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We propose a new principle for replicating receptive field properties of
neurons in the primary visual cortex. We derive a learning rule for a
feedforward network, which maintains a low firing rate for the output
neurons (resulting in temporal sparseness) and allows only a small sub-
set of the neurons in the network to fire at any given time (resulting in
population sparseness). Our learning rule also sets the firing rates of the
output neurons at each time step to near-maximum or near-minimum lev-
els, resulting in neuronal reliability. The learning rule is simple enough
to be written in spatially and temporally local forms. After the learning
stage is performed using input image patches of natural scenes, output
neurons in the model network are found to exhibit simple-cell-like recep-
tive field properties. When the output of these simple-cell-like neurons
are input to another model layer using the same learning rule, the second-
layer output neurons after learning become less sensitive to the phase of
gratings than the simple-cell-like input neurons. In particular, some of
the second-layer output neurons become completely phase invariant, ow-
ing to the convergence of the connections from first-layer neurons with
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similar orientation selectivity to second-layer neurons in the model net-
work. We examine the parameter dependencies of the receptive field
properties of the model neurons after learning and discuss their bio-
logical implications. We also show that the localized learning rule is
consistent with experimental results concerning neuronal plasticity and
can replicate the receptive fields of simple and complex cells.

1 Introduction

Neuronal networks and their learning rules have evolved to maximize
metabolic and information efficiencies in coding stimuli by reducing redun-
dancy in the coded signals (Barlow, 2001). Neuronal networks can reduce
redundancy in response to natural stimuli that exhibit statistical regulari-
ties, thereby reducing the metabolic cost required for spike generation. For
example, neurons in the visual cortex do not respond to constant stimuli
with constant firing rates. Because luminance in the visual field changes
infrequently, these neurons can accommodate and reduce their firing rates
for constant stimuli and increase their firing rates only when the stimuli
change. This accommodation allows the neurons to reduce the number of
spikes without reducing or losing information about the stimuli. This prin-
ciple of redundancy reduction explains phenomena such as light and dark
adaptation, lateral inhibition, coding of motion, the orientation selectivity
of simple cells, and the accommodation of sensory discharges to constant
stimuli.

Barlow (2001) proposed sparse coding as a way for neurons to represent
stimuli with reduced firing rates. Studies by Attwell and Laughlin (2001)
and Lennie (2003) estimated the energy consumed by neurons in the brain,
and according to Lennie’s estimate, the average spike rate is as low as 0.16
spikes per second per neuron. Sensory input is thus represented by this
small number of firings in the cerebral cortex, with each neuron discharging
spikes at a low rate and only a small number of neurons in a large population
active at any given time.

The most successful models based on the idea of sparse coding are those
with simple cells in the primary visual cortex (V1). Olshausen and Field
(1996) showed that when natural images are represented with minimal
neuronal activity, receptive field properties similar to those found in the
simple cells of V1 emerge. Sparse coding appears to be closely related to
independent component analysis (ICA). For example, Bell and Sejnowski
(1997) showed that the decomposition of natural scenes into independent
sparse representations replicates the receptive fields of simple cells. In ad-
dition to these statistical and information-theoretical models, Falconbridge,
Stamps, and Badcock (2006) showed that the biologically based neuronal
network model proposed by Földiák (1990) can replicate the receptive fields
of simple cells.
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The most successful model of complex cells to date is the model pro-
posed by Karklin and Lewicki (2009), which is based on probability esti-
mations of natural scenes and which assumes sparse neuronal activity. This
model replicates the emergence of complex-cell-like receptive fields and of
receptive fields for spirals that have been observed in neurons in higher
visual areas (Gallant, Connor, Rakshit, Lewis, & Van Essen, 1996). How-
ever, the model has overly complicated dynamics, and the learning rule,
in which the output of each complex cell depends on the output of other
complex cells in the network, is not biologically plausible because of this
nonlocal property.

In this letter, we propose a new model that replicates the receptive fields
of not only simple cells but also complex cells. The remainder of this letter
is organized as follows. In section 2, we define temporal and population
sparseness, which constitute two measures of the sparseness of neuronal
firings in a network, and describe how to increase firing sparseness in a
feedforward network. We identify reliability as an additional key property
of functional neuronal networks, which must be imposed on our model
because random and input-independent firing patterns can be perfectly
sparse. Then we derive a learning rule that improves both sparseness and
reliability in a feedforward network. In section 3, we show that our proposed
model replicates the receptive fields of simple cells in V1 and examine how
the neurons’ receptive field properties depend on the values of the model’s
parameters. We then show that if the simple-cell-like output of a layer is fed
to another layer that has the same learning rule, the model neurons in the
second layer become less phase sensitive, exhibiting one of the properties
of complex cells in V1. We also derive a spatially and temporally local
learning rule and offer a physiological interpretation of the local learning
rule. In section 4, we compare our proposed model with previous models.
We also discuss the limitations of our proposed model along with some open
questions, describing how to extend our proposed model to overcome these
limitations.

2 Models

2.1. Concepts. Sparse coding includes two concepts: temporal sparse-
ness and population sparseness.

2.1.1 Temporal Sparseness. Willmore and Tolhurst (2001) defined tem-
poral sparseness as lifetime sparseness. A neuron’s activity is temporally
sparse if its average firing rate over time is low. Figure 1A shows an exam-
ple of a temporally sparse firing pattern in which each neuron fires only
once, whereas Figure 1D shows the example in which the firing rate of
the neurons at the top is much more frequent and is therefore not tempo-
rally sparse. From a biological viewpoint, because decreasing the average
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Figure 1: Temporal and population sparseness and reliability. (A) The third
neuron from the top fires only once in five time steps; this firing is therefore
temporally sparse. (B) At t = 3, only one neuron fires; this firing is therefore
population sparse at t = 3. (C, D) Temporal sparseness does not necessarily
imply population sparseness, and vice versa. (E) A reliable neuron responds
to specific stimuli with a high firing rate and does not respond to other in-
puts; this neuron is selective to stimulus d. (F) An unreliable neuron fires with
intermediate probabilities to all the stimuli.

firing rate of a neuron reduces the energy required for generating spikes,
temporally sparse code is advantageous for survival.

Furthermore, temporally sparse codes represent external stimuli in a
biologically plausible manner; for example, the idea of temporal sparseness
underlies the most widely used ICA algorithms (Bell & Sejnowski, 1995,
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1997; Olshausen & Field, 1996; Karklin & Lewicki, 2005, 2009). In these
algorithms, the probability distribution of each component is assumed to
have high kurtosis, and thus the outputs rarely have large values. The
temporally sparse coding used in these algorithm can extract statistically
independent edge-like components from natural scenes, components for
which simple cells in V1 are also selective. Thus, temporally sparse code is
an efficient and biologically plausible code for representing stimuli.

It is important to note that the definition of temporal sparseness in previ-
ous models and in the model presented here is independent of the temporal
succession of input patterns that are fed to the model network. What matters
in temporal sparseness is the average firing rate; a temporally sparse firing
pattern is not necessarily a firing sequence with low temporal correlation.
Neurons in our model will fire frequently during a short time interval when
they are given a series of inputs for which they are selective.

2.1.2 Population Sparseness. In the population sparseness of Willmore
and Tolhurst (2001) and the sparse-dispersed encoding of Field (1987), only
a small subset of the coding population is active for each stimulus, and
different small subsets of the population will be activated by different stim-
uli (Willmore & Tolhurst, 2001). In population-sparse code, because only a
small subset of neurons in a network fires at each time step, there is min-
imal redundancy, which is desirable from a biological viewpoint. Figure
1B shows an example of population-sparse firings, with only one or two
neurons firing at each time step. In contrast, every neuron in Figure 1C fires
at t = 2, and so this pattern is not population sparse.

Note that temporally sparse firing patterns are not necessarily popu-
lation sparse. For example, although all the neurons in Figure 1C have
temporally sparse firing rates, the overall pattern is not population sparse
because of the synchronous burst of firing. Similarly, Figure 1D shows that
population-sparse firing patterns are not necessarily temporally sparse.

2.1.3 Reliability. An efficient representation of external stimuli in a neu-
ronal network requires not only temporal and population sparseness but
also reliable output in response to stimuli. A sensory neuron should re-
spond to some specific stimuli with a high firing rate and to other stimuli
with a low firing rate. In other words, the neuron must reliably respond to
inputs. Figure 1E shows a reliable neuron that fires with high probability
for some stimuli and with low probability for the others, while Figure 1F
shows an unreliable neuron that fires with an intermediate probability in
response to all stimuli.

2.2. Model Network and Learning Algorithm. In this section, we de-
scribe our proposed model. Our neuronal network is a feedforward network
in which the output yi(t) of neuron i at time t depends on only the input vec-
tor [x j(t)] at time t and thus is independent of earlier inputs and the states of
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other output neurons at time t. The output yi(t) of neuron i corresponds to
the firing rate of the neuron in response to the stimulus [x j(t)] presented at
time t. We assume that the firing rate of each output neuron ranges between
0 and 1. N output neurons receive input from M input neurons according
to the weight matrix (Wij). The output of neuron i at time t is calculated as

yi(t) = 1

1 + exp
(
−∑

1≤ j≤M Wi jx j(t) + hi(t)
) , (2.1)

where x j(t) is the firing rate of input neuron j at time t, and hi(t) is the firing
threshold for neuron i at time t.

All simulations except those shown in Figures 2B and 8B were performed
for 10,000 blocks, each containing T = 10,000 time steps. The simulation in
Figure 2B was performed for 30,000 blocks because the connections between
input and model neurons developed slowly in the simulation. The simula-
tion in Figure 8B was performed for 3000 blocks to reduce simulation time.
Learning was implemented by updating the weight matrix (Wij). We used
a batch learning process to accelerate the simulation. Although batch learn-
ing does not seem to be biologically plausible, the online learning described
later in this letter produces results that are similar to the formation of the
receptive fields of simple cells (see Figure 8). Our method is both simple
and biologically plausible.

We imposed temporal sparseness using equation 2.2 to update the thresh-
old hi(t) for each output neuron i at each time step t with the mean firing
rate of neuron p̄,

hi(t + 1) = hi(t) + ε(yi(t) − p̄). (2.2)

This threshold update corresponds to the homeostatic plasticity observed
by Desai, Rutherford, and Turrigiano (1999). If neuron i fires too frequently,
the threshold hi rises; conversely, if neuron i fires too rarely, the threshold
drops. In all simulations presented in this letter, we set the output neurons’
mean firing rates to values less than 0.05 and the parameter ε to 0.01. These
values produced a stable emergence of the receptive field properties similar
to those found in the neurons in V1.

To maximize population sparseness, we derived a function that measures
population sparseness. As shown in Figure 1B, firings in a neuronal network
are more population sparse when they are uncorrelated, while firings are
less population sparse when they are correlated (i.e., if most neurons in the
network fire simultaneously). Consequently, a population’s firing rate at
each time step is either very high and or very low if it is less population
sparse. As an example, all the neurons in Figure 1C fire at certain time
steps, whereas they are all quiescent at other time steps. We can therefore
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measure population sparseness as the sign-inverted summation of the firing
correlation among the model neurons,

S = −E

⎡
⎢⎢⎣

∑
1≤i≤N
1≤ j≤N

i�= j

yi(t)y j(t)

⎤
⎥⎥⎦ ,

where E[·] is the block temporal average over the inputs, that is, E[ f (t)] =
1
T

∑
1≤t≤T f (t). Maximizing S anticorrelates the activity of the neurons,

thereby making the firing patterns population sparse. Although functions
other than S could be used to measure population sparseness, the simplicity
of S allowed us to effectively maximize population sparseness by using a
simple learning rule.

Similarly, we define a function to measure reliability so that we could
maximize reliability. A reliable model neuron should respond to some spe-
cific stimuli with a high firing rate and to other stimuli with a low firing
rate. We define the reliability function Ri for neuron i as

Ri = E
[
yi(t)

2] ,

where different stimuli are given to the network at each time step in order to
obtain the block temporal average. Because f (x) = x2 is a convex function,
this function is maximized when the firing rate yi(t) reaches its maximum
1 in p̄T out of the T time steps and 0 in the other time steps. In other words,
the reliability function Ri is maximized if neuron i exclusively responds to
p̄T out of T stimuli.

Combining the functions that measure population sparseness and relia-
bility, we obtain the objective function given as

F =α
∑

1≤i≤N

Ri + βS

=αE

⎡
⎣ ∑

1≤i≤N

yi(t)
2

⎤
⎦ − βE

⎡
⎢⎢⎣

∑
1≤i≤N
1≤ j≤N

i�= j

yi(t)y j(t)

⎤
⎥⎥⎦ . (2.3)

This objective function is maximized through changes in the connection
weight matrix (Wij) from input to output neurons. A small ratio α/β

makes the neurons in the network more population sparse and less reliable,
whereas a large ratio α/β makes the neurons in the network less population
sparse and more reliable. Parameters α and β should be tuned appropri-
ately for each learning problem. Because the first and second terms are
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the summations of N and N(N − 1) terms, respectively, β should be scaled
proportionally to 1/(N − 1) ≈ 1/N in order to balance population sparse-
ness and reliability. We present the value of β ′ = Nβ instead of β in the
following specification of simulation parameters. For most of our simu-
lations, the value of the parameter α is 1, and the value of β ′ is 1 in all
simulations except for the simulation shown in Figure 2E.

To adjust the connection weight matrix, we differentiate F with respect
to zi (Wij or hi) as follows:

∂F
∂zi

= E

⎡
⎢⎣∂yi(t)

∂zi

⎛
⎜⎝2αyi(t) − 2β

∑
1≤k≤N

k �=i

yk(t)

⎞
⎟⎠

⎤
⎥⎦ . (2.4)

Substituting

∂yi(t)
∂Wi j

= yi(t)[1 − yi(t)]x j

and

∂yi(t)
∂hi

= −yi(t)[1 − yi(t)]

into this equation, we obtained the following gradients of the objective
function with respect to Wij and hi:

∂F
∂Wi j

= E

⎡
⎢⎣yi(t)[1 − yi(t)]x j

⎛
⎜⎝2αyi(t) − 2β

∑
1≤k≤N

k �=i

yk(t)

⎞
⎟⎠

⎤
⎥⎦ , (2.5)

∂F
∂hi

= E

⎡
⎢⎣−yi(t)[1 − yi(t)]

⎛
⎜⎝2αyi(t) − 2β

∑
1≤k≤N

k �=i

y j(t)

⎞
⎟⎠

⎤
⎥⎦ . (2.6)

Because the threshold hi is adjusted by equation 2.2 to set the mean firing
rate E[yi(t)] to p̄, hi is dependent on Wij. In other words, hi is an implicit
function of Wij defined by

E[yi(t, {Wi j}, hi)] = p̄.
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Thus, the gradient of F with respect to Wij is given by

d
dWi j

F(t, {Wi j}, {hi})= ∂F
∂Wi j

+ ∂F
∂hi

∂hi

∂Wi j

= ∂F
∂Wi j

− ∂F
∂hi

∂

∂Wi j
E[yi(t)]

/ ∂

∂hi
E[yi(t)]

≡ �Wi j, (2.7)

where

∂

∂hi
E[yi(t)] = −E[yi(t)[1 − yi(t)]],

∂

∂Wi j
E[yi(t)] = E[yi(t)[1 − yi(t)]x j].

The learning rule for the connection weight matrix Wij is given by

Wi j ← Wi j + η�Wi j,

where η, the learning rate, was set to 1000 in all simulations in this letter. In
our simulations, the connection weight matrix Wij was updated at the end
of each block, and the average of f in each block was used as the expec-
tation E[ f ] in the above equations. We did not impose any bounds on the
value of Wij. To ensure that hi converged, we performed the calculation for
10,000 time steps, updating hi with equation 2.2 before starting the next
block. Before starting the first block, we performed a simulation consisting
of 500,000 steps in order to ensure the convergence of E[yi(t)] to p̄.

We preprocessed natural image scenes using the method described in
Olshausen and Field (1997) in order to generate the firing patterns of the
input neurons. We used randomly selected 16 × 16 image patches from the
preprocessed images and converted the pixels in these image patches to 256
real-valued inputs. This input corresponds to the output of the neurons in
the lateral geniculate nucleus (LGN), because the receptive fields of these
neurons have a spatial profile similar to the inverse Fourier transform of
the whitening filter (Olshausen, 2003).

3 Results

3.1. Simple-Cell-Like Receptive Field in the First Layer. We first ex-
amined the receptive field properties of neurons in the first layer of the
feedforward network after learning, using image patches of size 16 × 16
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from the natural image scenes as input. This network layer had 256 input
neurons, corresponding to the pixels in the input image patches. At each
time step, a new image was used as input. There were also N = 256 output
neurons in the network, and we used the parameter values p̄ = 0.01, α = 1,
β ′ = 1, η = 1000, and ε = 0.01. At the beginning of the simulation, Wij was
drawn from a uniform distribution on [−0.5, 0.5] and hi was set to 0.

The connection weights after learning show that most of the model
neurons have receptive fields that are selective to edge-like stimuli (see
Figure 2A1). For example, the left-most connection weight in the top row
of Figure 2A1 shows that this neuron responds to a vertical edge. This edge
detector–like receptive field is characteristic of the simple cells in V1 (Hubel
& Wiesel, 1962).

We imposed temporal and population sparseness and reliability on the
model neurons during the optimization process. Figure 2A2 shows the
sparseness and reliability after learning by depicting the firing activity of
the first 15 neurons in Figure 2A1 in response to the image patches. The
connection weights of these neurons, which determine the receptive field
properties, are shown at the top of the figure. We presented the image
patches shown on the left of Figure 2A2 to these neurons. The black squares
indicate that the firing rate of the neuron in the top row in response to the
image patch to the left was close to 1. Gray and white squares indicate that
the firing rate was low and close to 0, respectively. This figure shows that
few neurons fired in response to a given image patch (population sparse-
ness) and that each neuron fired in response to few image patches (temporal
sparseness). The fact that most squares are black or white and few are gray
means that the neurons were highly reliable. Thus, the optimization al-
gorithm described in section 2 successfully improved the sparseness and
reliability of the model neurons. These results suggest that given the natu-
ral scene image patches as input, the model network successfully replicated
the emergence of simple-cell-like receptive field properties for its neurons
(Hubel & Wiesel, 1962). However, the receptive field properties of the neu-
rons varied after learning, depending on the values of the parameters p̄, α,
and β ′.

To examine this dependency of the output neurons’ postlearning recep-
tive field properties, Figures 2B to 2E show the connection weights from the
input to the output neurons that resulted from simulations with different
values of p̄, α, and β ′. Figures 2B and 2C show the receptive field properties
of the output neurons after learning with p̄ = 0.002 and p̄ = 0.05, respec-
tively. The value of α in these simulations was set to 1, which is the same
value used in the simulation shown in Figure 2A1.

Figure 2C shows that with p̄ = 0.05, most neurons acquired a receptive
field property with high spatial frequencies, while the others acquired a
receptive field property with low spatial frequencies, unlike the receptive
field properties of the neurons with p̄ = 0.01 (see Figure 2A1). In contrast,
the receptive field properties of the neurons in the simulation with p̄ = 0.002
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Figure 2: Connection weights reveal the simple-cell-like receptive field proper-
ties of the neurons after learning. (A1, B–E) The following parameter values are
used: (A1) p̄ = 0.01, α = 1, β ′ = 1; (B) p̄ = 0.002, α = 1, β ′ = 1; (C) p̄ = 0.05,
α = 1, β ′ = 1; (D) p̄ = 0.01, α = 0, β ′ = 1; and (E) p̄ = 0.01, α = 1, β ′ = 0.
(A2) The activity of the first 15 neurons of the model shown in panel A1 in
response to natural scenes. Black boxes indicate that the neuron with the con-
nection weight shown on the top row responded to the image patch shown in
the left-most column.

(see Figure 2B) are not very different from those of the neurons shown in
Figure 2A1.

We interpret these results as follows. When p̄ is set to a large value, some
neurons become selective to stimuli with low spatial frequencies. To make
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the output population sparse, these neurons prevent other neurons from
becoming selective to stimuli with low spatial frequencies, and thereby
making other neurons selective to stimuli with high spatial frequencies.
Conversely, when p̄ is small, competition among the output neurons is less
severe.

Figures 2D and 2E show the receptive field properties of the output
neurons after learning with α = 0 and β ′ = 0, respectively. The average
firing rate p̄ in these simulations was set to 0.01, which is the same value
used in the simulation shown in Figure 2A1. The ratio of α to β ′ determines
the balance between population sparseness and reliability. Smaller α/β ′

ratios make the resultant network less reliable and more population sparse.
We note that the neurons are temporally sparse and population sparse
when they fire completely randomly and independently. Therefore, many
neurons lost their selectivity, making the output of neurons population
sparse in the simulation with α = 0 (see Figure 2D). This figure shows that
reliability is essential for neurons to exhibit input selectivity. Networks with
large α/β ′ ratios are less population sparse and more reliable. A small β ′

allows neurons in the network to respond to similar stimuli (see Figure 2E)
because the simultaneous firing of neurons is not prohibited in this case.
Thus, the parameters p̄, α, and β ′ affect the receptive fields of neurons after
learning, with different effects.

3.2. Complex-Cell-Like Receptive Field in the Second Layer. In this
section, we examine the receptive field properties of the second-layer model
neurons to which the output of the neurons with simple-cell-like receptive
fields is given as input. As shown in Figure 3A, we first trained 1024 neurons
with simple-cell-like receptive fields by performing a simulation with pa-
rameter values p̄ = 0.01, α = 1, β ′ = 1, η = 1000, and ε = 0.01, which are the
same values that were used in Figure 2A1. After completing the first layer’s
training, we trained the second layer using the output of these simple-
cell-like model neurons as input with parameter values N = 1024, p̄ = 0.04,
α = 1, β ′ = 1, η = 1000, and ε = 0.01 (see Figure 3A). At the beginning of
the second-layer network simulation, we set the weights Wij between the
first and second layers with Wii = 1 for all neurons i and Wi j = 0 (i �= j) for
all other connections; this is done in order to improve the model neurons’
selectivity after learning. The value of the objective function for the model
initialized with Wii = 1 and Wi j = 0 (i �= j) is larger than that for the model
initialized with random Wij values. Drawing Wij from a uniform distribu-
tion produces a considerable number of nonselective neurons, and the large
value of the objective function suggests that this is a better initial condition
than random connections.

After 10,000 learning blocks, we examined the connections from the first-
layer neurons to the second-layer neurons. To visualize these connections,
we use a Gabor function to fit the connection weights of the first-layer
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Figure 3: A two-layer feedforward network and the visualization of its con-
nections. (A) The outputs from 1024 first-layer neurons with simple-cell-like
receptive fields are used as the inputs to 1024 second-layer neurons. (B) The
connection weights from the simple-cell-like first-layer neurons are fitted by a
Gabor function and are represented by bars in the second-layer neurons; red
indicates excitatory connections, and blue indicates inhibitory connections.

neurons, as shown in Figure 3B. In this figure, the first-layer neurons are
represented by bars, and their orientation and spatial positions in the boxes
reflect the optimal fit provided by the Gabor function.

In the boxes on the right of Figure 3B, we plotted the bars correspond-
ing to the first-layer neurons. The color of each bar indicates the signs (red
indicates excitatory connections and blue indicates inhibitory connections)
and magnitudes of the weights of the connections from the first-layer neu-
ron. Figure 4 shows the connection strengths from the first-layer neurons
to the first 32 second-layer neurons, again using red and blue to indicate
excitatory and inhibitory connections, respectively.

Most second-layer neurons received strong excitatory connections from
several first-layer neurons with similar orientation selectivity. Inhibitory in-
puts were much weaker than excitatory inputs. The orientation selectivity
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Figure 4: Excitatory (red) and inhibitory (blue) inputs from first-layer neurons
to second-layer neurons.

of inhibitory inputs to some second-layer neurons was parallel to that of ex-
citatory inputs. For example, the left-most neuron in the first row in Figure 4
receives excitatory input from the first-layer neurons that are selective to
vertical edges in the left side of image patches and inhibitory input from the
neurons that are selective to vertical edges in the middle left of the image
patches. Second-layer neurons tended to receive excitatory and inhibitory
inputs from first-layer neurons with similar orientation selectivity.

To investigate the receptive fields of the neurons in the second layer
after learning, we examined the model neurons’ firing rates in response
to grating stimuli. Previous experiments have successfully identified and
characterized simple and complex cells by measuring the phase-dependent
(F1) to phase-invariant (F0) component ratio (F1/F0 ratio) in their responses
to optimal gratings (Skottun et al., 1991). By varying the phase of the grat-
ings that cover the receptive fields of the neurons, researchers have been
able to identify neurons with the F1/F0 ratio greater than 1 as simple cells
and neurons with the F1/F0 ratio less than 1 as complex cells.

Accordingly, we presented the model neurons with gratings such as
those shown in Figure 5. We varied the orientation, spatial frequency, and
phase of the gratings and selected the best orientation and frequency for
each neuron as follows. To quantify the phase sensitivity of the neurons,
we first formed sets of gratings that have the same spatial frequency and
orientation but with different phases: 0◦, 10◦, 20◦, . . . , and 350◦. Then we
counted the number of gratings in each set for which a neuron’s firing rate
was greater than 0.5. We refer to this number, which ranges between 0 and
36, as the response number, and we define the set of gratings with the largest
response number as the optimal set of gratings.

Our method differs from the method used in previous experiments
to quantify the phase invariance of neurons. Researchers in previous
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Figure 5: Receptive fields of first-layer and second-layer neurons in response
to phase-shifted gratings. (A) Firing rate of the second-layer neuron shown
in C1 in response to the phase-shifted gratings. (B) Receptive field of the
first-layer neuron shown as the left-most neuron in the first row of Figure 2.
(C) Excitatory (red) and inhibitory (blue) inputs from first-layer neurons to
second-layer neurons are shown in boxes. For panels B, C1, and C2, the gratings
that cause firings with a rate greater than 0.5 after learning are shown around
the boxes. Gratings covering the entire area of 16 × 16 image patches are shown
on the inside, and half-ranged gratings are shown on the outside.

experiments first selected the grating for which a neuron fired most strongly
and then varied the phase of this grating to determine the neuron’s phase
invariance. This method does not work well in our model. Because our
model maximized the reliability of the model neurons, they responded to
most gratings with near-maximal (yi ≈ 1) and near-minimal (yi ≈ 0) firing
rates, as shown in Figure 5A. Thus, there were large numbers of quasi-
optimal gratings, and we could not choose one as the best stimulus. There-
fore, we chose the optimal set of gratings with different phases for each
model neuron rather than an optimal grating with a fixed phase.
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Figure 6: The response of second-layer neurons to gratings. (A) A histogram of
the number of phases (out of a total of 36 phases) of gratings that caused model
neurons to fire. No first-layer neuron fired in response to more than half of
the phases. Most second-layer neurons with p̄ = 0.04 fired in response to more
than half of the phases. (B) Second-layer neurons were more phase invariant in
response to smaller gratings than in response to larger gratings.

Similarly, we could not use the F1/F0 ratio to quantify phase invariance.
The neurons in our model responded to most of the phase-shifted optimal
gratings with near-maximal and near-minimal firing rates (see Figure 5A),
and we observed a step-like profile rather than the sine curve–like profile
that was observed in experiments (Bardy, Huang, Wang, FitzGibbon, &
Dreher, 2006), Thus, we used the response number to quantify the phase
sensitivity of the first-layer and second-layer neurons. In Figures 5C1 and
5C2, we show the receptive fields of the second-layer neurons. The gratings
shown around the boxes are the phase-shifted gratings to which neurons
responded with a firing rate greater than 0.5. Gratings covering the entire
16 × 16 pixel area are shown in the inside circle, and half-sized gratings are
shown in the outside circle. The second-layer neurons shown in Figures 5C1
and 5C2 responded to a larger number of phase-shifted gratings than the
first-layer neuron shown in Figure 5B. In particular, the neuron in Figure 5C2
was selective to oblique gratings and was completely phase invariant. This
suggests that second-layer neurons show more complex-cell-like properties
than the first-layer neurons.

To quantitatively verify this observation, we compared the response
numbers for each set of gratings. For example, the second-layer neuron
shown in Figure 5C2 responded to all 36 phase-shifted optimal gratings,
while the first-layer neurons shown in Figure 5B responded to only 11 of
the 36 phase-shifted gratings. Figure 6A shows a histogram of the response
numbers for optimal gratings that caused firings at a rate greater than 0.5
in the first-layer and second-layer neurons. This histogram shows that no
neurons in the first layer responded to more than 18 of 36 phase-shifted
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gratings, while in contrast, most of the neurons in the second layer re-
sponded to more than 18 of the 36 gratings. As shown in the histograms,
neurons in the second layer were less sensitive to the phases of the grat-
ings and some were even completely phase invariant, whereas neurons in
the first layer were much more phase sensitive. The first-layer and second-
layer neurons in our model seem to, respectively, correspond to simple and
complex cells in V1.

Complex cells are reported to have classical receptive fields and silent
surroundings. In most cases, stimuli presented in the silent surrounding
suppress the response of the cell to the stimuli presented in the classi-
cal receptive field (Bardy et al., 2006). In a high proportion of cells, the
suppression is greatest when the orientation of the gratings in the silent
surrounding is the same as the best orientation for the classical receptive
field. Reducing the area of the gratings sometimes increases the response
of complex cells. This is consistent with the observation that second-layer
neurons in our simulation tended to have excitatory and inhibitory inputs
with similar orientation selectivity (see Figure 4). However, it is not clear
from Figure 4 to what extent these inhibitory inputs affect the model neu-
rons’ output. We therefore examined the effect of the silent surrounding
of the second-layer neurons in the model. Using gratings whose length is
half that of the image patches, we counted the response numbers of the
neurons for the best gratings. The exterior gratings in Figures 5C1 and 5C2
are the phase-shifted gratings to which neurons responded with a firing
rate greater than 0.5. The response numbers of the second-layer neurons of
Figure 5C1 increased when we presented half-ranged gratings. Figure 6B
shows a histogram of the response numbers in response to full-ranged and
half-ranged gratings. Smaller gratings tend to make second-layer neurons
more phase invariant. This shift of phase invariance is accounted for by
the fact that smaller gratings are free from suppression by inhibitory in-
puts whose orientation selectivity is the same as the excitatory inputs. The
receptive field, composed of an excitatory component and an inhibitory
surrounding, is a result of our learning rule that makes neuronal firings
sparse and reliable.

To examine the parameter dependency of the receptive fields after learn-
ing, we varied the values of the second-layer network parameter p̄. The
results are summarized in Figure 7. By changing the value of p̄ to 0.02,
which determines the temporal sparseness of output neurons, we found
that the second-layer neurons became more phase sensitive after learning,
as shown in Figure 7B. In both cases, nearly half of the neurons responded to
more than 18 of 36 phase-shifted gratings, whereas the remaining neurons
were as phase sensitive as the first-layer neurons.

Setting p̄ to 0.01, we found that after learning, most second-layer neurons
responded to fewer than 18 of the 36 phase-shifted gratings, as shown in
Figure 7C. That is, the second-layer neurons with p̄ = 0.01 failed to become
phase invariant. Thus, the phase sensitivity of the second-layer neurons was
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Figure 7: Histograms of the number of phases of gratings that caused output
neurons with different parameter values to fire; the parameter differences were
(A) p̄ = 0.04; (B) p̄ = 0.02; and (C) p̄ = 0.01. The parameter value affects the
receptive field properties of the second-layer neurons.
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highly dependent on the model’s parameter values. Second-layer neurons
with higher p̄ values than the first-layer neurons tended to become less
phase sensitive and thereby more complex-cell-like, because the second-
layer neurons with higher p̄ values must receive inputs from a larger num-
ber of the first-layer neurons than the second-layer neurons with lower p̄
values.

3.3. Local Learning Rule. The learning rule for our model is neither
temporally nor spatially local; however, the learning rule can be rewritten
in a form that is almost spatially and temporally local. In equation 2.7,
∂

∂hi
E[yi(t)] and ∂

∂Wi j
E[yi(t)] are spatially local but not temporally local. How-

ever, if we introduce neuron-specific variables ai(t) and synapse-specific
variables bi j(t) such that

ai(t + 1) − ai(t) = [−yi(t)(1 − yi(t)) − ai(t)]/τ

and

bi j(t + 1) − bi j(t) = [yi(t)(1 − yi(t))x j − bi j(t)]/τ,

respectively, where τ is a sufficiently large time constant, then equation 2.7
can be approximated by the temporally local equation

�Wi j = ∂F
∂Wi j

− ∂F
∂hi

bi j(t)

ai(t)
. (3.1)

We obtain a spatially and temporally local learning rule if ∂F
∂Wi j

and ∂F
∂hi

are

approximated by spatially and temporally local equations. The first term
on the right-hand side of equation 3.1 can be estimated by

ci j(t) = yi(t)(1 − yi(t))x j(t){2αyi(t) − 2β[n(t) − yi(t)]}, (3.2)

where n(t) = ∑
1≤i≤N yi(t). This equation corresponds to equation 2.5 and

requires only the population firing rate n and spatially local information.
Similarly, ∂F

∂hi
can be estimated from the population firing rate n and spatially

local information by

di(t) = −yi(t)(1 − yi(t)){2αyi(t) − 2β[n(t) − yi(t)]}, (3.3)

which corresponds to equation 2.6. Thus, each neuron requires only the
population firing rate, its input, and its firing rate at each time step to
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update the connection weights as

�Wi j = ci j(t) − di(t)
bi j(t)

ai(t)

= yi(t)(1 − yi(t)){2αyi(t) − 2β[n(t) − yi(t)]}
(

x j(t) +
bi j(t)

ai(t)

)
.

(3.4)

In this form, the learning rule is almost spatially and temporally local.
Spatially, each neuron’s learning process requires only the population firing
rate rather than the firing rate of each of the other neurons. The population
firing rate can be provided for the synapse from neuron j to i by local
interneurons. The information required for updating the synaptic strength
can be stored in the neuron-specific value ai(t) and the synapse-specific
value bi j(t), both of which are updated at each time step.

Equation 3.4 can be interpreted as follows. We ignore the factor yi(t)[1 −
yi(t)] because this factor is always positive. Assuming β ′ ≈ α, that is, β ≈
α/(N − 1), the factor 2αyi(t) − 2β[n(t) − yi(t)] changes its sign depending
on whether the firing rate of neuron i is greater than the average firing rate
of the other neurons at time t. This factor introduces competition among
the neurons. The factor bi j(t)/ai(t) is a weighted average of xj over time.
This weighted average is dominated by the time steps at which yi(t) ≈ 0.5.
Thus, bi j(t)/ai(t) is close to the typical value of xj in the image patches
to which neuron i is intermediately selective. In other words, the neuron
tends to fire if x j(t) is larger than bi j(t)/ai(t). This means that the factor
x j(t) + bi j(t)/ai(t) is positive if x j(t) falls within the range of the values of xj
in the image patches to which neuron i is selective; otherwise, it is negative.
The product of these factors, that is, the synaptic update, is positive if the
selectivity of neuron i to the input at t is unique among the population of
neurons and xi(t) is sufficiently large or the selectivity to the input is not
unique and xi(t) is small.

The learning rule is a modified Hebbian learning rule. The BCM rule
(Bienenstock, Cooper, & Munro, 1982), a well-known model of Hebbian
learning, uses the product of input j and the difference between the activity
of neuron i and a threshold. In our model, the activity of other neurons
in the population determines the threshold, whereas in the BCM rule, the
threshold is independent of the activity of other neurons. Similarly, our
learning rule uses the difference between input j and the typical level of
input j for the image patches to which neuron i is selective rather than
the input j itself. In other words, stronger input is required for increasing
the strength of synapses that strongly influence the neuron’s firing than
synapses that do not influence the neuron’s firing. This is consistent with
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Figure 8: Online and almost local learning rule. (A) Simple-cell-like connection
weights of output neurons in the first layer after learning. (B) Complex-cell-like
connection weights of second-layer neurons after learning.

experimental observations that large spines tend to be resistant to long-term
potentiation (Matsuzaki, Honkura, Ellis-Davies, & Kasai, 2004).

The output neurons in our localized model exhibited simple-cell-like
receptive field properties after learning from natural scenes (see Figure 8A),
which are very similar to the receptive fields formed by the original model.
In Figure 8A, the value of parameter τ was set to 1000, and the values
of other parameters were set to the same ones used in Figure 2A1. The
receptive field of neuron i in Figure 8A is similar to that of neuron i in
Figure 2A1 because we used the same initial weight Wij. In a similar way,
the connections from the first-layer neurons to the second-layer neurons
after the localized learning (see Figure 8B) are similar to those shown in
Figure 4. We did not use this localized learning rule in the simulations in
the previous sections because it requires a much longer simulation time
than the learning rule presented in section 2.
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In addition to the localized model, we examined a model network with
stochastic model neurons that have a binary output value of 1 with the prob-
ability yi(t) and an output value of 0 with the probability 1 − yi(t). Results
obtained with the stochastic model were very similar to those discussed in
this letter.

4 Discussion

In this letter, we derived a learning rule that maximizes the temporal and
population sparseness and neuronal firing reliability in a feedforward net-
work. Using image patches from natural scenes as input, we found that
after learning, the neurons in the network exhibited simple-cell-like recep-
tive field properties. We then examined the effect of our model’s param-
eter values on the simple-cell-like receptive fields of the model neurons.
Using the output from these simple-cell-like neurons as input to a second-
layer network, the neurons in the second-layer network tended to acquire
greater phase invariance than the simple-cell-like neurons, that is, replicated
complex-cell-like receptive fields. These results indicate that our proposed
model successfully replicates the receptive fields of simple and complex
cells in V1.

Previous models based on sparse coding have succeeded in explaining
the receptive fields of simple cells. Földiák (1990) proposed a very simple
model in which anti-Hebbian plasticity among the output neurons forms
sparse representations of the input after the learning phase. Subsequently,
Falconbridge et al. (2006) showed a similar model that was capable of ex-
tracting Gabor function–like components of natural scenes. The emergence
of simple-cell-like receptive fields in our proposed model is consistent with
these earlier results; however, our model’s explanations of the receptive field
properties of complex cells differ greatly from those of previous models.
Previous models of complex cells use temporal correlation of the natural
scenes or the local connectivity to train the complex cells. For example,
the neuronal network models proposed in Földiák (1991) and Berkes and
Wiskott (2005) used temporal sequences of gradually evolving images (i.e.,
gradually changing sequences of images) to develop complex-cell-like shift
invariance. In another previous model of neurons in V1 (Hyvarinen &
Hoyer, 2001), complex cells have fixed connections from local simple cells.
The connection weights from the input layer to the simple cells are updated
such that the firing of complex cells becomes sparse. This model assumes
that simple cells connect to nearby complex cells, and the learning rule
produces the local simple cell selectivity to edges with similar orientations
and spatial frequencies.

Our model and the model proposed by Karklin and Lewicki (2009) are
in sharp contrast to these previous models by virtue of neither requiring a
temporal sequence of correlated images nor assuming local connectivity. In
addition, the dynamics of the neurons in our model is simpler than those
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in previous models such as Földiák (1990), Falconbridge et al. (2006), and
Karklin and Lewicki (2009), where ordinary differential equations must be
solved to determine the firing states of the output neurons. This means that
the neurons in these models interact with each other to decide whether
to fire in response to a given stimulus. In contrast, the firing state of each
output neuron in our model can be determined by a single equation (see
equation 2.1) that is independent of the firing states of other neurons.

The learning rule in our proposed model can be written in a form that
is nearly spatially and temporally local form. The localized learning rule
can replicate the results of the model described in section 2. Our localized
model explains the emergence of complex-cell-like receptive field proper-
ties without requiring a nonlocal learning rule. This makes our model more
biologically plausible than the previous models. In addition, the localized
learning rule supports an interpretation that is consistent with experimen-
tal results concerning the plasticity of pyramidal neurons. Although our
model’s neurons must be provided with information about the population
firing rate (even in the localized form), this information can be transmit-
ted to excitatory neurons from local inhibitory interneurons. This correlates
with the observation that some subtypes of inhibitory neurons in the cor-
tex are locally connected to almost every pyramidal cell (Fino & Yuste,
2011). Földiák (1990) and Falconbridge et al. (2006) also assumed inter-
action among local cells through inhibitory interneurons. These models
assume a plasticity rule that strengthens inhibitory synapses between two
simple cells if the simultaneous firing of the two cells occurs too frequently.
This plasticity rule makes it difficult for simple cells to fire simultaneously
and thereby makes the firing population sparse. Although neurons in the
same layer do not interact in our model, n(t) − yi(t) in equation 3.2 plays
a similar role. This term weakens input synapses that are activated when a
large number of neurons fire. Thus, an effective mutual inhibition is intro-
duced by this term without assuming the dynamics described by ordinary
differential equations in Földiák (1990) and Falconbridge et al. (2006). The
simplicity of our dynamics and the spatially and temporally local forms of
our learning rule suggest that our model can be implemented by biological
neurons.

This simplicity allows us to draw some predictions based on our
model. First, changing the firing activity of neurons in the critical pe-
riod can affect the development of the receptive fields of neighboring
neurons whose activity is not changed. This is determined by the factor
2αpi(t) − 2β[n(t) − yi(t)] = 2αpi(t) + 2βyi(t) − 2βn(t) in equation 3.4. The
direction of the plastic change of a neuron can be inverted by activating
other neurons. If our speculation that the third term, −2βn(t), is mediated
by local inhibitory interneurons is correct, then modifying the strength of
GABAergic synapses disrupts the selectivity of simple and complex cells
after the critical period. More specifically, neurons will tend to have large
receptive fields selective to low-frequency edges if the GABAergic synapses
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are weakened. Many of our model’s neurons tended to exhibit similar se-
lectivity in this case (see Figure 2E). Second, changes in the excitability of
neurons can shift the neurons’ frequency tuning. Most of our model’s neu-
rons became selective to edges with higher spatial frequencies when we
increased p̄ (see Figure 2C). The phase sensitivity of complex cells can also
be affected (see Figures 7A and 7B).

Nonetheless, there are some limitations to our proposed model. First,
the homeostatic plasticity described by equation 2.2 may be nonbiological.
Recent research has revealed that there are two major ways to achieve home-
ostasis in neuronal activities: through intrinsic excitability and through the
efficacy of individual synapses (Pozo & Goda, 2010). Equation 2.2 corre-
sponds to the regulation of intrinsic excitability, because increasing and
decreasing the threshold change the firing rate of a neuron in response to
a given input without changing the synaptic strength. Increases and de-
creases of the firing threshold are not bounded in our model, even though
plastic changes in biological neurons may be rather limited. The other way
to achieve homeostasis, by scaling the efficacy of individual synapses, might
be a more biologically based explanation of the stability of the average firing
rate.

Second, our model’s results depend on the value of parameter p̄. In our
model, the p̄ value for the second-layer neurons must be greater than that for
the first-layer neurons in order to replicate the selectivity of complex cells.
This parameter setting is justified by the fact that the average firing rate
of complex cells in response to dot stimuli and sine-wave gratings is two
to three times greater than the firing rate of simple cells (Skottun, Grosof,
& De Valois, 1988). However, because the average firing rate depends on
the stimuli used in the experiments, more realistic settings for p̄ should be
investigated in future work.

Third, our network model uses a feedforward network because this
structure simplifies the model and facilitates the derivation of the learning
rule. In contrast, the neuronal networks in the brain also have feedback and
recurrent structures apart from feedforward structures, and it is known
that feedback from higher- to lower-sensory areas plays an important role
in sensory information processing. Bardy et al. (2006) reported that the in-
activation of feedback from the posterotemporal visual cortex affected the
selectivity of the neurons in V1. They found that this inactivation changed
the responses of substantial proportions of neurons classified as complex
cells in V1 to simple-cell-like responses, indicating that the feedback from
higher-sensory areas modifies and determines the receptive fields of com-
plex cells to some extent. Thus, the receptive fields of the complex cells
seem to be formed not only by a feedforward mechanism but also by a
feedback or recurrent mechanism. Introducing higher-order neurons and
providing feedback to the second-order neurons from these higher-order
neurons would improve the receptive fields of the second-layer neurons in
our model network.



2724 T. Tanaka, T. Aoyagi, and T. Kaneko

Acknowledgments

This work was supported by grants-in-aid from the Ministry of Education,
Science, Sports, and Culture (MEXT) of Japan: grant numbers 23115512,
19GS0208, 21120002, 23115511, 23115101, 21650083, 23115509, and 22300113.
This work was also supported by the Global COE Program “Center for
Frontier Medicine,” MEXT, Japan.

References

Attwell, D., & Laughlin, S. (2001). An energy budget for signaling in the grey
matter of the brain. Journal of Cerebral Blood Flow and Metabolism, 21(10), 1133–
1145.

Bardy, C., Huang, J., Wang, C., FitzGibbon, T., & Dreher, B. (2006). “Simplification”
of responses of complex cells in cat striate cortex: Suppressive surrounds and
“feedback” inactivation. J. Physiol., 574(3), 731–750.

Barlow, H. (2001). The exploitation of regularities in the environment by the brain.
Behav. Brain Sci., 24, 602–607.

Bell, A., & Sejnowski, T. (1995). An information-maximization approach to blind
separation and blind deconvolution. Neural Comput., 7(6), 1129–1159.

Bell, A., & Sejnowski, T. (1997). The “independent components” of natural scenes
are edge filters. Vis. Res., 37(23), 3327–3338.

Berkes, P., & Wiskott, L. (2005). Slow feature analysis yields a rich repertoire of
complex cell properties. J. Vis., 5(6), 579–602.

Bienenstock, E., Cooper, L., & Munro, P. (1982). Theory for the development of neu-
ron selectivity: Orientation specificity and binocular interaction in visual cortex.
J. Neurosci., 2(1), 32–48.

Desai, N. S., Rutherford, L. C., & Turrigiano, G. G. (1999). Plasticity in the intrinsic
excitability of cortical pyramidal neurons. Nat. Neurosci., 2, 515–520.

Falconbridge, M., Stamps, R., & Badcock, D. (2006). A simple Hebbian/anti-Hebbian
network learns the sparse, independent components of natural images. Neural
Comput., 18(2), 415–429.

Field, D. J. (1987). Relations between the statistics of natural images and the response
properties of cortical cells. J. Opt. Soc. Am. A, 4, 2379–2394.

Fino, E., & Yuste, R. (2011). Dense inhibitory connectivity in neocortex. Neuron, 69,
1188–1203.
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