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Recently there has been great interest in sparse representations of signals
under the assumption that signals (data sets) can be well approximated
by a linear combination of few elements of a known basis (dictionary).
Many algorithms have been developed to find such representations for
one-dimensional signals (vectors), which requires finding the sparsest
solution of an underdetermined linear system of algebraic equations. In
this letter, we generalize the theory of sparse representations of vectors to
multiway arrays (tensors)—signals with a multidimensional structure—
by using the Tucker model. Thus, the problem is reduced to solving
a large-scale underdetermined linear system of equations possessing a
Kronecker structure, for which we have developed a greedy algorithm,
Kronecker-OMP, as a generalization of the classical orthogonal match-
ing pursuit (OMP) algorithm for vectors. We also introduce the concept
of multiway block-sparse representation of N-way arrays and develop
a new greedy algorithm that exploits not only the Kronecker structure
but also block sparsity. This allows us to derive a very fast and memory-
efficient algorithm called N-BOMP (N-way block OMP). We theoretically
demonstrate that under the block-sparsity assumption, our N-BOMP al-
gorithm not only has a considerably lower complexity but is also more
precise than the classic OMP algorithm. Moreover, our algorithms can be
used for very large-scale problems, which are intractable using standard
approaches. We provide several simulations illustrating our results and
comparing our algorithms to classical algorithms such as OMP and BP
(basis pursuit) algorithms. We also apply the N-BOMP algorithm as a fast
solution for the compressed sensing (CS) problem with large-scale data
sets, in particular, for 2D compressive imaging (CI) and 3D hyperspectral
CI, and we show examples with real-world multidimensional signals.
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1 Introduction

A concept that underlies some recent developments in many fields such
as in image and signal processing is sparsity. Usually signals living in
a vector space do not cover the entire space uniformly (Lu & Do, 2008).
In particular, it was discovered that most signals of interest can be well
approximated by a sparse representation over a known dictionary by
using a linear combination of few dictionary elements (atoms) (Donoho,
2006; Candés, Romberg, & Tao, 2006). Moreover, sometimes it is useful
to consider overcomplete dictionaries, where the number of atoms is
larger than the signal size (Elad, Figueiredo, & Ma, 2010). In fact, sparse
representations are found in the way that visual cortex codes natural
images in the brain (Olshausen & Field, 1996). The implications of the
sparsity assumption have recently driven the development of many
exciting applications in signal processing. For example, it was proved that
signals with a sparse representation can be reconstructed from a reduced
number of measurements, the main objective of compressed sensing (CS)
(Donoho, 2006, Candeés et al., 2006); some algorithms for blind source
separation are based on the sparsity assumption (Bobin, Starck, Fadili, &
Moudden, 2007; Li et al, 2004; Caiafa & Cichocki, 2009); also techniques
for denoising and inpainting of images have been developed using similar
ideas (Elad, Starck, Querre, & Donoho, 2005; Elad & Aharon, 2006). In
this framework, the main problem is how to solve an underdetermined
system of linear algebraic equations constrained to the fact that among
the infinite number of solutions, the sparsest solution may be unique.
To this end, many algorithms were proposed, including greedy methods
such as matching pursuit (MP) (Davis, Mallat, & Zhang, 1994), orthogonal
matching pursuit (OMP) (Tropp, 2004), compressive sampling matching
pursuit (CoSaMP) (Needell & Tropp, 2009), £, norm minimization methods
such as basis pursuit (Chen & Donoho, 2001), gradient projection sparse
reconstruction (GPSR) (Figueiredo, Nowak, & Wright, 2007), and many
others (see Tropp & Wright, 2010, for an up-to-date review of algorithms).

Another characteristic of signals found in modern applications is that
they often have a multidimensional structure, where each dimension
(mode) has a particular physical meaning (e.g., space, time, frequency, tri-
als). For example, a 3D image produced by a computed tomography (CT)
system or a magnetic resonance imaging (MRI) system corresponds to a
sampled version of a 3D function f(x;, x,, x3). In this case, the multidimen-
sional image is stored in memory as a multiway array (tensor) Y € Rh>*L*h
whose elements are samples taken on a grid, thatis, y; ; ; = f(iyh, iyh, i3h)
(i,=1,2,...,1,n=1,2,3), with I being the discretization step among all
dimensions. Multiway arrays are the generalization of vectors and matrices
to a higher number of dimensions and are usually referred in the literature
as N-way arrays or tensors. They are very attractive mathematical tools
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possessing their own properties (Kolda & Bader, 2009; Cichocki, Zdunek,
Phan, & Amari, 2009).

Due to the availability of massive data sets occurring in new appli-
cations and requirements in scientific computation, a great deal of effort
has been devoted to the development of new algorithms for multiway
structured data sets, sometimes with a high number of dimensions (Os-
eledets, Savostianov, & Tyrtyshnikov, 2008; Caiafa & Cichocki, 2010; Os-
eledets, 2011). The curse of dimensionality problem makes the task of
finding sparse representations of N-way arrays very expensive in terms
of memory storage resources and computation load since the number of
entries grows exponentially with the number of dimensions. To solve this
problem, one may try to find some structure in data sets and build approx-
imate models using fewer parameters than the number of entries, as is the
case of the Tucker model (Lathauwer, Moor, & Vandewalle, 2000b; Kolda
& Bader, 2009). In fact, multidimensional signals often reveal a structure
in each mode that allows one to adopt good approximate representations
based on the Kronecker product of dictionaries associated with each of
the modes (Rivenson & Stern, 2009a). For example, most popular trans-
forms applied to two-dimensional signals (2D images) are based on the
application of a transformation of rows followed by a transformation of
columns known as separable transforms. In this case, the dictionary asso-
ciated with the vectorized image can be written as the Kronecker product
of dictionaries associated with rows and columns. The Kronecker structure
has been extensively used in the image processing community (Nagy &
Kilmer, 2006; Rivenson & Stern, 2009a). Also the Kronecker structure has
been been proposed in the matrix analysis community as a good precondi-
tioner to solve linear systems (Loan & Pitsianis, 1992) and to approximate
function-related linear systems (Ford & Tyrtyshnikov, 2003; Tyrtyshnikov,
2004).

This letter is organized as follows. In section 2, the basic notation is
introduced, and some important previous results are presented; in sec-
tion 3, we generalize the theory of sparse representations of vectors to
multiway arrays and introduce the concept of block sparsity; in section 4,
we introduce the multidimensional compressed sensing problem; in sec-
tion 5, our new greedy algorithms are developed for the case of mul-
tidimensional sparsity (Kronecker-OMP algorithm) and multiway block
sparsity (N-BOMP), including a detailed analysis of their computational
complexities; in section 6, we present a new theoretical result about the
performance guarantee of N-BOMP algorithm, which we show to be
much less restrictive than the case of the classical OMP algorithm; in
section 7, extensive simulations are presented using synthetically gener-
ated N-way arrays, as well as the application to CS of real-world multi-
dimensional signals. In section 8, we outline the main conclusions of this
work.
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2 Notation and Preliminaries

In this letter, N-way arrays (multidimensional signals) are denoted by un-
derlined boldface capital letters; matrices (two-way arrays) are denoted
by bold uppercase letters and vectors by boldface lowercase letters, that
is, Y € Ri>b*xly; and D € RM and y € R! are examples of an N-way
array, a matrix, and a vector, respectively. The ith entry of a vector y is
denoted by y;, and the element (i, j) of a matrix Y is denoted by either of
the following ways Y(i, j) = y;;. The same notation is used for N-way ar-
rays by referring to the element (i}, 1,,...,1y) as Y (i}, 1y, ..., iy) = Yii i -
As a natural generalization, we define the Frobenius norm of an N-way
array by ||Y||; = \/Zil Ziz e Z"N ylzliz'“iN' Sometimes we use MATLAB no-

tation to indicate the full range of indices in certain modes; for example,
Y(:, j) means a vector composed of all the entries of column j. Additionally,
we refer to a subarray (or block) by restricting the indices to belonging
to certain subsets of indices, for example, given the following subsets of

S, indices 7, = {i',2,...,i,'} in each mode n =1,2,..., N, the subarray
Y(Z,.Z,,...,Iy) € R%*** 5 is obtained by keeping the entries of the
original N-way array Y at the selected index subsets Z, (n =1,2,...,N).
We denote the cardinality of a subset of indices Z by |Z].

2.1 Sparse Solutions of Underdetermined Linear Systems. We say that
a one-dimensional signal (vector) has a sparse representation in a known
dictionary if it can be recovered exactly by a linear combination of few
selected elements of the dictionary (atoms) as the following definition states:

Definition 1 (sparse representation of vectors). A signal y € R! has a K-sparse
representation with respect to the dictionary D € RP*M if the following relation
holds:

y = Dx, with ||x||, < K (2.1)

where ||x||, is the €, quasi-norm! of the vector x € RM obtained by counting the
number of nonzero entries and typically M > I, K <« M. In other words, there is
a small set of K indices T = [i',i%, ..., i¥] such that x, = 0 if i ¢ T.

Since the dictionary D has more columns than rows, the solution x cannot
be uniquely recovered; however, the sparsest solution may be unique. For
instance, it is known that if no 2K columns of D are linearly dependent,
then the solution of equation 2.1, if it exists, is unique (Donoho & Elad,
2003). Many other conditions on matrix D have been provided in order to
guarantee the uniqueness of a sparse representation (Donoho & Elad, 2003;

!Note that £, norm is not a norm formally since [lax||, # a||x|,-
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Tropp, 2004). In particular, for a matrix with unit-norm columns (||d,| |% =1,
i=1,2,..., M), its “coherence” (D), which is defined as the maximum
absolute value of the correlation between two columns,

#(D) = max d/d,l, 2.2)

gives us a characterization of the system. More specifically, if

1 1

then the solution of equation 2.1 is unique (Tropp, 2004).

Several algorithms have been proposed to find the sparsest representa-
tion of a signal for a given dictionary by solving the corresponding underde-
termined linear system of algebraic equations under the sparsity constraint
(Tropp & Wright, 2010). These methods can be divided in two main groups:
basis pursuit (BP) and matching pursuit (MP).

In BP, the combinatorial problem is replaced with a convex optimization
problem; basically, the ¢, norm ||x||; is minimized subject to the constraint
y = Dx, which can be proved to solve our original problem if the vector is
sparse enough and the matrix D has sufficiently low coherence (Donoho &
Elad, 2003; Tropp, 2004). However, it is well known that BP is computation-
ally expensive and unsuitable for large-scale problems (Tropp, 2004). On
the other side, MP methods, which are also known as greedy algorithms
(Davis et al., 1994; Tropp, 2004), have complexity O (KMI), which is signif-
icantly smaller compared to BP, especially when the signal sparsity level
Kis low (Tropp & Gilbert, 2007). A powerful standard greedy algorithm is
the orthogonal matching pursuit (OMP) which was adapted and studied in
Tropp (2004), Needell, Tropp, and Vershynin (2008), and Needell and Tropp
(2009). The OMP pseudocode is reproduced in algorithm 1. OMP iteratively
refines a sparse solution by successively identifying one component at a
time that yields the greatest improvement in quality until a desired sparsity
level K is reached or the approximation error is below some predetermined
level €. An optimized implementation of this algorithm is obtained by us-
ing the Cholesky factorization for the computation of STEP 5 (Rubinstein,
Zibulevsky, & Elad, 2008).

Besides its simplicity, a nice property of the OMP algorithm is that if the
dictionary D satisfies condition 2.3 and a K-sparse solution exists, then the
OMP algorithm will obtain it after exactly K iterations (Tropp, 2004).

2.2 Kronecker Dictionaries. The Kronecker product is defined as
follows:
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Algorithm 1: Orthogonal Matching Pursuit (Tropp, 2004)
RIX!\I

Require: Dictionary D € . signal y € RY, sparsity K, tolerance ¢
Ensure: Sparse representation y ~ Dx, x € RM with ||x||[p < K (nonzero
entries are given by x(Z) = a)
LI=[0,r=y,x=0k=1;
2: while £ < K and [|r|| > € do
32 % = argmax;|dfr|; (to find the maximum correlated atom with

respect to the residual)

4: I =|[Z,i*]; (to incorporate the selected index)

ot

a = argmin,|/D(;,Z)u — y||3; (nonzero entries are obtained by
solving an LS problem)

6: r=y—D(;,7)a; (to update the residual)

7 k=k+1;

8: end while

9: return 7 a;

Definition2 (Kronecker product). Given two matrices A € RP>Mand B € R/ N
their Kronecker product A ® B € RY>*MN js defined by

ayB a;,B --- a;,B
a, B a,,B --- a,,B

A®B- 21 22 2M . (2.4)
ayB ap B --- a;,B

Kronecker dictionaries—those that can be written as a Kronecker prod-
uct of elementary matrices—play a key role in higher-dimensional signal
processing (Nagy & Kilmer, 2006; Duarte & Baraniuk, 2011; Rivenson &
Stern, 2009a) and other fields (Loan & Pitsianis, 1992; Ford & Tyrtyshnikov,
2003). In order to introduce them here, let us consider the simplest case of
a 2D image Y € Ri*L for which a separable transform can be applied as
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follows:?
X =T]YT,, (2.5)

with T; € Rh*h and T, € R:>*% being nonsingular matrices associated with
the transforms of columns and rows, respectively, and X € Ri*: is the
matrix of coefficients. In other words, the original image Y can be recovered
by applying the inverse transform,

Y = (T;HIXT, (2.6)
A basic property of the Kronecker product is that (Loan, 2000)
vec(BXAT) = (A ® B)vec(X), (2.7)

where the operation x = vec(X) converts the matrix X € R1*L into a vector
x € RhL by stacking the columns of matrix X. If we use property 2.7 in
equation 2.6 and by defining DI = T;!, DI = T,?, x = vec(X) and y =
vec(Y) we easily obtain

y = (D, ®D;)x, (2.8)

where we explicitly expresse the vector y as a linear combination of elements
of a dictionary with Kronecker structure D = D, ® D;. If the coefficient
matrix X has few nonzero representative entries, then the signal Y has an
approximated sparse representation. We can generalize the definition of
a Kronecker dictionary for any arbitrary number N of matrices, that is,
D=D,®Dy_; ®- --®D,. It is known that the coherence of D (global
coherence) satisfies the following equation (Jokar & Mehrmann, 2009):

M(D) = max{/’bl’ Mza M} /’LN}v (29)

where u, = n(D,), (n=1,2,...,N), that is, if one of the dictionaries D,,
has a large coherence 1, then it will dominate the coherence of D.

2.3 Multiway Arrays (N-way arrays) and the Tucker Model. Given a
multiway array (tensor) Y € RIi*L Iy, its mode-n vectors are obtained by
fixing every index but the one in mode #n. The mode-n unfolding matrix
Y. € RY <l is defined by arranging all the mode-n vectors as
columns of a matrix. Note that for the 2D case, mode-1 and mode-2 vectors

2Classical examples of such separable transforms in the area of image processing
are the discrete Fourier transform (DFT), the discrete cosine transform (DCT), discrete
wavelet transform (DWT), and others.
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are columns and rows, respectively, and the mode-2 unfolding matrix is the
transposed matrix.

Given a multidimensional signal (N-way array) Y € Rv*b* and
a matrix A € R’*li the mode-n tensor-by-matrix product Z=Y x, A €

R LIy is defined by

1)1
Ziliz"'i;r—ljin+1"'iN = Zyiliz'”izvaﬁn’ (210)

i =1
n

withi, =1,2,... L (k#n)and j=1,2,...,].

The Tucker decomposition (Tucker, 1963; Lathauwer et al., 2000a) is a
powerful compressed format that exploits the linear structure of the un-
folding matrices of an N-way array. More specifically, when the ranks of
these matrices are bounded by rank(Y(m) <R,<I,(n=1,2,...,N), then
the following multilinear expression holds:

Y=Gx;A; x, Ay Xy Ay, (2.11)

with a core tensor G € R®1 %R, and factor matrices A, € RlRu. Ttis easy
to see that mode-n vectors of an N-way array with a Tucker representation
belong to the span of the columns of matrix A, . In fact, it can be shown that

equation 2.11 implies (Kolda & Bader, 2009)°

Y, =A,G, Ay QA ®A, @AD" (2.12)
Let us define the vectorization operator on N-way arrays as vec(Y) =
vee(Y ) € RhL Iy, that is, by stacking all the mode-1 vectors. There is a

connection between the Tucker model and a Kronecker representation for
multiway arrays, as the following proposition stablishes.

Proposition1 (relationship between the Tucker model and a Kronecker represen-
tation ofan N-way array). Given Y € Ri*xIx, X € RM*M-xMy D e RL*M,
n=1,2,...,N), x =vec(X) and y = vec(Y), the following two representations
are equivalent:

Y=Xx,D; x,D,--- x5 Dy, (2.13)
y=Dy®Dy_; ®---®D))x. (2.14)
Proof. Using equation 2.12 for mode-1 in equation 2.13, we have

Y, =D;X;,(Dy®Dy_; ® - ®D,)", (2.15)

31t is worth mentioning that equation 2.12 is also valid for factor matrices with more
columns than rows, that is, with R, > I,..
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and by applying the property of equation 2.7, we finally obtain the desired
result, equation 2.14.

The result of proposition 1 tells us that the multilinear Tucker model
structure for a multidimensional signal is equivalent to a linear represen-
tation (matrix equation) of the vectorized signal where the dictionary has a
Kronecker structure. In the standard Tucker model, a core tensor G usually
has a much smaller size than Y with R, « I, and the main objective is to find
such compressed decomposition, that is, to compute G and factor matrices
A,,, usually with additional constraints. In contrast, in our approach, the
data set (measurements) Y and dictionaries D, are assumed to be known,
and our objective is to compute the core tensor X, which is assumed to be
very sparse and is larger than Y (M,, > I)).

3 Sparse Representations of N-Way Arrays

Here we generalize the concept of sparse representations of vectors to N-
way arrays through the equivalence between the Tucker model and the
Kronecker structure. Formally, definition 1 can be applied to a vectorized
version of an N-way array with respect to a Kronecker dictionary arriving
at the following obvious generalization:

Definition 3  (multiway sparsity). A multidimensional signal (N-way array)
Y e REiLxly i K-sparse with respect to the factors D, € Rl Mo (M, > 1,
n=1,2,...,N) if its vectorized version y admits a K-sparse representation over
the Kronecker dictionary D = Dy ® Dy_; ® - - - ® Dy according to representation
2.14.

The columns of factor matrices D, are interpreted as dictionary elements
or atoms associated with each mode. For many problems, these atoms can
be selected to resemble the coherent structures that appear in each mode
of the input N-way array. In other applications, we may want to design
such dictionaries in order to favor a sparse representation. In this work,
we assume that the dictionaries D, forn =1,2,..., N are known (mode-n
dictionaries).

We see thatan N-way array having a K-sparse representation with respect
to a Kronecker dictionary has an equivalent Tucker representation (see
equation 2.13) with a sparse core tensor X, that is, with only K nonzero
entries. If we define the location of the nonzero entries in X by (&, &, ..., i)
withk=1,2,..., K, then we can express the N-way array Y as a weighted
sum of K rank-1 N-way arrays as

H
Y= inw”i;lDl( L 13) o Dy(nds) oo Dy( 1 i), (3.1)
k=1
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where the symbol o stands for the outer product of vectors: [a; ca,0--- 0o
aylii i, = a()ay () - ay(iy).

Without losing generality, we will assume throughout the letter
that mode-n dictionaries have unit-norm columns (||D,(;,)|*>=1, i=
1,2,...M,,n=1,2,...,N).

In the multiway sparsity definition, definition 3, the nonzero entries can
be located anywhere within the core tensor X. Sparsity is a simple assump-
tion that naturally arises in real life, but it leads to mathematical problems
that are not easy to solve. Therefore, additional assumptions are needed
in order to simplify the problems and develop more efficient algorithms,
especially for high-dimensional data sets. Here, we propose block spar-
sity for tensor data sets motivated by the fact that in the real world, the
nonzero coefficients are not evenly distributed and are likely to be grouped
in blocks (in Figure 2, two motivating examples of natural images revealing
block-sparse representations, are shown). In other words, block sparsity is a
natural and realistic assumption that incorporates valuable prior informa-
tion about signals in nature, because block-sparse signals are more likely to
occur than totally random sparse representations.*

Definition 4  (multiway block sparsity). A multidimensional signal (N-way
array) Y € RLxIv s (S,,S,, ..., Sy)-block sparse with respect to the factors

D, e RMon=1,2,...,N) if it admits a Tucker representation based only on
few S, selected columns of each factor (S, < M,), that is, if T, = [il i, ... i}"]
denote a subset of indices for moden (n=1,2,..., N), then

Y=Xx;D; x,D, x5--- xyDy, (3.2)
with Xii i = OV(iy iy, ..o iny) Ty X I, X - X Iy

We typically assume that S, <« M,, and M, > I,. In other words, multi-
way block sparsity assumes that the nonzero entries of the core tensor X are
located within a subarray (block) defined by X(Z;, Z,, ..., Zy). In Figure 1,
a comparison of the sparsity types used in this work is shown.

The following basic results are easily derived from the previous

definitions:

Proposition2 (multiway block sparsity implies sparsity of the vectorized version
of the signal). If an N-way array Y € Rlv*b*Inis (S, S,, ..., Sy)-block sparse
with respect to factor matrices D, € RLM, (n=1,2,..., N), then its vectorized
version y = vec(Y) € Rhl"In is K-sparse (K = S,S, - - - Sy) with respect to the
Kronecker dictionaryD =Dy ® Dy_; ® - - ® D;.

4This multiway block-sparsity structure was recently proposed in Caiafa and Cichocki
(2012)
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(a) One - dimensional
Sparsity (b) Multiway Sparsity (c) Multiway Block - Sparsity

Vector of coefficients Core Tensor (8-sparse) Core Tensor ((2,2,2)-sparse)

—

@ Non - zero entries

Figure 1: (a) Distribution of nonzero entries within a vector of coefficients x
(one-dimensional sparsity) and distribution of nonzero entries within the core
tensor X for (b) multiway sparsity (randomly distributed) and (c) multiway
block sparsity.

Proof. If we use the equivalence of equations 2.13 and 2.14 and the defini-
tion of multiway block sparsity, we conclude that the vector of coefficients
x = vec(X) has at most K = S, 5, - - - Sy, nonzero entries, which means that y
has a K-sparse representation on the dictionary Dy ® Dy_; ® - -- ® D;.

Proposition3  (multiway block sparsity implies sparsity of mode-n vectors). If an
N-way array Y € Rl *Inis (S,,S,, ..., Sy)-block sparse, then its mode-n vec-
tors have an S,,-sparse representation with respect to D, foreachn =1,2,..., N.

Proof. The N-way array Y has a Tucker representation with a core tensor X and
factors D, (n =1,2, ..., N). By using equation 2.12, we obtain

Y(n) = DnX(n) Dy®Dy_y-+-D, 19D, _; - 'Dl)T’ (3.3)

where we have written the mode-n vectors as linear combinations of elements
in the mode-n dictionary D,, that is, Y, =D,Z, with Z,, =X, (Dy®
Dy_,---D,,;®D,_;---D)". Now we note that the mode-n unfolding matrix
X () has at least S, rows with all-zero entries because X, (i,,, j) = 0Vi, ¢ T, and
therefore Z ) also has at least S, rows with all-zero entries, which let us conclude
that mode-n vectors are S,,-sparse.

Note that all n-vectors in each mode 1 belong to the same subspace with
dimension at most S,; that is, not only all these vectors can be sparsely
represented over D, but also they all use the same reduced set of dictionary
elements, which means that the reciprocal of proposition 3 is not true in
general; that is, sparsity of mode-n vectors does not implies multiway block
sparsity.
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Original 2D Image WT coefficients (458x430)-block of retained Reconstructed 2D Image
(1024x1024) (log absolute values) coefficients (19%) (Error=0.02, PSNR=39dB)

=
[

e

Original 3D Tensor WT coefficients (80x102x36)-block of retained Reconstructed 3D Tensor
(128x128x256) (log absolute values) coefficients (7%) (Error=0.04, PSNR=34dB)

Figure 2: Examples of multiway block-sparsity approximation of multidi-
mensional signals. (Top) “Wet paint” image (1024 x 1024, taken by Mike
Wakin'’s research group in Duncan Hall at Rice University and available at
http:/ /www.ece.rice.edu/wakin/images/) is approximated by a selection of
a 458 x 430 block in its Daubechies 8 (db8) wavelet transform (WT) domain
(19% of coefficients). (Bottom row) Akiyo video sequence (128 x 128 x 256) is
approximated by a selection of a 80 x 102 x 36 block in its WT domain (7%
of coefficients). The selection of blocks was done by applying our N-BOMP
algorithm (see section 5.2) to the signals.

It is important to mention that our definition of multiway block sparsity
is different from the common definition of block-sparse representation in-
troduced for 1D signals in Eldar, Kuppinger, and Bolcskei (2010). For 1D
signals, block sparsity of order K usually refers to the fact that the vector
of coefficients x is composed of a concatenation of blocks of length d, that
is, X = [Xq, oo, Xy Xggs s X e Xygds - - e xN]T, with no more than K
nonzero blocks.

4 Multidimensional Compressed Sensing

Compressed sensing (CS) (Donoho, 2006; Candes et al., 2006) proposes
the reconstruction of compressible signals from a number of measure-
ments significantly lower than the size of the signal. Let us consider a
one-dimensional signal z € RM, which is assumed to have a K-sparse repre-
sentation on the basis of W € RM*M thatis, z = Wx with ||x||, < K.Suppose
that we cannot access the whole signal z but instead have available a set of
I linear random projections obtained as follows:

y = ®z = ®Wx = Dx, (4.1)
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where ® € R*M s the sensing matrix and we have defined D = ®W. From
equation 4.1, we see that we could reconstruct the signal z by identifying the
proper sparse vector x; in other words, the CS problem is reduced to solve
an undetermined system of linear equations with the sparsity constraint as
discussed in section 2.1.

The generalization of CS to higher dimensions is straightforward by
assuming the Kronecker structure for the dictionary and the sensing matrix.
This was recently proposed by Rivenson and Stern (2009a) for 2D signals
and Duarte and Baraniuk (2011) for the general N-dimensional signals case.
Formally, the vectorization of an N-way array Z € RM*M*>My has a K-
sparse representation on a Kronecker basis, thatis, z= (Wy @ Wy_;--- ®
W,)xwith ||x||, < K. Then, by using a global sensing matrix with Kronecker
structure ® = &, ® ®5_; @ - - - ® ®;, we obtain a large-scale linear system
of equations with Kronecker structure as given by equation 2.14, where
D,=® W, (n=1,2,...,N).

A natural branch of CS is compressive imaging (CI) where, instead of
collecting a large set of pixels and then compressing them to store in mem-
ory, ClI seeks to minimize the collection of redundant data in the acquisition
step. Cl has been successfully implemented for 2D images in the celebrated
single-pixel camera (Duarte et al., 2008). Besides, Rivenson and Stern (2009a,
2009b) showed that the Kronecker structure can be easily implemented for
CI by separable imaging operators in optics, providing a practical imple-
mentation. Another application of CS using the Kronecker structure is hy-
perspectral compressive imaging (HCI), which consists of the acquisition of
2D images at several spectral bands providing a 3D signal where each slice
corresponds to a different channel (Duarte & Baraniuk, 2011; Duarte et al.,
2008). Here, a 2D-separable operator is applied to the hyperspectral light
field, which means that each spectral band’s image is multiplexed by the
same sensing operator simultaneously. The resulting measurement matrix
applied to the hyperspectral data cube can be represented as the following
Kronecker product:

=19 d,x . (4.2)

where I is the identity matrix and ®, ® ®, is the separable sensing matrix
for 2D images. Thus, HCI consists of computing the sparsest N-way array
X such as constrained to the available measurements:

Y =Xx; W, x; ®,W, x3 Ws. (4.3)

In the following section, we develop algorithms to solve this problem.
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Table 1: Computing Sparse Representations of Multidimensional Signals.

Dictionary D Sparsity Type Algorithms
Nonstructured Nonstructured Classical OMP/BP

Kronecker Nonstructured Kronecker-OMP /Kronecker-BP
Kronecker Multiway block sparsity N-BOMP

5 Solving Large, Underdetermined Linear Systems
with Kronecker Structure

It is clear that if the dictionary does not have a predefined structure, we can
use any of the available algorithms such as OMP or BP. With a Kronecker
dictionary, we can exploit its structure in order to reduce the computational
complexity and memory requirements of a greedy algorithm as presented
in section 5.1. It is worth mentioning that a BP algorithm that exploits
the Kronecker structure has been proposed by Rivenson and Stern (2009a,
2009b), which we refer to here as Kronecker-BP (or Kronecker-SPGL1) al-
gorithm. But we can do it better: if the multiway block-sparsity model is
valid, we can use this structure to develop a very fast algorithm called
N-BOMP, which we introduce in section 5.2. In Table 1 we summarize
the algorithms and their applicability conditions that are covered in this
letter.

In the following sections, we consider algorithms to compute a sparse
representation of a multidimensional signal (N-way array) Y € Ri*h>I
given a fixed dictionary D = Dy ® Dy_; ® - -- ® D, with D, € Rl>M.. To
simplify the notation and facilitate the analysis of the associated complexity,
we consider N-way arrays with the same size in each mode and dictionaries
with the same number of atoms in each mode: [, =1 and M, =M (n =
1,2,...,N).

5.1 The Kronecker-OMP Algorithm for Multiway Sparsity. We exploit
here the Kronecker structure of the dictionary to avoid the explicit storage of
it and save memory resources. In other words, we can compute the equiva-
lent multiway product, R x; DlT Xy DZT Xg oo Xy D{, inalgorithm1,STEP 3,
which also gives us much lower complexity. Note that M is related to the
number of dictionary elements associated with each mode, which is usu-
ally in the range M ~ 2I ~ 5I (underdetermined system of equations). For
example, if M = 2], with this simple technique we achieve a complexity of
order O((2I)N+1), which is smaller compared to the complexity of the OMP
algorithm applied to the vectorized signal (approximately O (2N+1]2N)).

Another expensive task in algorithm 1 is STEP 5—the least squares (LS)
problem—Dbecause it refers to a very large explicit dictionary. We note that
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at iteration k, the approximation of the N-way array can be written in the
following convenient vector form:

y= (WN © WN—l (ORERNO) w1)37 (51)
where matrices W, € RY*F (n=1,2,...,N) contain in their columns the
corresponding mode atoms selected in iterations m =1,2, ...,k more

precisely, W, (:, m) =D, (:,i'), the © symbol stands for the Khatri-Rao
product;® and the vector a contains the nonzero entries of the N-way array
X, thatis, a,, = Xini...im- Then the vector a in equation 5.1 is formally given

by
a=WyoWy 0---0W)y, (5.2)

where { stands for the Moore-Penrose pseudoinverse. Since the pseudoin-
verse is rather expensive to compute, we apply the following property
of the Khatri-Rao product (Kolda & Bader, 2009): (A ® B)" = [(ATA) *
(BB)]"(A ©B)T, with * being the element-wise product of matrices
(Hadamard product); we finally obtain

a=Z Wy 0oW,_,0---0W)Ty, (5.3)

where Z = (WLWy) « (WL, Wy_)) - % (W] W,). If we assume that Z is
non-singular, then Z' = Z~!, and we can compute this inverse adaptively
as follows. The matrix at iteration k, denoted by Z®, can be expressed in
terms of the matrix used at step (k — 1),

VA
Z® — , 5.4
(e ) 59

with

T T

b = (Wywy) * (Wy 1wy ) - (Wywy), (5.5)
where we defined the partition W, = (W, w,, ), thatis, W, =W, (:,1: k —
1) and w, = W, (;, k). Then the inverse at step k can be quickly computed
using the Schur complement inversion formula for a block matrix:

5The Khatri-Rao product is obtained by applying the Kronecker product of columns,
that is, given matrices A =[a, a,---ay] and B=[b; b, ---b,,], then AOB=[a; ®
b, a,®b,---a,; @byl
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Algorithm 2: Kronecker-OMP
Require: mode-n dictionaries {D1, Dy, -+, Dy} with D,, € RI»M» signal Y €

RI*f2xxIN gparsity K, tolerance e
Ensure: Sparse representation vec(Y) = (Dy ® Dy_; ® -+ - @ Dy)vec(X) with
|lvec(X)|lo < K (with nonzero entries given by ay = @

)
1L, =0 (n=1,2,...,N),W,=0cRI"K R=Y, X=0,k=1;

k=12, K

ik
44444 i

2: while £ < K and ||R||r > ¢ do

3 [if,d5, ..., %] = argmaxg, ;.. [R <1 DT (5,41) X2 DF (t,d2) - - - <y DR (s, iw)];
4 I,=[T,, i) (n=1,2,...,N); W,(;, k) = D,(:,i¥)

5 a=argmin, [[(Wx © Wy @ 0 Wy)u - vee(Y)][%

6:  vec(R) =vec(Y)— (WyOWpy_1 O -0 Wy)a

7 k=k+1;

8: end while

9: return {Zy,7,,--- , Iy}, a;

B Z0=1)"1 T
(z9) 11 o ) +dd" d , (5.6)
¢ dar 1

wherec=1—bTbandd = —(Z*V)"1p.
Finally, at step k, the nonzero coefficients are computed by using
equation 5.3, which can be written in the following equivalent form:

S _\T
-1 (WNQWNA@"'@Wl) y

a=(z") (5.7)

(Wy®wy_ ® - ®w) y

As a result, the complexity of the update of the nonzero entries vector
a is dominated by the computation of (wy @ wy_; ® -+ ® wl)T y, which
is only O(IV), and the saving of memory storage is huge compared to the
classical OMP with an explicit dictionary. The implementation of OMP for
N-way arrays using a Kronecker dictionary (Kronecker-OMP) is given in
algorithm 2.
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Algorithm 3: N-BOMP
Require: mode-n dictionaries {Dy, Dy, -+, Dy} with D,, € RIM» signal Y €

RO I2xxIn maximum number of nonzero entries Ky , tolerance
Ensure: Sparse representation Y ~ X x; Dy X3 D9 X3+ Xy Dy with ;... =

0 V(i1 iz, .yin) ¢ Iy X Iy X --- x Iy (with nonzero entries given by
X(Z1,Z,, ..., Iy) = A).

:Z, =0 (n=12,.,.N),R=Y,X=0,k=1,

2: while |71 ||Z5] - - - |Zn] < Kmax and ||R||p > do

3 [ - -if] = argmaxg ;0 IR X0 DT (541) X -+ Xy DR iy ) ;

4 I,=Z,U[i¥] (n=1,2,..,N), B, =D,(:,7,);

5 a=argmin, |[[(By®By_; ® - @Bj)u—y)|3:

6: R=Y—-Ax;B;x2By---xyBy;

7 k=k+1;

8: end while

9: return {71,7,,....,In}, A;

5.2 N-BOMP Algorithm: An Efficient Algorithm to Find Multiway
Block-Sparse Representations. In this section we introduce algorithm 3,
N-way Block OMP (N-BOMP), to find an (S;, S,, ..., Sy)-block sparse rep-
resentation of an N-way array (see definition 4) with respect to the factors
D, e RWMi (n = 1,2, ..., N). We show that since the nonzero entries are re-
stricted to being located within a subarray (block) of size S; x S, x --- x Sy,
they can be identified very quickly and in many fewer iterations compared
to the Kronecker-OMP presented in the previous section (see algorithm 2).
If we denote by B, € R%*®: the submatrices obtained by restricting the
mode-n dictionaries to the columns indicated by indices Z,, that is, B, =
D, (:,Z,), then the approximation of the signal is given by a Tucker model
using these matrices as factors that can be written in vector form as

y=By®By ;® --®B)a, (5.8)

where a € RK (K =[]\, S,) is the vectorized version of the N-way ar-
ray consisting of only nonzero entries. Accordingly, step 5 in algorithm 1
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corresponds to the following general minimization problem:

a=argmin||(By®By_; ®---®B)u—y)|3, (5.9)

wherey € Ri%L Iy is the vectorized version of the N-way array Y. By defining
B =B, ®By_; ® - - - ® B, we see that the solution of this problem is given
by a = [BTB] !By, which means that [BT B]a = By. This allows us to write

B{B,A,(B{By® - ®BIB,) =B{Y,(B{® - ®B]). (5.10)

By denoting Z’ = A x, Ix,BIB,--- xBIBy and P=Y x, B! x,
.-+ xy Bl, we have

B{B,(2"),, =Py, (5.11)

which canbe solved for (Z) , efficiently by using a Cholesky factorization
of the Hermitian matrix B] B,. Note that this is a relatively small problem
because the size of the matrix B] B, is only |Z;| x |Z;|. Now, we can use
the solution Z® of the subproblem, equation 5.11, and write its mode-2
unfolded version as

B)B,A,,(B{By ® - ®BIB; ®1) = (Z) (5.12)

2’

where defining Z® = A x, I x, I x; BIB;--- x,, BBy leads us to the fol-
lowing simple subproblem also solved efficiently using the Cholesky fac-
torization of the Hermitian matrix B]B,:

BZTBZ (Z(Z))(z) = (Z(l))

o) (5.13)

By subsequently applying this procedure, after N steps, we finally arrive at
the desired matrix Ay, which corresponds to the coefficients in a mode-N
matrix format for selected indices in the current iteration.

The N-BOMP algorithm not only optimizes the memory storage but also
requires far fewer iterations compared to the classic OMP algorithm because
the maximum number of iterations is k,,,, < K= 5,5, - - - Sy, with K being
the number of nonzero entries within the core tensor X (see a complexity

analysis below).

5.3 Complexity Analysis. Here we analyze the computational com-
plexity associated with each of the algorithms discussed in this letter.
For this analysis, we assume an N-way array Y € R and mode-n
dictionaries given by matrices D, € R™M. We also assume that an
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(S,S,...,S5)-block sparse representation of Y with factors D, (n=
1,2,...,N), which means that there are SN nonzero coefficients. We con-
sider the arithmetic operations required by step 3 (maximum correlated
atom detection), step 5 (least squares estimation of nonzero coefficients),
and step 6 (residual update) in all algorithms at iteration number k in terms
of I (mode size), M (number of atoms per mode), and N (number of dimen-
sions). The comparative results are summarized in Table 2 (see the details
in the appendix) where the advantage of N-BOMP over Kronecker-OMP
and OMP is evident. From this table, we observe that for very sparse repre-
sentations with S « I < M, the complexity is dominated by step 3, which is
exactly the same for Kronecker-OMP and N-BOMP. The key advantage of
N-BOMP over the other algorithms is that it requires many fewer iterations
(O(S) against O(SYN) iterations in OMP/Kronecker-OMP). In addition, in
step 5, the N-BOMP algorithm complexity in terms of the number of entries
IV is sublinear compared to a linear dependence of the standard OMP and
the Kronecker-OMP algorithms. In section 7, we show several numerical
results with comparisons of the computation times required by different
algorithms applied to multidimensional signals.

6 Algorithms Performance Guarantees

It is important to analyze under which conditions the proposed algorithms
can obtain the true expected solution. We assume that an N-way array
Y e Rl hag a (S, S, ..., S)-block sparse representation according to
the model of definition 4 and the coherence of each mode-n dictionary is
bounded by u,, < u(n=1,2,...,N).Itis easy to see that if

SN < 1 (1 + 1) , (6.1)
2 Iz

then algorithm 1 (standard OMP) applied toy € R!" (the vectorized version
of an N-way array) with a global dictionary D=D,®Dy_; ®---® D,
will obtain the true sparse representation after SV iterations as predicted by
condition 2.3. It is also straightforward to see that this is true for algorithm
2 (Kronecker-OMP) applied to the N-way array Y € ROl with mode-n
dictionaries D, € R"M (n =1,2,...,N).

The following theorem shows that for an N-way array generated as de-
scribed before, the N-BOMP algorithm is able to obtain the true expected
sparse representation in fewer iterations and under a less restrictive condi-
tion compared to equation 6.1.

Theorem 1 (N-BOMP performance guarantee). Given the multiway decompo-
sition Y = X x; Dy x, D, -+ x Dy, with a fixed N-way array Y € Rl
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and known dictionaries D, € RIxM having coherences pu, (n=1,2,...,N), ifa
(S, S, ..., S)-block sparse solution exists satisfying

(SN <2—(1+(S-Dw", (6.2)

with p = max{u,, Wy, ..., wy}. Then algorithm 3 (N-BOMP) is guaranteed to
find this sparse representation in K iterations with S < K < NS.

Proof. Suppose, without loss of generality, that the desired sparse core
tensor X is such that its nonzero entries are located at the subarray defined
by the indices in therange i, = 1,2, ..., S and the maximum absolute value
is [x47..11. Thus,

s S S

y=y..3 X1 . D i) 0D iy) 00 D i) (6.3)

i=1i,=1 iy=1

At the first step of the algorithm k = 1, the residual is set to R = Y. Thus,
for the first step of choosing the largest absolute value |x;;. |, we must
require that

[Y x; D] (;,1) x, DI (:, 1) - - xy DR, D]
> XY x4 DlT(:» J1) %2 DzT(:’ J2) o Xy D;:I(:’ )l (6.4)
for (jyi, jo» .- jn) # (1,1,...,1). Now we construct a lower bound for the
left-hand side (LHS) and an upper bound for the right-hand side (RHS),

and then pose the above requirement. Using equation 6.3, the LHS can be
written as equal to

s s s
Z Z e Z xilizmiNgl(l’ i1)8 (1, 1) - gy (L. iy (6.5)

i=li=1  i,=1

where g,(i,, j,) are the elements of the Gram matrices G, = D!D,. By
expanding this equation, we obtain
[Y x; D] (:,1) x, DI (-, 1) - -+ xy DL, D)

= x0 F A F A -+ Ay, (6.6)

where

N S
Al = Z Z x11...,’ﬂ.“18n 1, in)a

n=11i =2
n
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S S
Az = Z Z Z x11.4.i”4..1‘m.4.1gn (1, in)gm (1, im)7

nFEmi =2i =2

s s S
Ay= Z Z o Z X0 S1(L )8 (1, 1) - g (L, i)

i=20=2 Q=2

Using the definition of coherence and the fact that the maximum absolute
nonzero entry is x;;_,, we can write the bounds |A, | < (I,\f) (S — D)™Mxyy. 411",
which allows us to write the following lower bound for the LHS of equation
6.4:

N
N
|x11...1| |:1 - Z <1’l>(s - 1)nM;1:| = |x11...1| [2 - (1 + (S - 1)M)N] .

n=1
(6.7)
Similarly, for the RHS of equation 6.4, we can write it equal to
s s s
Z Z T Z Xigyewi 81 (i1, J1)82in, o)+ &n(ins TN |5 (6.8)

i=liy=1  i,=1

which allows us to to write the following upper bound for the RHS of
equation 6.4:

S S S
Z Z e Z |x11...1|MN = |x11m1|(S/,L)N. (6.9)

i=li=1  i,=1
Finally, using equations 6.7 and 6.8 and by requiring
SV <2- A+ S =D, (6.10)

we guarantee that the first chosen entry is the largest in absolute value.
After that, the algorithm updates the residual, which again can be written
in terms of the same dictionary atoms in each mode. Then, by using the same
steps, we obtain that condition 6.2 guarantees that the algorithm again finds
an index from the support of the expected solution. The maximum number
of iterations is NS, which corresponds to the worst scenario in which only
one new index is added to each mode-n dictionary at every iteration. The
minimum number of iterations is S, which corresponds to the best scenario,
where a new index is added to each mode at every iteration.
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Sparsity upper bound for successfully recovery of block—-sparse representations
10 T T T
=—— OMP bound (N=1,2,...)
- = -N-BOMP bound (N=2)
---N-BOMP bound (N=3)
N-BOMP bound (N=4) 1
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Figure 3: Comparison of successfull recovery bounds for N-BOMP and vector-
ized OMP (also Kronecker-OMP) algorithms.

Condition 6.2 establishes an upper bound for the number of nonzero
entries SV in the multiway block-sparse representation, which is less re-
strictive than condition 6.1, as illustrated in Figure 3, where this bound
was computed numerically. We can see that the N-BOMP bound is always
much larger than the classic OMP bound, and the situation improves for a
higher number of dimensions N (at a fixed global coherence value ). It is
interesting to note that in practice, even beyond this upper bound, the algo-
rithms are able to recover the correct representation with high probability,
and N-BOMP always performs better than OMP for multiway block-sparse
representations as our simulations in section 7 demonstrate.

7 Experimental Evaluation

In this section, we present several simulation results on synthetically gen-
erated signals and real-world signals in order to compare the performance
of our algorithms against state-of-the-art methods like the classic OMP and
BP. In particular, we evaluated an optimized version of a BP algorithm
called SPGL1 (a solver for large-scale sparse reconstruction) (Berg & Fried-
lander, 2007), referred to here as Kronecker-SPGL1, which is optimized for
large data sets and takes into account the Kronecker structure of the linear
operator as used in Rivenson and Stern (2009a, 2009b) in the CI context.
All the experiments were performed on a 2.65 GHz Intel Core i5 with 8GB
RAM with Matlab using the Tensor Toolbox (Bader & Kolda, 2007) for effi-
cient handling of multiway arrays. (A downloadable Matlab Demo package
is available at http://web.fi.uba.ar/~ccaiafa/Cesar/N-BOMPdemo.html,
which reproduces our results for 2D and 3D CS as reported in this letter.)
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7.1 Recovery of Exact Multiway Block-Sparse Representations. Here
we analyze the capability of our algorithms to recover the correct set of
nonzero coefficients and compare them against the classic OMP and BP
(SPGL1). We have generated N-way arrays having exact multiway block-
sparse representations according to definition 4 with M, =M, I, = I, and
S,=Sforn=1,2,...,N. The indices that define the subarray of nonzero
coefficients were randomly chosen, and the values of the nonzero entries
were generated with independent and identically distributed (i.i.d.) gaus-
sian numbers. We decide that a sparse representation was correctly recov-
ered if the relative error based in the Frobenius norm is less than a threshold
of 1072, that is, if e = ||X — X|/[IX||; < 1072

In experiment 1 (deterministic dictionary), we generated matrices D, e
R by concatenating two orthogonal bases: the discrete cosine transform
(DCT) basis and the canonical basis (spikes). More specifically, the dictio-
naries are generated as follows: D, = [C|I] where the entries of the DCT

matrix C € R™! are defined by ¢;; = \/gcos(%) for1 <i<Iand

€)= ﬁ and the matrix I € R™*! is the identity matrix. It is known that

sines and spikes provide highly incoherent matrices (Tropp, 2008), which
is desirable in order to guarantee the recovery of sparse representations. In
fact, the coherence of these matricesis 1, = u(D,) = \/Tﬂ ,and therefore the
global coherence of matrixD = Dy ® Dy_; ® - -- ® D, is u = u(D) = /2/I.
These kinds of dictionaries (i.e., concatenation of orthogonal bases) have al-
ready been tested in the compressed sensing literature (Donoho & Elad,
2003; Gribonval, 2003). In Figure 4 we compare the percentage of correctly
recovered representations over an ensemble of 100 simulations by using
standard OMP/Kronecker-OMP, BP (implemented by SPGL1/Kronecker-
SPGL1), and N-BOMP algorithms applied to generated signals for 1D, 2D,
and 3D cases as a function of the total number of nonzero entries (SV). It
is important to note that the N-BOMP algorithm always performed bet-
ter than standard OMP and BP. Furthermore, it is interesting to note that
the maximum number of nonzero entries required by conditions 6.1 and
6.2 to guarantee the success of OMP and N-BOMP, respectively, is much
lower than the actual required number of nonzero entries. For example, in
Figure 4c, the global coherence is 1 = 0.36, which gives a maximum number
of nonzero entries of $3 . = 1.87 (OMP) and S3 , = 4.05 (N-BOMP); never-
theless, our experimental results show that 100% of the cases were correctly
recovered even with S = 27 (OMP) and S® = 64 (N-BOMP), which reveals
that the theoretical guarantees are very conservative (pesimistic) and the
algorithms also perform well beyond those limits.

In experiment 2 (random dictionary), we consider that matrices D, €
R*M are random as in the case of CS, because they are the result of multi-
plying a random-sensing matrix by an orthogonal matrix. Dictionaries have
been generated using i.i.d. gaussian variables and applying normalization
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Figure4: Experiment1 (deterministic dictionary). Percentage of correctly recov-
ered representations (relative error ¢ < 1072) versus number of nonzero entries
SN by using Kronecker-OMP, Kronecker-BP (SPGL1), and N-BOMP algorithms
for 1D (a), 2D (b), and 3D (c) signals. The coherence value u is shown together
with the theoretical guarantee bounds by using equations 6.1 and 6.2 for OMP
and N-BOMP algorithms, respectively.

to the columns. It is well known that gaussian matrices have a high proba-
bility of low coherence (Tropp & Gilbert, 2007). In Figure 5 we compare the
percentage of correctly recovered representations over an ensemble of 100
simulations by using standard OMP/Kronecker-OMP, BP (implemented
by SPGL1/Kronecker-SPGL1), and N-BOMP algorithms applied to gener-
ated signals for 1D, 2D and 3D cases as a function of the total number of
measurements (IN). N-BOMP provides a higher percentage of correctly re-
covered signals for a few measurements. For example, in the 3D case for
approximately 3000 measurements, which represents 3000/24% = 21.7% of
the whole signal, N-BOMP provides almost 90% of successfully recovered
representations against 65% and 35% obtained by BP and Kronecker-OMP,
respectively.

In Figure 6, the computation times required by Kronecker-OMP,
Kronecker-BP, and N-BOMP algorithms are shown for experiment 1 (time
versus the number of nonzero coefficients S¥) and experiment 2 (time versus
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Figure 5: Experiment 2 (random dictionary). Percentage of correctly recovered
representations (relative error ¢ < 1072) versus number of measurements IN by
using Kronecker-OMP, Kronecker-BP (SPGL1), and N-BOMP algorithms for 1D
(a), 2D (b), and 3D (c) signals.

the number of measurements V). It is important to highlight that we used
the SPGL1 algorithm for the Kronecker-BP, which is optimally implemented
by Berg and Friedlander (2007) in Matlab, including fast C implementations.
Our implementation of Kronecker-OMP and N-BOMP does not include any
C implementation. For experiment 1 (see Figures 6a and 6b), the complex-
ity of Kronecker-OMP, as a function of the number of nonzero entries,
grows faster than the cases of Kronecker-BP and N-BOMP. This is because
the number of iterations required by Kronecker-OMP is SN and for for
N-BOMP is between S and NS (see section 5.3). On the other side, the
number of iterations of Kronecker-BP depends on the convergence of the
algorithm, not on the number of nonzero entries directly. For experiment 2
(see Figures 6¢ and 6d), we observe that Kronecker-OMP and N-BOMP
show approximately flat plots because the number of nonzero entries is kept
fixed to S? = 82 = 64 in Figure 6c and S® = 3% = 27 in Figure 6d. On the other
side, as more measurements become available, the Kronecker-BP algorithm
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Experiment 1: Deterministic Dictionary
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Figure 6: Computation times required by Kronecker-OMP, Kronecker-BP
(SPGL1), and N-BOMP algorithms for 2D (left) and 3D (right) signals with
multiway block-sparse representations generated according to experiment 1
(deterministic dictionary) (top) and experiment 2 (random dictionary) (bottom).

runs faster because it requires fewer iterations to converge. From all these
plots, the advantage of N-BOMP algorithm over the other algorithms is
clear.

7.2 Application to Multidimensional CS. Here we apply our N-BOMP
algorithm to CS and compare it to a state-of-the-art method for the case of
multidimensional images (large-scale data sets). More specifically we com-
pare it to the optimized implementation of Kronecker-SPGL1 as proposed
in Rivenson and Stern (2009a, 2009b), where the Kronecker structure is
considered. We use the peak signal-to-noise Ratio (PSNR) to measure the
quality of reconstruction of a multidimensional signal Z € RMy>Myx->My,
which is defined as PSNR(dB) = 20log (max (z;.0 )/ |Z — Z||;). Our re-
sults demonstrate that by taking into account the multiway block spar-
sity, we are able to obtain much better results in terms of computation
time and quality of reconstruction, as the following experiments clearly
show.

7.2.1 Compressive Imaging. Our N-BOMP algorithm is very attractive for
CI since the Kronecker structure can be forced in the implementation of sen-
sors by separable optics demonstrated in Rivenson and Stern (2009a, 2009b).
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(a) Reconstruction Performance (1024x1024 “Man” image) (D) Reconstruction Time (1024x1024 “Man” image)
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Figure 7: Compressive sensing of a 1-megapixel image. (a) Recovery perfor-
mance in terms of the PSNR. (b) Computation times.

In order to put our algorithms in the context of the state-of-the-art meth-
ods for CI, in this section we consider the reconstruction of a 1-megapixel
2D image (M x M with M = 1024) benchmark already used in Candes and
Romberg (2006) Candes and Wakin (2008), and Rivenson and Stern (2009a)
where the original image was first processed by thresholding the largest
25,000 wavelet coefficients. Here, we kept 99,078 coefficients contained in
a 294 x 337 2D block, which concentrates most of the signal energy in the
Daubechies-separable wavelet transform domain (this block was selected
by using the N-BOMP algorithm applied to the whole image with a target
reconstruction relative error of 0.0874, the same error obtained by keeping
the 25,000 largest coefficients). We have projected the input image by using
gaussian sensing matrices ®, € R"M (n = 1, 2) for a wide range of the sam-
pling ratio I>/M?. In Figure 7a, the obtained PSNRs for the Kronecker-SPGL1
and the N-BOMP algorithms as a function of the sampling ratio I?/M? are
shown. We see that for small sampling ratios, N-BOMP outperforms the
BP strategy. For example, for a sampling ratio of 15%, we obtained PSNR
values of 27 dB (Kronecker-SPGL1) and 35 dB (N-BOMP), as illustrated in
Figure 8. In Figure 7b, the computation times required by these algorithms
are shown. It is interesting to note that N-BOMP is always faster than the
very optimized Kronecker-SPGL1 algorithm, which is extremely expensive
for low levels of the sampling ratio due to the number of iterations required
to converge to the solution.

7.2.2 Hyperspectral Compressive Imaging. Our sparse models for tensors
are particularly relevant when dealing with large data sets with high di-
mensionality (N > 2) because existing vector techniques such as OMP or
SPGL1 algorithms become prohibitively expensive or intractable. For exam-
ple, large-scale problems with 3D signals cannot be processed with state-of-
the-art algorithms (such as the Kronecker-BP based on SPGL1) without the
aid of a super-computer. One example of such a problem is hyperspectral
compressive imaging (HCI), introduced in section 4, which we illustrate in
this section.
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— —
{b) BP based reconstructad image (Kronecker-SPLG1) {c} N-BOMP based reconstructed image
(PENR=27dB, Time=560 sec, Sampling Ratio=15%) (PSNR=35d8, Time=52 sec, Sampling Ratio=15%)

(&} Original 2D Image (1024x1024)

Figure 8: Compressive imaging example of a 1-megapixel image using 3972
samples (i.e., 15% of the original image size). (a) Original image approxi-
mated with 99, 078 wavelet coefficients contained in a 294 x 337 2D block.
(b) Kronecker-SPLG1 (Rivenson & Stern, 2009a) reconstruction. (¢) N-BOMP
reconstruction.

We show the results of applying our N-BOMP algorithm to two examples
of natural scene hyperspectral images (1024 x 1024 x 32) corresponding to
the signals extracted from scenes 7 and 8 in the Foster and Nascimento
& Amano database (Foster, Nascimento, & Amano, 2004, available online at
http:/ /personalpages.manchester.ac.uk webpage). No preprocessing steps
were applied to these data sets. These hyperspectral images contain scene
reflectances measured at 32 different frequency channels acquired by a
low-noise Peltier-cooled digital camera in the wave-length range of 400 to
720 nm (see the details in Foster et al., 2004).

As explained in section 4, for each channel, we apply a separable random-
sensing matrix given by ® x ®, where ® € R%*102 j5 3 gaussian random
matrix. We also assume that the data set has a multiway block-sparse rep-
resentation on the separable Daubechies wavelet transform basis given
by the matrix W, ® W, ® W,, with W, = W, € RI024x1024 and W, ¢ R32x32,
The resulting sampling ratio is % = 0.3263. Results are shown in
Figures 9 and 10. Quantitatively, the reconstructions perform very well
with PSNR = 35.26 dB (global PSNR) for scene 7 and PSNR = 42.52 dB
(global PSNR) for scene 8. This can be qualitatively verified by visual in-
spection of the images (the worst and best reconstructed slices are shown in
Figures 9 and 10 with their corresponding PSNR values). It is important to
highlight that these large data sets required only about 1 hour of computa-
tion time with our N-BOMP algorithm, which is very fast compared to the
computation required by other state-of-the-art algorithms.
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Figure 9: Hyperspectral compressive imaging (HCI) applied to the data set
scene 07 (1024 x 1024 x 32) of the Foster et al. (2004) database using a sampling
ratio of 33%. Original slices and their N-BOMP reconstructions are shown for
the best case (slice 13, PSNR = 35.95 dB) and the worst case (slice 1, PSNR =
31.91 dB). The obtained global PSNR and computation times were (35.26 dB,
69 min).

=
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Figure 10: Hyperspectral compressive imaging (HCI) applied to the data set
scene 08 (1024 x 1024 x 32) of the Foster et al. (2004) database using a sampling
ratio of 33%. Original slices and their N-BOMP reconstructions are shown for the
best case (slice 4, PSNR = 41.2 dB) and the worst case (slice 1, PSNR = 37.15 dB).
The obtained global PSNR and computation times were (42.52 dB, 71 min).
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8 Conclusion

Sparsity is a simple assumption that naturally arises in real life, but it leads
to mathematical problems that are not easy to solve. Therefore, additional
assumptions are needed in order to simplify the problems and develop more
efficient algorithms, especially for high-dimensional data sets. In this work,
we demonstrated the advantage of keeping the multidimensional struc-
ture of a data set by applying N-way array algorithms instead of classical
vector algorithms. Since multidimensional signals usually have a sparse
representation over, for example, the cosine, fourier, or wavelet separable
transforms, it is reasonable to consider that dictionaries of multidimen-
sional signals can be modeled by a Kronecker product of mode dictionaries.
Additionally, motivated by the fact that in the real world, the nonzero co-
efficients are not evenly distributed and are likely to be grouped in blocks,
we have introduced block sparsity, which allowed us to develop N-BOMP,
a very efficient algorithm. In other words, block sparsity is a natural and
realistic assumption that incorporates valuable prior information about sig-
nals, because block-sparse signals are more likely to occur than totally
random sparse representations. Moreover, block-sparse signals are better
recovered; in fact, the theoretical bound for N-BOMP is better than the the-
oretical bound corresponding to the vector case (OMP). We have provided
extensive experimental results demonstrating the tremendous advantages
of using algorithm 3 (N-BOMP), especially for higher-dimensional signals.
Examples of application of N-BOMP algorithm to compressed sensed (CS),
especially to 2D compressive imaging (CI) and 3D hyperspectral CI, are pre-
sented showing the efficiency and usefulness of our algorithm compared to
available state-of-the-art algorithms such as classical OMP and Kronecker-
BP. Summarizing, our work showed that block-sparsity naturally arises in
nature; incorporating block sparsity allows one to dramatically reduce the
complexity of algorithms; and the block-sparsity assumption also allows
one to obtain better-quality reconstructions of signals, as our experimental
results demonstrated.

Appendix: Detailed Complexity Analysis

A.1 OMP Algorithm (Algorithm 1). We begin with analysis of algo-
rithm 1 in its recent optimized version as explained in Rubinstein et al.
(2008). This algorithm has as input the vector y € R" and an explicit dic-
tionary D € RIVOMY with M > 1 (overcomplete case). Assuming that the
algorithm is guaranteed to obtain the true sparse representation, it will
need exactly SV iterations:

Step 3: This step includes computing D'r and taking the absolute value
maximum (2(MD)N + 2MN operations).
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Step 5: By using the Cholesky factorization method, this step requires
computing (kI)N + 3k?N operations (Rubinstein et al., 2008).

Step 6: This step includes computing D(:, 7)a and subtracting it from
y QUIk)N + IN operations)

A.2 Kronecker-OMP Algorithm (Algorithm 2). Asinthe previouscase,
assuming that the algorithm is guaranteed to obtain the true sparse repre-
sentation, it will need exactly SV iterations:

Step 3: This step includes computing R x; DT (:,i;) x, DI (:,4y) -+ xyy
DL i) @MNI+2MN TP 4 2MIN =2MVI (U5 opera-
rations) and taking its absolute-value maximum (MM
operations).

Step 5: This step includes computing (wy, ® wy_; ® - -- @ w;) Ty (21N op-
erations), b = (WLWN) * (Wi,flefl) Kook (WlTwl) (2NKNT +
NKN operations), d = (Z*~1)~'b (2k?N operations), bd (2kN op-
erations), updating the inverse matrix according to equation 5.4
(2kN + 3k?N), and computing the nonzero coefficients according
to equation 5.7 (2k?N). Thus, giving a total number of operations
equals 21N + 2NKNT + (N + 4)kN + 7k>N.

Step 6: This step includes computing (W ©@ Wy_; ©--- © W;)a and
subtracting it from vec(Y) (N(N — 1IN + IV operations).

A.3 N-BOMP Algorithm (Algorithm 3). A distinctive characteristic of
this algorithm compared to the previous ones is that, assuming that the
algorithm is granted to obtain the true sparse representation, it will require
much less iterations. More specifically, after the maximum correlated atom
is detected in step 3, its position within the (M x M x --- x M) multiway
array determines the indices i’lc , ig, el i’l‘\, to be added to the current 7,
(n=1,2,...,N) subsets. Some of these indices may already be included
in the corresponding mode indices subsets. It is granted that at least one
new index in one mode will be added. Thus, at every iteration, a situation
between the following two extreme cases can happen: case 1: only one subset
of indices Z,, is incremented by 1 for some ; case 2: a new index is selected
so Z, are incremented by 1 for every n = 1,2, ..., N. Below, we analyze the
complexity for the worst case (case 2). We note that the minimum number
of iterations is S (case 2) and the maximum number of iterations is NS

(case 1):

Step 3: The same as for the Kronecker-OMP algorithm 2MN] + 2MN~I? +

s 2MIN = 2MNT (%) + 2MN operations).
Step 5: The update of the Cholesky factorization for each mode, similar
to the case of the algorithm 1, requires 2kI + k? + 2k operations

and solving a set of N equations of type 5.10 using again the
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Cholesky factorization, requires 2NkN*! operations. Thus, in the
worst case (case 2) where the Cholesky factorization update is
needed for every mode, the total number of operations is 2NkI +
Nk? + 2Nk + 2NKN+L,

Step 6: This step includes computing A x; B; x,B,--- xy By
(2kIN (%) ~ 2kIN operations) and subtracting it from Y,
giving us approximately 2kIN + IV operations where we assumed
that I > k.
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