraad&a The exact computation of the
data-dependent expectation takes time that is exponémtiae number of hidden units, whereas
the exact computation of the model’s expectation takes tmeis exponential in the number of
hidden and visible units.

Setting both/=0 andL=0 recovers the Restricted Boltzmann Machine (RBM) modsd (5g. 1,
right panel). Setting only the hidden-to-hidden connetid=0 recovers a semi-restricted Boltz-
mann Machine (Osindero and Hinton (2008)) in which infagrihe states of the hidden units given
the visible states is still very easy but learning is more plicated because it is no longer feasible
to infer the states of the visible units exactly when recatsing the data from the hidden states.

2.1 A Stochastic Approximation Procedure for Estimating the Data-independent Statistics

Markov Chain Monte Carlo (MCMC) methods belonging to theegahclass of stochastic approx-
imation algorithms of the Robbins—Monro type (Younes ()98®bbins and Monro (1951)) can
be used to approximate the data-independent statistias1€é0(2000); Neal (1992); Yuille (2004);
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General Boltzmann Machine

Restricted Boltzmann Machine

Figure 1: Left: A general Boltzmann Machine. The top layer represents avetstochastic binary “hid-
den” variables and the bottom layer represents a vectoroohastic binary “visible” variables.
Right: A Restricted Boltzmann Machine with no hidden-to-hiddeisible-to-visible connec-
tions.

Tieleman (2008)). To be more precise, let us consider theWalg canonical form of the exponen-
tial family associated with the sufficient statistics vecto

1 T
P(x;0) = %exp (0 ®(x)). (6)
The derivative of the log-likelihood for an observatigrwith respect to parameter vectéitakes
the form:
Olog P(x;0)
00

The idea behind learning parameter ve&aising stochastic approximation is straightforward. Let
0" andx’ be the current parameters and the state. Hiemdd’ are updated sequentially as follows:

= (I)(i) —EProda [@(X)] (7)

e Givenx!, a new statec!*! is sampled from a transition operatfy: (x*! « x*) that leaves
P(-;0") invariant (e.g. a Gibbs sampler).

e Anew parametef’*! is then obtained by replacing the intractable data-indépenstatistics
Ep,....[®(x)] by a point estimate (x'*1).

In practice, we typically maintain a set 8f sample pointsY! = {x%!, ..., "M}, which we will
often refer to as sample particles. In this case, the irgbdetdata-independent statistics are replaced
by the sample averagésu Zﬁle o (x*t1™). The procedure is summarized in Algorithm 1.

The standard proof of convergence of these algorithmssreliethe following basic decompo-
sition. First, the gradient of the log-likelihood functiteikes the form:

~ Olog P(x;0)

S(0) 50

= (I)(}_() - EPmode] [CI)(X)] 8)
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Algorithm 1 Stochastic Approximation Algorithm.

1: Randomly initialize#® and M sample particle$x®?, ....,x%M}.
2: for t = 0 : T (number of iterationsdo
3:  fori=1:M (number of parallel Markov chaingjo

4 Samplex‘*1? givenx!? using transition operat@fy: (x'+1:4 «xt1).
5 end for

6: Update:d'+! = 0" + «, [@(X) - L %:1 o(xHHmY|.

7 Decreasey;.

8: end for

The parameter update rule then takes the following form:

0t+1 _ €t+at

1 M
O(x) 77 D <1><>~<”“”>] ©)
m=1

= Gt + OétS((gt) + Ot

1 M
BP0 200 — 7 3 <1><s<t“’m>]

= Ht + atS(Ht) + Qp€py.

The first term is the discretization of the ordinary diffeiehequationd = S(#). The algorithm
is therefore a perturbation of this discretization with tioése terme;. The proof then proceeds by
showing that the noise term is not too large.

Precise sufficient conditions that ensure almost sure cgexee to an asymptotically stable
point of § = S(0) are given in Younes (1989, 2000); Yuille (2004). One neagssandition
requires the learning rate to decrease with time, so¥hgt, oy = co and) ;% a7 < oo. This
condition can, for example, be satisfied simply by setting= 1/(¢o + ¢). Other conditions ensure
that the speed of convergence of the Markov chain, govergdtidtransition operatafy, does
not decrease too fast @stends to infinity, and that the noise ternin the update of Eq. 9 is
bounded. Typically, in practice, the sequenéé is bounded, and the Markov chain, governed by
the transition kernely, is ergodic. Together with the condition on the learning ralis ensures
almost sure convergence of the stochastic approximatgoritim to an asymptotically stable point
of § = S(6).

Informally, the intuition behind why this procedure worksthe following. As the learning rate
becomes sufficiently small compared with the mixing ratehaf Markov chain, this “persistent”
chain will always stay very close to the stationary distiitno, even if it is only run for a few
MCMC steps per parameter update. Samples from the peiststaim will be highly correlated for
successive parameter updates, but if the learning ratéfisisntly small, the chain will mix before
the parameters have changed enough to significantly atterailne of the estimator.

The success of learning relatively small Boltzmann Machifiéeal (1992)) seemed to imply
that the learning rate was sufficiently small to allow theiobhdo stay close to equilibrium as the
parameters changed. Recently, however, this explanatisibéen called into question. After learn-
ing an RBM using persistent Markov chains for the data-iedelent statistics, we tried sampling
from the RBM and discovered that even though the learningonaduced a good model, the chains
mixed extremely slowly. In fact, they mixed so slowly thaé thppropriate final learning rate, ac-
cording to the explanation above, would have been smaker tthe rate we actually used by several
orders of magnitude. So why did the learning work?
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Tieleman and Hinton (2009) argue that the fact that the perews are being updated using
the data-independent statistics gathered from the pemsishains means that the mixing rate of
the chainswith their parameters fixets not what limits the maximum acceptable learning rate.
Consider, for example, a persistent chain that is stuck gea ¢bcal minimum of the energy surface.
Assuming that this local minimum has very low probabilitydenthe posterior distributions that are
used to estimate the data-dependent statistics, the effétoé learning will be to raise the energy
of the local minimum. After a number of weight updates, thesiggent chain will escape from the
local minimum not because the chain has had time to mix buausethe energy landscape has
changed to make the local minimum much less deep. The l@pcainses the persistent chains to be
repelled from whatever state they are currently in and thiscause slow mixing chains to move to
other parts of the dynamic energy landscape much fastemtbald be predicted by the mixing rate
with static parameters. Welling (2009) has independergported a closely related phenomenon
which he calls “herding”.

Recently, (Tieleman (2008); Salakhutdinov and Hinton @00 Salakhutdinov (2009); Des-
jardins et al. (2010)) have shown that this stochastic apration algorithm, also termed Persis-
tent Contrastive Divergence, performs well compared totagtive Divergence at learning good
generative models in RBMs. Even though the allowable legrrate is much higher than would be
predicted from the mixing rate of the persistent Markov obait is still considerably lower than the
rate used for contrastive divergence learning becausedaégegt estimate it provides has lower bias
but much higher variance, especially when using mini-baaming rather than full batch learning.

2.2 A Variational Approach to Estimating the Data-Depender Expectations

As already mentioned, persistent Markov chains are les®pppte for estimating the data-dependent
statistics, especially with mini-batch learning on largeasets. Fortunately, variational approxima-
tions work well for estimating the data-dependent statistiGiven the data, it is typically quite
reasonable for the posterior distribution over latentatzlgs to be unimodal, especially for applica-
tions like speech and vision where normal data-vectordyrdal have a single correct explanation
and the data is rich enough to allow a good generative modefdpthat explanation.

In variational learning (Zemel (1993); Hinton and Zemel94® Neal and Hinton (1998); Jor-
dan et al. (1999)), the true posterior distribution oveematvariablesP(h|v; ) for each training
vector v, is replaced by an approximate poster@th|v; ) and the parameters are updated to
maximize the variational lower bound on the log-likelihood

log P(v;0) > Y Q(h|v;u)log P(v,h;6) + H(Q)
h
= log P(v;0) — KL [Q(h[v; u)||P(h[v; 0)], (10)

where(-) is the entropy functional.
Variational learning has the nice property that in additimtrying to maximize the log-likelihood

of the training data, it tries to find parameters that minenize Kullback-Leibler divergence be-
tween the approximating and true posteriors. Making the posterior approximately unimodal,
even if it means sacrificing some log-likelihood, could beaadageous for a system that will use
the posterior to control its actions. Having multiple alt@ive representations of the same sensory
input increases the likelihood compared with a single exatian of the same quality, but it makes
it more difficult to associate an appropriate action with gensory input. Variational inference that
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uses a factorial distribution to approximate the postenelps to eliminate this problem. During
learning, if the posterior given a training input vector isltimodal, the variational inference will
lock onto one mode, and learning will make that mode moreagisteh Our learning algorithm will
therefore tend to find regions in the parameter space in whielrue posterior is dominated by a
single mode.

For simplicity and speed, we approximate the true postesorg a fully factorized distribution
(i.e. the naive mean-field approximatior)(h; ) = ]_[]].::1 q(hi), whereg(h; = 1) = u; andF is
the number of hidden units. The lower bound on the log-prifibabf the data takes the following
form:

1 1
log P(V; 0) > 5 Z Likvivk + 5 Z ij,ujum + Z Wijvmj — log 2(9)
i,k J,m 2,7
+ ) [mjlog i + (1 — pj)log (1 — )]
J

The learning proceeds by first maximizing this lower bounthwéspect to the variational parame-
tersy for fixed 6, which results in the mean-field fixed-point equations:

Hi <— g ZWijvi + Z ijlu'm . (11)
i m#£j

This is followed by applying stochastic approximation taafe model parametefs

We emphasize that variational approximations should nouder for estimating the data-
independent statistics in the Boltzmann Machine learning, ras attempted in Galland (1991),
for two separate reasons. First, a factorial approximat@amnot model the highly multi-modal,
data-independent distribution that is typically requir&écond, the minus sign causes the param-
eters to be adjusted so that the true model distribution rhesaas different as possible from the
variational approximation.

3. Learning Deep Boltzmann Machines (DBMs)

The algorithm above can learn Boltzmann Machines with artiepaof connectivity between the
units, but it can be made particularly efficient in “deep” @abann Machines that have multiple
hidden layers but only have connections between adjacgeridas shown in Fig. 2 (Salakhutdinov
and Hinton (2009a); Salakhutdinov (2010)). Deep Boltzmislathines are interesting for several
reasons. First, like Deep Belief Networks, DBMs have thditsitip learn internal representations
that capture very complex statistical structure in the @idayers. As has already been demonstrated
for DBNSs, this is a promising way of solving object and speeetognition problems (Bengio
(2009); Bengio and LeCun (2007b); Hinton et al. (2006); Datndl Hinton (2009); Dahl (2010)).
High-level representations can be built from a large supplynlabeled data and a much smaller
supply of labeled data can then be used to slightly fine-thaertodel for a specific discrimination
task. Second, again like DBNs, if DBMs are learned in thetrighy there is a very fast way to
initialize the states of the units in all layers by simplymipia single bottom-up pass using twice the
weights to compensate for the initial lack of top-down fesmddb Third, unlike DBNs and unlike
many other models with deep architectures (Ranzato et @072 Vincent et al. (2008); Serre
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Algorithm 2 Learning Procedure for a General Boltzmann Machine
1: Given: atraining set ol binary data vector§v}/_,, and), the number of samples.
2: Randomly initialize parameter vect8t and M samples{v®! h%1} .. {vOM hOM},
3: for t = 0to T (number of iterationsjlo

4: /] Variational Inference:

5.  for each training exampte™, n = 1to NV do

6: Randomly initialize: and run mean-field updates until convergence:
Hi =g (Zi Wijvi + 3 mzj ijﬂm)-

7: Setu™ = p.

8: endfor

9: [/ Stochastic Approximation:
10:  for each samplen = 1to M do B
11: Sample(vitLm hi+lm) given(vh™ h%™) by running a Gibbs sampler (Egs. 4, 5).
12:  end for
13: /I Parameter Update:

14: Wt+1 — Wt 4 ay (% EN_l vn(un)—r _ % 271\7{21 {,t-i—l,’m(flt—i-l,'rn)—r) .
15: Jt-i—l — Jt + ay (% Zfzvzl un(un)—r _ ﬁ Z%:l ﬁt—&-l,’m(fﬁ—i—l,’rm)T) .

16 L = Lo <% S VT =y Sl v T

17:  Decreasey;.
18: end for

et al. (2007)), the approximate inference procedure, #ftemitial bottom-up pass, can incorporate
top-down feedback, allowing DBMs to use higher-level kresige to resolve uncertainty about
intermediate level features (Salakhutdinov and Laroeh@010)).

Let us consider a three-hidden-layer DBM, as shown in Figg®t panel, with no within-layer
connections. The energy of the stdte h', h?, h3} is defined as:

Vv, : = —V — —
E(v,h', h% h?;0) TWin! — h'Tw?h? — h?"w3h3, (12)

whered = {W1 W2 W3} are the model parameters, representing visible-to-hidoehhidden-
to-hidden symmetric interaction terms.
The probability that the model assigns to a visible veets:
1
P(vif) = —— Y exp(—E(v,h',h’ h?0)). (13)
2(9) h! h2 h3

10
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Deep Belief Network Deep Boltzmann Machine

Figure 2: Left: Deep Belief Network (DBN), with the top two layers forming andirected graph and
the remaining layers form a belief net with directed, topvda@onnection®Right: Deep Boltz-
mann Machine (DBM), with both visible-to-hidden and hidelerhidden connections but with no
within-layer connections. All the connections in a DBM arelirected.

The conditional distributions over the visible and the ¢éhsets of hidden units are given by logistic
functions:

p(hj =1lv.b%) = g (Z Wivi+ ) meh%l> , (14)
p(hl, = 1h"0%) = g | Y W2 hi+ > Wi} |, (15)
7 l
(b — 110) — g (z w;:;lha) . 16)
1 121
pvi=1h") =g ZWijhj : 7)
J

As mentioned before, the learning procedure for generazB@nn Machines described above
can be applied to DBMs that start with randomly initializedights, but it works much better if
the weights are initialized sensibly. With small random gie$, hidden units in layers that are far
from the data are very under-constrained so there is nostensilearning signal for their weights.
With larger random weights the initialization imposes asgy random bias on the feature detectors
learned in the hidden layers. Even when the ultimate goalnsesunknown discrimination task, it
is much better to bias these feature detectors towards baefotm a good generative model of the
data. We now describe how this can be done.

3.1 Greedy Layerwise Pre-training of DBNs

Hinton et al. (2006) introduced a greedy, layer-by-layesupervised learning algorithm that con-
sists of learning a stack of RBMs one layer at a time. Afteedyelearning, the whole stack can be
viewed as a single probabilistic model called a Deep Beliefiwdrk. Surprisingly, this composite
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model isnota Deep Boltzmann Machine. The top two layers form a ResttiBtzmann Machine,
but the lower layers form directedsigmoid belief network (see Fig. 2, left panel).
After learning the first RBM in the stack, the generative maada be written as:

ZP (h'; WhHP(vin'; W, (18)

whereP(h!; W) = 3" P(h!,v; W) is a prior overh! that is implicitly defined by!. Using
the same parameters to define both the prior &eand the likelihood termP(v|h!) seems like
an odd thing to do for those who are more familiar with dirdoggaphical models, but it makes
inference much easier and it is only a temporary crutch: tie pverh! defined bylW! will be
thrown away and replaced by a better prior defined by the w®idti2, of the next RBM in the
stack.

The second RBM in the stack attempts to learn a better oveiadel by leavingP(v|h!; W)
fixed and replacing?(h!; W) by P(h'; W?) = Y, P(h!,h?; W?), whereW? is initialized
at (W) " and then improved by following the gradient of a variatiol@er bound on the log
probability of the training data with respect ¥62. The variational bound was first derived using
coding arguments in Hinton and Zemel (1994) and applies t&BRs well as to DBNs. For a
dataset containingy training examples, it has the form:

N
> log P(v";60) > Z Eqenive) [log(P(v"[h'; W Z KL (Q(h'|[v™)||P(h'; W?))

n=1

=y [Z Q(h'[v") [log(P(vIn'; W))] + H(Q)] +> > Qh'[v*)log P(h'; W?), (19)
n n  hl

where(-) is the entropy functional an@(h'|v) is any approximation to the posterior distribution
over hidden vectors for the DBN containing hidden layletsandh?. The approximation we use is
the true posterior ovei' for the first RBM,P(h'|v, W1). As soon a3V ? ceases to be identical to
(WH T this is no longer the true posterior for the DBN.

Changing¥? only affects the last sum in Eg. 19 so maximizing the boundyraad over all
the training casesy.r.t. W2 amounts to learning a better model of the mixture, oveatraining
cases, of the true posteriors of the first RBM okt Each of these posteriors is factorial, but
their mixture% >~ Q(h|v™), which we call the aggregated posterior, is typically veayffom
factorial.

If the second RBM is initialized to be the same as the first RRivMath its visible and hidden
units interchanged, the second RBM’s model of its visibletoes is identical to the first RBM's
model of its hidden vectors, so using the second RBM to défifie') does not change the model
providedW? = (W1)T. Changingl¥? so that the second RBM becomes a better model of the
aggregated posterior ové’ is then guaranteed to improve the variational bound for thelev
DBN on the log likelihood of the training data.

This argument can be applied recursively to learn as margrdanf features as desired. Each
RBM in the stack performs exact inference while it is beireyiheed, but once its implicit prior over
its hidden vectors has been replaced by a better prior defiipeide higher-level RBM, the simple
inference procedure ceases to be exact. As the stack ggisrddee simple inference procedure
used for the earlier layers can be expected to become psdggbsless correct. Nevertheless, each
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time a new layer is added, the variational bound for the degypsem is better than the bound for
its predecessor. When a third hidden layer is added, for pharthe bound of Eqg. 19 gets replaced
by a bound in which the last sum:

> > Qm! v log P(h'; W?) (20)

n hl

is replaced by

> Y QM (EQ(hz|h1) [log(P(h'[h?; W?))] — KL(Q(h?|h")||P(h?; W3>>)- (21)

n  hl

When the second RBM is learned, the log probability of théning data also improves because
the bound starts off tight, but this is not guaranteed fompdedayers since, for these layers, the
variational bound does not start off tight. The bound cobhktefore improve as the log probability
of the training data falls provided the bound becomes tighita higher rate than the log probability
falls.

The improvement of the bound is only guaranteed if each RB¥érstack starts with the same
weights as the previous RBM and follows the gradient of thgelikelihood, using the posterior
distributions over the hidden units of the previous RBM asdéta. In practice we violate this
condition by using gross approximations to the gradienhsg contrastive divergence. The real
value of deriving the variational bound is to allow us to urstiend why it makes sense to use the
aggregated posterior distributions of one RBM as the tngimiata for the next RBM and why the
combined model is a Deep Belief Net rather than a Deep Bolienhéachine.

3.2 Greedy Layerwise Pre-training of DBMs

Even though the simple way of stacking RBMs leads to a DeejgB¥Et, it is possible to modify
the procedure so that stacking produces a Deep BoltzmanhiMadNe start by giving an intuitive
argument about how to combine RBMs to get a Deep BoltzmanrhMaausing three different
operations, one for the bottom layer, one for the top laymd, e operation that is repeated for all
the intermediate layers. We then show that two of the thragtively derived operations that we
used to pre-train a DBM in our experiments are guaranteechpodve a variational bound and the
remaining operation is a close approximation to a methotistguaranteed to improve a bound.

After training the2™d layer RBM in a DBN, there are two different ways of computinfgetorial
approximation to the true posteriét(h'|v; W' W?2). The obvious way is to ignore t& layer
RBM and use thé®(h!|v; W) defined by the first RBM. An alternative method is to first samigl
from P(h'|v; W1), then sampléa? from P(h?h'; W?), and then use th&(h'|h?; W?) defined
by the second RBM. The sampling noise in the second methotheaaduced by using a further
approximation in which the sampled binary values are reqlday their probabilities. The second
method will tend to over-emphasize the prior for defined byi? whereas the first method will
tend to under-emphasize this prior in favor of the earliésmtefined byiV'! that it replaced.

Given these two different approximations to the posteriavpuld be possible to take a geomet-
ric average of the two distributions. This can be done by fiestorming a bottom-up pass to infer
h? then using!l/2W! and1/2W? to infer h! from bothv andh?. Notice thath? is inferred from
v S0 it is not legitimate to sum the full top-down and bottominffuences. This would amount
to “double-counting” the evidence provided byand would give a distribution that was much too
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Figure 3: Pre-training a DBM with three hidden layers consists ofiéag a stack of RBMs that are then
composed to create a DBM. The first and last RBMs in the staek teebe modified by copying
the visible or hidden units.

sharp. Experiments with trained DBNs confirm that averagfireggtop-down and bottom-up inputs
works well for inference and adding them works badly.

This reasoning can be extended to a much deeper stack ofilgreathed RBMs. The initial,
bottom-up inference that is performed in a DBN can be folldvbgy a stage in which all of the
weights are halved and the states of the units in the intaateethyers are resampled by summing
the top-down and bottom-up inputs to a layer. If we alterhateveen resampling the odd-numbered
layers and resampling the even-numbered layers, thissmmnels to block Gibbs sampling in a
Deep Boltzmann Machine with the visible and top-layer ucdlitgsnped. So after learning a stack of
RBMs we can either compose them to form a DBN or we can halvihaliveights and compose
them to form a DBM. Moreover, given the way the DBM was creatbdre is a very fast way to
initialize all of the hidden layers when given a data-vecgimply perform a bottom-up pass using
twice the weights of the DBM to compensate for the lack of dapyn input.

There is an annoying problem with this method of pre-trgnanDBM. For the intermediate
layers, initializing at the halved weights is fine becauseait be viewed as taking the geometric
mean of the bottom-up and top-down models, but for the \asiayer and the top layer it is not
legitimate because they only receive input from one othggrlaBoth the top and the bottom layer
need to be updated when estimating the data-independéististaand we cannot use weights that
are bigger in one direction than the other because this doiesonrespond to Gibbs sampling in
any energy function. So we need to use a special trick whetrairéng the first and last RBMs in
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Algorithm 3 Greedy Pre-training Algorithm for a Deep Boltzmann Machivith L-layers.

1: Make two copies of the visible vector and tie the visiblehtdelen weightd¥!. Fit W' of the 1%t layer
RBM to data.

2: FreezeW'! that defines thest layer of features, and use samptégfrom P(h!|v,2W!) (Eqg. 22) as the
data for training the next layer RBM with weight vectif 2.

3: FreezdV? that defines the"d layer of features and use the sampiésrom P(h?%|h!, 2W?) as the data

for training the3™ layer RBM with weight vectoR W3,

. Proceed recursively for the next laydrs- 1.

5: When learning the top-level RBM, double the number of hiddeits and tie the visible-to-hidden
weightsiV -,

6: Use the weightg W', W2, ..., W} to compose a Deep Boltzmann Machine.

I

the stack. For the first RBM, we make two copies of the visilvlgsuand tie the weights to the two
copies as shown in Fig. 3, left panel. Even though the copeslavays identical in the data, we
do not insist that they have the same state vectors whengeaoting them from the hidden units
because this constraint would effectively double the toptweights to a visible unit.

In this modified RBM with tied parameters, the conditionatdbutions over the hidden and
visible states are defined as:

p(h} =1v,v) =g (Z W (v; +v;> : (22)

plv; =1h") = p(v; =1h') = g | > Winj|. (23)
J

Contrastive Divergence learning still works well and thedified RBM is good at reconstructing
its training data.

Conversely, for the top-level RBM, we make two copies of tidelan units with tied weights
and do not insist that they have the same state vectors. F&M\Bith three hidden layers, the
conditional distributions for this model take the form:

3(a 3
p(h% = 1|h3) =9 <Z Wg@lhl( '+ Zwszlhl (b)> ] (24)
l l

3(a 3
p(hy“ =1h?) = p(hy” =1h%) = ¢ (Z W'rilh?n> _ (25)

For the intermediate RBM we simply defin&? to be half of the weight matrix learned by the
RBM, so the conditional distributions take the form:

p(hj =1|h?*) = g <2Z mehi> ; (26)

2
p(h%, =1h') = ¢ 2§ W2.h |- (27)
J
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When these three modules are composed to form a single systentotal input coming into
the first and second hidden layers is halved, which leadsetdaifowing conditional distributions
overh! andh?:

o = 1v,1) = g (z Wl zwﬁmha) | 09

p(hl, =1h"0%) = g | S W2 hi+ > Whini | . (29)
j l

The conditional distributions over andh?® remain the same as defined by Egs. 23, 25.

Observe that the conditional distributions defined by tbisposite model are exactly the same
as the conditional distributions defined by the DBM (Eqs.1,16, 17). Therefore, after greedily
pre-training a stack of RBMs with appropriate modificati@fishe first and last RBM, they can be
composed to create a Deep Boltzmann Machine.

Greedily pre-training the weights of a DBM in this way sert@e purposes. First, it initializes
the weights to reasonable values. Second, it ensures #ratitha fast way of performing approx-
imate inference by a single bottom-up pass using twice thghie This eliminates the need to
store the hidden states that were inferred last time a tgioase was used (Neal (1992)) or to use
simulated annealing from random initial states of the hiddeits (Hinton and Sejnowski (1983)).
This fast approximate inference is used to initialize themgeld, iterative inference which then
converges much faster than mean-field with random iniaéittm. Since the mean-field inference
uses real-valued probabilities rather than sampled bistatgs, we also use probabilities rather than
sampled binary states for the initial bottom-up inference.

3.3 A Variational Bound for Greedy Layerwise Pre-training of DBMs

The explanation of DBM pre-training given in the previoustmn is motivated by the need to
end up with a deep network that has symmetric weights betabejacent pairs of layers. The
pre-training is motivated by intuitive arguments about baring top-down and bottom-up effects.
However, unlike the pre-training of a DBN, it lacks a prooétieach time a layer is added to the
DBM, the variational bound for the deeper DBM is better tHamtound for the previous DBM. We
now show that the method we use for training the first and |&83¢IRin the stack is a correct way
of improving a variational bound, and the method for addimg intermediate layers is quite close
to being correct.

The basic idea for pre-training a DBM is to start by learningi@del in which the prior over
hidden vectorsp(h'; W), is the normalized product of two identical distributioriBhen one of
these distributions is discarded and replaced by the sgoatef a better priop(h'; 1W?2) that has
been trained to fit the aggregated posterior of the first mdaebe more precise, let us first consider
a simpler case of pre-training a two-hidden-layer DBM.

Pre-training a two-hidden-layer DBM

Suppose we start by training the RBM with tied weights shawfig. 4a that has two sets of visible
units, each of which sees one copy of the data. After learmiregcan write down the variation lower
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Figure 4:Pre-training a Deep Boltzmann Machine with two hidden layer

bound of Eg. 19:

D log P(v") = > " Egntjvny [log(P(v"[h'; W ZKL Q(h!'[v™)||P(h; W) . (30)

The model’'s marginal distribution ové® is the product of two identical distributions, one defined
by an RBM composed di' andv and the other defined by an identical RBM composeH 'oand
v

p(hl;Wl) _ %(zev/TW1h1> <Z€VTW1h1>, (31)

v/ v

whereZ is the normalizing constahtThe idea is to keep one of these RBMs and replace the other
by a square root a better priét(h'; 1W2). To do so we train the second-layer RBM with two sets of
hidden units to be a better model the aggregated post%r@n Q(h'|v™) of the first model (see
Fig. 4b), so that:

ZKL Q(h[v™; Wh||P(ht; W?)) <ZKL Q(hl v, WhH||P(h!; W), (32)

Similar to Eq. 31, the distribution ovér' defined by the second-layer RBM is also the product of
two identical distributions, one for each set of hidden ainithis implies that taking a square root
amounts to simply keeping one such distribution.

Once the two RBMs are composed to form a two-hidden-layer DBddlel (see Fig. 4c), the
marginal distribution oveh' is the geometric mean of the two probability distributiofgh'; W!), P(ht; W?)
defined by the first and second-layer RBNlg.(the renormalized pairwise products of the square
roots of the two probabilities for each event):

Pl Wl w?) = %(; TWlhl) (Z h”WW) (33)

3. The biases learned far' are shared equally between the two RBMs.
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Figure 5:Pre-training a Deep Boltzmann Machine with three hiddeeiay

The variational lower bound of Eq. 30 improves because capjehalf of the prior by a better model
reduces the Kullback-Leibler divergence. Indeed, Eq. 32édiately implies:

Y KL@QM!' [V Wh[|gm(P(h'; W), P(h'; W?)) <

Y OKL@QM' v WhH|[P(, W), (34)

wheregm(-,-) is the geometric mean of two probability distributions. Doethe convexity of
asymmetric divergence, this is guaranteed to improve thati@al bound of the training data by at
least half as much as fully replacing the original priorslalso guaranteed to loosen the variational
bound by at most half as much as fully replacing the origimedrpassuming that inference is still
performed assuming the original prior.

This argument shows that the apparently unprincipled hacdkiog two sets of visible units or
two sets of hidden units to cope with the “end effects” whezating a DBM from a stack of RBMs
is actually exactly the right thing to do in order to improveaaiational boundl.

Pre-training a Deep Boltzmann Machine

When pre-training a DBM with more than two layers. the didear half of the previous prior is
replaced by half of anothéBoltzmann machinéat is also a product of two identical Boltzmann
Machines and has been trained to be a better model of thegaggdeposterior ovei!. There are
two different cases to consider. The easy case is when wehadiingal, L layer of the DBM.
Similar to the two-hidden-layer construction, we simplgleze half of the previous prior by half of
the distribution defined by an RBM with the architecture shawFig. 5d.

Adding non-final layers in a way that guarantees that the revatonal bound is better than
the previous one is a bit more complicated. First we needain ain RBM to be a better model of
the aggregated posterior of the previous RBM. Then we neetbtlify this trained RBM to get the

4. An RBM with two sets of visible units learns a different nebthan an RBM with only one set of visible units and
the variational bound is on the log probability of this difat model
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square root of the distribution that it defines over its \&sibnits. Then we need to make another
modification to get the square root of the prior that it defioesr its hidden units so that, when we
add the next layer, we can replace the other half of that psia better distribution. The right way
to do this is to train an RBM that has two copies of its visibhisiand two copies of its hidden units
with all four weight matrices tied as shown in Fig. 5b. Thenmake two copies of the previous
DBM after modifying it to take the square root of the prior pits hidden units. We use one copy
of the hidden units of the new RBM as the top layer of the new D&vshown in Fig. 5c. This
creates a DBM with a better variational bound for the distitn that it defines over each set of
its visible units. Finally, in preparation for adding thexh&ayer, we throw away one copy of the
previous DBM, thus taking the square root of the prior overttip layer.

Instead of using this correct method, we approximated ir&@iying an ordinary RBM with no
duplicate sets of units on the aggregated posterior fronexisting DBM. Then we simply halved
its weights and biases. Halving the weights takes the sqoatef thejoint distribution over pairs
of visible and hidden vectors and it also takes the squareafoihe conditional distribution over
visible vectors given a hidden vector (or vice versa), butaés not take the square root of the
marginal distributions over the visible or the hidden vestd his is most easily seen by considering
the ratios of the probabilities of two visible vectoss, andvg. Before halving the weights, their
probability ratio in the marginal distribution over viséolectors is given by:

P(va) _ Yo Pt
P(vs) S, e EOsm

(39)

In the RBM with halved weights, all of the exponents are hailwich takes the square root of every
individual term in each sum, but this does not take the squ@rtof the ratio of the sums. This
argument shows that the apparently unproblematic idealaihigethe weights of all the intermediate
RBMs in the stack is not the right thing to do if we want to emstirat as each layer is added, the
new variational bound is better than the old one. Neversiselhis method is fast and works quite
well in practice and it is the method we used.

In the correct method of adding an intermediate hidden Jdlieswing away one set of hidden
units halves the total expected energy of all terms invgiviridden units, but it also halves the
entropy, so it successfully halves the free energy of easibleivector which is what is required to
take the square root of the marginal distribution over Vsiectors.

4. Evaluating Deep Boltzmann Machines

Assessing the generalization performance of DBMs playsmgortant role in model selection,
model comparison, and controlling model complexity. Irsthection we discuss two ways of eval-
uating the generalization capabilities of DBMs: genem#ind discriminative.

4.1 Evaluating DBMs as Generative Models

We first focus on evaluating generalization performance BM3 as density models. For many
specific tasks, such as classification or information netjgperformance of DBMs can be directly
evaluated (see section 4.2). More broadly, however, tH#égyabi DBMs to generalize can be eval-
uated by computing the probability of held-out input vestarhich is independent of any specific

5. We also halve the visible biases.
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application. An unfortunate limitation of DBMs is that theopability of data under the model is
known only up to a computationally intractable partitiomdtion. A good estimate of the partition
function would allow us to assess generalization perfocaaf DBMs as density models.

Recently, Salakhutdinov and Murray (2008) showed that at®l@arlo based method, An-
nealed Importance Sampling (AIS) (Neal (2001)), can be tsexdficiently estimate the partition
function of an RBM. In this section we show how AIS can be useddtimate the partition func-
tions of DBMs. Together with variational inference this hallow us to obtain good estimates of
the lower bound on the log-probability of the training anst ata.

Suppose we have two distributions defined on some sprawéh probability density functions:
Py(x) = Pi(x)/Za and Pg(x) = Pj(x)/Zp. Typically P4(x) is defined to be some simple
distribution, with known partition functior¥Z 4, from which we can easily drawi.d. samples.
AlS estimates the rati&z/Z4 by defining a sequence of intermediate probability distiins:
Py, ..., Pk, with Py = P4 and P = Pp, which satisfyPy(x) # 0 wheneverP;1(x) # 0. For each
intermediate distribution we must be able to easily evaluhaé unnormalized probability; (x),
and we must also be able to samglegivenx using a Markov chain transition operatby(x’; x)
that leavesP, (x) invariant. One general way to define this sequence is to set:

Pu(x) o< Pi(x)' 7% Pp(x)P, (36)

with 0 = By < 1 < ... < B = 1 chosen by the user.

Using the special layer-by-layer structure of DBMs, we carivi an efficient AIS scheme for
estimating the model’s partition function. Let us considénree-hidden-layer Boltzmann Machine
(see Fig. 3, right panel) whose energy is defined as:

E(v,h',bh% h%0) = —v W'h! —h!TW?2h? — h2"W3h3. (37)

By explicitly summing out the®* and the3™ layer hidden unit§h', h3}, we can easily evaluate
an unnormalized probability?* (v, h?; §). We can therefore run AlS on a much smaller state space
x = {v,h?} with h! andh? analytically summed out. The sequence of intermediateilalisions,
parameterized by, is defined as follows:

Pu(v,b%0) = 37 Py(v,h,h%, b%0)
hl,h3
— L (1 + eﬁk(Zz U’iWiljJ’_Zm hg"Wj%n)) H (1 + eﬁk(z’n hg"W"il)) .
Zy, i !

We gradually changg. (the inverse temperature) from 0 to 1, annealing from a @rfyohiform”
model to the final complex model. Using Egs. 14, 15, 16, 138, stiaightforward to derive a Gibbs
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transition operator that leave (v, h?; §) invariant:

p(hj = 1|v,h?) = g(&( vvizwzwfmh%l)), (38)

p(h;, =1h",h%) = ¢ (ﬁk D Wihi+ > Wikt | |, (39)
l

p(hi =1h?) = ¢ <5kZW3lh2> (40)

p(vi=1h') =g ﬁkzwwh} : (41)

Once we obtain an estimate of the global partition functihrwe can estimate, for a given test
casev*, the variational lower bound of Eq. 10:

log P(v*;6) > — Z Q(h|v*; p) E(v*,h;0) + H(Q) — log Z(0)

Q

fZQ h|v*; ) E(v*, h;0) + H(Q) — log Z,

where we defineth = {h', h? h3}. For each test vector under consideration, this lower bdsind
maximized with respect to the variational parametetsing the mean-field update equations.

Furthermore, by explicitly summing out the states of thelgitlunits{h?, h3}, we can obtain a
tighter variational lower bound on the log-probability bettest data. Of course, we can also adopt
AIS to estimateP* (v) = > 11 12 1,3 P*(v, h!, h? h3), and together with an estimate of the global
partition function we can act7ua7lly estimate the true loghatility of the test data. This however,
would be computationally very expensive, since we woulddrteeperform a separate AIS run for
each test case. As an alternative, we could adopt a variattitve Chib-style estimator, proposed by
Murray and Salakhutdinov (2009). In the case of Deep Boltmmidlachines, where the posterior
over the hidden units tends to be unimodal, their proposat-§iile estimator can provide good
estimates ofog P*(v) in a reasonable amount of computer time.

In general, when learning a Deep Boltzmann Machine with ntioaa two hidden layers, and
no within-layer connections, we can explicitly sum out eitbdd or even layers. This will result in
a better estimate of the model’s partition function andtgghower bounds on the log-probability
of the test data.

4.2 Evaluating DBMs as Discriminative Models

After learning, the stochastic activities of the binarytéeas in each layer can be replaced by de-
terministic, real-valued probabilities, and a Deep Bolimm Machine with two hidden layers can
be used to initialize a multilayer neural network in the daling way. For each input vectar, the
mean-field inference is used to obtain an approximate postistribution@ (h?|v). The marginals
q(h? = 1|v) of this approximate posterior, together with the data, aeglio create an “augmented”
input for this deep multilayer neural network as shown in BigStandard backpropagation of error
derivatives can then be used to discriminatively fine-tungenhodel.
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Mean-Field Updates

A% Fine-tune

Figure 6: Left: A two-hidden-layer Boltzmann Machin®ight: After learning, DBM is used to initialize
a multilayer neural network. The marginals of approximaietpriorq(hf = 1|v) are used as
additional inputs. The network is fine-tuned by backpropaga

The unusual representation of the input is a by-product o¥exding a DBM into a deterministic
neural network. In general, the gradient-based fine-tumiag choose to ignor@(h?|v), i.e. drive
the 1°¢ layer connectiond?? to zero, which will result in a standard neural network. Gasely,
the network may choose to ignore the input by driving tfidayer weightsiv'! to zero, and make
its predictions based on only the approximate posteriowéder, the network typically makes use
of the entire augmented input for making predictions.

5. Experimental Results

In our experiments we used the MNIST and NORB datasets. Tedspp learning, we subdivided

datasets into mini-batches, each containing 100 casesyated the weights after each mini-
batch. The number of sample particles, used for approximgatie model's expected sufficient
statistics, was also set to 100. For the stochastic appegomalgorithm, we always used 5 Gibbs
updates. Each model was trained using 300,000 weight updatee initial learning rate was set
0.005 and was decreased as 10/(2000+t), where tis the nahiyedates so far. For discriminative
fine-tuning of DBMs we used the method of conjugate gradientigsrger mini-batches of 5000 with

three line searches performed for each mini-batch. Debéifge-training and fine-tuning, along

with details of Matlab code that we used for learning and fiméng Deep Boltzmann Machines,
can be found at http://web.mit.edufsalakhu/www/software.html.

5.1 MNIST

The MNIST digit dataset contains 60,000 training and 10,@80images of ten handwritten digits
(O to 9), with 28< 28 pixels. Intermediate intensities between 0 and 255 weagdd as probabilities
and each time an image was used we sampled binary valuesties@ probabilities independently
for each pixel.
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Training samples 3-layer BM

Figure 7: Random samples from the training set, and samples gendratadhree Boltzmann Machines
by running the Gibbs sampler for 100,000 steps. The imagesrshre theprobabilitiesof the
binary visible units given the binary states of the hiddeitsun

Table 1: Results of estimating partition functions of BM models,rajavith the estimates of lower bound
on the average training and test log-probabilities. FoB&k we used 20,000 intermediate distri-
butions. Results were averaged over 100 AIS runs.

Estimates Avg. log-prob.

log Z log (£ + 6) Test Train

Flat BM 198.29 198.17,198.40 —84.67 —84.35
2-layer BM  356.18 356.06,356.29 —84.62 —83.61
3-layer BM  456.57 456.34,456.75 —85.10 —84.49

In our first experiment we trained a fully connected “flat” BM the MNIST dataset. The
model had 500 hidden units and 784 visible units. To estittademodel’s partition function we
used 20,0003, spaced uniformly from 0 to 1. Results are shown in table 1. &stanate of the
lower bound on the average test log-probability wast.67 per test case, which is slightly better
compared to the lower bound ef85.97, achieved by a carefully trained two-hidden-layer Deep
Belief Network (Salakhutdinov and Murray (2008)).

In our second experiment, we trained two Deep Boltzmann Mash one with two hidden lay-
ers (500 and 1000 hidden units), and the other with threechidiyers (500,500, and 1000 hidden
units), as shown in Fig. 8. To estimate the model's partifiomction, we also used 20,000 inter-
mediate distributions spaced uniformly from 0 to 1. Tabléhavgs that the estimates of the lower
bound on the average test log-probability werg4.62 and —85.10 for the 2- and 3-layer Boltz-
mann Machines respectively. Observe that the two DBMs tbatagn over 0.9 and 1.15 million
parameters do not appear to suffer much from overfitting. difierence between the estimates of
the training and test log-probabilities was about 1 nat.ufggr further shows samples generated
from all three models by randomly initializing all binaryagés and running the Gibbs sampler for
100,000 steps. Certainly, all samples look like the reabiaiiten digits. We also emphasize that
without greedy pre-training, we could not successfullyhegood DBM models of MNIST digits.
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3-layer BM 3-layer BM
( 1000 units ) (4000 units )
2-layer BM I I
( 1000 units ) (4000 units__)
| | !

500 units 500 units ( 4000 units
Preprocessed
transformation

Gaussian visible units
(raw pixel data)

Stereo pair

Figure 8: Left: The architectures of two Deep Boltzmann Machines used in $M\#xperimentsRight:
The architecture of Deep Boltzmann Machine used in NORB @xy@nts.

To estimate how loose the variational bound is, we randommyded 100 test cases, 10 of each
class, and ran AIS to estimate the true test log-probabifity the 2-layer Boltzmann Machine.
The estimate of the variational bound was -83.35 per test, easereas the estimate of the true test
log-probability was -82.86. The difference of about 0.5srettows that the bound is rather tight.

For a simple comparison we also trained several mixture eh@dlis models with 10, 100,
and 500 components. The corresponding average test |bgdplites were—168.95, —142.63,
and—137.64. Compared to DBMs, a mixture of Bernoullis performs veryladhe difference of
over 50 nats per test case is striking.

Finally, after discriminative fine-tuning, the two-hidd&yer Boltzmann Machine achieves an
error rate of 0.95% on the full MNIST test set. This is, to onoWledge, the best published result
on the permutation-invariant version of the MNIST tasKhe 3-layer BM gives a slightly worse
error rate of 1.01%. The flat BM, on the other hand, gives amrably worse error rate of 1.27%.
This is compared to 1.4% achieved by SVMs (Decoste and 8cpfH(2002)), 1.6% achieved by
randomly initialized backprop, 1.2% achieved by the DeefieB&letwork, described in (Hinton
et al. (2006); Hinton and Salakhutdinov (2006)), and 0.98t@ioed by using a combination of
discriminative and generative fine-tuning on the same DBNMt@# (2007)).

To test discriminative performance of DBMs when the numbdatoeled examples is small, we
randomly sampled 1%, 5%, and 10% of the handwritten digitsaich class and treated them as
labeled data. Table 2 shows that after discriminative fumeAg, a two-hidden-layer BM achieves
error rates of 4.82%, 2.72%, and 2.46%. Deep Boltzmann Mashclearly outperform regular-
ized nonlinear NCA (Salakhutdinov and Hinton (2007)), a8l @& linear NCA (Goldberger et al.
(2004)), an autoencoder (Hinton and Salakhutdinov (20@@)) K-nearest neighbours, particularly
when the number of labeled examples is only 600.

6. Note that computationally, this is equivalent to estin@i 00 partition functions.
7. In the permutation-invariant version, the pixels of gverage are subjected to the same, random permutation which
makes it hard to use prior knowledge about images.
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Table 2: Classification error rates on MNIST test set when only a sfradtion of labeled data is available.

Two-Layer Regularized Linear Autoencoder  KNN
DBM Nonlinear NCA  NCA
1% (600) 4.82% 8.81% 19.37% 9.62% 13.74%
5% (3000) 2.72% 3.24% 7.23% 5.18% 7.19%
10% (6000) 2.46% 2.58% 4.89% 4.46% 5.87%
100% (60000) 0.95% 1.00% 2.45% 2.41% 3.09%

5.2 NORB

Results on MNIST show that Deep Boltzmann Machines canfggnily outperform many other
models on the well-studied but relatively simple task ofdvaritten digit recognition. In this section
we present results on NORB, which is a considerably morecdiffdataset than MNIST. NORB
(LeCun et al. (2004)) contains images of 50 different 3D tbjeots with 10 objects in each of
five generic classes: cars, trucks, planes, animals, anaaintEach object is photographed from
different viewpoints and under various lighting condigorThe training set contains 24,300 stereo
image pairs of 25 objects, 5 per class, while the test seagtm24,300 stereo pairs of the remaining,
different 25 objects. The goal is to classify each previpusiseen object into its generic class. From
the training data, 4,300 were set aside for validation.

Each image has 9896 pixels with integer greyscale values in the range [0,296]speed-up
experiments, we reduced the dimensionality by using a faegaesentation of each image in a
stereo pair. The central 6464 portion of an image is kept at its original resolution. Tamaining
16 pixel-wide ring around it is compressed by replacing nwerlapping square blocks of pixels
in the ring with a single scalar given by the average pixdéliwaf a block. We split the ring into
four smaller ones: the outermost ring consists aB&locks, followed by a ring of 44 blocks,
and finally two innermost rings ofs22 blocks. The resulting dimensionality of each trainingtaec
representing a stereo pair, wax 4488 = 8976. A random sample from the training data used in
our experiments is shown in Fig. 9, left panel.

To model raw pixel data, we use an RBM with Gaussian visiblknary hidden units. Gaus-
sian RBMs have been previously successfully applied foretiod greyscale images, such as im-
ages of faces (Hinton and Salakhutdinov (2006)). Howeearning an RBM with Gaussian units
can be slow, particularly when the input dimensionalityustejlarge. Here we follow the approach
of Nair and Hinton (2009) by first learning a Gaussian RBM dmehttreating the activities of its
hidden layer as “preprocessed” data. Effectively, thenedlow-level RBM acts as a preprocessor
that converts greyscale pixels into a binary represematidnich we then use for learning a Deep
Boltzmann Machine.

The number of hidden units for the preprocessing RBM wasasd000 and the model was
trained using Contrastive Divergence learning for 500 Bpod\Ve then trained a two-hidden-layer
DBM with each layer containing 4000 hidden units, as showRig 8, right panel. Note that the
entire model was trained in a completely unsupervised wdgerAhe subsequent discriminative
fine-tuning, the “unrolled” DBM achieves a misclassificatierror rate of 10.8% on the full test
set. This is compared to 11.6% achieved by SVMs (Bengio ai@ubhg2007a)), 22.5% achieved
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Figure 9: Random samples from the training set, and samples gendrataca three-hidden-layer Deep
Boltzmann Machine by running the Gibbs sampler for 10,080st
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Figure 10: Performance of the three-hidden-layer DBM on the imageiittpey task. Top: Ten objects
randomly sampled from the test sitiddle: Partially occluded inputimageBottom: Inferred
images were generated by running a Gibbs sampler for 10p8.ste

by logistic regression, and 18.4% achieved by the K-near@ighbours (LeCun et al. (2004)). To
show that DBMs can benefit from additionailabeledraining data, we augmented the training data
with additional unlabeled data by applying simple pixehsiations, creating a total of 1,166,400
training instancés After learning a good generative model, the discrimireafine-tuning (using
only the 24,300 labeled training examples without any {edim) reduces the misclassification
error down to 7.2%. Figure 9 shows samples generated fromdael by running prolonged Gibbs
sampling. Note that the model was able to capture a lot oflaeigjas in this high-dimensional,
richly structured data, including different object classerious viewpoints and lighting conditions.

8. We thank Vinod Nair for sharing his code for blurring anahslating NORB images.
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Finally, we tested the ability of the DBM to perform an imageainting task. To this end, we
randomly selected 10 objects from ttest setand simulated the occlusion by zeroing out the left
half of the image (see Fig. 10). We emphasize that the testtsbare different from the training
objects (i.e. the model never sees images of 'cowboy’, bséds other images belonging to the
'person’ category). We next sampled the “missing” pixeladioned on the non-occluded pixels
of the image using 1000 Gibbs updates. Figure 10, bottomsbaws that the model was able to
coherently infer occluded parts of the test images. In paler, observe that even though the model
never sees an image of the cowboy, it correctly infers thettould have two legs and two arms.

Surprisingly, even though the Deep Boltzmann Machine ¢ostabout 68 million parameters,
it significantly outperforms many of the competing modeldedtly, unsupervised learning helps
generalization because it ensures that most of the infesmat the model parameters comes from
modeling the input data. The very limited information in thbels is used only to slightly adjust
the layers of features already discovered by the Deep BalmMachine.

6. Discussion

A major difference between DBNs and DBMs is that the procedar adding an extra layer to a
DBN replaces the whole prior over the previous top layer whstthe procedure for adding an extra
layer to a DBM only replaces half of the prior. So in a DBM, theights of the bottom level RBM
end up doing much more of the work than in a DBN where the weigin¢ only used to define
p(v|h'; W) (in the composite generative model). This suggests thanhgdalyers to a DBM will
give diminishing improvements in the variational bound imuagore quickly than adding layers to
a DBN. There is, however, a simple way to pre-train a DBM so thare of the modeling work is
left to the higher layers.

Suppose we train an RBM with one set of hidden units and fotg alvisible units and we
constrain the four weight matrices (and visible biases)dddentical. Then we use the hidden
activities as data to train an RBM with one set of visible sigind four sets of hidden units, again
constrained to have identical weight matrices. Now we canlipne the two RBMs into a DBM
with two hidden layers by using one set of visible units frdma first RBM and three of the four sets
of hidden units from the second RBM. In this DBR/4 of the first RBM’s prior over the first hidden
layer has been replaced by the prior defined by the second RB&fmains to be seen whether this
makes DBMs work better.

Using multiple copies of a layer with identical weights ariddes is exactly equivalent to using
a single copy but taking multiple samples from the distidoubver that layer. Now we can imagine
taking, say,11/3 samples by takin@ samples and randomly keeping the second one with a prob-
ability of 1/3%. Suppose we train the bottom-level RBM by takihgamples from its visible units
and1 sample from its hidden units. We then train a higher level RBMhe aggregated posterior of
the first RBM takingll/3 samples from its hidden units andsample from its “visible” units. Then
we compose the two RBMs without changing their weights, &kiing only one sample from each
layer in the composite model. Again, we have a DBM in whichhigher level RBM has replaced
3/4 of the prior defined by the lower level RBM. The higher level RByill learn a different model
using11/3 samples than it would have learned usinsamples, but both methods of replaciigof
the prior are valid. It remains to be seen which works best.

9. The random decisions should be made independently fangsdcto avoid high variance in the total output of a layer.
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In this paper we have focussed on Boltzmann machines witirpimnits. The learning meth-
ods we have described can be extended to learn Deep Boltamesinines built with RBM modules
that contain real-valued (Marks and Movellan (2001)), ¢d@alakhutdinov and Hinton (2009b)),
or tabular data provided the distributions are in the exptakfamily (Welling et al. (2005)). How-
ever, it often requires additional insights to get the b&diV learning module to work well with
non-binary units. For example, it ought to be possible toélae variance of the noise model of the
visible units in a Gaussian-Bernoulli RBM, but this is tyglly very difficult for reasons explained
in Hinton (2010). For modeling the NORB data we used fixedararés ofl which is clearly much
too big for data that has been normalized so that the pixels Aariance of 1. Recent work shows
that Gaussian visible units work much better with rectifiegdr hidden units (Nair and Hinton
(2010)) and using this type of hidden unit it is straightfard to learn the variance of the noise
model of each visible unit.

7. Summary

We presented a novel combination of variational and Markbai@ Monte Carlo algorithms for
training Boltzmann Machines. When applied to pre-trainegpBoltzmann Machines with several
hidden layers and millions of weights, this combination i&eay effective way to learn good gen-
erative models. We demonstrated the performance of theitdgousing the MNIST hand-written
digits and the NORB stereo images of 3-D objects with higlagiable viewpoint and lighting.

A simple variational approximation works well for estinmggithe data-dependent statistics be-
cause learning based on these estimates encourages tpestesgor distributions over the hidden
variables to be close to their variational approximatioRersistent Markov chains work well for
estimating the data-independent statistics becausdrngarased on these estimates encourages the
persistent chains to explore the state space much mordydpah would be predicted by their
mixing rates.

Pre-training a stack of RBMs using contrastive divergerarelie used to initialize the weights
of a Deep Boltzmann Machine to sensible values. Unlike @iming a DBN, the RBMs in the stack
need to be trained with two copies of one or both layers ofurihis makes it possible to take the
square root of one or both of the marginal distributions eMeryer of the trained RBM (by throwing
away one copy of the other layer). The RBMs can then be condptmstorm a Deep Boltzmann
Machine. The pre-training ensures that the variationarigrice can be initialized sensibly by a
single bottom-up pass from the data-vector using twice thteom-up weights to compensate for
the lack of top-down input on the initial pass.

We have further showed how Annealed Importance Samplioggalith variational inference,
can be used to estimate a variational lower bound on the olgability that a Deep Boltzmann
Machine assigns to test data. This allowed us to directlgsssthe performance of Deep Boltzmann
Machines as generative models of data. Finally, we showeddaose a Deep Boltzmann Machine
to initialize the weights of a feedforward neural networkttican then be discriminatively fine-
tuned. These networks give excellent discriminative peroce, especially when there is very
little labeled training data but a large supply of unlabedath.
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