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Abstract
Our visual system is capable of recognizing complex objects even when their appearances change
drastically under various viewing conditions. Especially in the higher cortical areas, the sensory
neurons reflect such functional capacity in their selectivity for complex visual features and
invariance to certain object transformations, such as image translation. Due to the strong
nonlinearities necessary to achieve both the selectivity and invariance, characterizing and
predicting the response patterns of these neurons represents a formidable computational challenge.
A related problem is that such neurons are poorly driven by randomized inputs, such as white
noise, and respond strongly only to stimuli with complex high-order correlations, such as natural
stimuli. Here we describe a novel two-step optimization technique that can characterize both the
shape selectivity and the range and coarseness of position invariance from neural responses to
natural stimuli. One step in the optimization involves finding the template as the maximally
informative dimension given the estimated spatial location where the response could have been
triggered within each image. The estimates of the locations that triggered the response are
subsequently updated in the next step. Under the assumption of a monotonic relationship between
the firing rate and stimulus projections on the template at a given position, the most likely location
is the one that has the largest projection on the estimate of the template. The algorithm shows
quick convergence during optimization, and the estimation results are reliable even in the regime
of small signal-to-noise ratios. When we apply the algorithm to responses of complex cells in the
primary visual cortex (V1) to natural movies, we find that responses of the majority of cells were
significantly better described by translation invariant models based on one template compared
with position-specific models with several relevant features.
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1 Introduction
The ability to recognize objects despite large variations in their position relative to us is a
hallmark of animal vision (DiCarlo and Maunsell, 2003; Edelman, 1999; Riesenhuber and
Poggio, 1999; Rolls, 2000; Ullman, 1996). Changes in the relative position can cause large
changes in the retinal image that greatly exceed the differences between retinal images
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generated by different objects presented at the same location (when differences are
quantified using linear projections). The problem is further complicated by changes in the
retinal images caused by scaling, rotation, as well as differences in pose, and illumination.
For these reasons, understanding the computations required for mediating robust object
recognition remains a challenging frontier of both computer science and neuroscience.
Although this problem is solved in the brain and fast recognition within a fraction of second
is possible (Thorpe et al., 1996), much remains to be understood about the underlying neural
mechanisms. In this paper, we describe a spike-triggered method that can help map out how
the visual stimuli are represented in the brain.

One of the obstacles for characterizing feature selectivity of these high-level visual neurons
is that, because such neurons are tuned to highly specific combinations of visual features,
they do not respond well to noise and other stimuli without higher-order correlations.
Therefore, up to now feature selectivity of high-level visual neurons has been primarily
studied with respect to reduced stimuli (Saleem et al., 1993; Wang et al., 1996, 1998) that
are optimized for a particular neuron, sets of controlled naturalistic stimuli, such as isolated
face images in a blank background (Desimone et al., 1984; Kobatake and Tanaka, 1994;
Logothetis et al., 1995; Rust and DiCarlo, 2010; Zoccolan et al., 2007), and/or parametrized
stimulus sets where orientation, curvature, and spirality have been systematically varied
(Desimone et al., 1984; Desimone and Schein, 1987; Gallant et al., 1993, 1996; Hegde and
Van Essen, 2000, 2007; Kobatake and Tanaka, 1994; Pasupathy and Connor, 1999, 2001).
These studies reveal the complexity of the feature selectivity of neurons in the ventral
stream, including selectivity to faces and hands, but leave open the possibility that the
optimal stimulus for a given neuron may have never been presented. It has also been
difficult to predict responses to novel stimuli that have not been used in the experiment.

Instead of using a set of reduced stimuli, an alternative approach is to take advantage of the
fact that neurons throughout the ventral stream respond robustly to natural visual stimuli.
Although average response rates to natural stimuli may be lower than to the optimal
stimulus (Baddeley et al., 1997), they are still significantly higher than those elicited by
noise inputs (Rainer et al., 2001). At the same time, natural stimulus ensembles can be made
sufficiently diverse such that they sample the neural response along many directions in the
stimulus space, albeit not-uniformly (Dong and Atick, 1995; Field, 1987; Ruderman and
Bialek, 1994; Simoncelli and Olshausen, 2001; van Hateren and Ruderman, 1998). This
approach has the potential to make it possible to characterize the feature selectivity of
neurons without making prior assumptions about the actual type of optimal stimulus
features. The approach is based on the linear-nonlinear (LN) model (Chichilnisky, 2001; de
Boer and Kuyper, 1968; Meister and Berry, 1999; Schwartz et al., 2006; Victor and Shapley,
1980) that describes the neural response as an arbitrary nonlinear function of the stimulus
components along the relevant stimulus dimensions. Each of the relevant stimulus
dimensions represents a spatiotemporal filter that is applied to incoming stimuli to account
for neural responses. While original methods for finding receptive fields were designed to
work with noise inputs (de Boer and Kuyper, 1968; Rieke et al., 1997) analogous methods
that are valid with natural stimuli have been recently developed for both linear (Gill et al.,
2006; Ringach et al., 2002, 1997; Theunissen et al., 2001, 2000; Woolley et al., 2005, 2006)
and LN models by several groups (Paninski, 2003; Sharpee et al., 2004; Sharpee, 2007;
Sharpee et al., 2006).

Despite the success of spike-triggered methods in characterizing the selectivity of V1
neurons to multiple stimulus features (Chen et al., 2007; Felsen et al., 2005; Horwitz et al.,
2007; Rapela et al., 2010, 2006; Rust et al., 2005; Schwartz et al., 2006; Touryan et al.,
2005, 2002), both the models of the neural response and the statistical methods used to
select them will likely need to be significantly modified in order to be useful in extrastriate
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visual areas. The main reason is that, in retinotopic space, accounting for translation
invariant selectivity, even to one relevant stimulus feature, requires a model with a large
number of relevant dimensions. Although the relevant dimensions each represent the same
image feature, they differ in their centering, leading to a high-dimensionality of the resultant
LN model. Established methods that can simultaneously estimate a large number of relevant
dimensions are guaranteed to work only with Gaussian stimuli, such as white noise or
correlated Gaussian noise (Paninski, 2003; Schwartz et al., 2006). These include the
methods of spike-triggered covariance (Bialek and de Ruyter van Steveninck, 2005; de
Ruyter van Steveninck and Bialek, 1988; Schwartz et al., 2002, 2006), its information-
theoretic generalization (Pillow and Simoncelli, 2006), and projection pursuit (Rapela et al.,
2010, 2006). On the other hand, methods that estimate multiple filters from neural responses
to natural stimuli (Sharpee et al., 2004) can only estimate a few filters because of the need to
sample the joint multidimensional dependence of the spike probability on the relevant
stimulus components (Rowekamp and Sharpee, 2011; Schwartz et al., 2006). It should be
noted that spike-triggered covariance can be applied with natural stimuli, e.g. as in (Touryan
et al., 2005), but estimation methods that take higher-order stimulus statistics into account,
such as projection pursuit and maximally informative dimensions, yield models with
improved predictive power in accounting for V1 neural responses (Rapela et al., 2010).

Our approach here is to reduce the dimensionality by searching for one or several, in
practice 2 or 3, image templates while allowing for the possibility that they could be jointly
shifted to different positions within the visual space to elicit a spike. The method we propose
here combines ideas from methods that address translation invariance but work primarily
with noise inputs (Dimitrov et al., 2009; Nishimoto et al., 2006; Tjan and Nandy, 2006) and
ideas from methods that can characterize feature selectivity of position-specific models with
natural stimuli, e.g. Sharpee et al. (2004, 2006). The overall goal is to address, to our
knowledge, a previously unsolved problem of how to characterize the feature selectivity of
neurons that exhibit translation invariance based on their responses to natural stimuli. We
propose to search for the most relevant feature (or a conjunction of features) for a given
neuron, assuming that the probability of triggering the neural response is the same for all
retinotopic positions to which the neuron responds (Fig. 1). This is an approximation,
because real neurons do not exhibit perfect translation invariance; rather, their responses do
decline with distance from the receptive field center (Boussaoud et al., 1991; Desimone et
al., 1984; Gross et al., 1969, 1972; Ito et al., 1995; Kobatake and Tanaka, 1994; Leuschow
et al., 1994; Logothetis et al., 1995; Missal et al., 1999; Op de Beeck and Vogels, 2000;
Richmond et al., 1983; Sary et al., 1993; Schwartz et al., 1983; Tovee et al., 1994).
However, this approximation provides an approach for mapping out the receptive fields of
high-level neurons that is complementary to the conventional spike-triggered approaches
that work at a given retinotopic location only. At the same time, comparison of predictive
power achieved by the two kinds of models – either translation invariant or non-translation
invariant – could also be helpful in quantifying the emergence of invariance across the
hierarchy of sensory representations.

In sum, the central goal of this work is to develop and test the computational methods that
can estimate the relevant stimulus features of a neuron under the assumption that the neural
response can be triggered at different positions within the visual field. We seek a method
that:

• will work with arbitrary stimuli, including natural stimuli;

• should in principle be capable of recovering an arbitrary complex stimulus feature
v⃗, i.e. we do not assume that relevant stimulus features can be parametrized as
Gabor functions (DeAngelis et al., 1993) or curved line elements; rather, these
shapes should emerge as a result of the analysis;
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• will allow for nonlinearities in the neural responses in order to describe such
properties as rectification and saturation;

• produce an estimate of the range and coarseness of translation invariance.

We note that the problem of characterizing translation invariant feature selectivity can be
thought of as complementary to the perceptual task of representing visual scenes in the
presence of uncertainties introduced by fixational eye movements (Burak et al., 2010). Here,
our goal is to estimate one or a few templates based on known stimuli and inferred relevant
locations for each stimulus, whereas in the perceptual task the goal is to infer unknown
images based on known receptive fields of neuron and the inferred eye positions.

This paper is organized as follows: In Sec. 2 we describe an approach for characterizing
feature selectivity of neurons whose responses exhibit translation invariance. Sec. 3 presents
results on both model and real neurons (V1 complex cells). Sec. 4 contains concluding
remarks, and Sec. 5 describes the methods.

2 Accounting for translation-invariant neural responses
A biologically plausible model that is consistent with the definition of translation-invariance
is based on the combination of the responses of position-specific neurons according to a
logical OR operation (Cadieu et al., 2007; Fukushima, 1980; Pelli, 1985; Riesenhuber and
Poggio, 1999). Mathematically, the probability that stimulus s⃗ will elicit a spike from a
neuron selective for a template v⃗ at different locations within the visual field can be written
as:

(1)

Here, z⃗ ∈ G represents a set of all possible position shifts, Tz⃗v⃗ represents a particular
positioning of the feature v⃗ at a center location described by shift z⃗. The function f(s⃗ · Tz⃗v⃗)
describes the normalized probability of eliciting spikes from the presumed hidden units,
whose responses are not translation invariant but are specific to a particular positioning Tz⃗v⃗
of the image feature v⃗; r̄ is the average response probability of a hidden unit. We will refer to
this image feature v⃗ as the template because it is the same for all hidden units.

Another biologically plausible model that yields translation invariance is based on selecting
the maximal response:

(2)

The experimental support for this model was also found, e.g. in area V4 (Gawne and Martin,
2002). Although with non-binary and probabilistic hidden units, the MAX model will yield a
different predicted firing rate compared to the model based on the logical OR, below we
show that the templates of both models can be estimated using the same two-step
optimization procedure.

2.1 Review of estimation methods for position-specific neurons
In developing methods for characterizing invariant feature selectivity, we will build on the
statistical methods developed for characterizing neural feature selectivity in the absence of
invariance, which we now briefly review. Bearing in mind that high-level neural responses
are likely to be more responsive to complex stimuli, such as natural stimuli, we focus on
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methods that are applicable in this case (Kouh and Sharpee, 2009; Paninski, 2003; Schwartz
et al., 2006; Sharpee et al., 2004; Sharpee, 2007). Without translation invariance, Eqs. (1)
and (2) simplify to the model based on just one relevant stimulus feature v⃗:

(3)

The problem of finding the relevant dimension is illustrated in Fig. 2. A stimulus can be
represented as a point in a high-dimensional space. A change in the stimulus component
along the relevant dimensions modulates the neural response (x1-axis in the figure), while a
change along an irrelevant dimension (i.e., one that is orthogonal to the relevant dimension)
will not influence the response unless the stimulus components along the two dimensions are
correlated. Thus, the relevant dimension can be found by comparing distributions P (s⃗) and P
(s⃗|spike) along various dimensions, and selecting the dimension along which these
distributions are most different. The intuition for this strategy is that stimulus projections x
along an irrelevant stimulus dimension will be weakly correlated with the occurrence of a
spike. Because the spikes will have occurred with similar or equal probability for all values
of x, the distributions P (x) and P (x|spike) will be similar to each other along the irrelevant
dimensions. In contrast, these two probability distributions will be quite different along the
relevant dimension v⃗. The dissimilarity between two probability distributions can be
quantified by a number of divergence measures (Paninski, 2003; Sharpee, 2007). However,
the smallest unbiased estimation error is obtained by maximizing the Kullback-Leibler (KL)
divergence (Kouh and Sharpee, 2009):

(4)

In the limit of low spike probabilities, the above quantity corresponds to the mutual
information between stimulus components along the relevant dimension and the arrival
times of single spikes (Adelman et al., 2003; Sharpee et al., 2004). The mutual information
(4) is small when projection value x and spike times are relatively independent, because in
this case distributions P (x) and P (x|spike) are similar. On the other hand, when evaluated
along the relevant dimensions, the KL divergence will take its maximal value equal to the
mutual information between full stimuli and single spikes (Brenner et al., 2000):

(5)

This suggests that the relevant dimensions can be found by maximizing the mutual
information between x and the spike probability according to Eq. (4). This approach has
been implemented with a combination of line optimization and simulated annealing (Press et
al., 1992) to analyze the neurons from the visual system (Sharpee et al., 2008, 2006), with
subsequent extensions to recover multiple features of both visual (Rowekamp and Sharpee,
2011; Sincich et al., 2009) and auditory (Atencio et al., 2008, 2009) neurons.

2.2 Two-step optimization for finding the relevant stimulus dimensions of translation
invariant neurons

Characterizing feature selectivity with invariance is significantly more challenging, because
the responses of a translation invariant neuron are based on stimulus features at multiple
locations within the visual field. The first step in our analysis of an invariant neuron is to
determine the most likely location where the response could have been triggered. The
second step then uses the stimuli centered at these locations to improve the estimate of the
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template as in the non-invariant case in Section 2.1. These two steps: 1) updating the
estimated locations and 2) updating the estimated template, are repeated until convergence.

To perform the first step of optimization, we will at first consider separately stimuli that
elicited and did not elicit a spike from the invariant neuron. For a stimulus s⃗ that elicited a
spike, one can transform the probability P (z⃗|spike, s⃗) that the hidden unit at a location
characterized by shift z⃗ from the center has produced a spike according to the Bayes’ rule:

(6)

Here, P (z⃗) is the prior probability that the response could have been triggered at a shift
position z⃗ and function f(s⃗ · Tz⃗v⃗) is the nonlinear gain function of the hidden units, which
was first defined in Eq. (1). According to Eq. (6), if the gain function f(x) is monotonic and
a priori all locations are equally likely to elicit a spike, then the most likely location to have
triggered the neural response is the one that yields the greatest projection value x between
the translated template Tz⃗v⃗ and the stimulus s⃗.

For stimuli that did not elicit a spike, there is no uncertainty as to what happened at each of
the possible locations – we know that none of the hidden units has produced a spike. For
these trials we can associate any patch with the neural response for analysis using a position-
specific model. Here we also select the patch with the greatest projection value as the one
that was most likely to trigger the response (according to the current model), but did not.
This choice corresponds to a maximal reduction in the entropy of the current model from
incorporating the measured response, and thus is an example of maximally informative data
point selection (Mackay, 1992). To summarize, in the first step of optimization we
determine for each stimulus the maximum projection maxz⃗∈G s⃗ · Tz⃗v⃗ across different shifts z⃗
of the template v⃗.

To perform the second step of the optimization, we form the probability distributions

 of these maximal projection values both across all stimuli:

(7)

and across all stimuli that elicited a spike:

(8)

In Eqs. (7) and (8), ℝD denotes the D-dimensional stimulus space (e.g. a set of images of D
pixels). Step 2 is completed by maximizing the KL divergence between these two
probability distributions:

(9)

to obtain a new estimate of template v⃗.

To aid the high dimensional optimization process of I(v⃗) with respect to v⃗, an analytical
gradient function can be calculated. It reads
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(10)

where the response and projection value dependent averages 〈s⃗|x, spike〉 and 〈s⃗|x〉 are
defined as

(11)

(12)

where z⃗m is the translation with the strongest projection responses, i.e. z⃗m = argmax z⃗∈G s⃗ ·
Tz⃗v⃗ · T−z⃗ms⃗ denotes the stimulus patch that yielded the largest projection onto v⃗.

The proposed two-stage approach for estimating translation-invariant templates is
reminiscent of the classic EM algorithm (Dempster et al., 1977), but differs from it both in
the structure of the problem and the approach. In particular, the variables that describe
which hidden units could have caused a spike in a translation-invariant neuron are not
mutually exclusive, whereas the EM algorithm for mixture models (Bishop, 2004) operates
with probabilities of hidden variables that are, although not directly observable, can take
only one value at a time with some probability. This difference is most pronounced for
stimuli that did not elicit a spike, in which case we know that inputs to none of the hidden
units have exceeded the spike threshold, and thus we can choose any of them for the
ensemble of stimuli/response associations from which templates will be estimated. In what
follows we demonstrate, using two different implementations, that the proposed two-step
optimization does converge on the correct stimulus features when tested on a series of model
neurons built according to architecture of Eq. (1).

2.3 Computing Maximally Informative Invariant dimensions: direct and Fourier approaches
Two practical implementations are possible to complete step 2 – finding maximal
projections between stimuli and templates shifted to different locations. Here, one possibility
is to extract stimulus patches of smaller dimensionality d from different parts of the stimulus
and compare them to the template, cf. Fig. 3A. The other possibility is to work with
templates and stimuli of full dimensionality D. In this case one needs to use periodic
boundary conditions, which is a common assumption when treating translation-invariance
(Tjan and Nandy, 2006), to compute projection values with templates shifted to different
positions, cf. Fig. 3B.

We refer to the first approach as the “direct approach” and to the second as the “Fourier
approach.” This is to emphasize that the second approach can be conveniently implemented
by taking a two-dimensional Fourier transform of each stimulus and the template.
Multiplying the Fourier transform of the template by eik⃗·z⃗ yields the Fourier transforms of
the template after a shift by a vector z⃗ (here, k⃗ enumerates the Fourier components). The
implicit assumption (the validity of which can be checked after the optimization is complete)
is that the spatial extent of the neural template is small enough not to be affected by
moderate translations from the center of the stimulus window, i.e. that the magnitude of the
parts of template that wrap around is close to zero. This property is more strictly enforced in
the direct method, where the size of the template by construction cannot exceed the size of
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the extracted patches and needs to be specified a priori. The Fourier approach can provide
clues as to the properties of the template, even if it is affected by some of the larger
translations used during the estimation. If that happens, the configuration of the translation
grid can be adjusted to a smaller range of translations or the sides of the stimulus frame can
be zero padded to increase the ratio between the stimulus and template sizes.

The direct and Fourier methods offer complementary capabilities in a number of other
respects, including the dimensionality of the neural template, the size of the grid over which
the responses are pooled to approximate translation invariance, as well as the computational
requirements. For example, the direct approach is limited by the number of patches that can
be stored in the memory of a computer. Typical capabilities of current generation computers
limit analysis of translation to tens of points, so that grids of at most 5 × 5 or 7 × 7 points
can be analyzed. Re-extracting patches for each calculation avoids the memory limitations,
but is computationally slow. In contrast, the Fourier approach can handle translational grids
G of almost any size, and thus can better approximate continuous translation invariance. On
the other hand, because of periodic boundary conditions assumed in the Fourier approach,
the template has to spatially extend significantly beyond its non-zero part. This reduces
either the signal-to-noise ratio or the resolution of templates recovered by the Fourier
approach. In summary, the direct and Fourier approaches for estimating translation invariant
templates allow one to choose between analyzing either finer translation grids and more
coarse-grained templates using the Fourier approach or coarser translation grids and finer
resolution templates using the direct approach.

We note that with both approaches the performance can be compared over different
configurations of translation grids G, as we do below in Sec. 3.3, in order to determine the
most appropriate configurations for each neuron under consideration.

3 Results
In this section, we present results on synthetic and real neurophysiological data. In order to
validate the model in a controlled setting, we ran extensive tests on model cells. Later, the
method was applied to V1 complex cells and put into contrast with methods that do not
account for translation invariance.

To test the algorithms for estimating translation invariant feature selectivity, we designed a
series of model translation invariant neurons according to Eq. (1) probed with natural
movies (Sharpee et al., 2006). The responses of the translation invariant model cell were
simulated using a logical OR operation to pool responses of a number of afferent units. The
afferent units were all selective for the same preferred stimulus feature v⃗, but were centered
at different positions within the visual space. The responses of the afferent units were
modeled using a noisy thresholding operation: an afferent unit responded with a spike if the
stimulus patch at the corresponding position had a projection onto v⃗ that exceeded a
threshold value of θ in the presence of Gaussian noise with zero mean and variance σ2. The
parameter σ thus can be used as a measure of neural noise. All afferent units contributing to
the translation invariant cell had the same value of θ and σ. In this way, the nonlinear gain
function f(s ⃗ · Tz⃗v⃗) in Eq. (1) becomes a sigmoid. Because all hidden units have the same
parameters except for the centering of the relevant template, and their responses are pooled
using a logical OR, the resultant model cell approximates translation invariance over the
region of the visual space spanned by the centers of the hidden units. We also varied the size
and coarseness of the spatial translation grid formed by the centers of stimulus patches
representing the hidden units. Table 1 describes the range of parameters tested in
combination with three types of translational grids.
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3.1 Position-specific model fails to estimate translation invariant feature selectivity
We begin by demonstrating that translation invariance has profound effects on the template
estimation. Fig. 4 presents results of a characterization that does not take invariance into
account applied to a model cell with translation invariance. The model template (the relevant
image feature of hidden units) is shown in Fig. 4A. It was taken to be a curved Gabor in
order to mimic properties of visual extrastriate neurons (Connor et al., 2007; Pasupathy and
Connor, 1999, 2001, 2002). In Fig. 4A crosses mark the centers of 3 × 3 translation grid that
was used to approximate translation invariance. Because of translation invariance, the
neuron produces a spike if any of the stimulus patches taken around the nine locations of the
translation grid provides a sufficiently good match to the template. This results in the
response region of this neuron being much larger than the spatial extent of the template.
Correspondingly, the non-translation invariant optimization algorithm seeking a single
relevant feature produces a filter that is a smeared superposition of the relevant templates
placed at the centers of the translation grid (which describe the hidden units). It is not
possible to guess from this estimation even the rough shape of the underlying template (cf.
panel C with the template in panel A). The estimation also does not capture the correct form
of the nonlinear gain function. The nonlinear gain function with respect to the maximal
projection value across the translation grid is a sigmoidal function (model nonlinearity,
panel B). In contrast, the estimated nonlinearity shows similar sensitivity to both positive
and negative projections onto the estimated filter (solid line in panel D). Furthermore, even
when the nonlinear gain function is evaluated along the correct template but at a fixed
position in the visual space, the increase in the spike probability is still observed for negative
projection values of the stimuli onto the relevant template (dashed line in panel D). This
effect is due to the overlap between templates centered at different positions of the
translation grid, so that negative projection values onto the template at the center positions
actually signal the presence of positive projection values onto templates centered at
neighboring positions on the translation grid. In sum, ignoring translation invariance
prevents the correct estimation of both the relevant template and the nonlinear gain function
of translation invariant neurons.

3.2 Characterizing feature selectivity of translation invariant model neurons
We now show that both the nonlinear gain functions and the relevant template of translation
invariant neurons can be estimated by searching for maximally informative invariant
dimensions. Fig. 5 shows estimation results of the same translation invariant model neuron
from Fig. 4A, using the direct and the Fourier methods. The estimated templates have large
dot products with the model templates (the dot products are computed between normalized
vectors, so that the perfect estimation without any noise yields 1): c = 0.897 ± 0.008 (Fourier
method, panel C, error-bars represent standard errors of the mean) and c = 0.899 ± 0.011
(direct method, panel D). Another measure that can be used to quantify the estimation
accuracy is the ratio of information accounted for by the estimated template to that
accounted for by the model template. The latter information quantity represents the overall
information that is available in single neural responses (Adelman et al., 2003; Sharpee et al.,
2004). The corresponding fraction of the total information explained by the estimated filters
was also close to its maximal value of 1: 0.963 ±0.006 for the Fourier method and 0.969 ±
0.008 for the direct method. These values were much larger than those obtained using a
position-specific template from Fig. 4. The high predictive power is also visually obvious
when one compares the post-stimulus time histograms (PSTH) of this model neuron on a
novel set of natural scenes with predictions PSTHs obtained using the translation invariant
estimation model (Fig. 5G). Finally, we point out that the algorithms typically converged
quite rapidly. In Fig. 6 we show an example of convergence during template estimation for
four jackknife data sets obtained for the same model cell as shown in Figs. 4 and 5. Within
100 line optimizations in the D = 256-dimensional template space for this model neuron the

Eickenberg et al. Page 9

Neural Comput. Author manuscript; available in PMC 2013 September 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



algorithm converges to a value that is quite close to the final outcome. Similar behavior is
observed both in terms of information explained on a novel data set (panel A) and in terms
of projection onto a model template (panel B). In summary, the estimation of translation
invariant templates appears to be quite robust and achievable within a number of iterations
that is smaller than the template dimensionality.

The configuration of the translation grid represents another important parameter of the
estimation algorithm. In the above calculation, the translation grid used during estimation
coincided with that of the model translation invariant neuron. We find, however, that even
when the translation grids used during estimation differed from those of the model cell,
reasonably accurate estimations can be obtained. For example, panels E and F of Fig. 5
show results of the estimation using a 5 ×5 translation grid for the Fourier and the direct
method. Although this translation grid is substantially different from the 3 × 3 translation
grid that was used in the model, the estimated templates are visually quite similar to the
model one, and have dot products of 0.789 ± 0.003 and 0.78 ± 0.02 for the Fourier (panel E)
and direct (panel F). The corresponding values of the fraction of total information explained
by estimated filters (that takes into account that estimated templates can be translated
versions of the model template) are 0.826 ± 0.003 and 0.826 ± 0.002 for the direct and
Fourier methods, respectively. Thus, the estimation of the preferred image feature appears to
be robust in the presence of disparities between the translation grid of the neuron and that
used during the estimation. At the same time, the predictive power of the recovered model
was somewhat lower in the presence of a mismatch between the translation grid of the
model and estimation. We next explore whether this observation can be used to characterize
the coarseness in the translation invariance of a neuron.

3.3 Resolving the coarseness of translation invariance
In addition to determining the relevant stimulus feature for a translation invariant neuron, it
is also helpful to determine the range and perhaps the coarseness that characterizes its
translation invariance. The spatial extent can be measured directly by observing how the
neural response to the preferred stimulus feature decreases with distance from the receptive
field center, and indeed detailed measurements have shown that responses of high-level
visual neurons decrease with distance from the receptive field center (Desimone and Schein,
1987; Pasupathy and Connor, 2001; Pollen et al., 2002; Rust and DiCarlo, 2010). However,
one would also expect to find discrete aspects in the neural implementation of translation
invariance, as can already be observed in the retina (Field et al., 2010; Liu et al., 2009; Soo
et al., 2011; Soodak et al., 1991). Not knowing this coarseness a priori, one would like to
have a method to find it. Above we have shown that the relevant stimulus feature or
template can be estimated quite closely, even in the presence of a mismatch between the true
translation grid and the grid used during the estimation. However, the disparity between the
model and the assumed translation grids during estimation resulted in the reductions of both
the dot product coefficient and the percent information explained by the estimated filter.
Here, we examined whether this decrease is sufficient to determine the underlying
translation invariance properties of a neuron, such as its coarseness.

Fig. 7 shows how the percent information explained changes as a function of mismatch in
coarseness between the model and estimation translation grids. For example, in panel (A) we
analyze the model cell with a 3 × 3 translation grid using translation grids ranging from no
translation invariance (1 × 1 grid) to near perfect translation invariance (9 × 9 grid
corresponds to translation by two pixels). We find a clear peak when the estimation grid
matches that of the model in terms of the percent information explained (panel B). The
difference of the peak value from the neighboring points is significant (p < 10−4, t-test, panel
A). Thus, the algorithm can correctly identify the coarseness of translation invariance of this
model cell. Analyzing results for models with a finer 5 × 5 translation grid (panel B), we
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find that it is possible to rule out a coarser grid of 3 × 3 compared to the true grid (p < 10−4),
but that a finer 9 × 9 grid gives the same predictive power as the model grid (p = 0.16).
When the analysis is taken to the limit of perfect translation invariance (17 × 17 grid in our
case), we continue to observe an increase in predictive power when the translation grid is
refined from 5 × 5 to 9 × 9 (p < 10−4). Overall, these results suggest that it is possible to
determine a lower limit for the coarseness of the translation grid. For cells with a rather
coarse translation grid, such as when the smallest translation is about 1/4 of the overall
response region (corresponding to 3 × 3 grid in our simulations), both the upper and lower
limits on the coarseness of the translation grid may be determined.

3.4 Convergence with increasing data set size
An important practical consideration is how the proposed methods perform not only in a
well-sampled regime where the number of trials (and spikes) greatly exceeds the stimulus
dimensionality but also in much more typical cases where the two numbers are comparable.
Therefore, we have analyzed estimated templates as a function of data set size for model
cells that had different intrinsic noise levels. Each of these model cells was probed by the
same stimulus sequence that was repeated a different number of times, from 1 to 20 times.
Simulations were done using the Fourier approach, because it permits larger stimulus
dimensionality D (32 × 32 frames yield D = 1024). Fig. 8 describes results for model cells
with different thresholds, translation grids, and different noise levels. As expected, we found
that the dot product between the estimated and the model template improved with increasing
number of spikes. Furthermore, the improvement was more pronounced for cells with
greater levels of intrinsic noise. Typically, a steeper slope was observed for noisier cells
(black, σ = 1.0) than the less noisy cells (light gray, σ = 0.5), since the reduction in
uncertainty is more significant for each added repetition in the noisier cell. However,
estimations with dot products greater than 0.85 were obtained in all cases. These results
demonstrate the feasibility of estimating feature selectivity of translation invariant neurons
for data sets containing a few thousand spikes, which is achievable with current
physiological techniques.

3.5 Analysis of V1 complex cells responses to natural movies
We now use the two-step optimization to characterize feature selectivity of V1 complex
cells. The responses of V1 neurons are sensitive to the presence of multiple stimulus features
(Chen et al., 2007; Rust et al., 2005; Touryan et al., 2002). The complex cells are thought to
implement one of the first steps in building position-invariant representations, and their
responses are consistent with being triggered by spatially shifted image patterns (Rust et al.,
2005). Thus, we set out to explore whether the translation invariant models can provide a
better description of their responses than the position-specific models with up to three
features.

For each neuron, we estimated both position-invariant models and position-specific models
based on its responses to natural movies (see Methods). The templates of translation
invariant models and position-specific models now also included a temporal dimension
comprised of three time lags. The templates were not assumed to be separable in space and
time. For both position-specific and position-invariant models, we have allowed for the
possibility that the spike probability can depend on the conjunction of features. In the
framework of a translation invariant model, this assumes that the output of hidden units
depends on several templates, such as v⃗1, v⃗2, v⃗3, that are evaluated at a given position. We
model the position invariant response as
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(13)

where z⃗max is the grid location at which x1 = s⃗ · Tz⃗v⃗1 is maximized for a particular stimulus
s⃗. Template v⃗1 was found first for a one-dimensional model, and the projections on v⃗1
determined which grid location we associated with the neural response. Additional templates
v⃗2 and v⃗3 are found subsequently to create a two- and three-dimensional model,
respectively, with the projections on the stimulus at the location selected by v⃗1 modulating
the neuron’s response. The templates found using the model (13) will also be valid for a
logical OR model in cases where the maximum of the nonlinear gain function f(x1, x2, x3) of
hidden units occurs along the first dimension. This is the case for classical models of
contrast gain control where the response of a hidden unit is a function of one (most relevant)
stimulus component normalized by signal components along other dimensions (Heeger,
1992; Schwartz et al., 2002; Schwartz and Simoncelli, 2001).

In choosing the configuration of the translational grid, we were guided by previous results
that V1 neurons have ~ 10 (≤18) subunits per neuron whose center positions are closely
spaced (Rust et al., 2005). The position-invariant models were computed using a 3 × 3 grid
with a spacing of 1 pixel, similar to Rust et al. (2005). This translation grid would yield 9
subunits in the case of one translated template and 27 subunits for models based on three
translated features, which is on the order of the range of experimentally observed numbers
of subunits.

Across our population of 53 V1 complex cells, we find that both position-specific and
position-invariant models could account for a larger amount of information in the neural
response when more templates were included (Fig. 9, see Methods for details of information
calculation). However, an interesting transition was observed with increasing the number of
features. The translation invariant models with one relevant template accounted for
significantly (p < 10−5, Wilcoxon signed-rank test) more information in the neural responses
than position-specific models with one relevant feature. The same comparison was true for
models with two features (p = 0.0005, Wilcoxon signed-rank test, panel B). With three
relevant templates, the position-specific models performed as well, across the population, as
translation invariant models (p = 0.06, Wilcoxon signed-rank test, panel C). Thus, position-
invariant and position-specific models offer complementary paths to approximate the neural
computations observed across the population of V1 complex cells. At the same time, there
were individual neurons whose responses could be predicted substantially better by either
the position-invariant or the position-specific models. In Figure 10, we show the estimation
of the two kinds of models for a V1 complex cell that was better described with a position-
invariant three-template model than with a position-specific model. Figure 11 shows
estimation results for a complex cell that was better described by a position-specific three-
template model than by a position-invariant model. Tables 2 and 3 show the performance of
one-, two-, and three-dimensional position-invariant and position-specific models according
to a number of measures of predictive power, including the correlation coefficients of
predicted firing rate with the average firing rate for example cells shown in Figure 10 and
Figure 11, respectively. Comparison between these two examples suggests that relevant
stimulus features estimated with a better performing model have higher signal-to-noise ratio
(represented in the color map) and are also more localized in space. For the example neuron
in Fig. 10 that was better described with an invariant model, the relevant stimulus features of
the position-specific model are more spatially distributed than those of the position-invariant
model. Similarly, for the example neuron in Fig. 11 that was better described with a
position-specific model, the relevant stimulus features of the invariant models are more
blurred. When fitting a position-invariant model to a position-specific unit, each of the
model locations could fit the unit with a translated template. Since they use the same
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template, the model template becomes the average of the translated templates, which is a
blurred version of the position-specific template. Likewise, when fitting a position-specific
model to a position-invariant unit, the model could fit each of the locations with a translated
template which results in a blurred template. Thus, the mismatch between the structure of
the underlying neural computation and the estimation model is likely to result in the blurring
of the relevant stimulus features, as also shown with a model neuron in Figure 4C.

In addition to comparing position-specific and position-invariant models with the same
number of features, one can ask whether models with a single translation invariant template
can outperform position-specific models with multiple features. To carry out this
comparison, we recall that models with a smaller number of dimensions are at an inherent
disadvantage because adding even a random dimension to the model will almost surely
improve information explained (Fairhall et al., 2006). This is because information
characterizes predictive power of a given set of features up to any one-to-one transformation
of the nonlinearity (the nonlinear gain function is recomputed for a given data set). The
information gain from adding a random dimension is not artefactual perse, because random
dimensions will always have a small component along relevant dimensions. With natural
stimuli, this can lead to appreciable information gain (Sharpee et al., 2004), making it
difficult to compare models with different numbers of features. Therefore, to compare
models with different number of features we used a correlation coefficient between the
predicted and measured firing rates on a test set, under conditions where both the features
and the nonlinear gain function were computed from the training data set (see Methods).
Unlike the information, this quantity should decrease if more features are added into the
model than necessary to explain the responses. Here we find that majority of V1 complex
cells (37/53) are better described by a translation invariant model based on just one feature
than by a position-specific model with three features (Fig. 9D, signed-rank test across the
population yielded p = 0.0001). Furthermore, across the population the mean correlation
coefficient decreased with the addition of extra features to the translation invariant model (p
= 0.01 was obtained from signed-rank test for population comparisons both between one-
feature vs two-feature translation invariant models and between two-feature vs three feature
translation invariant models). Panels E and F show comparisons between two- and three-
feature translation invariant models compared with three-feature position specific model. In
sum, the fact that position-invariant models yield improved predictive power over position-
specific models serves as proof-of-principle that the proposed two-step optimization can
provide useful characterization of neural responses.

4 Summary
This paper considered the problem of finding relevant image features in the situation where
they can appear anywhere within the visual field to trigger the neural responses. We focused
on estimating these relevant image features from neural responses to natural stimuli because
neurons in the corresponding high-level visual areas typically respond poorly to randomized
images, such as white noise, and require the presence of structured image features to
produce robust responses. Our method characterizes translation invariant feature selectivity
using an iterative two-step optimization. The first step involves obtaining the estimates of
locations associated with the neural response based on the initial estimate of the relevant
image feature. The second step involves updating the optimal image feature given an
estimate of the location within each image responsible for triggering the neural response.
We found that such a two-step optimization can produce reliable estimates of both the
relevant image features and the nonlinear transformation describing how the stimulus
similarity to the relevant image feature increases the neural spike rate (Fig. 5). Furthermore,
the algorithm can provide estimates of the coarseness of the translation grid that is most
consistent with the data. In most cases, the appropriate coarseness of the translation grid can
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be determined as the coarsest that is consistent with the data. This is because considering
finer than necessary translation grids did not typically lead to a decrease in predictive power
compared to the model translation grid (Fig. 7B). These results mirror those reported with
psychophysical data by Tjan and Nandy (2006) where the lower bound on the spatial range
of stimulus uncertainty could be determined much more precisely than the upper bound. At
the same time, we find that for cells with a coarse translation grid, both finer and coarser
translation grids could be distinguished from the one used in the model based on the
decrease in the resulting predictive power (Fig. 7A).

From a practical standpoint, we considered two approaches (direct and Fourier) for
characterizing translation invariant feature selectivity. For large data set sizes and available
computational resources, both the direct and Fourier approaches will yield converging
estimates of the relevant image features. However, the two approaches are complementary
in terms of their trade-offs between the sizes of the translation grid and the relevant image
features that they can handle. The Fourier approach can typically handle finer translation
grids but will yield coarser (or less reliable) estimates of the relevant image template, than
the direct approach. At the same time, the convergence result of the Fourier approach (Fig.
8) is encouraging, as the projection between the model and estimated relevant image
features were greater than 0.85 (for the perfect estimation, the projection value would be
precisely 1), even in the regime of undersampled data sets where the number of spikes was
less than the stimulus dimensionality.

Using the new algorithm to characterize responses of V1 complex cells to natural stimuli,
we found that, across the population, neural responses were equally well described by both
the translation invariant model and the position-specific model with three features. This
suggests that the two models provide complementary approaches for characterizing
responses of V1 neurons. At the same time, Mechler and Ringach (2002) noted that the
standard (and so far the only available) measure for classifying simple and complex cells in
V1 based on responses to moving gratings might not be appropriate. This leaves open the
possibility that the set of complex cells we analyzed might be actually comprised by cells
that perform different types of computations. We found that some neurons in our population
were substantially better described by a position-invariant model with three templates than
by a position-specific model (Fig. 9C). At the same time there were other neurons for which
position-specific models worked significantly better. Furthermore, using correlation
coefficients between measured and predicted firing rates on a novel data set, we find that
even models with a single translation invariant feature can yield better predictive power than
models with three position-specific features (Fig. 9D). In sum, translation invariant models
represent an alternative and complementary way of characterizing responses of V1 neurons
compared to existing methods.

The described approaches can be extended to other types of invariance, such as scaling. This
can be done with the current algorithm by augmenting stimuli with those from different
scales and expanding the grid of possible translations to include points corresponding to
stimuli of different scales. Finally, we would like to emphasize that although we have
focused on characterizing responses of visual neurons that show tolerance to translation of
the preferred image feature, the described methods are statistical in nature, and can be used
for analyzing responses of neurons in other sensory modalities that show invariance to
appropriate transformations, such as pitch and tempo for high-level auditory neurons.
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5 Methods
5.1 Analysis of V1 responses

The responses of V1 complex cells were recorded while the animal was presented with
natural movies and were collected as part of a previous study (Sharpee et al., 2006). The
data set for each neuron consisted of three sets of responses: responses to a relatively long
sequence (~ 10 min) of different natural scenes (“unrepeated” data set), responses to a
shorter stimulus sequence (~ 10 sec) repeated 55 times (“repeated” data set), and responses
to moving gratings of optimal orientation and spatial frequency. In some neurons, the
responses to multiple blocks of these kinds of stimuli were also available. Neurons were
selected as complex if the modulation of their responses to moving gratings at the stimulus
frequency F1 was less than the mean elicited firing rate F0 (Skottun et al., 1991). Natural
movies were presented at 30 Hz; both stimuli and spike trains were binned into 33 msec
time bins. Multiple occurrences of spikes in a bin were added (responses were not
binarized).

5.2 Finding relevant stimulus features
For position-specific LN models, the relevant stimulus features were computed as
dimensions in the stimulus space that accounted for the maximal amount of information in
the neural response (Sharpee et al., 2004). The first maximally informative dimension (MID)
was found by maximizing the KL divergence in Eq. (4) between the probability distribution

(14)

and

(15)

When computing the spike-conditional probability distribution Pv⃗(x|spike), projections from
a given stimulus were included as many times as the number of spikes elicited by this frame.
The resulting histogram was normalized to sum to 1 by dividing by the number of spikes.
This procedure is consistent with a Poisson assumption of independent spikes (Sharpee,
2007).

The optimization algorithm (Sharpee et al., 2004, 2006) consisted of a series of 1D line
optimizations along the gradient of information. During each line optimization, points that
led to decreases of information were occasionally accepted with probability exp(−ΔI/T),
where ΔI is the decrease in information associated with acceptance of the new estimates of
relevant dimensions, and parameter T – effective temperature – controls the probability of
accepting decreases in information of large magnitude. Dimensions that led to an increase in
information were always accepted. The optimization procedure started with the value of
effective temperature T = 1. The effective temperature decreased by a factor of 0.95 after
each line maximization until it reached the value of 10−5. After that temperature increased
by a factor of 100, and the iteration continued. The maximum number of line maximizations
was 1000. Performance of the current dimension was evaluated on the test set after every
line maximization. Dimensions with the best performance on the test set were used as the
MIDs. The search for the first MID was initialized as the spike-triggered average.

After the first MID was computed, we initialized the second dimension as a random segment
of the stimulus, and optimized a pair of dimensions to capture the maximal amount of
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information about the arrival times of the single spikes in this case. The corresponding
optimization function is given by:

(16)

where x1 and x2 represent stimulus components along dimensions v⃗1 and v⃗2, respectively.
The probability Pv⃗1, v⃗2 (x1, x2) represents the probability distribution of stimulus
components along dimension v⃗1 and v⃗2, and Pv⃗1v⃗2 (x1, x2|spike) is the analogous probability
distribution computed by taking only stimulus segments that lead to a spike. Dimensions v⃗1
and v⃗2 that at the end maximize Eq. (16) correspond to MID1 and MID2. Following
optimization of the second dimension, the third dimension was added to the model and
optimized using the three-dimensional probability distributions Pv⃗1v⃗2v⃗3 (x1, x2, x3) and
Pv⃗1v⃗2v⃗3 (x1, x2, x3|spike)

For position-invariant models, the first dimension was estimated by maximizing the KL

divergence in Eq. (9) between probability distribution  and  computed
according to Eqs. (7, 8) with respect to maximal projections across patches of each image.
The optimization used the same algorithm as described above for the position-specific case,
with the only modification that patch locations yielding maximal projections onto the
current estimate of the template were updated after each line optimization. Using locations
that provided the greatest match to the first template v⃗1, we then analyze the stimulus/
response pairs to estimate the additional templates.

The estimates of relevant templates for each type of a model (with or without position-
invariance) were obtained from the unrepeated data set. In each case, we obtained four
jackknife estimates by leaving out a different consecutive 1/4 of the unrepeated data set as a
validation data set and using the remaining 3/4 of the unrepeated data set as a training data
set. The results of optimization that gave the best performance on the validation data set
were then averaged across the four jackknife estimates to produce the estimated templates.

5.3 Quantifying predictive power of models
Information explained—To evaluate and compare performance of different kinds of
models we then used a separate repeated data set (see above) to compute the mutual
information accounted for by a given type of model. The mutual information was computed
in the same way as during the optimization process (see preceding subsection 5.2), but using
the repeated data set instead of the unrepeated data set that was used to find the relevant
features. The advantage of using information as a measure of predictive power is that it
characterizes how well a given set of features can account for spike times with a flexible
nonlinear gain function. We note that the information values are however dependent on the
number of bins. Here, we used seven bins to discretize probability distributions along each
of the relevant dimensions. The dependence on the number of bins is typically largely
independent of the features themselves, so that models evaluated using the same number of
bins can be directly compared to each other. However, this dependence on binning makes it
difficult to compare models with different number of relevant features.

Information per spike—The values for the single-spike information captured by different
types of models were then compared to the overall information carried by the arrival times
of single spikes, Ispike. Information Ispike about the stimulus carried by the arrival times of
single spikes can then be computed using the average firing rate r(t) as (Brenner et al.,
2000):
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(17)

where r̄ is the average stimulus evoked firing rate. This equation corresponds to Eq. (5)
following the substitution of averaging over time with averaging over the stimulus
probability distribution. This information measure makes no assumptions about the number
of relevant stimulus dimensions nor about the shape of the nonlinear gain function
describing the dependence of spike probability on the relevant stimulus components.
Therefore, it can be used to quantify the performance of any model of a reduced
dimensionality, such as models with and without position invariance.

Both the overall amount of information and the information accounted by different
estimated models contain a positive bias, which decreases as more data are collected
(Brenner et al., 2000; Strong et al., 1998; Treves and Panzeri, 1995). To correct for this bias,
we computed information values based on different fractions of the repeats (80–100%), and
then used linear extrapolation to find values predicted for infinite number of repetitions.
This procedure was used to correct for bias in all information values (Ispike and information
along one or more dimensions v⃗). The amount of correction varied between 3% and 15%
depending on a neuron and type of model.

Maximal explained variance—Similar to information, one can also compute the
maximal amount of variance that a given set of features can account for the observed
responses with a flexible nonlinear gain function (Sharpee, 2007), comparing this to the
overall variance in the firing rate. The latter quantity is given by

(18)

It provides the maximal bound on the amount of variance that can be accounted for by any
model. The variance accounted for by a model with multiple dimensions v⃗1, v⃗2, v⃗3 can be
computed using the following equation (Sharpee, 2007):

(19)

Similar to the information per spike and information explained, the values for the variance in
the firing rate Eq. (18) and variance accounted for by the model Eq. (19) contain a positive
bias (Machens et al., 2004; Sahani and Linden, 2003). To correct for this bias, we used the
same procedures as described above in the case of information values. To refer to this
quantity as “maximal explained variance” to emphasize the fact that it is based on an
unconstrained nonlinear gain function.

Correlation coefficients—To characterize predictive power of both the estimated
features and nonlinear gain functions, we also computed correlation coefficients between
predicted and measured firing rates. Here, we use both the filter and the nonlinear gain
functions derived from the unrepeated data to predict the neuron’s firing rate for the
repeated stimulus data set. The nonlinear gain function was estimated in a binless manner
using Gaussian kernel density:
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where x⃗ describes projections along the relevant dimensions measured in their standard
deviations, index j enumerates stimuli in the training data set, rj is the measured spike rate
for training stimulus j with projections onto relevant dimensions x⃗j. The width ν of the
Gaussian kernel was 0.1. We note that correlation coefficients are also linearly related to
percent explained variance by the full model (features and nonlinear gain function estimated
from the training data set and applied to test data set) up to the rescaling in the mean evoked
firing rate. The mean evoked firing rate could be different between the training and test data
sets, and previous studies have sought to compensate for this effect when evaluating the
predictive power (Fairhall et al., 2006). Correlation coefficients were also extrapolated to
infinite data set limit using the same procedure as described above for information and
maximal variance explained.
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Figure 1.
(A) Model of neural response based on one translation invariant stimulus feature. The spike
probability represents a logical OR combination of responses from hidden, position-specific
units that are selective for the same stimulus feature centered at different retinotopic
coordinates. (B) An example of a discrete 3 × 3 grid approximation that can be used to
model invariance of neural responses to image translation. The shaded square denotes the
spatial extent of the preferred image feature; nine possible ways of centering the preferred
template within the overall stimulus are shown.
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Figure 2. Statistical description of neural responses along relevant and irrelevant dimensions
In the framework of the position-specific model, some images elicit spikes (black) and
others do not (gray). Here each of the images s⃗ is represented as a point in a two-
dimensional space, although it is a point in a high d-dimensional space (each axis may
correspond to the luminance of a pixel). Because the vertical dimension (x2) does not affect
the spike probability, the probability distribution of stimuli along that dimension P (x2) is
similar to the distribution of stimuli given a spike P (x2|spike). On the other hand, the
horizontal dimension x1 can account for the spiking behavior, because the spikes are
observed whenever the stimulus component x1 exceeds a certain value.
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Figure 3. Two approaches for characterizing translation invariant feature selectivity
(A) In the direct approach, we seek a template whose spatial extent is smaller than the
overall stimulus that covers the response region of a neuron. The spike probability is
examined by translating the candidate template to different locations of the translation grid
(shown here for a 3 × 3 grid). (B) In the Fourier approach, in order to account for the
translation invariance, the template is shifted to different locations of the translation grid
assuming periodic boundary conditions. Compared to the direct approach, the Fourier
approach can typically handle finer translation grids (due to memory restrictions in the direct
approach), but it yields coarser estimates of the template because of the need to leave larger
margins when using periodic boundary conditions.
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Figure 4. Feature selectivity of translation invariant neurons cannot be characterized without
taking this invariance into account
(A) The relevant feature of a model neuron with translation invariant responses. The centers
of the 3 × 3 translation grid are marked with crosses. (B) The nonlinear gain function of the
translation invariant model cell evaluated at the location producing a maximal projection
with the model template (θ = 2.5, σ = 1.0, stimulus repeated 20 times). (C) The estimated
template without taking into account translation invariance. (D) Comparison of the nonlinear
gain functions with respect to the estimated filter (solid line) with the nonlinear gain
function with respect to the model template at the central location of the translation grid
(dashed line). Both functions are computed without translation invariance. The observed
increase in the nonlinear gain function for negative projection values is due to the overlap
between the templates centered at neighboring positions of the translation grid.
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Figure 5. Estimation of translation invariant models
(A) The relevant template of the model neuron overlayed with the 3×3 translation grid
(whose points are marked by crosses). (B) Comparison between the nonlinear gain function
of the model cell (solid line) and the translation invariant estimation (dashed line). In
contrast to the case of estimation without translation invariance, cf. Fig. 4, this estimation
does reproduce the correct, sigmoidal form of the nonlinear gain function. (C) The Fourier
method estimation using the 3×3 translation grid (same grid as in the model) yields a dot
product of c = 0.897 ± 0.008 and a fraction of information explained Iexpl = 0.963 ± 0.006 (1
is the maximum). (D) Analogous estimation using the direct method yielded c = 0.899 ±
0.011 and Iexpl = 0.969 ± 0.008. Assuming a mismatched 5 ×5 translation grid (compared to
the model) still leads to reasonable estimation results using either the Fourier method (E), c
= 0.790 ± 0.004 and Iexpl = 0.826 ± 0.002, or the direct method (F), c = 0.78 ± 0.02, Iexpl =
0.826 ± 0.003. (G) Comparison of model spike probability (black line, gray area shows
standard errors of the mean) and the predicted spike probability (blue) using the template
and model from panel D. Predictions were made for a novel set of frames not used in
estimating the model.
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Figure 6. Example of algorithm convergence
(A) Convergence in terms of information explained on the test data set by the candidate
template. (B) Convergence in terms of projection of the candidate template onto the model
template. In both panels, the four different lines correspond to four different jackknife
analyses of the same model neuron. In the case of information, different final values are due
to differences in the overall information per spike in a particular test data set. According to
both parameters the algorithm converges in all cases within 100 iterations, less than d = 256
of the template space. Insets in (B) show the estimated templates after 1, 5, 10, and 15 line
optimizations.
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Figure 7. Recovering the coarseness of translation invariance
The percent of information explained is plotted as a function of the translation grid size
assumed during estimation. (A) Model cells with a 3 × 3 translation grid, σ = 1.0, θ = 2.5,
2.75, 3.0 analyzed from 20 repeats of the whole stimulus sequence (16, 384 frames). The
best predictive power is obtained when the same grid is used during estimation. Significant
t-tests are obtained for the difference between the peak value and the value for 1 × 1 grid
and 5 × 5 grid (p < 10−4, t-test). (B) Model cells with 5 × 5 translation grid and θ = 3.0,
3.25, 3.75 (other parameters are the same as in (A)). The use of coarser translation grids
results in significantly worse performance (p < 10−4); however finer translation grid results
in the same performance (p = 0.16). (C) Model cells with 17 × 17 translation grid, θ = 4.0,
4.25, 4.50. This is the case of perfect translation invariance with the grid spacing of 1 pixel.
We find that the performance of the estimation algorithm continues to improve from 5 × 5 to
9 × 9 grids (p < 10−4). In all cases, therefore, the algorithm could disambiguate coarser
translation grids from the true ones.
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Figure 8. Projection between estimated and model dimensions as a function of the number of
spikes
Nspikes. Improvement in performance with increasing number of spikes is shown for 12
model cells. All of the model cells had the same relevant template as in Fig. 5A and
translation grid 3 × 3, but different noise levels and thresholds θ = 2.5 (A), θ = 2.75 (B)), θ
= 3.0 (C), and θ = 3.5 (D). Within each panel, model cells have σ = 0.5 (light gray, ○), 0.75
(dark gray, ▽), and 1.0 (black, □). The solid and dashed lines represent results of quadratic
and linear regressions. Stimulus dimensionality D = 1024, corresponding to frames with 32
× 32 pixels. Results were obtained using the Fourier approach. Good performance is
obtained for all models cells even in the severely undersampled regime with D > Nspikes. As
expected, the improvements with increasing the number of spikes are more pronounced for
neurons with larger noise levels.
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Figure 9. Population analysis of predictive power of position-specific and position-invariant
models for V1 complex cells
Fraction of information explained by models with one (A), two (B) and three (C) features.
Correlation coefficients between measured and predicted firing rates are compared for
models with one (D), two (E), and three (F) translation invariant features with correlation
coefficients obtained with the three-feature position-specific model. Models with the same
number of features can be compared according percent information values (A–C), whereas
models with different number of features can be compared according to correlation
coefficients (D–F). Across the population, position-invariant models with one or two
features outperformed their position-specific counterparts. Furthermore, significant
improvements were observed for some of the neurons considered individually (points
marked with empty circles, P < 0.05 t-test), where even the models with single translation
invariant template outperformed the models with three position-specific features (D).
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Figure 10. Example V1 complex cell that was better described with a position-invariant model
(A) Three relevant spatiotemporal features for a position-specific LN model are shown.
Each feature is shown in a separate row and represents a spatiotemporal profile covering
three time lags from −132 to −33 msec before the spike arrival time. Results are shown as
averages over four jackknife estimates of each feature. The color scale denotes signal-to-
noise ratio relative to the variance across the jackknife estimates, which was corrected for
overlapping data in the jackknife estimates (Efron and Tibshirani, 1998). (B) Three relevant
spatiotemporal templates of a position-invariant LN model, notations are as in (A). Firing
rate predictions were made using these models for a novel, repeated data set. Predictions
using the position-specific models (C) and position-invariant models (D) are shown using
red, blue, and green lines for models based on one, two and three features, respectively. The
measured firing rate (black line) is shown together with its standard error of the mean (gray
shading), Neuron 883-2.
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Figure 11. Example V1 complex cell that was better described with a position-specific model
Notations are as in Figure 10. Neuron 772-2.
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Table 1

The combinations of parameters used to generate the model cells. The values of threshold θ and noise level σ
are measured in units of the standard deviation of the stimulus projections onto the relevant template. A total
of 45 different model cells were analyzed, each of which analyzed for six different numbers of repeats of the
whole stimulus sequence. The stimulus length was 16, 384 frames. Given the frame size 32 × 32, and the
template size of 16 × 16, the 17 × 17 translation grid corresponds to full translation invariance (all patches are
considered). To maintain the average spike rate of the translation invariant model cell within a reasonable
range, we had to adjust the spike thresholds θ for hidden units depending on the translation grid. Finally, we
also explored how results of the estimation improved with an increasing number of spikes for a given model
cell, by simulating several batches of responses to the same repeated stimulus sequences (see Sec. 3.4 below).

Spike threshold

Noise level Number of repeats3×3 5×5 17×17

2.5 3.0 4.0 0.5 1

2.75 3.25 4.25 0.75 2

3.00 3.50 4.50 1.0 3

3.25 3.75 4.75 5

3.50 4.00 5.00 10

20
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Table 2

Measures of predictive power of position-specific and position-invariant models for an example neuron from
Figure 10 that was best described by a position-invariant model. Models with one, two, and three features are
denoted as 1D, 2D, and 3D, respectively. The means and standard deviations are reported.

Information Fraction Max Variance Fraction Correlation coefficients

Position-specific

1D 0.159 ± 0.003 0.121 ± 0.011 0.367 ± 0.002

2D 0.336 ± 0.005 0.31 ± 0.02 0.477 ± 0.003

3D 0.525 ± 0.008 0.72 ± 0.04 0.468 ± 0.002

Position-invariant

1D 0.287 ± 0.005 0.197 ± 0.009 0.511 ± 0.003

2D 0.453 ± 0.007 0.42 ± 0.02 0.476 ± 0.003

3D 0.614 ± 0.011 0.81 ± 0.04 0.614 ± 0.002
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Table 3

Measures of predictive power of position-specific and position-invariant models for an example neuron from
Figure 11 that was best described by a position-specific model.

Information Fraction Max Variance Fraction Correlation coefficients

Position-specific

1D 0.190 ± 0.006 0.114 ± 0.009 0.329 ± 0.002

2D 0.350 ± 0.007 0.39 ± 0.03 0.423 ± 0.003

3D 0.532 ± 0.013 0.79 ± 0.05 0.453 ± 0.002

Position-invariant

1D 0.211 ± 0.006 0.094 ± 0.006 0.445 ± 0.004

2D 0.337 ± 0.008 0.204 ± 0.012 0.507 ± 0.003

3D 0.518 ± 0.010 0.47 ± 0.03 0.240 ± 0.004
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