
Computer Science and Artificial Intelligence Laboratory

Technical Report

m a s s a c h u s e t t s i n s t i t u t e o f t e c h n o l o g y, c a m b r i d g e , m a 0 213 9 u s a — w w w. c s a i l . m i t . e d u

MIT-CSAIL-TR-2010-037 August 4, 2010

An Efficient Learning Procedure for Deep
Boltzmann Machines
Ruslan Salakhutdinov and Geoffrey Hinton

An Efficient Learning Procedure for
Deep Boltzmann Machines

Ruslan Salakhutdinov RSALAKHU@MIT.EDU

CSAIL
Massachusetts Institute of Technology
Cambridge, MA, USA

Geoffrey Hinton HINTON@CS.TORONTO.EDU

Department of Computer Science
University of Toronto
Toronto, Ontario, Canada

Abstract
We present a new learning algorithm for Boltzmann Machines that contain many layers of hid-

den variables. Data-dependent statistics are estimated using a variational approximation that tends
to focus on a single mode, and data-independent statistics are estimated using persistent Markov
chains. The use of two quite different techniques for estimating the two types of statistic that enter
into the gradient of the log likelihood makes it practical tolearn Boltzmann Machines with multiple
hidden layers and millions of parameters. The learning can be made more efficient by using a layer-
by-layer “pre-training” phase that initializes the weights sensibly. The pre-training also allows the
variational inference to be initialized sensibly with a single bottom-up pass. We present results on
the MNIST and NORB datasets showing that Deep Boltzmann Machines learn very good genera-
tive models of hand-written digits and 3-D objects. We also show that the features discovered by
Deep Boltzmann Machines are a very effective way to initialize the hidden layers of feed-forward
neural nets which are then discriminatively fine-tuned.

1. A Brief History of Boltzmann Machine Learning

The original learning procedure for Boltzmann Machines (see section 2) makes use of the fact that
the gradient of the log likelihood with respect to a connection weight has a very simple form: it is
the difference of two pair-wise statistics (Hinton and Sejnowski (1983)). The first statistic is data-
dependent and is the expectation that a pair of binary stochastic units are both on when a randomly
selected training case is clamped on the “visible” units andthe states of the “hidden” units are
sampled from their posterior distribution. The second, data-independent statistic is the expectation
that the two units are both on when the visible units are not constrained by data and the states of
the visible and hidden units are sampled from the joint distribution defined by the parameters of the
model.

Hinton and Sejnowski (1983) estimated the data-dependent statistics by clamping a training vec-
tor on the visible units, initializing the hidden units to random binary states, and using sequential
Gibbs sampling of the hidden units (Geman and Geman (1984)) to approach the posterior distri-
bution. They estimated the data-independent statistics inthe same way, but with the randomly
initialized visible units included in the sequential Gibbssampling. Inspired by Kirkpatrick et al.

c© Ruslan Salakhutdinov and Geoffrey Hinton.

SALAKHUTDINOV AND HINTON

(1983) they used simulated annealing from a high initial temperature to a final temperature of one
to speed up convergence to the stationary distribution. They demonstrated that this was a feasible
way of learning the weights in small networks, but even with the help of simulated annealing, this
learning procedure was much too slow to be practical for learning large, multi-layer Boltzmann
machines. Even for small networks, the learning rate must bevery small to avoid an unexpected
effect: the high variance in the difference of the two estimated statistics has a tendency to drive
the parameters to regions where each hidden unit is almost always on or almost always off. These
regions act as attractors because the variance in the gradient estimate is lower in these regions, so
the weights change much more slowly.

Neal (1992) improved the learning procedure by using persistent Markov chains. To estimate the
data-dependent statistics, the Markov chain for each training case is initialized at its previous state
for that training case and then just run for a few steps. Similarly, for the data-independent statistics,
a number of Markov chains are run for a few steps from their previous states. If the weights have
only changed slightly, the chains will already be close to their stationary distributions and a few
iterations will suffice to keep them close. In the limit of very small learning rates, therefore, the
data-dependent and data-independent statistics will be almost unbiased. Neal did not explicitly use
simulated annealing, but the persistent Markov chains implement it implicitly, provided that the
weights have small initial values. Early in the learning thechains mix rapidly because the weights
are small. As the weights grow, the chains should remain neartheir stationary distributions in
much the same way as simulated annealing should track the stationary distribution as the inverse
temperature increases.

Neal (1992) showed that persistent Markov chains work quitewell for training a Boltzmann
Machine on a fairly small dataset. For large datasets, however, it is much more efficient to update
the weights after a small “mini-batch” of training examples, so by the time a training example is
revisited, the weights may have changed by a lot and the stored state of the Markov chain for that
training case may be far from equilibrium. Also, once the weights become large, the Markov chains
used for estimating the data-independent statistics may have a very slow mixing rate since they
typically need to sample from a highly multimodal distribution in which widely separated modes
have very similar probabilities but the vast majority of thejoint states are extremely improbable.
This suggests that the learning rates might need to be impractically small for the persistent chains to
remain close to their stationary distributions with only a few state updates per weight update. For-
tunately, the asymptotic analysis is almost completely irrelevant: there is a subtle reason, explained
later in this section, why the learning works well with a learning rate that is much larger than the
obvious asymptotic analysis would allow.

In an attempt to reduce the time required by the sampling process, Peterson and Anderson Pe-
terson and Anderson (1987) replaced Gibbs sampling with a simple mean field method that approx-
imates a stationary distribution by replacing stochastic binary values with deterministic real-valued
probabilities. More sophisticated deterministic approximation methods were investigated by Gal-
land (1991) and Kappen and Rodriguez (1998), but none of these approximations worked very well
for learning for reasons that were not well understood at thetime.

It is now well-known that indirectedgraphical models learning typically works quite well when
the statistics from the true posterior distribution that are required for exact maximum likelihood
learning are replaced by statistics from a simpler approximating distribution, such as a simple mean-
field distribution (Zemel (1993); Hinton and Zemel (1994); Neal and Hinton (1998); Jordan et al.
(1999)). The reason learning still works is that it follows the gradient of a variational bound (see

2

LEARNING DEEPBOLTZMANN MACHINES

section 3.1). This bound consists of the log probability that the model assigns to the training data
penalized by the sum, over all training cases, of the Kullback-Leibler divergence between the ap-
proximating posterior and the true posterior over the hidden variables. Following the gradient of the
bound tends to minimize this penalty term thus making the true posterior of the model similar to the
approximating distribution.

An undirected graphical model, such as a Boltzmann Machine,has an additional, data-independent
term in the maximum likelihood gradient. This term is the derivative of the log partition function
and, unlike the data-dependent term, it has a negative sign.This means that if a variational approxi-
mation is used to estimate the data-independent statistics, the resulting gradient will tend to change
the parameters to make the approximation worse. This probably explains the lack of success in
using variational approximations for learning Boltzmann Machines.

The first efficient learning procedure for large-scale Boltzmann machines used an extremely
limited architecture, first proposed in Smolensky (1986), that was designed to make inference easy.
A Restricted Boltzmann Machine (RBM) has a layer of visible units and a layer of hidden units
with no connections between the hidden units. The lack of connections between hidden units elim-
inates many of the computational properties that make general Boltzmann Machines interesting,
but it makes it easy to compute the data-dependent statistics exactly, because the hidden units are
independent given a data-vector. If connections between visible units are also prohibited, the data-
independent statistics can be estimated by starting Markovchains at hidden states that were inferred
from training vectors, and alternating between updating all of the visible units in parallel and updat-
ing all of the hidden units in parallel (Hinton (2002)). It ishard to compute how many alternations
(half-steps) of these Markov chains are needed to approach the stationary distribution and it is
also hard to know how close this approach must be for learningto make progress towards a better
model. It is tempting to infer that, if the learning worked, the Markov chains used to estimate the
data-independent statistics must have been close to equilibrium, but it turns out that this is quite
wrong.

Empirically, learning usually works quite well if the alternating Gibbs sampling is run for only
one full step starting from the sampled binary states of the hidden units inferred from a data-vector
(Hinton (2002)). This gives very biased estimates of the data-independent statistics, but it greatly re-
duces the variance in the estimated difference between data-dependent and data-independent statis-
tics (Williams and Agakov (2002)), especially when using mini-batch learning on large datasets.
Much of the sampling error in the data-dependent statisticscaused by using a small mini-batch
is eliminated because the estimate of the data-independentstatistics suffers from a very similar
sampling error. The reduced variance allows a much higher learning rate. Instead of viewing this
learning procedure as a gross approximation to maximum likelihood learning, it can be viewed as a
much better approximation to minimizing the difference of two divergences (Hinton (2002)) and so
it is called Contrastive Divergence (CD) learning. The quality of the learned model can be improved
by using more full steps of alternating Gibbs sampling as theweights increase from their small ini-
tial values (Carreira-Perpignan and Hinton (2005)) and with this modification CD learning allows
RBMs with millions of parameters to achieve state-of-the art performance1 on a large collaborative
filtering task (Salakhutdinov et al. (2007)).

1. The performance is comparable with the best other single models, such as probabilistic matrix factorization. By
averaging many models it is possible to do better and the two systems with the best performance on Netflix both use
multiple RBMs among the many models that are averaged.

3

SALAKHUTDINOV AND HINTON

The architectural limitations of RBMs can be overcome by using them as simple learning mod-
ules that are stacked to form a deep, multilayer network. After training each RBM, the activities of
its hidden units, when they are being driven by data, are treated as training data for the next RBM
(Hinton et al. (2006); Hinton and Salakhutdinov (2006)). However, if multiple layers are learned
in this greedy, layer-by-layer way, the resulting composite model isnot a multilayer Boltzmann
Machine (Hinton et al. (2006)). It is a hybrid generative model called a “Deep Belief Net” that has
undirected connections between its top two layers and downward directed connections between all
adjacent lower layers.

In this paper we present a fairly efficient learning procedure for fully general Boltzmann Ma-
chines. To estimate the data-dependent statistics, we use mean-field variational inference and rely
on the learning to make the true posterior distributions be close to the factorial distributions as-
sumed by mean-field. To estimate the data-independent statistics we use a relatively small number
of persistent Markov chains and rely on a subtle interactionbetween the learning and the Markov
chains to allow a small number of slow mixing chains to samplequickly from a highly multimodal
energy landscape. For both sets of statistics, the fact thatthe parameters are changing is essential
for making the sampling methods work.

We then show how to make our learning procedure for general Boltzmann machines consider-
ably more efficient for Deep Boltzmann Machines (DBMs) that have many hidden layers but no
connections within each layer and no connections between non-adjacent layers. The weights of
a DBM can be initialized by training a stack of RBMs, but with amodification that ensures that
the resulting composite model is a Boltzmann Machine ratherthan a Deep Belief Net (DBN). This
pre-training method has the added advantage that it provides a fast, bottom-up inference procedure
for initializing the mean-field inference. We use the MNIST and NORB datasets to demonstrate
that DBMs learn very good generative models of images of hand-written digits and 3-D objects.
Although this paper is primarily about learning generativemodels, we also show that the weights
learned by these models can be used to initialize deep feed-forward neural networks. These feed-
forward networks can then be fine-tuned using backpropagation to give much better discriminative
performance than randomly initialized networks.

2. Boltzmann Machines (BMs)

A Boltzmann Machine is a network of symmetrically coupled stochastic binary units. It contains a
set of visible unitsv ∈ {0, 1}V , and a set of hidden unitsh ∈ {0, 1}F (see Fig. 1, left panel), that
learn to model higher-order correlations between the visible units. The energy of the state{v,h} is
defined as:

E(v,h; θ) = −v
⊤Wh−

1

2
v
⊤Lv −

1

2
h
⊤Jh, (1)

whereθ = {W,L, J} are the model parameters2: W , L, J represent visible-to-hidden, visible-to-
visible, and hidden-to-hidden symmetric interaction terms. The diagonal elements ofL andJ are

2. We have omitted the bias terms for clarity of presentation. Biases are equivalent to weights on a connection to a unit
whose state is fixed at1, so their derivatives can be inferred from the derivatives for weights by simply setting the
state of one of the two units to1.

4

LEARNING DEEPBOLTZMANN MACHINES

set to 0. The probability that the model assigns to a visible vectorv is:

P (v; θ) =
P ∗(v; θ)

Z(θ)
=

1

Z(θ)

∑

h

exp (−E(v,h; θ)), (2)

Z(θ) =
∑

v

∑

h

exp (−E(v,h; θ)), (3)

whereP ∗ denotes unnormalized probability, andZ(θ) is the partition function. Theconditional
distributions over hidden and visible units are given by:

p(hj = 1|v,h−j) = g





∑

i

Wijvi +
∑

m6=j

Jjmhj



 , (4)

p(vi = 1|h,v−i) = g





∑

j

Wijhj +
∑

k 6=i

Likvj



 , (5)

whereg(x) = 1/(1 + exp(−x)) is the logistic function andx−i denotes a vectorx but with xi

omitted. The parameter updates, originally derived by Hinton and Sejnowski (1983), that are needed
to perform gradient ascent in the log-likelihood can be obtained from Eq. 2:

∆W = α
(

EPdata
[vh

⊤]− EPmodel
[vh

⊤]
)

,

∆L = α
(

EPdata
[vv

⊤]− EPmodel
[vv

⊤]
)

,

∆J = α
(

EPdata
[hh

⊤]− EPmodel
[hh

⊤]
)

,

whereα is a learning rate. EPdata
[·], the data-dependent term, is an expectation with respect tothe

completed data distributionPdata(h,v; θ) = P (h|v; θ)Pdata(v), with Pdata(v) = 1
N

∑

n δ(v−v
n)

representing the empirical distribution, and EPmodel
[·], the data-independent term, is an expectation

with respect to the distribution defined by the model (Eq. 2).
Exact maximum likelihood learning in this model is intractable. The exact computation of the

data-dependent expectation takes time that is exponentialin the number of hidden units, whereas
the exact computation of the model’s expectation takes timethat is exponential in the number of
hidden and visible units.

Setting bothJ=0 andL=0 recovers the Restricted Boltzmann Machine (RBM) model (see Fig. 1,
right panel). Setting only the hidden-to-hidden connections J=0 recovers a semi-restricted Boltz-
mann Machine (Osindero and Hinton (2008)) in which inferring the states of the hidden units given
the visible states is still very easy but learning is more complicated because it is no longer feasible
to infer the states of the visible units exactly when reconstructing the data from the hidden states.

2.1 A Stochastic Approximation Procedure for Estimating the Data-independent Statistics

Markov Chain Monte Carlo (MCMC) methods belonging to the general class of stochastic approx-
imation algorithms of the Robbins–Monro type (Younes (1989); Robbins and Monro (1951)) can
be used to approximate the data-independent statistics (Younes (2000); Neal (1992); Yuille (2004);

5

SALAKHUTDINOV AND HINTON

L

J

W

General Boltzmann Machine
Restricted Boltzmann Machine

Figure 1: Left: A general Boltzmann Machine. The top layer represents a vector of stochastic binary “hid-
den” variables and the bottom layer represents a vector of stochastic binary “visible” variables.
Right: A Restricted Boltzmann Machine with no hidden-to-hidden orvisible-to-visible connec-
tions.

Tieleman (2008)). To be more precise, let us consider the following canonical form of the exponen-
tial family associated with the sufficient statistics vector Φ:

P (x; θ) =
1

Z(θ)
exp (θ⊤Φ(x)). (6)

The derivative of the log-likelihood for an observationx̄ with respect to parameter vectorθ takes
the form:

∂ log P (x̄; θ)

∂θ
= Φ(x̄)− EPmodel

[Φ(x)]. (7)

The idea behind learning parameter vectorθ using stochastic approximation is straightforward. Let
θt andxt be the current parameters and the state. Thenx

t andθt are updated sequentially as follows:

• Givenx
t, a new statext+1 is sampled from a transition operatorTθt(xt+1←x

t) that leaves
P (·; θt) invariant (e.g. a Gibbs sampler).

• A new parameterθt+1 is then obtained by replacing the intractable data-independent statistics
EPmodel

[Φ(x)] by a point estimateΦ(xt+1).

In practice, we typically maintain a set ofM sample pointsXt = {x̃t,1,, x̃t,M}, which we will
often refer to as sample particles. In this case, the intractable data-independent statistics are replaced
by the sample averages1/M

∑M
m=1 Φ(x̃t+1,m). The procedure is summarized in Algorithm 1.

The standard proof of convergence of these algorithms relies on the following basic decompo-
sition. First, the gradient of the log-likelihood functiontakes the form:

S(θ) =
∂ log P (x̄; θ)

∂θ
= Φ(x̄)− EPmodel

[Φ(x)]. (8)

6

LEARNING DEEPBOLTZMANN MACHINES

Algorithm 1 Stochastic Approximation Algorithm.
1: Randomly initializeθ0 andM sample particles{x̃0,1,, x̃0,M}.
2: for t = 0 : T (number of iterations)do
3: for i = 1 : M (number of parallel Markov chains)do
4: Samplẽxt+1,i givenx̃

t,i using transition operatorTθt(x̃t+1,i← x̃
t,i).

5: end for
6: Update:θt+1 = θt + αt

[

Φ(x̄)− 1

M

∑M

m=1
Φ(x̃t+1,m)

]

.

7: Decreaseαt.
8: end for

The parameter update rule then takes the following form:

θt+1 = θt + αt

[

Φ(x̄)−
1

M

M
∑

m=1

Φ(x̃t+1,m)

]

(9)

= θt + αtS(θt) + αt

[

EPmodel
[Φ(x)]−

1

M

M
∑

m=1

Φ(x̃t+1,m)

]

= θt + αtS(θt) + αtǫt+1.

The first term is the discretization of the ordinary differential equationθ̇ = S(θ). The algorithm
is therefore a perturbation of this discretization with thenoise termǫt. The proof then proceeds by
showing that the noise term is not too large.

Precise sufficient conditions that ensure almost sure convergence to an asymptotically stable
point of θ̇ = S(θ) are given in Younes (1989, 2000); Yuille (2004). One necessary condition
requires the learning rate to decrease with time, so that

∑∞
t=0 αt = ∞ and

∑∞
t=0 α2

t < ∞. This
condition can, for example, be satisfied simply by settingαt = 1/(t0 + t). Other conditions ensure
that the speed of convergence of the Markov chain, governed by the transition operatorTθ, does
not decrease too fast asθ tends to infinity, and that the noise termǫt in the update of Eq. 9 is
bounded. Typically, in practice, the sequence|θt| is bounded, and the Markov chain, governed by
the transition kernelTθ, is ergodic. Together with the condition on the learning rate, this ensures
almost sure convergence of the stochastic approximation algorithm to an asymptotically stable point
of θ̇ = S(θ).

Informally, the intuition behind why this procedure works is the following. As the learning rate
becomes sufficiently small compared with the mixing rate of the Markov chain, this “persistent”
chain will always stay very close to the stationary distribution, even if it is only run for a few
MCMC steps per parameter update. Samples from the persistent chain will be highly correlated for
successive parameter updates, but if the learning rate is sufficiently small, the chain will mix before
the parameters have changed enough to significantly alter the value of the estimator.

The success of learning relatively small Boltzmann Machines (Neal (1992)) seemed to imply
that the learning rate was sufficiently small to allow the chains to stay close to equilibrium as the
parameters changed. Recently, however, this explanation has been called into question. After learn-
ing an RBM using persistent Markov chains for the data-independent statistics, we tried sampling
from the RBM and discovered that even though the learning hadproduced a good model, the chains
mixed extremely slowly. In fact, they mixed so slowly that the appropriate final learning rate, ac-
cording to the explanation above, would have been smaller than the rate we actually used by several
orders of magnitude. So why did the learning work?

7

SALAKHUTDINOV AND HINTON

Tieleman and Hinton (2009) argue that the fact that the parameters are being updated using
the data-independent statistics gathered from the persistent chains means that the mixing rate of
the chainswith their parameters fixedis not what limits the maximum acceptable learning rate.
Consider, for example, a persistent chain that is stuck in a deep local minimum of the energy surface.
Assuming that this local minimum has very low probability under the posterior distributions that are
used to estimate the data-dependent statistics, the effectof the learning will be to raise the energy
of the local minimum. After a number of weight updates, the persistent chain will escape from the
local minimum not because the chain has had time to mix but because the energy landscape has
changed to make the local minimum much less deep. The learning causes the persistent chains to be
repelled from whatever state they are currently in and this can cause slow mixing chains to move to
other parts of the dynamic energy landscape much faster thanwould be predicted by the mixing rate
with static parameters. Welling (2009) has independently reported a closely related phenomenon
which he calls “herding”.

Recently, (Tieleman (2008); Salakhutdinov and Hinton (2009a); Salakhutdinov (2009); Des-
jardins et al. (2010)) have shown that this stochastic approximation algorithm, also termed Persis-
tent Contrastive Divergence, performs well compared to Contrastive Divergence at learning good
generative models in RBMs. Even though the allowable learning rate is much higher than would be
predicted from the mixing rate of the persistent Markov chains, it is still considerably lower than the
rate used for contrastive divergence learning because the gradient estimate it provides has lower bias
but much higher variance, especially when using mini-batchlearning rather than full batch learning.

2.2 A Variational Approach to Estimating the Data-Dependent Expectations

As already mentioned, persistent Markov chains are less appropriate for estimating the data-dependent
statistics, especially with mini-batch learning on large datasets. Fortunately, variational approxima-
tions work well for estimating the data-dependent statistics. Given the data, it is typically quite
reasonable for the posterior distribution over latent variables to be unimodal, especially for applica-
tions like speech and vision where normal data-vectors really do have a single correct explanation
and the data is rich enough to allow a good generative model toinfer that explanation.

In variational learning (Zemel (1993); Hinton and Zemel (1994); Neal and Hinton (1998); Jor-
dan et al. (1999)), the true posterior distribution over latent variablesP (h|v; θ) for each training
vector v, is replaced by an approximate posteriorQ(h|v;µ) and the parameters are updated to
maximize the variational lower bound on the log-likelihood:

log P (v; θ) ≥
∑

h

Q(h|v;µ) log P (v,h; θ) +H(Q)

= log P (v; θ)− KL [Q(h|v;µ)||P (h|v; θ)] , (10)

whereH(·) is the entropy functional.
Variational learning has the nice property that in additionto trying to maximize the log-likelihood

of the training data, it tries to find parameters that minimize the Kullback-Leibler divergence be-
tween the approximating and true posteriors. Making the true posterior approximately unimodal,
even if it means sacrificing some log-likelihood, could be advantageous for a system that will use
the posterior to control its actions. Having multiple alternative representations of the same sensory
input increases the likelihood compared with a single explanation of the same quality, but it makes
it more difficult to associate an appropriate action with that sensory input. Variational inference that

8

LEARNING DEEPBOLTZMANN MACHINES

uses a factorial distribution to approximate the posteriorhelps to eliminate this problem. During
learning, if the posterior given a training input vector is multimodal, the variational inference will
lock onto one mode, and learning will make that mode more probable. Our learning algorithm will
therefore tend to find regions in the parameter space in whichthe true posterior is dominated by a
single mode.

For simplicity and speed, we approximate the true posteriorusing a fully factorized distribution
(i.e. the naive mean-field approximation),Q(h;µ) =

∏F
j=1 q(hi), whereq(hi = 1) = µi andF is

the number of hidden units. The lower bound on the log-probability of the data takes the following
form:

log P (v; θ) ≥
1

2

∑

i,k

Likvivk +
1

2

∑

j,m

Jjmµjµm +
∑

i,j

Wijviµj − logZ(θ)

+
∑

j

[µj log µj + (1− µj) log (1− µj)] .

The learning proceeds by first maximizing this lower bound with respect to the variational parame-
tersµ for fixedθ, which results in the mean-field fixed-point equations:

µj ← g





∑

i

Wijvi +
∑

m6=j

Jmjµm



 . (11)

This is followed by applying stochastic approximation to update model parametersθ.
We emphasize that variational approximations should not beused for estimating the data-

independent statistics in the Boltzmann Machine learning rule, as attempted in Galland (1991),
for two separate reasons. First, a factorial approximationcannot model the highly multi-modal,
data-independent distribution that is typically required. Second, the minus sign causes the param-
eters to be adjusted so that the true model distribution becomes as different as possible from the
variational approximation.

3. Learning Deep Boltzmann Machines (DBMs)

The algorithm above can learn Boltzmann Machines with any pattern of connectivity between the
units, but it can be made particularly efficient in “deep” Boltzmann Machines that have multiple
hidden layers but only have connections between adjacent layers as shown in Fig. 2 (Salakhutdinov
and Hinton (2009a); Salakhutdinov (2010)). Deep BoltzmannMachines are interesting for several
reasons. First, like Deep Belief Networks, DBMs have the ability to learn internal representations
that capture very complex statistical structure in the higher layers. As has already been demonstrated
for DBNs, this is a promising way of solving object and speechrecognition problems (Bengio
(2009); Bengio and LeCun (2007b); Hinton et al. (2006); Dahland Hinton (2009); Dahl (2010)).
High-level representations can be built from a large supplyof unlabeled data and a much smaller
supply of labeled data can then be used to slightly fine-tune the model for a specific discrimination
task. Second, again like DBNs, if DBMs are learned in the right way there is a very fast way to
initialize the states of the units in all layers by simply doing a single bottom-up pass using twice the
weights to compensate for the initial lack of top-down feedback. Third, unlike DBNs and unlike
many other models with deep architectures (Ranzato et al. (2007); Vincent et al. (2008); Serre

9

SALAKHUTDINOV AND HINTON

Algorithm 2 Learning Procedure for a General Boltzmann Machine
1: Given: a training set ofN binary data vectors{v}Nn=1, andM , the number of samples.
2: Randomly initialize parameter vectorθ0 andM samples:{ṽ0,1, h̃0,1}, ..., {ṽ0,M , h̃0,M}.
3: for t = 0 to T (number of iterations)do

4: // Variational Inference:
5: for each training examplevn, n = 1 to N do
6: Randomly initializeµ and run mean-field updates until convergence:

µj ← g
(

∑

i Wijvi +
∑

m 6=j Jmjµm

)

.

7: Setµn = µ.
8: end for

9: // Stochastic Approximation:
10: for each samplem = 1 to M do
11: Sample(ṽt+1,m, h̃t+1,m) given(ṽt,m, h̃t,m) by running a Gibbs sampler (Eqs. 4, 5).
12: end for

13: // Parameter Update:

14: W t+1 = W t + αt

(

1

N

∑N

n=1
v

n(µn)⊤ − 1

M

∑M

m=1
ṽ

t+1,m(h̃t+1,m)⊤
)

.

15: J t+1 = J t + αt

(

1

N

∑N

n=1
µn(µn)⊤ − 1

M

∑M

m=1
h̃

t+1,m(h̃t+1,m)⊤
)

.

16: Lt+1 = Lt + αt

(

1

N

∑N

n=1
v

n(vn)⊤ − 1

M

∑M

m=1
ṽ

t+1,m(ṽt+1,m)⊤
)

.

17: Decreaseαt.
18: end for

et al. (2007)), the approximate inference procedure, afterthe initial bottom-up pass, can incorporate
top-down feedback, allowing DBMs to use higher-level knowledge to resolve uncertainty about
intermediate level features (Salakhutdinov and Larochelle (2010)).

Let us consider a three-hidden-layer DBM, as shown in Fig. 2,right panel, with no within-layer
connections. The energy of the state{v,h1,h2,h3} is defined as:

E(v,h1,h2,h3; θ) = −v
⊤W 1

h
1 − h

1⊤W 2
h

2 − h
2⊤W 3

h
3, (12)

whereθ = {W 1,W 2,W 3} are the model parameters, representing visible-to-hiddenand hidden-
to-hidden symmetric interaction terms.

The probability that the model assigns to a visible vectorv is:

P (v; θ) =
1

Z(θ)

∑

h1,h2,h3

exp (−E(v,h1,h2,h3; θ)). (13)

10

LEARNING DEEPBOLTZMANN MACHINES

h
3

h
2

h
1

v

W
3

W
2

W
1

Deep Belief Network Deep Boltzmann Machine

Figure 2: Left: Deep Belief Network (DBN), with the top two layers forming anundirected graph and
the remaining layers form a belief net with directed, top-down connectionsRight: Deep Boltz-
mann Machine (DBM), with both visible-to-hidden and hidden-to-hidden connections but with no
within-layer connections. All the connections in a DBM are undirected.

The conditional distributions over the visible and the three sets of hidden units are given by logistic
functions:

p(h1
j = 1|v,h2) = g

(

∑

i

W 1
ijvi +

∑

m

W 2
jmh2

m

)

, (14)

p(h2
m = 1|h1,h3) = g





∑

j

W 2
jmh1

j +
∑

l

W 3
mlh

3
l



 , (15)

p(h3
l = 1|h2) = g

(

∑

m

W 3
mlh

2
m

)

, (16)

p(vi = 1|h1) = g





∑

j

W 1
ijh

1
j



 . (17)

As mentioned before, the learning procedure for general Boltzmann Machines described above
can be applied to DBMs that start with randomly initialized weights, but it works much better if
the weights are initialized sensibly. With small random weights, hidden units in layers that are far
from the data are very under-constrained so there is no consistent learning signal for their weights.
With larger random weights the initialization imposes a strong random bias on the feature detectors
learned in the hidden layers. Even when the ultimate goal is some unknown discrimination task, it
is much better to bias these feature detectors towards ones that form a good generative model of the
data. We now describe how this can be done.

3.1 Greedy Layerwise Pre-training of DBNs

Hinton et al. (2006) introduced a greedy, layer-by-layer unsupervised learning algorithm that con-
sists of learning a stack of RBMs one layer at a time. After greedy learning, the whole stack can be
viewed as a single probabilistic model called a Deep Belief Network. Surprisingly, this composite

11

SALAKHUTDINOV AND HINTON

model isnota Deep Boltzmann Machine. The top two layers form a Restricted Boltzmann Machine,
but the lower layers form adirectedsigmoid belief network (see Fig. 2, left panel).

After learning the first RBM in the stack, the generative model can be written as:

P (v; θ) =
∑

h1

P (h1;W 1)P (v|h1;W 1), (18)

whereP (h1;W 1) =
∑

v
P (h1,v;W 1) is a prior overh1 that is implicitly defined byW 1. Using

the same parameters to define both the prior overh
1 and the likelihood termP (v|h1) seems like

an odd thing to do for those who are more familiar with directed graphical models, but it makes
inference much easier and it is only a temporary crutch: the prior overh1 defined byW 1 will be
thrown away and replaced by a better prior defined by the weights, W 2, of the next RBM in the
stack.

The second RBM in the stack attempts to learn a better overallmodel by leavingP (v|h1;W 1)
fixed and replacingP (h1;W 1) by P (h1;W 2) =

∑

h2 P (h1,h2;W 2), whereW 2 is initialized
at (W 1)⊤ and then improved by following the gradient of a variationallower bound on the log
probability of the training data with respect toW 2. The variational bound was first derived using
coding arguments in Hinton and Zemel (1994) and applies to DBMs as well as to DBNs. For a
dataset containingN training examples, it has the form:

N
∑

n=1

log P (vn; θ) ≥
∑

n

EQ(h1|vn)

[

log(P (vn|h1;W 1))
]

−
∑

n

KL
(

Q(h1|vn)||P (h1;W 2)
)

=
∑

n

[

∑

h1

Q(h1|vn)
[

log(P (v|h1;W 1))
]

+H(Q)

]

+
∑

n

∑

h1

Q(h1|vn) log P (h1;W 2), (19)

whereH(·) is the entropy functional andQ(h1|v) is any approximation to the posterior distribution
over hidden vectors for the DBN containing hidden layersh

1 andh
2. The approximation we use is

the true posterior overh1 for the first RBM,P (h1|v,W 1). As soon asW 2 ceases to be identical to
(W 1)⊤ this is no longer the true posterior for the DBN.

ChangingW 2 only affects the last sum in Eq. 19 so maximizing the bound, summed over all
the training cases,w.r.t. W 2 amounts to learning a better model of the mixture, over allN training
cases, of the true posteriors of the first RBM overh

1. Each of these posteriors is factorial, but
their mixture 1

N

∑

n Q(h1|vn), which we call the aggregated posterior, is typically very far from
factorial.

If the second RBM is initialized to be the same as the first RBM but with its visible and hidden
units interchanged, the second RBM’s model of its visible vectors is identical to the first RBM’s
model of its hidden vectors, so using the second RBM to defineP (h1) does not change the model
providedW 2 = (W 1)⊤. ChangingW 2 so that the second RBM becomes a better model of the
aggregated posterior overh1 is then guaranteed to improve the variational bound for the whole
DBN on the log likelihood of the training data.

This argument can be applied recursively to learn as many layers of features as desired. Each
RBM in the stack performs exact inference while it is being learned, but once its implicit prior over
its hidden vectors has been replaced by a better prior definedby the higher-level RBM, the simple
inference procedure ceases to be exact. As the stack gets deeper, the simple inference procedure
used for the earlier layers can be expected to become progressively less correct. Nevertheless, each

12

LEARNING DEEPBOLTZMANN MACHINES

time a new layer is added, the variational bound for the deeper system is better than the bound for
its predecessor. When a third hidden layer is added, for example, the bound of Eq. 19 gets replaced
by a bound in which the last sum:

∑

n

∑

h1

Q(h1|vn) log P (h1;W 2) (20)

is replaced by

∑

n

∑

h1

Q(h1|vn)

(

EQ(h2|h1)

[

log(P (h1|h2;W 2))
]

− KL(Q(h2|h1)||P (h2;W 3))

)

. (21)

When the second RBM is learned, the log probability of the training data also improves because
the bound starts off tight, but this is not guaranteed for deeper layers since, for these layers, the
variational bound does not start off tight. The bound could therefore improve as the log probability
of the training data falls provided the bound becomes tighter at a higher rate than the log probability
falls.

The improvement of the bound is only guaranteed if each RBM inthe stack starts with the same
weights as the previous RBM and follows the gradient of the log likelihood, using the posterior
distributions over the hidden units of the previous RBM as its data. In practice we violate this
condition by using gross approximations to the gradient such as contrastive divergence. The real
value of deriving the variational bound is to allow us to understand why it makes sense to use the
aggregated posterior distributions of one RBM as the training data for the next RBM and why the
combined model is a Deep Belief Net rather than a Deep Boltzmann Machine.

3.2 Greedy Layerwise Pre-training of DBMs

Even though the simple way of stacking RBMs leads to a Deep Belief Net, it is possible to modify
the procedure so that stacking produces a Deep Boltzmann Machine. We start by giving an intuitive
argument about how to combine RBMs to get a Deep Boltzmann Machine using three different
operations, one for the bottom layer, one for the top layer, and one operation that is repeated for all
the intermediate layers. We then show that two of the three intuitively derived operations that we
used to pre-train a DBM in our experiments are guaranteed to improve a variational bound and the
remaining operation is a close approximation to a method that is guaranteed to improve a bound.

After training the2nd layer RBM in a DBN, there are two different ways of computing afactorial
approximation to the true posteriorP (h1|v;W 1,W 2). The obvious way is to ignore the2nd layer
RBM and use theP (h1|v;W 1) defined by the first RBM. An alternative method is to first sampleh

1

from P (h1|v;W 1), then sampleh2 from P (h2|h1;W 2), and then use theP (h1|h2;W 2) defined
by the second RBM. The sampling noise in the second method canbe reduced by using a further
approximation in which the sampled binary values are replaced by their probabilities. The second
method will tend to over-emphasize the prior forh

1 defined byW 2 whereas the first method will
tend to under-emphasize this prior in favor of the earlier prior defined byW 1 that it replaced.

Given these two different approximations to the posterior,it would be possible to take a geomet-
ric average of the two distributions. This can be done by firstperforming a bottom-up pass to infer
h

2 then using1/2W 1 and1/2W 2 to infer h1 from bothv andh
2. Notice thath2 is inferred from

v so it is not legitimate to sum the full top-down and bottom-upinfluences. This would amount
to “double-counting” the evidence provided byv and would give a distribution that was much too

13

SALAKHUTDINOV AND HINTON

RBM

RBM

RBM

v v

W1 W1

h1

h1

h2

h2

h3 h3

2W2

W3 W3

W1

W2

W3

Pre-training

Deep Boltzmann Machine

Figure 3: Pre-training a DBM with three hidden layers consists of learning a stack of RBMs that are then
composed to create a DBM. The first and last RBMs in the stack need to be modified by copying
the visible or hidden units.

sharp. Experiments with trained DBNs confirm that averagingthe top-down and bottom-up inputs
works well for inference and adding them works badly.

This reasoning can be extended to a much deeper stack of greedily trained RBMs. The initial,
bottom-up inference that is performed in a DBN can be followed by a stage in which all of the
weights are halved and the states of the units in the intermediate layers are resampled by summing
the top-down and bottom-up inputs to a layer. If we alternatebetween resampling the odd-numbered
layers and resampling the even-numbered layers, this corresponds to block Gibbs sampling in a
Deep Boltzmann Machine with the visible and top-layer unitsclamped. So after learning a stack of
RBMs we can either compose them to form a DBN or we can halve allthe weights and compose
them to form a DBM. Moreover, given the way the DBM was created, there is a very fast way to
initialize all of the hidden layers when given a data-vector: simply perform a bottom-up pass using
twice the weights of the DBM to compensate for the lack of top-down input.

There is an annoying problem with this method of pre-training a DBM. For the intermediate
layers, initializing at the halved weights is fine because itcan be viewed as taking the geometric
mean of the bottom-up and top-down models, but for the visible layer and the top layer it is not
legitimate because they only receive input from one other layer. Both the top and the bottom layer
need to be updated when estimating the data-independent statistics and we cannot use weights that
are bigger in one direction than the other because this does not correspond to Gibbs sampling in
any energy function. So we need to use a special trick when pre-training the first and last RBMs in

14

LEARNING DEEPBOLTZMANN MACHINES

Algorithm 3 Greedy Pre-training Algorithm for a Deep Boltzmann Machinewith L-layers.
1: Make two copies of the visible vector and tie the visible-to-hidden weightsW 1. Fit W 1 of the1st layer

RBM to data.
2: FreezeW 1 that defines the1st layer of features, and use samplesh

l from P (h1|v, 2W 1) (Eq. 22) as the
data for training the next layer RBM with weight vector2W 2.

3: FreezeW 2 that defines the2nd layer of features and use the samplesh
2 from P (h2|h1, 2W 2) as the data

for training the3rd layer RBM with weight vector2W 3.
4: Proceed recursively for the next layersL− 1.
5: When learning the top-level RBM, double the number of hiddenunits and tie the visible-to-hidden

weightsWL.
6: Use the weights{W 1, W 2,, WL} to compose a Deep Boltzmann Machine.

the stack. For the first RBM, we make two copies of the visible units and tie the weights to the two
copies as shown in Fig. 3, left panel. Even though the copies are always identical in the data, we
do not insist that they have the same state vectors when reconstructing them from the hidden units
because this constraint would effectively double the top-down weights to a visible unit.

In this modified RBM with tied parameters, the conditional distributions over the hidden and
visible states are defined as:

p(h1
j = 1|v,v

′

) = g

(

∑

i

W 1
ij(vi + v

′

i

)

, (22)

p(vi = 1|h1) = p(v
′

i = 1|h1) = g





∑

j

W 1
ijh

1
j



 . (23)

Contrastive Divergence learning still works well and the modified RBM is good at reconstructing
its training data.

Conversely, for the top-level RBM, we make two copies of the hidden units with tied weights
and do not insist that they have the same state vectors. For a DBM with three hidden layers, the
conditional distributions for this model take the form:

p(h2
m = 1|h3) = g

(

∑

l

W 3
mlh

3(a)

l +
∑

l

W 3
mlh

3(b)

l

)

, (24)

p(h
3(a)

l = 1|h2) = p(h
3(b)

l = 1|h2) = g

(

∑

m

W 3
mlh

2
m

)

. (25)

For the intermediate RBM we simply defineW 2 to be half of the weight matrix learned by the
RBM, so the conditional distributions take the form:

p(h1
j = 1|h2) = g

(

2
∑

m

W 2
jmh2

m

)

, (26)

p(h2
m = 1|h1) = g



2
∑

j

W 2
jmh1

j



 . (27)

15

SALAKHUTDINOV AND HINTON

When these three modules are composed to form a single system, the total input coming into
the first and second hidden layers is halved, which leads to the following conditional distributions
overh1 andh

2:

p(h1
j = 1|v,h2) = g

(

∑

i

W 1
ijvi +

∑

m

W 2
jmh2

m

)

, (28)

p(h2
m = 1|h1,h3) = g





∑

j

W 2
jmh1

j +
∑

l

W 3
mlh

3
l



 . (29)

The conditional distributions overv andh
3 remain the same as defined by Eqs. 23, 25.

Observe that the conditional distributions defined by this composite model are exactly the same
as the conditional distributions defined by the DBM (Eqs. 14,15, 16, 17). Therefore, after greedily
pre-training a stack of RBMs with appropriate modificationsof the first and last RBM, they can be
composed to create a Deep Boltzmann Machine.

Greedily pre-training the weights of a DBM in this way servestwo purposes. First, it initializes
the weights to reasonable values. Second, it ensures that there is a fast way of performing approx-
imate inference by a single bottom-up pass using twice the weights. This eliminates the need to
store the hidden states that were inferred last time a training case was used (Neal (1992)) or to use
simulated annealing from random initial states of the hidden units (Hinton and Sejnowski (1983)).
This fast approximate inference is used to initialize the mean-field, iterative inference which then
converges much faster than mean-field with random initialization. Since the mean-field inference
uses real-valued probabilities rather than sampled binarystates, we also use probabilities rather than
sampled binary states for the initial bottom-up inference.

3.3 A Variational Bound for Greedy Layerwise Pre-training of DBMs

The explanation of DBM pre-training given in the previous section is motivated by the need to
end up with a deep network that has symmetric weights betweenall adjacent pairs of layers. The
pre-training is motivated by intuitive arguments about combining top-down and bottom-up effects.
However, unlike the pre-training of a DBN, it lacks a proof that each time a layer is added to the
DBM, the variational bound for the deeper DBM is better than the bound for the previous DBM. We
now show that the method we use for training the first and last RBMs in the stack is a correct way
of improving a variational bound, and the method for adding the intermediate layers is quite close
to being correct.

The basic idea for pre-training a DBM is to start by learning amodel in which the prior over
hidden vectors,p(h1;W 1), is the normalized product of two identical distributions.Then one of
these distributions is discarded and replaced by the squareroot of a better priorp(h1;W 2) that has
been trained to fit the aggregated posterior of the first model. To be more precise, let us first consider
a simpler case of pre-training a two-hidden-layer DBM.

Pre-training a two-hidden-layer DBM

Suppose we start by training the RBM with tied weights shown in Fig. 4a that has two sets of visible
units, each of which sees one copy of the data. After learning, we can write down the variation lower

16

LEARNING DEEPBOLTZMANN MACHINES

v’ v

h1

W1 W1

W2 W2

h1

h2 h2

v

h1

h2

W1

W2

a) b) c)

Figure 4:Pre-training a Deep Boltzmann Machine with two hidden layers.

bound of Eq. 19:

∑

n

log P (vn) ≥
∑

n

EQ(h1|vn)

[

log(P (vn|h1;W 1))
]

−
∑

n

KL
(

Q(h1|vn)||P (h1;W 1)
)

. (30)

The model’s marginal distribution overh1 is the product of two identical distributions, one defined
by an RBM composed ofh1 andv and the other defined by an identical RBM composed ofh

1 and
v
′

:

p(h1;W 1) =
1

Z

(

∑

v′

ev
′⊤W 1

h
1

)(

∑

v

ev
⊤W 1

h
1

)

, (31)

whereZ is the normalizing constant3. The idea is to keep one of these RBMs and replace the other
by a square root a better priorP (h1;W 2). To do so we train the second-layer RBM with two sets of
hidden units to be a better model the aggregated posterior1

N

∑

n Q(h1|vn) of the first model (see
Fig. 4b), so that:

∑

n

KL(Q(h1|vn;W 1)||P (h1;W 2)) ≤
∑

n

KL(Q(h1|vn;W 1)||P (h1;W 1)). (32)

Similar to Eq. 31, the distribution overh1 defined by the second-layer RBM is also the product of
two identical distributions, one for each set of hidden units. This implies that taking a square root
amounts to simply keeping one such distribution.

Once the two RBMs are composed to form a two-hidden-layer DBMmodel (see Fig. 4c), the
marginal distribution overh1 is the geometric mean of the two probability distributions:P (h1;W 1), P (h1;W 2)
defined by the first and second-layer RBMs (i.e. the renormalized pairwise products of the square
roots of the two probabilities for each event):

P (h1;W 1,W 2) =
1

Z

(

∑

v

ev⊤W 1h1

)(

∑

h2

eh1⊤W 2h2

)

. (33)

3. The biases learned forh1 are shared equally between the two RBMs.

17

SALAKHUTDINOV AND HINTON

v’ v

h1

W1 W1 h1 h1

h2 h2

W2 W2 W2

W1

W2

W1

v’ v

h2

h3

W3 W3

v

h1

h2

h3

W1

W1

W1

a) b) c) d)

Figure 5:Pre-training a Deep Boltzmann Machine with three hidden layers.

The variational lower bound of Eq. 30 improves because replacing half of the prior by a better model
reduces the Kullback-Leibler divergence. Indeed, Eq. 32 immediately implies:

∑

n

KL(Q(h1|vn;W 1)||gm(P (h1;W 1), P (h1;W 2)) ≤

∑

n

KL(Q(h1|vn;W 1)||P (h1;W 1)), (34)

wheregm(·, ·) is the geometric mean of two probability distributions. Dueto the convexity of
asymmetric divergence, this is guaranteed to improve the variational bound of the training data by at
least half as much as fully replacing the original prior. It is also guaranteed to loosen the variational
bound by at most half as much as fully replacing the original prior, assuming that inference is still
performed assuming the original prior.

This argument shows that the apparently unprincipled hack of using two sets of visible units or
two sets of hidden units to cope with the “end effects” when creating a DBM from a stack of RBMs
is actually exactly the right thing to do in order to improve avariational bound4.

Pre-training a Deep Boltzmann Machine

When pre-training a DBM with more than two layers. the discarded half of the previous prior is
replaced by half of anotherBoltzmann machinethat is also a product of two identical Boltzmann
Machines and has been trained to be a better model of the aggregated posterior overh1. There are
two different cases to consider. The easy case is when we add the final,Lth layer of the DBM.
Similar to the two-hidden-layer construction, we simply replace half of the previous prior by half of
the distribution defined by an RBM with the architecture shown at Fig. 5d.

Adding non-final layers in a way that guarantees that the new variational bound is better than
the previous one is a bit more complicated. First we need to train an RBM to be a better model of
the aggregated posterior of the previous RBM. Then we need tomodify this trained RBM to get the

4. An RBM with two sets of visible units learns a different model than an RBM with only one set of visible units and
the variational bound is on the log probability of this different model

18

LEARNING DEEPBOLTZMANN MACHINES

square root of the distribution that it defines over its visible units. Then we need to make another
modification to get the square root of the prior that it definesover its hidden units so that, when we
add the next layer, we can replace the other half of that priorby a better distribution. The right way
to do this is to train an RBM that has two copies of its visible units and two copies of its hidden units
with all four weight matrices tied as shown in Fig. 5b. Then wemake two copies of the previous
DBM after modifying it to take the square root of the prior over its hidden units. We use one copy
of the hidden units of the new RBM as the top layer of the new DBMas shown in Fig. 5c. This
creates a DBM with a better variational bound for the distribution that it defines over each set of
its visible units. Finally, in preparation for adding the next layer, we throw away one copy of the
previous DBM, thus taking the square root of the prior over the top layer.

Instead of using this correct method, we approximated it by training an ordinary RBM with no
duplicate sets of units on the aggregated posterior from theexisting DBM. Then we simply halved
its weights and biases. Halving the weights takes the squareroot of thejoint distribution over pairs
of visible and hidden vectors and it also takes the square root of the conditional distribution over
visible vectors given a hidden vector (or vice versa), but itdoes not take the square root of the
marginal distributions over the visible or the hidden vectors. This is most easily seen by considering
the ratios of the probabilities of two visible vectors,vα andvβ . Before halving the weights, their
probability ratio in the marginal distribution over visible vectors is given by:

P (vα)

P (vβ)
=

∑

h
e−E(vα,h)

∑

h
e−E(vβ ,h)

. (35)

In the RBM with halved weights, all of the exponents are halved which takes the square root of every
individual term in each sum, but this does not take the squareroot of the ratio of the sums. This
argument shows that the apparently unproblematic idea of halving the weights of all the intermediate
RBMs in the stack is not the right thing to do if we want to ensure that as each layer is added, the
new variational bound is better than the old one. Nevertheless, this method is fast and works quite
well in practice and it is the method we used.

In the correct method of adding an intermediate hidden layer, throwing away one set of hidden
units halves the total expected energy of all terms involving hidden units, but it also halves the
entropy, so it successfully halves the free energy of each visible vector which is what is required to
take the square root of the marginal distribution over visible vectors5.

4. Evaluating Deep Boltzmann Machines

Assessing the generalization performance of DBMs plays an important role in model selection,
model comparison, and controlling model complexity. In this section we discuss two ways of eval-
uating the generalization capabilities of DBMs: generative and discriminative.

4.1 Evaluating DBMs as Generative Models

We first focus on evaluating generalization performance of DBMs as density models. For many
specific tasks, such as classification or information retrieval, performance of DBMs can be directly
evaluated (see section 4.2). More broadly, however, the ability of DBMs to generalize can be eval-
uated by computing the probability of held-out input vectors, which is independent of any specific

5. We also halve the visible biases.

19

SALAKHUTDINOV AND HINTON

application. An unfortunate limitation of DBMs is that the probability of data under the model is
known only up to a computationally intractable partition function. A good estimate of the partition
function would allow us to assess generalization performance of DBMs as density models.

Recently, Salakhutdinov and Murray (2008) showed that a Monte Carlo based method, An-
nealed Importance Sampling (AIS) (Neal (2001)), can be usedto efficiently estimate the partition
function of an RBM. In this section we show how AIS can be used to estimate the partition func-
tions of DBMs. Together with variational inference this will allow us to obtain good estimates of
the lower bound on the log-probability of the training and test data.

Suppose we have two distributions defined on some spaceX with probability density functions:
PA(x) = P ∗

A(x)/ZA andPB(x) = P ∗
B(x)/ZB . Typically PA(x) is defined to be some simple

distribution, with known partition functionZA, from which we can easily drawi.i.d. samples.
AIS estimates the ratioZB/ZA by defining a sequence of intermediate probability distributions:
P0, ..., PK , with P0 = PA andPK = PB , which satisfyPk(x) 6= 0 wheneverPk+1(x) 6= 0. For each
intermediate distribution we must be able to easily evaluate the unnormalized probabilityP ∗

k (x),
and we must also be able to samplex

′ givenx using a Markov chain transition operatorTk(x
′;x)

that leavesPk(x) invariant. One general way to define this sequence is to set:

Pk(x) ∝ P ∗
A(x)1−βkP ∗

B(x)βk , (36)

with 0 = β0 < β1 < ... < βK = 1 chosen by the user.
Using the special layer-by-layer structure of DBMs, we can derive an efficient AIS scheme for

estimating the model’s partition function. Let us considera three-hidden-layer Boltzmann Machine
(see Fig. 3, right panel) whose energy is defined as:

E(v,h1,h2,h3; θ) = −v
⊤W 1

h
1 − h

1⊤W 2
h

2 − h
2⊤W 3

h
3. (37)

By explicitly summing out the1st and the3rd layer hidden units{h1,h3}, we can easily evaluate
an unnormalized probabilityP ∗(v,h2; θ). We can therefore run AIS on a much smaller state space
x = {v,h2} with h

1 andh
3 analytically summed out. The sequence of intermediate distributions,

parameterized byβ, is defined as follows:

Pk(v,h2; θ) =
∑

h1,h3

Pk(v,h1,h2,h3; θ)

=
1

Zk

∏

j

(

1 + eβk(
P

i viW
1
ij+

P

m h2
mW 2

jm)
)

∏

l

(

1 + eβk(
P

m h2
mW 3

ml)
)

.

We gradually changeβk (the inverse temperature) from 0 to 1, annealing from a simple “uniform”
model to the final complex model. Using Eqs. 14, 15, 16, 17, it is straightforward to derive a Gibbs

20

LEARNING DEEPBOLTZMANN MACHINES

transition operator that leavesPk(v,h2; θ) invariant:

p(h1
j = 1|v,h2) = g

(

βk

(

∑

i

W 1
ijvi +

∑

m

W 2
jmh2

m

))

, (38)

p(h2
m = 1|h1,h3) = g



βk





∑

j

W 2
jmh1

j +
∑

l

W 3
mlh

3
l







 , (39)

p(h3
l = 1|h2) = g

(

βk

∑

m

W 3
mlh

2
m

)

, (40)

p(vi = 1|h1) = g



βk

∑

j

W 1
ijh

1
j



 . (41)

Once we obtain an estimate of the global partition functionẐ , we can estimate, for a given test
casev∗, the variational lower bound of Eq. 10:

log P (v∗; θ) ≥ −
∑

h

Q(h|v∗;µ)E(v∗,h; θ) +H(Q)− logZ(θ)

≈ −
∑

h

Q(h|v∗;µ)E(v∗,h; θ) +H(Q)− log Ẑ,

where we definedh = {h1,h2,h3}. For each test vector under consideration, this lower boundis
maximized with respect to the variational parametersµ using the mean-field update equations.

Furthermore, by explicitly summing out the states of the hidden units{h2,h3}, we can obtain a
tighter variational lower bound on the log-probability of the test data. Of course, we can also adopt
AIS to estimateP ∗(v) =

∑

h1,h2,h3 P ∗(v,h1,h2,h3), and together with an estimate of the global
partition function we can actually estimate the true log-probability of the test data. This however,
would be computationally very expensive, since we would need to perform a separate AIS run for
each test case. As an alternative, we could adopt a variationof the Chib-style estimator, proposed by
Murray and Salakhutdinov (2009). In the case of Deep Boltzmann Machines, where the posterior
over the hidden units tends to be unimodal, their proposed Chib-style estimator can provide good
estimates oflog P ∗(v) in a reasonable amount of computer time.

In general, when learning a Deep Boltzmann Machine with morethan two hidden layers, and
no within-layer connections, we can explicitly sum out either odd or even layers. This will result in
a better estimate of the model’s partition function and tighter lower bounds on the log-probability
of the test data.

4.2 Evaluating DBMs as Discriminative Models

After learning, the stochastic activities of the binary features in each layer can be replaced by de-
terministic, real-valued probabilities, and a Deep Boltzmann Machine with two hidden layers can
be used to initialize a multilayer neural network in the following way. For each input vectorv, the
mean-field inference is used to obtain an approximate posterior distributionQ(h2|v). The marginals
q(h2

j = 1|v) of this approximate posterior, together with the data, are used to create an “augmented”
input for this deep multilayer neural network as shown in Fig. 6. Standard backpropagation of error
derivatives can then be used to discriminatively fine-tune the model.

21

SALAKHUTDINOV AND HINTON

v

h1

h2

W1

W2

...

v v v v

2W1 W1

W2 W2

Q(h1)

Q(h2)

y y

Fine-tune Q(h2)

W2 W1

W2

W3
Mean-Field Updates

Figure 6: Left: A two-hidden-layer Boltzmann Machine.Right: After learning, DBM is used to initialize
a multilayer neural network. The marginals of approximate posteriorq(h2

j = 1|v) are used as
additional inputs. The network is fine-tuned by backpropagation.

The unusual representation of the input is a by-product of converting a DBM into a deterministic
neural network. In general, the gradient-based fine-tuningmay choose to ignoreQ(h2|v), i.e. drive
the1st layer connectionsW 2 to zero, which will result in a standard neural network. Conversely,
the network may choose to ignore the input by driving the1st layer weightsW 1 to zero, and make
its predictions based on only the approximate posterior. However, the network typically makes use
of the entire augmented input for making predictions.

5. Experimental Results

In our experiments we used the MNIST and NORB datasets. To speed-up learning, we subdivided
datasets into mini-batches, each containing 100 cases, andupdated the weights after each mini-
batch. The number of sample particles, used for approximating the model’s expected sufficient
statistics, was also set to 100. For the stochastic approximation algorithm, we always used 5 Gibbs
updates. Each model was trained using 300,000 weight updates. The initial learning rate was set
0.005 and was decreased as 10/(2000+t), where t is the numberof updates so far. For discriminative
fine-tuning of DBMs we used the method of conjugate gradientson larger mini-batches of 5000 with
three line searches performed for each mini-batch. Detailsof pre-training and fine-tuning, along
with details of Matlab code that we used for learning and fine-tuning Deep Boltzmann Machines,
can be found at http://web.mit.edu/∼rsalakhu/www/software.html.

5.1 MNIST

The MNIST digit dataset contains 60,000 training and 10,000test images of ten handwritten digits
(0 to 9), with 28×28 pixels. Intermediate intensities between 0 and 255 were treated as probabilities
and each time an image was used we sampled binary values from these probabilities independently
for each pixel.

22

LEARNING DEEPBOLTZMANN MACHINES

Training samples Flat BM 2-layer BM 3-layer BM

Figure 7: Random samples from the training set, and samples generatedfrom three Boltzmann Machines
by running the Gibbs sampler for 100,000 steps. The images shown are theprobabilitiesof the
binary visible units given the binary states of the hidden units

Table 1: Results of estimating partition functions of BM models, along with the estimates of lower bound
on the average training and test log-probabilities. For allBMs we used 20,000 intermediate distri-
butions. Results were averaged over 100 AIS runs.

Estimates Avg. log-prob.

log Ẑ log (Ẑ ± σ̂) Test Train

Flat BM 198.29 198.17, 198.40 −84.67 −84.35
2-layer BM 356.18 356.06, 356.29 −84.62 −83.61
3-layer BM 456.57 456.34, 456.75 −85.10 −84.49

In our first experiment we trained a fully connected “flat” BM on the MNIST dataset. The
model had 500 hidden units and 784 visible units. To estimatethe model’s partition function we
used 20,000βk spaced uniformly from 0 to 1. Results are shown in table 1. Theestimate of the
lower bound on the average test log-probability was−84.67 per test case, which is slightly better
compared to the lower bound of−85.97, achieved by a carefully trained two-hidden-layer Deep
Belief Network (Salakhutdinov and Murray (2008)).

In our second experiment, we trained two Deep Boltzmann Machines: one with two hidden lay-
ers (500 and 1000 hidden units), and the other with three hidden layers (500,500, and 1000 hidden
units), as shown in Fig. 8. To estimate the model’s partitionfunction, we also used 20,000 inter-
mediate distributions spaced uniformly from 0 to 1. Table 1 shows that the estimates of the lower
bound on the average test log-probability were−84.62 and−85.10 for the 2- and 3-layer Boltz-
mann Machines respectively. Observe that the two DBMs that contain over 0.9 and 1.15 million
parameters do not appear to suffer much from overfitting. Thedifference between the estimates of
the training and test log-probabilities was about 1 nat. Figure 7 further shows samples generated
from all three models by randomly initializing all binary states and running the Gibbs sampler for
100,000 steps. Certainly, all samples look like the real handwritten digits. We also emphasize that
without greedy pre-training, we could not successfully learn good DBM models of MNIST digits.

23

SALAKHUTDINOV AND HINTON

4000 units

4000 units

4000 units

Preprocessed
transformation

Stereo pair

Gaussian visible units
(raw pixel data)

500 units

1000 units

500 units

500 units

1000 units

28 x 28
pixel
image

28 x 28
pixel
image

2-layer BM

3-layer BM 3-layer BM

Figure 8: Left: The architectures of two Deep Boltzmann Machines used in MNIST experiments.Right:
The architecture of Deep Boltzmann Machine used in NORB experiments.

To estimate how loose the variational bound is, we randomly sampled 100 test cases, 10 of each
class, and ran AIS to estimate the true test log-probability6 for the 2-layer Boltzmann Machine.
The estimate of the variational bound was -83.35 per test case, whereas the estimate of the true test
log-probability was -82.86. The difference of about 0.5 nats shows that the bound is rather tight.

For a simple comparison we also trained several mixture of Bernoullis models with 10, 100,
and 500 components. The corresponding average test log-probabilities were−168.95, −142.63,
and−137.64. Compared to DBMs, a mixture of Bernoullis performs very badly. The difference of
over 50 nats per test case is striking.

Finally, after discriminative fine-tuning, the two-hidden-layer Boltzmann Machine achieves an
error rate of 0.95% on the full MNIST test set. This is, to our knowledge, the best published result
on the permutation-invariant version of the MNIST task7. The 3-layer BM gives a slightly worse
error rate of 1.01%. The flat BM, on the other hand, gives considerably worse error rate of 1.27%.
This is compared to 1.4% achieved by SVMs (Decoste and Schölkopf (2002)), 1.6% achieved by
randomly initialized backprop, 1.2% achieved by the Deep Belief Network, described in (Hinton
et al. (2006); Hinton and Salakhutdinov (2006)), and 0.97% obtained by using a combination of
discriminative and generative fine-tuning on the same DBN (Hinton (2007)).

To test discriminative performance of DBMs when the number of labeled examples is small, we
randomly sampled 1%, 5%, and 10% of the handwritten digits ineach class and treated them as
labeled data. Table 2 shows that after discriminative fine-tuning, a two-hidden-layer BM achieves
error rates of 4.82%, 2.72%, and 2.46%. Deep Boltzmann Machines clearly outperform regular-
ized nonlinear NCA (Salakhutdinov and Hinton (2007)), as well as linear NCA (Goldberger et al.
(2004)), an autoencoder (Hinton and Salakhutdinov (2006)), and K-nearest neighbours, particularly
when the number of labeled examples is only 600.

6. Note that computationally, this is equivalent to estimating 100 partition functions.
7. In the permutation-invariant version, the pixels of every image are subjected to the same, random permutation which

makes it hard to use prior knowledge about images.

24

LEARNING DEEPBOLTZMANN MACHINES

Table 2: Classification error rates on MNIST test set when only a smallfraction of labeled data is available.

Two-Layer Regularized Linear Autoencoder KNN
DBM Nonlinear NCA NCA

1% (600) 4.82% 8.81% 19.37% 9.62% 13.74%
5% (3000) 2.72% 3.24% 7.23% 5.18% 7.19%
10% (6000) 2.46% 2.58% 4.89% 4.46% 5.87%
100% (60000) 0.95% 1.00% 2.45% 2.41% 3.09%

5.2 NORB

Results on MNIST show that Deep Boltzmann Machines can significantly outperform many other
models on the well-studied but relatively simple task of handwritten digit recognition. In this section
we present results on NORB, which is a considerably more difficult dataset than MNIST. NORB
(LeCun et al. (2004)) contains images of 50 different 3D toy objects with 10 objects in each of
five generic classes: cars, trucks, planes, animals, and humans. Each object is photographed from
different viewpoints and under various lighting conditions. The training set contains 24,300 stereo
image pairs of 25 objects, 5 per class, while the test set contains 24,300 stereo pairs of the remaining,
different 25 objects. The goal is to classify each previously unseen object into its generic class. From
the training data, 4,300 were set aside for validation.

Each image has 96×96 pixels with integer greyscale values in the range [0,255]. To speed-up
experiments, we reduced the dimensionality by using a foveal representation of each image in a
stereo pair. The central 64×64 portion of an image is kept at its original resolution. Theremaining
16 pixel-wide ring around it is compressed by replacing non-overlapping square blocks of pixels
in the ring with a single scalar given by the average pixel-value of a block. We split the ring into
four smaller ones: the outermost ring consists of 8×8 blocks, followed by a ring of 4×4 blocks,
and finally two innermost rings of 2×2 blocks. The resulting dimensionality of each training vector,
representing a stereo pair, was2 × 4488 = 8976. A random sample from the training data used in
our experiments is shown in Fig. 9, left panel.

To model raw pixel data, we use an RBM with Gaussian visible and binary hidden units. Gaus-
sian RBMs have been previously successfully applied for modeling greyscale images, such as im-
ages of faces (Hinton and Salakhutdinov (2006)). However, learning an RBM with Gaussian units
can be slow, particularly when the input dimensionality is quite large. Here we follow the approach
of Nair and Hinton (2009) by first learning a Gaussian RBM and then treating the activities of its
hidden layer as “preprocessed” data. Effectively, the learned low-level RBM acts as a preprocessor
that converts greyscale pixels into a binary representation, which we then use for learning a Deep
Boltzmann Machine.

The number of hidden units for the preprocessing RBM was set to 4000 and the model was
trained using Contrastive Divergence learning for 500 epochs. We then trained a two-hidden-layer
DBM with each layer containing 4000 hidden units, as shown inFig. 8, right panel. Note that the
entire model was trained in a completely unsupervised way. After the subsequent discriminative
fine-tuning, the “unrolled” DBM achieves a misclassification error rate of 10.8% on the full test
set. This is compared to 11.6% achieved by SVMs (Bengio and LeCun (2007a)), 22.5% achieved

25

SALAKHUTDINOV AND HINTON

Training Samples Generated Samples

Figure 9: Random samples from the training set, and samples generatedfrom a three-hidden-layer Deep
Boltzmann Machine by running the Gibbs sampler for 10,000 steps.

Figure 10: Performance of the three-hidden-layer DBM on the image inpainting task. Top: Ten objects
randomly sampled from the test set.Middle: Partially occluded input images.Bottom: Inferred
images were generated by running a Gibbs sampler for 1000 steps.

by logistic regression, and 18.4% achieved by the K-nearestneighbours (LeCun et al. (2004)). To
show that DBMs can benefit from additionalunlabeledtraining data, we augmented the training data
with additional unlabeled data by applying simple pixel translations, creating a total of 1,166,400
training instances8. After learning a good generative model, the discriminative fine-tuning (using
only the 24,300 labeled training examples without any translation) reduces the misclassification
error down to 7.2%. Figure 9 shows samples generated from themodel by running prolonged Gibbs
sampling. Note that the model was able to capture a lot of regularities in this high-dimensional,
richly structured data, including different object classes, various viewpoints and lighting conditions.

8. We thank Vinod Nair for sharing his code for blurring and translating NORB images.

26

LEARNING DEEPBOLTZMANN MACHINES

Finally, we tested the ability of the DBM to perform an image inpainting task. To this end, we
randomly selected 10 objects from thetest setand simulated the occlusion by zeroing out the left
half of the image (see Fig. 10). We emphasize that the test objects are different from the training
objects (i.e. the model never sees images of ’cowboy’, but itsees other images belonging to the
’person’ category). We next sampled the “missing” pixels conditioned on the non-occluded pixels
of the image using 1000 Gibbs updates. Figure 10, bottom row,shows that the model was able to
coherently infer occluded parts of the test images. In particular, observe that even though the model
never sees an image of the cowboy, it correctly infers that itshould have two legs and two arms.

Surprisingly, even though the Deep Boltzmann Machine contains about 68 million parameters,
it significantly outperforms many of the competing models. Clearly, unsupervised learning helps
generalization because it ensures that most of the information in the model parameters comes from
modeling the input data. The very limited information in thelabels is used only to slightly adjust
the layers of features already discovered by the Deep Boltzmann Machine.

6. Discussion

A major difference between DBNs and DBMs is that the procedure for adding an extra layer to a
DBN replaces the whole prior over the previous top layer whereas the procedure for adding an extra
layer to a DBM only replaces half of the prior. So in a DBM, the weights of the bottom level RBM
end up doing much more of the work than in a DBN where the weights are only used to define
p(v|h1;W 1) (in the composite generative model). This suggests that adding layers to a DBM will
give diminishing improvements in the variational bound much more quickly than adding layers to
a DBN. There is, however, a simple way to pre-train a DBM so that more of the modeling work is
left to the higher layers.

Suppose we train an RBM with one set of hidden units and four sets of visible units and we
constrain the four weight matrices (and visible biases) to be identical. Then we use the hidden
activities as data to train an RBM with one set of visible units and four sets of hidden units, again
constrained to have identical weight matrices. Now we can combine the two RBMs into a DBM
with two hidden layers by using one set of visible units from the first RBM and three of the four sets
of hidden units from the second RBM. In this DBM,3/4 of the first RBM’s prior over the first hidden
layer has been replaced by the prior defined by the second RBM.It remains to be seen whether this
makes DBMs work better.

Using multiple copies of a layer with identical weights and biases is exactly equivalent to using
a single copy but taking multiple samples from the distribution over that layer. Now we can imagine
taking, say,11/3 samples by taking2 samples and randomly keeping the second one with a prob-
ability of 1/39. Suppose we train the bottom-level RBM by taking4 samples from its visible units
and1 sample from its hidden units. We then train a higher level RBMon the aggregated posterior of
the first RBM taking11/3 samples from its hidden units and1 sample from its “visible” units. Then
we compose the two RBMs without changing their weights, but taking only one sample from each
layer in the composite model. Again, we have a DBM in which thehigher level RBM has replaced
3/4 of the prior defined by the lower level RBM. The higher level RBM will learn a different model
using11/3 samples than it would have learned using4 samples, but both methods of replacing3/4 of
the prior are valid. It remains to be seen which works best.

9. The random decisions should be made independently for each unit to avoid high variance in the total output of a layer.

27

SALAKHUTDINOV AND HINTON

In this paper we have focussed on Boltzmann machines with binary units. The learning meth-
ods we have described can be extended to learn Deep Boltzmannmachines built with RBM modules
that contain real-valued (Marks and Movellan (2001)), count (Salakhutdinov and Hinton (2009b)),
or tabular data provided the distributions are in the exponential family (Welling et al. (2005)). How-
ever, it often requires additional insights to get the basicRBM learning module to work well with
non-binary units. For example, it ought to be possible to learn the variance of the noise model of the
visible units in a Gaussian-Bernoulli RBM, but this is typically very difficult for reasons explained
in Hinton (2010). For modeling the NORB data we used fixed variances of1 which is clearly much
too big for data that has been normalized so that the pixels have a variance of 1. Recent work shows
that Gaussian visible units work much better with rectified linear hidden units (Nair and Hinton
(2010)) and using this type of hidden unit it is straightforward to learn the variance of the noise
model of each visible unit.

7. Summary

We presented a novel combination of variational and Markov Chain Monte Carlo algorithms for
training Boltzmann Machines. When applied to pre-trained Deep Boltzmann Machines with several
hidden layers and millions of weights, this combination is avery effective way to learn good gen-
erative models. We demonstrated the performance of the algorithm using the MNIST hand-written
digits and the NORB stereo images of 3-D objects with highly variable viewpoint and lighting.

A simple variational approximation works well for estimating the data-dependent statistics be-
cause learning based on these estimates encourages the trueposterior distributions over the hidden
variables to be close to their variational approximations.Persistent Markov chains work well for
estimating the data-independent statistics because learning based on these estimates encourages the
persistent chains to explore the state space much more rapidly than would be predicted by their
mixing rates.

Pre-training a stack of RBMs using contrastive divergence can be used to initialize the weights
of a Deep Boltzmann Machine to sensible values. Unlike pre-training a DBN, the RBMs in the stack
need to be trained with two copies of one or both layers of units. This makes it possible to take the
square root of one or both of the marginal distributions overa layer of the trained RBM (by throwing
away one copy of the other layer). The RBMs can then be composed to form a Deep Boltzmann
Machine. The pre-training ensures that the variational inference can be initialized sensibly by a
single bottom-up pass from the data-vector using twice the bottom-up weights to compensate for
the lack of top-down input on the initial pass.

We have further showed how Annealed Importance Sampling, along with variational inference,
can be used to estimate a variational lower bound on the log-probability that a Deep Boltzmann
Machine assigns to test data. This allowed us to directly assess the performance of Deep Boltzmann
Machines as generative models of data. Finally, we showed how to use a Deep Boltzmann Machine
to initialize the weights of a feedforward neural network that can then be discriminatively fine-
tuned. These networks give excellent discriminative performance, especially when there is very
little labeled training data but a large supply of unlabeleddata.

Acknowledgments

This research was supported by NSERC and by gifts from Googleand Microsoft.

28

LEARNING DEEPBOLTZMANN MACHINES

References

Y. Bengio. Learning deep architectures for AI.Foundations and Trends in Machine Learning, 2009.

Y. Bengio and Y. LeCun. Scaling learning algorithms towardsAI. In L. Bottou, O. Chapelle,
D. DeCoste, and J. Weston, editors,Large-Scale Kernel Machines. MIT Press, 2007a.

Y. Bengio and Y. LeCun. Scaling learning algorithms towardsAI. Large-Scale Kernel Machines,
2007b.

M. A. Carreira-Perpignan and G. E. Hinton. On contrastive divergence learning. InArtificial Intel-
ligence and Statistics, 2005, 2005.

A. R. Mohamed G. Dahl and G. E. Hinton. Deep belief networks for phone recognition. InNIPS
22 workshop on deep learning for speech recognition, 2009.

G. Dahl. Two deep learning architectures for acoustic modeling. In Master’s Thesis, Department of
Computer Science, University of Toronto, 2010.

D. Decoste and B. Schölkopf. Training invariant support vector machines.Machine Learning, 46
(1/3):161, 2002.

G. Desjardins, A. Courville, Y. Bengio, P. Vincent, and O. Delalleau. Tempered Markov chain
Monte Carlo for training of restricted Boltzmann machines.In Proceedings of the International
Conference on Artificial Intelligence and Statistics, volume 13, 2010.

C. Galland. Learning in deterministic Boltzmann machine networks. InPhD Thesis, 1991.

S. Geman and D. Geman. Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of
images.IEEE Trans. Pattern Analysis and Machine Intelligence, 6(6):721–741, November 1984.

J. Goldberger, S. T. Roweis, G. E. Hinton, and R. R. Salakhutdinov. Neighbourhood components
analysis. InAdvances in Neural Information Processing Systems, 2004.

G. E. Hinton. To recognize shapes, first learn to generate images. Computational Neuroscience:
Theoretical Insights into Brain Function., 2007.

G. E. Hinton. Training products of experts by minimizing contrastive divergence.Neural Compu-
tation, 14(8):1711–1800, 2002.

G. E. Hinton. A practical guide to training restricted Boltzmann machines. Technical Report
UTML TR 2010-003, Department of Computer Science, Machine Learning Group, University
of Toronto, 2010.

G. E. Hinton and R. R. Salakhutdinov. Reducing the dimensionality of data with neural networks.
Science, 313(5786):504 – 507, 2006.

G. E. Hinton and T. Sejnowski. Optimal perceptual inference. In IEEE conference on Computer
Vision and Pattern Recognition, 1983.

G. E. Hinton and R. S. Zemel. Autoencoders, minimum description length and Helmholtz free
energy. InAdvances in Neural Information Processing Systems, volume 6, pages 3–10, 1994.

29

SALAKHUTDINOV AND HINTON

G. E. Hinton, S. Osindero, and Y. W. Teh. A fast learning algorithm for deep belief nets.Neural
Computation, 18(7):1527–1554, 2006.

M. I. Jordan, Z. Ghahramani, T. S. Jaakkola, and L. K. Saul. Anintroduction to variational methods
for graphical models. InMachine Learning, volume 37, pages 183–233, 1999.

H.J. Kappen and F.B. Rodriguez. Boltzmann machine learningusing mean field theory and linear
response correction. InAdvances in Neural Information Processing Systems, 1998.

S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi. Optimizationby simulated annealing.Science, 220:
671–680, 1983.

Y. LeCun, F. J. Huang, and L. Bottou. Learning methods for generic object recognition with invari-
ance to pose and lighting. InCVPR (2), pages 97–104, 2004.

T. K. Marks and J. R. Movellan. Diffusion networks, product of experts, and factor analysis. In
Proc. Int. Conf. on Independent Component Analysis, pages 481–485, 2001.

I. Murray and R. R. Salakhutdinov. Evaluating probabilities under high-dimensional latent variable
models. InAdvances in Neural Information Processing Systems, volume 21, 2009.

V. Nair and G. E. Hinton. Rectified linear units improve restricted boltzmann machines. InProc.
27th International Conference on Machine Learning, 2010.

V. Nair and G. E. Hinton. Implicit mixtures of restricted Boltzmann machines. InAdvances in
Neural Information Processing Systems, volume 21, 2009.

R. M. Neal. Annealed importance sampling.Statistics and Computing, 11:125–139, 2001.

R. M. Neal. Connectionist learning of belief networks.Artif. Intell, 56(1):71–113, 1992.

R. M. Neal and G. E. Hinton. A view of the EM algorithm that justifies incremental, sparse and
other variants. In M. I. Jordan, editor,Learning in Graphical Models, pages 355–368. Kluwer
Academic Press, 1998.

S. Osindero and G. E. Hinton. Modeling image patches with a directed hierarchy of Markov random
fields. InAdvances in Neural Information Processing Systems, Cambridge, MA, 2008. MIT Press.

C. Peterson and J. R. Anderson. A mean field theory learning algorithm for neural networks.Com-
plex Systems, 1:995–1019, 1987.

M. A. Ranzato, F. Huang, Y. Boureau, and Y. LeCun. Unsupervised learning of invariant feature
hierarchies with applications to object recognition.IEEE Conference on Computer Vision and
Pattern Recognition, 2007.

H. Robbins and S. Monro. A stochastic approximation method.Ann. Math. Stat., 22:400–407,
1951.

R. R. Salakhutdinov. Learning deep Boltzmann machines using adaptive MCMC. InProceedings
of the International Conference on Machine Learning, volume 27. ACM, 2010.

30

LEARNING DEEPBOLTZMANN MACHINES

R. R. Salakhutdinov. Learning in Markov random fields using tempered transitions. InAdvances in
Neural Information Processing Systems, volume 22, 2009.

R. R. Salakhutdinov and G. E. Hinton. Learning a nonlinear embedding by preserving class neigh-
bourhood structure. InProceedings of the International Conference on Artificial Intelligence and
Statistics, volume 11, 2007.

R. R. Salakhutdinov and G. E. Hinton. Deep Boltzmann machines. InProceedings of the Interna-
tional Conference on Artificial Intelligence and Statistics, volume 12, 2009a.

R. R. Salakhutdinov and G. E. Hinton. Replicated softmax: Anundirected topic model. InAdvances
in Neural Information Processing Systems, volume 22, 2009b.

R. R. Salakhutdinov and H. Larochelle. Efficient learning ofdeep Boltzmann machines. InProceed-
ings of the International Conference on Artificial Intelligence and Statistics, volume 13, 2010.

R. R. Salakhutdinov and I. Murray. On the quantitative analysis of deep belief networks. InPro-
ceedings of the International Conference on Machine Learning, volume 25, pages 872 – 879,
2008.

R. R. Salakhutdinov, A. Mnih, and G. E. Hinton. Restricted Boltzmann machines for collaborative
filtering. In Zoubin Ghahramani, editor,Proceedings of the International Conference on Machine
Learning, volume 24, pages 791–798. ACM, 2007.

T. Serre, A. Oliva, and T. A. Poggio. A feedforward architecture accounts for rapid categorization.
Proceedings of the National Academy of Sciences, 104:6424–6429, 2007.

P. Smolensky. Information processing in dynamical systems: Foundations of harmony theory. In
D. E. Rumelhart and J. L. McClelland, editors,Parallel Distributed Processing: Volume 1: Foun-
dations, pages 194–281. MIT Press, Cambridge, 1986.

T. Tieleman. Training restricted Boltzmann machines usingapproximations to the likelihood gra-
dient. In Machine Learning, Proceedings of the Twenty-first International Conference (ICML
2008). ACM, 2008.

T. Tieleman and G.E. Hinton. Using Fast Weights to Improve Persistent Contrastive Divergence. In
Proceedings of the 26th international conference on Machine learning, pages 1033–1040. ACM
New York, NY, USA, 2009.

P. Vincent, H. Larochelle, Y. Bengio, and P. Manzagol. Extracting and composing robust features
with denoising autoencoders. In William W. Cohen, Andrew McCallum, and Sam T. Roweis,
editors, Proceedings of the Twenty-Fifth International Conference, volume 307, pages 1096–
1103, 2008.

M. Welling. Herding dynamical weights to learn. InProceedings of the 26th Annual International
Conference on Machine Learning, 2009.

M. Welling, M. Rosen-Zvi, and G. E. Hinton. Exponential family harmoniums with an application
to information retrieval. InAdvances in Neural Information Processing Systems, pages 1481–
1488, Cambridge, MA, 2005. MIT Press.

31

SALAKHUTDINOV AND HINTON

C. Williams and F. Agakov. An analysis of contrastive divergence learning in gaussian boltzmann
machines. InTechnical Report EDI-INF-RR-0120, Institute for Adaptiveand Neural Computa-
tion, University of Edinburgh, 2002.

L. Younes. On the convergence of Markovian stochastic algorithms with rapidly decreasing ergod-
icity rates, March 17 2000.

L. Younes. Parameter inference for imperfectly observed Gibbsian fields.Probability Theory Rel.
Fields, 82:625–645, 1989.

A. L. Yuille. The convergence of contrastive divergences. In Advances in Neural Information
Processing Systems, 2004.

R. S. Zemel. A minimum description length framework for unsupervised learning. InPh.D. Thesis,
Department of Computer Science, University of Toronto, 1993.

32

