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Abstract

Shannon’s seminal 1948 work gave rise to two distinct areas of research: information theory and
mathematical coding theory. While information theory has had a strong influence on theoretical
neuroscience, ideas from mathematical coding theory have received considerably less attention. Here
we take a new look at combinatorial neural codes from a mathematical coding theory perspective,
examining the error correction capabilities of familiar receptive field codes (RF codes). We find,
perhaps surprisingly, that the high levels of redundancy present in these codes does not support
accurate error correction, although the error-correcting performance of RF codes “catches up” to that
of random comparison codes when a small tolerance to error is introduced. On the other hand, RF
codes are good at reflecting distances between represented stimuli, while the random comparison codes
are not. We suggest that a compromise in error-correcting capability may be a necessary price to pay
for a neural code whose structure serves not only error correction, but must also reflect relationships
between stimuli.
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1 Introduction

Shannon’s seminal work (Shannon, 1948) gave rise to two distinct, though related, areas of research:
information theory (Cover & Thomas, 2006) and mathematical coding theory (MacWilliams & Sloane,
1983; Huffman & Pless, 2003). While information theory has had a strong influence on theoretical
neuroscience (Attick, 1992; Borst & Theunissen, 1999; Rieke, Warland, Steverninck, & Bialek, 1999;
Quiroga & Panzeri, 2009), ideas central to mathematical coding theory have received considerably
less attention. This is in large part due to the fact that the “neural code” is typically regarded as
a description of the mapping, or encoding map, between stimuli and neural responses. Because this
mapping is not in general understood, identifying which features of neural responses carry the most
information about a stimulus is often considered to be the main goal of neural coding theory (Bialek,
Rieke, Stevenick, & Warland, 1991; deCharms & Zador, 2000; Jacobs et al., 2009; London, Roth,
Beeren, Häusser, & Latham, 2010). In particular, information-theoretic considerations have been
used to suggest that encoding maps ought to maximize information and minimize the redundancy of
stimulus representations (Attneave, 1954; Barlow, 1961; Adelesberger-Mangan & Levy, 1992; Attick,
1992; Rieke et al., 1999), although recent experiments point increasingly to high levels of redundancy
in retinal and cortical codes (Puchalla, Schneidman, Harris, & Berry, 2005; Luczak, Barthó, & Harris,
2009).

In contrast, mathematical coding theory has been primarily motivated by engineering applications,
where the encoding map is always assumed to be well-known and can be chosen at will. The primary
function of a “code” in Shannon’s original work is to allow for accurate and efficient error correction
following transmission across a noisy channel. “Good codes” do this in a highly efficient manner,
so as to achieve maximal channel capacity while allowing for arbitrarily accurate error correction.
Mathematical coding theory grew out of Shannon’s challenge to design good codes, a question largely
independent of either the nature of the information being transmitted or the specifics of the encoding
map. In this perspective, redundancy is critical to the function of a code, as error correction is only
possible because a code introduces redundancy into the representation of transmitted information
(MacWilliams & Sloane, 1983; Huffman & Pless, 2003).

2



Given this difference in perspective, can mathematical coding theory be useful in neuroscience?
Because of the inherent noise and variability that is evident in neural responses, it seems intuitive
that enabling error correction should also be an important function of neural codes (Schneidman,
Berry, Segev, & Bialek, 2006; Hopfield, 2008; Sreenivasan & Fiete, 2011). Moreover, in cases where
the encoding map has become more or less understood, as in systems that exhibit robust and reliable
receptive fields, we can begin to look beyond the encoding map and study the features of the neural
code itself. An immediate advantage of this new perspective is that it can help to clarify the role
of redundancy. From the viewpoint of information theory, it may be puzzling to observe so much
redundancy in the way neurons are representing information (Barlow, 1961), although the advantages
of redundancy in neural coding are gaining appreciation (Barlow, 2001; Puchalla et al., 2005). Ex-
perimentally, redundancy is apparent even without an understanding of the encoding map, from the
fact that only a small fraction of the possible patterns of neural activity are actually observed in both
stimulus-evoked and spontaneous activity (Luczak et al., 2009). On the other hand, it is generally
assumed that redundancy in neural responses, as in good codes, exists primarily to allow reliable signal
estimation in the presence of noisy information transmission. This is precisely the kind of question
that mathematical coding theory can address: Does the redundancy apparent in neural codes enable
accurate and efficient error correction?

To investigate this question, we take a new look at neural coding from a mathematical coding
theory perspective, focusing on error correction in combinatorial codes derived from neurons with
idealized receptive fields. These codes can be thought of as binary codes, with 1s and 0s denoting
neurons that are “on” or “off” in response to a given stimulus, and thus lend themselves particularly
well to traditional coding-theoretic analyses. Although it has been recently argued that the entorhinal
grid cell code may be very good for error correction (Sreenivasan & Fiete, 2011), we show that more
typical receptive field codes (RF codes), including place field codes, perform quite poorly as compared
to random codes with matching length, sparsity, and redundancy. The error-correcting performance of
RF codes “catches up,” however, when a small tolerance to error is introduced. This error tolerance is
measured in terms of a metric inherited from the stimulus space, and reflects the fact that perception
of parametric stimuli is often inexact. We conclude that the nature of the redundancy observed in
RF codes cannot be fully explained as a mechanism to improve error correction, since these codes are
far from optimal in this regard. On the other hand, the structure of RF codes does allow them to
naturally encode distances between stimuli, a feature that could be beneficial for making sense of the
transmitted information within the brain. We suggest that a compromise in error-correcting capability
may be a necessary price to pay for a neural code whose structure serves not only error correction,
but must also reflect relationships between stimuli.

2 Combinatorial neural codes

Given a set of neurons labelled {1, . . . , n} def
= [n], we define a neural code C ⊂ 2[n] as a set of subsets

of the n neurons, where 2[n] denotes the set of all possible subsets. In mathematical coding theory,
a binary code is simply a set of patterns in {0, 1}n. These notions coincide in a natural way once we
identify any element of {0, 1}n with its support,

c ∈ {0, 1}n ↔ supp(c)
def
= {i ∈ [n] | ci = 1} ∈ 2[n],

and we use the two notions interchangeably in the sequel. The elements of the code are called code-
words: a codeword c ∈ C corresponds to a subset of neurons, and serves to represent a stimulus.
Because we discard the details of the precise timing and/or rate of neural activity, what we mean by
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“neural code” is often referred to in the neural coding literature as a combinatorial code (Osborne,
Palmer, Lisberger, & Bialek, 2008).

We will consider parameters of neural codes, such as size, length, sparsity and redundancy. The
size of a code C is simply the total number of codewords, |C|. The length of a code C ⊂ 2[n] is n, the
number of neurons. The (Hamming) weight wH(c) of a codeword c ∈ C is the number of neurons in
c when viewed as a subset of [n] or, alternatively, the number of 1s in the word when viewed as an
element of {0, 1}n. We define the sparsity s of a code as the average proportion of 1s appearing among
all codewords,

s =
1

|C|
∑
c∈C

wH(c)

n
.

Closely related to the size of a code C is the code’s redundancy,1 which quantifies the idea that
typically more neurons are used than would be necessary to encode a given set of stimuli. Formally,
we define the redundancy ρ of a code C of length n as

ρ = 1− log2(|C|)
n

.

For example, the redundancy of the repetition code C = {∅, [n]} of length n, consisting only of the
all-zeros word and the all-ones word, is ρ = n−1

n ; this may be interpreted as saying that all but one of

the n neurons are extraneous. At the other end of the spectrum, the redundancy of the code C = 2[n],
consisting of all possible subsets of [n], is ρ = 0. It is clear ρ takes values between 0 and 1, and that
any pair of codes with matching size and length will automatically have the same redundancy.2

2.1 Receptive field codes (RF codes)

Neurons in many brain areas have activity patterns that can be characterized by receptive fields. Ab-
stractly, a receptive field is a map fi : X → R≥0 from a space of stimuli X to the average (nonnegative)
firing rate of a single neuron, i, in response to each stimulus. Receptive fields are computed by cor-
relating neural responses to independently measured external stimuli. We follow a common abuse of
language, where both the map and its support (i.e., the subset of X where fi takes on positive values)
are referred to as receptive fields. Convex receptive fields are convex subsets of X. The main examples
we have in mind pertain to orientation-selective neurons and hippocampal place cells. Orientation-
selective neurons have tuning curves that reflect a neuron’s preference for a particular angle (Watkins
& Berkley, 1974; Ben-Yishai, Bar-Or, & Sompolinsky, 1995). Place cells are neurons that have place
fields, i.e. each cell has a preferred (convex) region of the animal’s physical environment where it has a
high firing rate (O’Keefe & Dostrovsky, 1971; McNaughton, Battaglia, Jensen, Moser, & Moser, 2006).
Both tuning curves and place fields are examples of receptive fields.3

The neural code is the brain’s representation of the stimulus space covered by the receptive fields.
When a stimulus lies in the intersection of several receptive fields, the corresponding neurons tend
to co-fire while the rest remain silent. The active subset σ of neurons is a neural codeword and is
identified as usual with a binary codeword c such that supp(c) = σ; i.e.,

c = (c1, . . . , cn) ∈ {0, 1}n, where ci =

{
1, i ∈ σ,
0, i /∈ σ.

1See (Puchalla et al., 2005) and (Levy & Baxter, 1996) for related notions.
2In the coding theory literature, the rate of a code C of length n is given by

log2(|C|)
n

, so that the redundancy as we

have defined it is simply 1 minus the rate. Because “rate” has a very different meaning in neuroscience than in coding
theory, we will avoid this term and use the notion of redundancy instead.

3In the vision literature, the term “receptive field” is reserved for subsets of the visual field; here we use the term in
a more general sense that is applicable to any modality, as in (Curto & Itskov, 2008).
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Figure 1: Receptive field overlaps determine codewords in 1D and 2D RF codes. (A) Neurons
in a 1D RF code have receptive fields that overlap on a line segment (or circle). Each stimulus on the line
corresponds to a binary codeword, with 1s corresponding to neurons whose receptive fields include the stimulus,
and 0s for neurons that are not active in response to the stimulus. (B) Neurons in a 2D RF code, such as a
place field code, have receptive fields that partition a two-dimensional region into non-overlapping intersection
regions, such as the shaded area. All stimuli within one of these regions will activate the same set of neurons,
and hence have the same corresponding codeword.

For a given set of receptive fields on a stimulus space X, the receptive field code (RF code) C ⊂ {0, 1}n
is simply the set of all binary codewords corresponding to stimuli in X. The dimension of a RF code is
the dimension of the underlying stimulus space.4 In the case of orientation tuning curves, the stimulus
space is the interval [0, π), and the corresponding RF code is one-dimensional. In the case of place
fields for an animal exploring a two-dimensional environment, the stimulus space is the environment,
and the RF code is two-dimensional. From now on, we will refer to such codes as 1D RF codes and
2D RF codes, respectively.

Figure 1 shows examples of receptive fields covering one- and two-dimensional stimulus spaces.
Recall that fi : X → R≥0 is the receptive field of a single neuron, and let f = (f1, . . . , fn) : X → Rn≥0

denote the population activity map, associating to each stimulus a firing rate vector that contains the
response of each neuron as dictated by the receptive fields. For a given choice of threshold θ, we can
define a binary response map, Φ : X → {0, 1}n, from the stimulus space X to codewords by

Φi(x) =

{
1 if fi(x) ≥ θ,
0 if fi(x) < θ.

The corresponding RF code C is the image of Φ. Notice that many stimuli will produce the same
binary response; in particular, Φ maps an entire region of intersecting receptive fields to the same
codeword, and so Φ is far from injective.

2.2 Comparison codes

In order to analyze the performance of RF codes, we will use two types of randomly-generated com-
parison codes with matching size, length, and sparsity. In particular, these codes have the same
redundancy as their corresponding RF codes. We choose random codes as our comparison codes for
three reasons. Firstly, as demonstrated by Shannon (1948) in the proof of his channel coding theorem,
random codes are expected to have near-optimal performance. Secondly, the parameters can be tuned
to match those of the RF codes; we describe below the two ways in which we do this. Finally, random

4Note that this is distinct from the notion of “dimension of a code” in the coding theory literature.
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codes are a biologically reasonable alternative for the brain, since they may be implemented by random
neural networks.

Shuffled codes. Given a RF code C, we generate a shuffled code C̃ in the following manner. Fix
a collection of permutations {πc | c ∈ C} such that (cπc(1), . . . , cπc(n)) 6= (cπc′ (1), . . . , cπc′ (n)) for all

distinct c, c′ ∈ C, and set C̃ = {(cπc(1), . . . , cπc(n)) | c = (c1, . . . , cn) ∈ C}.5 The shuffled code C̃ has
the same length, size, and weight distribution (and hence the same sparsity and redundancy) as C. In
our simulations, each permutation πc is chosen uniformly at random with the modification that a new
permutation is selected if the resulting shuffled codeword has already been generated. This ensures
that no two codewords of C correspond to the same word in the shuffled code.

Random constant-weight codes. Constant-weight codes are subsets of {0, 1}n in which all code-
words have the same weight. Given a RF code C on n neurons, we compute the average weight of the
codewords in C and round this to obtain an integer w. We then generate a constant weight code by
randomly choosing subsets of size w from [n]. These subsets give the positions of the codeword that
are assigned a 1, and the remaining positions are all assigned zeros. This process is repeated until |C|
distinct codewords are generated, and the resulting code is then a random constant weight code with
the same length, size, and redundancy as C, and approximately the same sparsity as C.

3 Stimulus encoding and decoding

3.1 The mathematical coding theory perspective

The central goal of this article is to analyze our main examples of combinatorial neural codes, 1D
and 2D RF codes, from a mathematical coding theory perspective. We draw on this field because
it provides a complementary perspective on the nature and function of codes that is unfamiliar to
most neuroscientists. We will first discuss the standard paradigm of coding theory and then explain
the function of codes from this perspective. Note that to put neural codes into this framework, we
must discretize the stimulus space and encoding map so that we have an injective map from the set
of stimuli to the code; this will be described in the next section.

Figure 2A illustrates the various stages of information transmission using the standard coding
theory paradigm, adapted for RF codes. A stimulus x ∈ X̌ gets mapped to a neural codeword c ∈ C
under an (injective) encoding map ϕ : X̌ → C, where X̌ is the (discretized) stimulus space. This
map sends each stimulus to a neural activity pattern which is considered to be the ideal response of
a population of neurons. The codeword, viewed as a string of 0s and 1s, then passes through a noisy
channel, where each 0/1 bit may be flipped with some probability. A 1 7→ 0 flip corresponds to a
neuron in the ideal response pattern failing to fire, while a 0 7→ 1 flip corresponds to a neuron firing
when it is not supposed to. The resulting word is not necessarily a codeword, and is referred to as the
received word. This noisy channel output is then passed through a decoder to yield an estimate ĉ ∈ C
for the original codeword c, corresponding to an estimate of the ideal response. Finally, if an estimate
x̂ ∈ X̌ of the original stimulus is desired, the inverse of the encoding map may be applied to the
estimated codeword ĉ. Because the brain only has access to neural activity patterns, we will consider
the ideal response as a proxy for the stimulus itself; the estimated neural codeword thus represents
the brain’s estimate of the stimulus, and so we can ignore this last step.

The mathematical coding theory perspective on stimulus encoding/decoding has several important
differences from the way neuroscientists typically think about neural coding. Firstly, there is a clear
distinction made between a code, which is simply a set of codewords (or neural response patterns)

5If the same permutation were used to shuffle all codewords, the resulting permutation equivalent code would be
nothing more than the code obtained from a relabelling of the neurons.
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Figure 2

Figure 2: Stimulus encoding and decoding from a mathematical coding theory perspective. Here
X̌ is the discretized stimulus space, and C is the neural code. (A) A stimulus x ∈ X̌ is mapped, via an (injective)
encoding map ϕ : X̌ → C, to a neural codeword c ∈ C representing the ideal response of a population of neurons.
The effect of noise is modeled by passing the codeword through a noisy channel. The output of the channel is
the received word r ∈ {0, 1}n, representing the actual response of the population to a particular presentation
of the stimulus; typically, the received word is not an element of the neural code. In order to estimate the
ideal response, the received word is passed through a decoder to produce an estimated neural codeword ĉ ∈ C.
Decoding is considered to be “correct” if this codeword matches the ideal response for the original stimulus.
Finally, the inverse of the encoding map can be used to identify the estimated neural codeword with an estimate
for the stimulus. (B) The Binary Asymmetric Channel (BAC) acts independently on individual bits of a binary
word in {0, 1}n. The effect of noise is to flip 0/1 bits according to a “false positive” probability p and a “false
negative” probability q.

devoid of any intrinsic ‘meaning,’ and the encoding map, which is a function that assigns a codeword
to each element in the set of objects to be encoded. Secondly, this map is always deterministic,6 as
the effects of noise are considered to arise purely from the transmission of codewords through a noisy
channel. For neuroscientists, the encoding of a signal into a pattern of neural activity is itself a noisy
process, and so the encoding map and the channel are difficult to separate. If we consider the output
of the encoding map to be the ideal response of a population of neurons, however, it is clear that
actual response patterns in the brain correspond not to codewords but rather to received words. (The
ideal response, on the other hand, is always a codeword and corresponds intuitively to the average
response across many trials of the same stimulus.) In the case of RF codes, there is a natural encoding
map that sends each stimulus to the codeword corresponding to the subset of neurons that contain
the stimulus in their receptive fields. In the case of the random comparison codes, an encoding map
that assigns codewords to stimuli is chosen randomly (details are given in the next section).

Another important difference offered by the coding theory perspective is in the process of decoding.
Given a received word, the objective of the decoder is to estimate the original codeword that was
transmitted through the channel. In the case of neural codes, this amounts to taking the actual neural
response and producing an estimate of the ideal response, which serves as a proxy for the stimulus.
The function of the decoder is therefore to correct errors made by transmission through the noisy
channel. In a network of neurons, this would be accomplished by network interactions that evolve
the original neural response (the received word) to a closely related activity pattern (the estimated
codeword) that corresponds to an ideal response for a likely stimulus.

This leads us to the coding theory perspective on the function (or purpose) of a code. Error
correction is only possible when errors produced by the channel lead to received words that are not

6In engineering applications, one can always assume the encoding map is deterministic. In the neuroscience context,
however, it may be equally appropriate to use a probabilistic encoding map.
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themselves codewords, and it is most effective when codewords are “far away” from each other in the
space of all words, so that errors can be corrected by returning the “nearest” codeword to the received
word. The function of a code, therefore, is to represent information in a way that allows accurate error
correction in a high percentage of trials. The fact that there is redundancy in how a code represents
information is therefore a positive feature of the code, rather than an inefficiency, since it is precisely
this redundancy that makes error correction possible.

3.2 Encoding maps and the discretization of the stimulus space

In the definition of RF codes above, the stimulus space X is a subset of Euclidean space, having a
continuum of stimuli. Via the associated binary response maps, a set of n receptive fields partitions
the stimulus space X into distinct overlap regions, such as the shaded regions in Figure 1. For each
codeword c ∈ C, there is a corresponding overlap region Φ−1(c), all of whose points map to c. The
combinatorial code C therefore has limited resolution, and is not able to distinguish between stimuli in
the same overlap region. This leads to a natural discretization of the stimulus space, where we assign
a single representative stimulus – the center of mass7 – to each overlap region, and we write

x̌(c)
def
=

∫
Φ−1(c) x dx∫
Φ−1(c) dx

,

where x ∈ X refers to a one or two-dimensional vector, and the integral is either a single or double
integral, depending on the context. In practice, for 2D RF codes we use a fine grid to determine the
center of mass associated to each codeword (see Appendix B.2).

From now on, we will use the term “stimulus space” to refer to the discretized stimulus space:

X̌ = {x̌(c) | c ∈ C} ⊂ X.

Note that |X̌| = |C|, so we now have a one-to-one correspondence between stimuli and codewords.
The restriction of the binary response map Φ to the discretized stimulus space is the encoding map of
the RF code,

ϕ = Φ|X̌ : X̌ → C.

Note that, unlike Φ, the encoding map ϕ is injective, and so its inverse is well-defined. This further
supports the idea, introduced in the previous section, that the ideal response estimate returned by the
decoder can serve as a proxy for the stimulus itself.

In the case of the comparison codes, we use the same discretized stimulus space X̌ as in the
corresponding RF code, and associate a codeword to each stimulus using a random (one-to-one)
encoding map ϕ : X̌ → C. This map is generated by ordering both the stimuli in X̌ and the codewords
in the random code C, and then selecting a random permutation to assign a codeword to each stimulus.

3.3 The Binary Asymmetric Channel

In all our simulations, we model the channel as a binary asymmetric channel (BAC). As seen in
Figure 2B, the BAC is defined by a false positive probability p, the probability of a 0 being flipped to
a 1, and a false negative probability q, the probability of a 1 being flipped to a 0. Since errors are always
assumed to be less likely than faithful transmission, we assume p, q < 1/2. The channel operates on
each individual bit, but it is customary to extend it to operate on full codewords via the assumption

7Although many of the overlap regions will be non-convex, instances of the center of mass falling outside the corre-
sponding region will be rare enough that this pathological case need not be considered.
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that each bit is affected independently. This is reasonable in our context because it is often assumed
(though not necessarily believed) that neurons within the same area experience independent and
identically distributed noise. The BAC has as special cases two other channels commonly considered
in mathematical coding theory: p = q gives the binary symmetric channel (BSC), while p = 0 reduces
to the Z-channel.

We will assume p ≤ q, meaning that it is at least as likely that a 1 will flip to a 0 as it is that a 0
will flip to a 1. This is because the failure of a neuron to fire (due to, for example, synaptic failure)
is considered more likely than a neuron firing when it is not supposed to. Recall that the sparsity
s reflects the probability that a neuron fires due to error-free transmission. We will require p < s,
as a false positive response should be less likely than a neuron firing appropriately in response to a
stimulus. Finally, since our neural codes are assumed to be sparse, we require s < 1/2. In summary,
we assume:

p ≤ q < 1/2, and p < s < 1/2.

Note that the probability of an error across this channel depends on the sparsity of the code. For
a given bit (or neuron), the probability of an error occurring during transmission across the BAC is
p(1 − s) + qs, assuming that all codewords are transmitted with equal probability and all neurons
participate in approximately the same number of codewords.

3.4 The ML and MAP decoders

A decoder takes an actual response (or received word) r ∈ {0, 1}n and returns a codeword ĉ ∈ C that is
an estimate of the ideal response (or sent word), c ∈ C. For each combination of code and channel, the
decoder that is optimal, in the sense of minimizing errors, is the one that returns a codeword ĉ with
maximal probability8 of having been sent, given that r was received. This is called the maximum a
posteriori (MAP) decoder, also known in the neuroscience literature as Bayesian inference (Ma, Beck,
Latham, & Pouget, 2006) or an ideal observer decoder (Deneve, Latham, & Pouget, 1999):

ĉMAP = arg max
c∈C

P (sent = c | rec = r).

Although always optimal, this decoder can be difficult to implement in the neural context, as it
requires knowing the probabilities P (sent = c) for each codeword, which is equivalent to knowing the
probability distribution of stimuli.

The maximum likelihood (ML) decoder

ĉML = arg max
c∈C

P (rec = r | sent = c)

is much more easily implemented. ML decoding is often used in lieu of MAP decoding because it
amounts to optimizing a simple function that can be computed directly from the channel parameters.
As shown in the Appendix A.1, on the BAC with parameters p and q we have

ĉML = arg max
c∈C

[
(c · r) ln

(
(1− p)(1− q)

pq

)
− wH(c) ln

(
1− p
q

)]
.

The ML decoder thus returns a codeword c that maximizes the dot product c · r with the received
word r, subject to a penalty term proportional to its weight wH(c). In other words, it returns the
codeword that maximizes the number of matching 1s with r, while minimizing the introduction of
additional 1s.

8In all of our decoders, we assume that ties are broken randomly, with uniform distribution on equally-optimal
codewords.
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For p = q < 1/2, as on the BSC, the maximization becomes (see Appendix A.1),

ĉML = arg min
c∈C

dH(c, r),

where dH(c, r) = |{i ∈ [n] | ci 6= ri}| is the Hamming distance between two words in {0, 1}n. This is
the well-known result that ML decoding is equivalent to Nearest Neighbor decoding, with respect to
Hamming distance, on the BSC.
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Figure 3: Approximate MAP decoding outperforms ML decoding for a weighted distribution of
codewords. (A) With the false negative probability q fixed at q = 0.06 (top), q = 0.1 (middle) and q = 0.14
(bottom), the false positive probability p was varied in increments of 0.005 from 0.01 to 0.06 to produce different
channel conditions for the BAC. On each channel, the performance of 100 2D RF codes of length 75 and mean
sparsity s = 0.069 was assessed using both the standard ML decoder and our approximation to the MAP
decoder. For each BAC condition and each code, 10,000 codewords were selected according to a weighted
probability distribution, where the probability of sending codeword c was proportional to swH(c)(1− s)n−wH(c),
as would be expected if 1s and 0s were sent through the channel with independent probabilities dictated by
the sparsity. The fraction of correctly decoded words was then averaged across the 100 codes, with error bars
denoting standard deviations. The MAP approximation consistently outperformed ML decoding for all channel
conditions. (B) Same as in (A), but this time codewords were selected according to a uniform probability
distribution, with each codeword equally likely. In this case, ML decoding is equivalent to exact MAP decoding,
which is always optimal. As expected, ML decoding outperformed approximate MAP decoding for each channel
condition. Note that the error bars for ML decoding in this case are extremely small.

3.5 An approximation of MAP decoding for sparse codes

In cases where all codewords are sent with equal probability, it is easy to see from Bayes’ rule that
ĉML = ĉMAP (see Appendix A.2). When codewords are not equally likely, MAP decoding will out-
perform ML decoding, but is impractical in the neural context because we cannot know the exact
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probability distribution on stimuli. In some cases, however, it may be possible to approximate MAP
decoding, leading to a decoder that outperforms ML while being just as easy to implement. Here we
illustrate this possibility in the case of sparse codes, where sparser (lower-weight) codewords are more
likely.

For the BAC with parameters p and q, and a code C with sparsity s, we can approximate MAP
decoding as the following maximization (see Appendix A.2):

ĉMAP ≈ arg max
c∈C

[
(c · r) ln

(
(1− p)(1− q)

pq

)
− wH(c) ln

(
(1− p)(1− s)

qs

)]
.

Since we assume that s < 1/2, we see that the difference between this ĉMAP approximation and ĉML

is only that the coefficient of the −wH(c) penalty term is larger, and now depends on s. Clearly, this
decoder is no more difficult to implement than the ML decoder.

Figure 3 shows the results of two simulations comparing the above MAP approximation to ML
decoding on a 2D RF code. In the first case (Fig. 3A), the probability distribution is biased to-
wards sparser codewords, corresponding to stimuli covered by fewer receptive fields. Here we see that
the MAP approximation significantly outperforms ML decoding. In the second case (Fig. 3B), all
codewords are equally likely. As expected, ML decoding outperforms the MAP approximation in this
case, since it coincides with MAP decoding. When we consider a biologically plausible probability
distribution that is biased towards codewords with larger regions Φ−1(c) in the stimulus space, we
find that ML decoding again outperforms the MAP approximation (see Appendix A.2 and Figure 8),
even though there is a significant correlation between larger region size and sparser codewords. Thus,
we will restrict ourselves to considering ML decoding in the sequel; for simplicity, we will assume all
codewords are equally likely.9

4 The role of redundancy in RF codes

As previously mentioned, the function of a code from the mathematical coding theory perspective
is to represent information in a way that allows errors in transmission to be corrected with high
probability. In classical mathematical coding theory, decoding reduces to finding the closest codeword
to the received word, where “closest” is measured by a metric appropriate to the channel. If the code
has large minimum distance between codewords, then many errors can occur without affecting which
codeword will be chosen by the decoder (Huffman & Pless, 2003). If, on the other hand, the elements
of a binary code are closely spaced within {0, 1}n, errors will be more difficult to decode because there
will often be many candidate codewords that could have reasonably resulted in a given received word.

When the redundancy of a code is high, the ratio of the number of codewords to the total number of
vectors in {0, 1}n is low, and so it is possible to achieve a large minimum distance between codewords.
Nevertheless, high redundancy of a code does not guarantee large minimum distance, because even
highly redundant codes may have codewords that are spaced closely together. For this reason, high
redundancy does not guarantee good error-correcting properties. This leads us to the natural question:
Does the high redundancy of RF codes result in effective error correction? The answer depends, of
course, to some extent on the particular decoder that is used. In the simulations that follow, we use
ML decoding to test how well RF codes correct errors. We assume that all codewords within a code
are equally likely, and hence ML decoding is equivalent to (optimal) MAP decoding. It has been
sugested that the brain may actually implement ML or MAP decoding (Deneve et al., 1999; Ma et

9In cases where the distribution of stimuli is not uniform, our analysis would proceed in exactly the same manner
with one exception: instead of using the ML decoder, which may no longer be optimal, we would use the MAP decoder
or an appropriate approximation to MAP that is tailored to the characteristics of the codeword distribution.
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al., 2006), but even if this decoder were not biologically plausible, it is the natural decoder to use in
our simulations as it provides an upper bound on the error-correcting performance of RF codes.

4.1 RF code redundancy does not yield effective error correction

To test the hypothesis that the redundancy of RF codes enables effective error correction, we generated
1D and 2D RF codes having 75 neurons each (see Appendix B). For each RF code, we also generated
two random comparison codes: a shuffled code and a random constant-weight code with matching
parameters. These codes were tested on the BAC for a variety of channel parameters (values of p
and q). For each BAC condition and each code, 10,000 codewords selected uniformly at random were
sent across the noisy channel and then decoded using ML decoding. If the decoded word exactly
matched the original sent word, the decoding was considered “correct”; if not, there was a failure of
error-correction.
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Figure 4: RF codes perform poorly under standard ML decoding. (A) With the false negative
probability q = 0.2 fixed, the false positive probability p was varied in increments of 0.01 from 0.05 to 0.15 to
produce different channel conditions for the BAC. On each channel, the performance of 100 1D RF codes of
length 75, with mean sparsity s = 0.165, was compared to the performance of 100 shuffled codes and 100 random
constant weight codes of matched parameters. For each BAC condition and each code, 10,000 codewords selected
uniformly at random were transmitted across the BAC and then decoded with ML decoding. The trajectories
show the average performance of each code type (across the 100 sample codes) in terms of the proportion of
received words that were correctly decoded. Error bars show the magnitude of one standard deviation from the
average performance, and are very small. While the shuffled and random constant weight codes had similar,
near-optimal performance, the 1D RF codes performed quite poorly in comparison. (B) Same as in (A), but
for 2D RF codes of length 75 and mean sparsity s = 0.069. Here q was fixed at 0.1, while p varied from 0.01 to
0.06 in increments of 0.005. Again, RF codes performed significantly worse than the shuffled and random codes
with matched parameters.

Figure 4 shows the fraction of correctly-decoded transmissions for fixed values of q and a range
of p values in the case of 1D RF codes (Fig. 4A) and 2D RF codes (Fig. 4B), together with the
performance of the comparison codes. In each case, the RF codes had significantly worse performance
(< 80% correct decoding in all cases) than the comparison codes, whose performances were near-
optimal for low values of p. Repeating this analysis for different values of q yielded similar results (not
shown).

As previously mentioned, in the case of the BSC, Nearest Neighbor decoding with respect to
Hamming distance coincides with ML decoding. Thus, in the case of a symmetric channel, codes
perform poorly precisely when their minimum Hamming distance is small. Even though Nearest
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Neighbor decoding with respect to Hamming distance does not coincide with ML decoding on the
BAC when p 6= q, decoding errors are still more likely to occur if codewords are close together in
Hamming distance. Indeed, the poor performance of RF codes can be attributed to the very small
distance between a codeword and its nearest neighbors. Since codewords correspond to regions defined
by overlapping receptive fields, the Hamming distance between a codeword and its nearest neighbor
is typically 1 in a RF code, which is the worst-case-scenario.10 In contrast, codewords in the random
comparison codes are distributed much more evenly throughout the ambient space {0, 1}n. While
there is no guarantee that the minimum distance on these codes is high, the typical distance between
a codeword and its nearest neighbor is high, leading to near-optimal performance.

4.2 RF code redundancy reflects the geometry of the stimulus space

Given the poor error-correcting performance of RF codes, it seems unlikely that the primary function
of RF code redundancy is to enable effective error correction. As outlined in the previous section, the
poor performance of RF codes is the result of the very small Hamming distances between a codeword
and its nearest neighbors. While these small Hamming distances are problematic for error correction,
they may prove valuable in reflecting the distance relationships between stimuli, as determined by a
natural metric on the stimulus space.

To further investigate this possibility, we first define a new metric on the code that assigns distances
to pairs of codewords according to the distances between the stimuli that they represent. If c, c′ ∈ C
are codewords, and ϕ : X̌ → C is the (injective) encoding map, then we define the induced stimulus
space metric dstim : C × C → R≥0 by

dstim(c, c′) = d(ϕ−1(c), ϕ−1(c′)),

where d is the natural metric on the (discretized) stimulus space X̌. For example, in the case of 2D RF
codes, the stimulus space is the two-dimensional environment, and the natural metric is the Euclidean
metric; in the case of 1D RF codes, the stimulus space is [0, π), and the natural metric is the difference
between angles, where 0 and π have been identified so that, for example, d(π/6, 5π/6) = π/3.

To characterize the relationship between dstim and dH on RF codes, we performed correlation
analyses between these metrics on 2D RF codes and corresponding random comparison codes. For
each code, we computed dstim and dH for all pairs of codewords, and then computed the correlation
coefficient between their values. Figure 5A shows a scatterplot of dstim versus dH values for a single 2D
RF code; the high correlation is easily seen by eye. In contrast, the same analysis for a corresponding
shuffled code (Fig. 5B) and a random constant weight code (Fig. 5C) revealed no significant correlation
between dstim and dH . Repeating this analysis for the RF and comparison codes used in Figure 4
resulted in very similar results (Fig. 5D). Thus, the codewords in RF codes appear to be distributed
across {0, 1}n in a way that captures the geometry of the underlying stimulus space, rather than in a
manner that guarantees high distance between neighboring codewords.

Previous work has shown that the structure of a place field code (i.e., a 2D RF code) can be
used to extract topological and geometric features of the represented environment (Curto & Itskov,
2008). We hypothesize that the primary role of RF code redundancy may be to reflect the geometry
of the underlying stimulus space, and that the poor error-correcting performance of RF codes may be
a necessary price to pay for this feature. This poor error correction may be mitigated, however, when
we re-examine the role that stimulus space geometry plays in the brain’s perception of parametric
stimuli.

10Note that this situation would be equally problematic if we considered the full firing rate information, instead of a
combinatorial code. This is because small changes in firing rates would tend to produce equally valid codewords, making
error detection and correction just as difficult.
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Figure 5: RF codes reflect the geometry of the stimulus space. (A) The scatter plot shows the high level
of correlation (corr coeff = 0.462) between dstim and dH for an example 2D RF code of length 10 and sparsity
s = 0.188. A single code of length 10 was chosen from those generated for Figure 7 to make the correlation more
visually apparent. Each point in the scatter plot corresponds to a pair of distinct codewords. Random noise of
size at most 0.001 in each dimension was added to each data point in order to separate points having exactly
the same values of dH and dstim. (B) Same as (A), but for a shuffled code with matched parameters. (C) Same
as in (A), but for a random constant weight code with matched parameters. (D) Average correlation coefficient
between dstim and dH for 100 2D RF codes of length 75 and mean sparsity s = 0.069, and for 100 shuffled
and random constant weight code of matched parameters (the same codes were used in Figure 4). While the
Hamming distance dH correlates significantly with stimulus space distance dstim in the case of RF codes, there
is no correlation in the case of the random or shuffled codes.

5 Decoding with error tolerance in RF codes

5.1 Error tolerance based on the geometry of stimulus space

The brain often makes errors in estimating stimuli (Heijden, Geest, deLeeuw, Krikke, & Müsseler, 1999;
Prinzmetal, Shimura, & Mikolinski, 2001; Huttenlocher, Hedges, Lourenco, Crawford, & Corrigan,
2007); these errors are considered tolerable if they result in the perception of nearby stimuli. For
example, an angle of 32 degrees might be perceived as a 30-degree angle, or a precise position (x, y)
in the plane might be perceived as (x + εx, y + εy). If the errors are relatively small, as measured
by a natural metric on the stimulus space, it is reasonable to declare the signal transmission to have
been successful, rather than incorrect. To do this, we introduce the notion of error tolerance into our
stimulus encoding/decoding paradigm using the induced stimulus space metric dstim. Specifically, we
can decode with an error tolerance of δ by declaring decoding to be “correct” if the decoded word ĉ
is within δ of the original sent word c:

dstim(ĉ, c) < δ.

This corresponds to the perceived stimulus being within a distance δ of the actual stimulus.

5.2 RF codes “catch up” to comparison codes when decoding with error tolerance

We next investigated whether the performance of RF codes improved, as compared to the comparison
codes with matching parameters, when an error tolerance was introduced. For each 1D RF code
and each 2D RF code used in Figure 4 we repeated the analysis, using fixed channel parameters and
varying instead the error tolerance with respect to the induced stimulus space metric dstim. We found
that RF codes quickly “catch up” to the random comparison codes when a small tolerance to error is
introduced (Figure 6A,B). In some cases, the performance of the RF codes even surpasses that of the
random comparison codes.
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Figure 6: RF codes “catch up” in error-correcting performance when an error tolerance is intro-
duced. (A) For a fixed BAC condition (p = 0.1, q = 0.2), the performance of 100 1D RF codes of length 75 was
compared to the performance of 100 shuffled codes and 100 random constant weight codes of matched parame-
ters (the same codes were used in Figure 4). For each code, 10,000 codewords selected uniformly at random were
transmitted across the BAC and then decoded with ML decoding. For each level of error tolerance, decoding
was considered to be “correct” if the estimated word was within the given stimulus space distance, dstim, of
the correct word. Error bars show the magnitude of one standard deviation from the average performance.
(B) Same as in (A), but for 100 2D RF codes of length 75 and corresponding shuffled and random constant
weight codes of matched parameters (again, same codes as in Figure 4). Here the channel condition was fixed
at p = 0.03 and q = 0.1. (C-D) These plots are analogous to (A-B), but with the error tolerance measured
using Hamming distance, dH , rather than dstim. In each case, the RF codes “catch up” in error-correcting per-
formance for a small tolerance to error, at times even outperforming the shuffled and random constant weight
codes. (Note: the maximum possible value for dstim is normalized to be 1 in the 1D case, while in the 2D case
it is

√
2, corresponding to the maximum distance between two points in a 1× 1 square box enviroment.)

In order to verify that the catch-up effect is not merely an artifact resulting from the assignment
of random encoding maps to the comparison codes, we repeated the above analysis using Hamming
distance dH instead of dstim, thus completely eliminating the influence of the encoding maps. The
Hamming distance between codewords in a sparse code typically ranges from 0 to about twice the
average weight, which corresponds to dH = 25 for the 1D RF codes, and dH = 10 for the 2D RF
codes considered here. Probability of correct decoding using an error tolerance measured by Hamming
distance yielded similar results, with RF codes catching up to the random comparison codes for
relatively small error tolerances (Figure 6C,D). This suggests that errors in transmission and decoding
for RF codes result in codewords that are close to the correct word not only in the induced stimulus
space metric, but also in Hamming distance.

The question that remains is now: Why do RF codes catch up?
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5.3 ML similarity and ML distance

In order to gain a better understanding of why the performance of RF codes catches up to that of
the random comparison codes when we allow for error tolerance, we introduce the notions of ML
similarity and ML distance11. Roughly speaking, the ML similarity between two codewords a and
b is the probability that a and b will be confused in the process of transmission across the BAC
and then running the channel output through an ML decoder. More precisely, let ra and rb be the
outputs of the channel when a and b are input, respectively. Note that ra (resp., rb) is randomly
chosen from {0, 1}n, with probability distribution determined by the channel parameters p and q and
by the sent word a (resp., b). By definition, any ML decoder will return an ML codeword given by
arg maxc∈C P (rec = r | sent = c) when r is received from the channel, but this ML codeword need
not be unique. To account for this, let λ(r) be the set of ML codewords corresponding to the received
word r. We then define the ML similarity12 between the codewords a and b to be the probability that
the same word will be chosen (uniformly at random) from each of the sets λ(ra) and λ(rb):

µML(a,b)
def
=
∑
ra

∑
rb

P (rec = ra | sent = a)P (rec = rb | sent = b)
|λ(ra) ∩ λ(rb)|
|λ(ra)| |λ(rb)|

.

In other words, µML(a,b) is the probability that if a and b are each sent across the channel, then the
same codeword will be returned in each case by the decoder. In particular, µML(a,a) is the probability
that the same word will be returned after sending a twice across the channel and decoding. Note that
typically µML(a,a) < 1, and µML(a,a) 6= µML(b,b) for a 6= b.

In order to compare µML to distance measures such as dstim and dH , we can use the usual trick of
taking the negative of the logarithm in order to convert similarity to distance:

d̃ML(a,b)
def
= − lnµML(a,b).

It is clear, however, that d̃ML is not a metric, because d̃ML(a,a) 6= 0 in general. We can fix this
problem by first normalizing,

dML(a,b)
def
= − ln

(
µML(a,b)√

µML(a,a)µML(b,b)

)
,

so that dML(a,a) = 0 for all words in {0, 1}n. We call dML the ML distance. Unfortunately, dML still
fails to be a metric on {0, 1}n, as the triangle inequality is not generally satisfied (see Appendix A.3),
although it may be a metric when restricted to a particular code.

Despite not being a metric on {0, 1}n, dML is useful as an indicator of how close the ML decoder
comes to outputting the correct idealized codeword. By definition, ML decoding errors will have large
ML similarity to the correct codeword. In other words, even if ĉML 6= c, the value of dML(ĉML, c) will
be relatively small. Unlike Hamming distance, dML naturally captures the notion that two codewords
are “close” if they are likely to be confused after having been sent through the BAC channel and
decoded with the ML decoder.13 In practice, however, dML is much more difficult to compute than
Hamming distance. Fortunately, as we will see in the next section, there is a high correlation between
dML and dH , so that dH may be used as a proxy for dML when using dML becomes computationally
intractable.

11Another distance measure on neural codes was recently introduced in (Tkac̆ik, Granot-Atedgi, Segev, & Schneidman,
2012).

12Note that this definition does not explicitly depend on the channel parameters, although details of the channel are
implicitly used in the computation of P (rec|sent).

13On the binary symmetric channel (BSC), Hamming distance does measure the likelihood of two codewords being
confused after ML-decoding of errors introduced by the channel.
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5.4 Explanation of the “catch-up” phenomenon

The ML distance dML is defined so that ML decoding errors have small ML distance to the correct
codeword, irrespective of the code. On the other hand, tolerating small errors only makes sense if
errors are quantified by distances between stimuli, given by the induced stimulus space metric dstim.
The fact that RF codes catch up in error-correction when an error tolerance with respect to dstim is
introduced suggests that, on these codes, dstim and dML correlate well, whereas on the comparison
codes they do not. In other words, even though the codewords in RF codes are not well-separated
inside {0, 1}n, decoding errors tend to return codewords that represent very similar stimuli, and are
hence largely tolerable.
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Figure 7: Correlations between stimulus space distance dstim, Hamming distance dH , and ML
distance dML. (A) The scatter plot shows the correlation between dstim and dML for a single 2D RF code of
length 10 and sparsity s = 0.188. (A code of length 10 was chosen because dML is computationally intractable
for longer codes.) Each point in the scatter plot corresponds to a pair of distinct codewords; random noise of
size at most 0.001 in each dimension was added to each data point in order to separate points having exactly
the same values of dstim and dML. The values for dML were computed for channel parameters p = 0.03 and
q = 0.1. (B) Same as in (A), but for a shuffled code with matched parameters to the 2D RF code. (C) Same as
in (A), but for a random constant weight code with matched parameters. (D) Average correlation coefficient
between dstim and dML for ten 2D RF codes of length 10 and mean sparsity s = 0.191, and ten shuffled and
random constant weight codes of matched parameters. All dML values were computed for channel parameters
p = 0.03 and q = 0.1. Error bars denote standard deviations. (E) Average correlation coefficient between dH
and dML for the same codes and channel condition used in (D). The high correlation across codes suggests that
dH may be used as a proxy for dML in cases where dML is computationally intractable. (F) Average correlation
coefficient between dstim and dH for 100 2D RF codes of length 75 and mean sparsity s = 0.069, and for 100
shuffled and random constant weight code of matched parameters (same codes as in Figure 4; note that this
panel reproduces Figure 5D). Here we think of dH as a proxy for dML. Because dML was not computed for this
plot, calculations involving the larger codes were computationally feasible. Given the correlation patterns in
(A-F), it is likely that dstim and dML are significantly correlated for large RF codes, but not for the shuffled or
random constant weight comparison codes.

To verify this intuition we performed correlation analyses between dstim and dML on 2D RF codes
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and corresponding random comparison codes. For each code, we computed dstim and dML for all pairs
of codewords, and then computed the correlation coefficient between these two measures. Because
finding dML among.irs of codewords in a code with many neurons was computationally intractable,
we performed this analysis on short codes having only 10 neurons, or length 10. Figure 7A shows
a scatterplot of dstim versus dML values for a single 2D RF code; the high correlation is easily seen
by eye. In contrast, the same analysis for a corresponding shuffled code (Fig. 7B) and a random
constant weight code (Fig. 7C) revealed no significant correlation between dstim and dML. Repeating
this analysis for a total of 10 matched sets of codes, each consisting of a 2D RF code, a corresponding
shuffled code, and a corresponding random constant weight code, resulted in very similar results (Fig.
7D).

In order to test if the correlation between dstim and dML might continue to hold for our longer codes
with n = 75 neurons, we first investigated whether Hamming distance dH could be used as a proxy for
dML, as the latter can be computationally intractable. Indeed, on all of our length 10 codes we found
near perfect correlation between dH and dML (Fig. 7E). We then computed correlation coefficients
using dH instead of dML for the length 75 2D RF codes, and corresponding comparison codes, that
were analyzed in Figures 4, 5 and 6. As expected, there was a significant correlation between dstim

and dH for RF codes, but not for the random comparison codes (Fig. 7F). It is thus likely that dstim

and dML are well-correlated for the large RF codes that displayed the catch-up phenomenon (Fig. 6),
but not for the comparison codes.

6 Discussion

We have seen that although RF codes are highly redundant, they do not have particularly good error-
correcting capability, performing far worse than random comparison codes of matching size, length,
sparsity and redundancy. This poor performance is perhaps not surprising when we consider the close
proximity between RF codewords inside {0, 1}n, a feature that limits the number of errors that can
be corrected. On the other hand, RF code redundancy seems well-suited for preserving relationships
between encoded stimuli, allowing these codes to reflect the geometry of the represented stimulus
space. Interestingly, RF codes quickly “catch up” to the random comparison codes in error-correcting
capability when a small tolerance to error is introduced. The reason for this “catch up” is that errors
in RF codes tend to result in nearby codewords that represent similar stimuli, a property that is not
characteristic of the random comparison codes. Our analysis suggests that in the context of neural
codes, there may be a natural trade-off between a code’s efficiency/error-correcting capability and
its ability to reflect relationships between stimuli. It would be interesting to investigate whether RF
codes are somehow “optimal” in this regard, though this is beyond the scope of this paper. Likewise,
it would be interesting to test the biological plausibility of the error tolerance values that are required
for RF codes to catch up. For visual orientation discrimination in human psychophysics experiments,
the perceptual errors range from about 4◦ to 12◦ (out of 180◦) (Mareschal & Shapley, 2004; Li, Thier,
& Wehrhahm, 2000); this is roughly consistent with a 5% error tolerance, a level that resulted in
complete “catch up” for the 1D RF codes (Figure 6A).

Throughout this work, we have assumed that neurons are independent. This assumption arose
as a consequence of using the BAC as a channel model for noise, which operates on each neuron
independently (see Section 3.3). While somewhat controversial (Schneidman, Bialek, & Berry, 2003),
there is some experimental evidence that supports the independence assumption (Gawne & Richmond,
1993; Nirenberg, Carcieri, Jacobs, & Latham, 2001), in addition to a significant body of theoretical
work that suggests that ignoring noise correlations does not significantly impact the decoding of
neural population responses (Abbott & Dayan, 1999; Averbeck & Lee, 2004; Latham & Nirenberg,
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2005). Nevertheless, it is quite possible that the error-correcting capabilities of RF codes may increase
(or decrease) if this assumption is relaxed (Averbeck, Latham, & Pouget, 2006). It would thus be
interesting to explore a similar analysis for channel models the produce correlated noise, though this
is beyond the scope of the current paper.

We have also assumed a perfect understanding of the encoding map; however, it is possible that
error-correcting capabilities vary significantly according to what aspect of the stimulus is being repre-
sented, similar to what has been found in information-theoretic analyses (Nemenman, Lewen, Bialek,
& Steveninck, 2008). Furthermore, in assessing the error-correcting properties of RF codes as com-
pared to random comparison codes, we used a decoder that was optimal for all codes. If instead we
used a biologically-motivated decoder, such as those suggested in (Deneve et al., 1999; Beck et al.,
2008), the performance of the random comparison codes may be significantly compromised, leading
to a relative improvement in error correction for RF codes.

Mathematical coding theory has been very successful in devising codes that are optimal or nearly
optimal for correcting noisy transmission errors in a variety of engineering applications (MacWilliams
& Sloane, 1983; Wicker, 1994; Huffman & Pless, 2003). We believe this perspective will also become
increasingly fruitful in neuroscience, as it provides novel and rigorous methods for analyzing neural
codes in cases where the encoding map is relatively well-understood. In particular, mathematical
coding theory can help to clarify apparent paradoxes in neural coding, such as the prevalence of
redundancy when it is assumed that neural circuits should maximize information. Finally, we believe
the coding theory perspective will eventually provide the right framework for analyzing the trade-offs
that are inherent in codes that are specialized for information transfer and processing in the brain.
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A Appendix: ML and MAP decoding

A.1 ML decoding on the BAC

Here we derive a simple expression for the ML decoder on the binary asymmetric channel with “false
positive” probability p and “false negative” probability q, as in Figure 2B. Recall that the ML decoder
is given by

ĉML = arg max
c∈C

P (rec = r | sent = c),

where r ∈ {0, 1}n is the received word, or “actual response” of the population of n neurons, and C is the
neural code. Because the channel is assumed to act on each neuron independently, P (rec = r | sent = c)
will only depend on the following quantities:

t00(c, r) = # of 0s that match between c and r,

t11(c, r) = # of 1s that match between c and r,

t01(c, r) = # of 0s in c that correspond to 1s in r,

t10(c, r) = # of 1s in c that correspond to 0s in r.
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With this, it is straightforward to compute

P (rec = r | sent = c) = (1− p)t00(c,r)pt01(c,r)(1− q)t11(c,r)qt10(c,r).

Using the obvious identities,

t01(c, r) + t11(c, r) = wH(r)

t10(c, r) + t00(c, r) = n− wH(r),

we find

P (rec = r | sent = c) = (1− p)t00(c,r)pwH(r)−t11(c,r)(1− q)t11(c,r)qn−wH(r)−t00(c,r).

When we do the maximization over c ∈ C, we can ignore terms that are independent of c, and we
obtain

ĉML = arg max
c∈C

[(
1− p
q

)t00(c,r)(1− q
p

)t11(c,r)
]

= arg max
c∈C

[
t00(c, r) ln

(
1− p
q

)
+ t11(c, r) ln

(
1− q
p

)]
(*)

If we further observe that

t11(c, r) = c · r,
t00(c, r) = (1− c) · (1− r) = n− wH(c)− wH(r) + c · r,

where 1 ∈ {0, 1}n is the all-ones word, and again ignore terms that are independent of c, we obtain

ĉML = arg max
c∈C

[
(c · r) ln

(
(1− p)(1− q)

pq

)
− wH(c) ln

(
1− p
q

)]
. (1)

Since we assume p, q < 1/2, the decoder maximizes the number c · r of matching 1s between the sent
and received words, subject to a penalty term that is proportional to the weight (i.e. the number of
active neurons) of the sent word.

Note that for p = q < 1/2, as on the BSC, equation (*) becomes

ĉML = arg max
c∈C

[t00(c, r) + t11(c, r)] = arg max
c∈C

[n− dH(c, r)] = arg min
c∈C

[dH(c, r)] ,

where
dH(c, r) = t01(c, r) + t10(c, r) = |{i ∈ [n] | ci 6= ri}|,

is the Hamming distance between two words in {0, 1}n. In other words, ML decoding is equivalent to
Nearest Neighbor decoding, with respect to Hamming distance, on the BSC.

A.2 Comparison of ML and MAP decoding using Bayes’ rule

Given two events A and B such that the probability of B is nonzero, Bayes’ rule states

P (A|B) =
P (B|A)P (A)

P (B)
.
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We can use this theorem to relate the ML and MAP decoders:

ĉMAP = arg max
c∈C

P (sent = c | rec = r) = arg max
c∈C

P (rec = r | sent = c)P (sent = c)

P (rec = r)

= arg max
c∈C

P (rec = r | sent = c)P (sent = c).

In the case that all words are sent with equal probability, i.e., P (sent = c) is constant over all codewords
c ∈ C, we have

ĉMAP = arg max
c∈C

P (rec = r | sent = c) = ĉML.

Thus, the two decoders coincide when all stimuli are equally likely. In the case where some codewords
are more likely to be transmitted than others, however, MAP and ML decoding need not coincide.

Suppose that the probability of a codeword being sent can be approximated by assuming individual
0s and 1s are transmitted with independent probabilities consistent with the sparsity s of the code:

P (sent = 1) ≈ s,

P (sent = 0) ≈ 1− s.

Under these assumptions, we approximate

P (sent = c) ≈ swH(c)(1− s)n−wH(c).

Using Bayes’ rule and Equation (1), this gives an approximation for the MAP decoder as,

ĉMAP ≈ arg max
c∈C

[P (rec = r | sent = c)swH(c)(1− s)n−wH(c)]

= arg max
c∈C

[lnP (rec = r | sent = c) + wH(c) ln s+ (n− wH(c)) ln(1− s)]

= arg max
c∈C

[
(c · r) ln

(
(1− p)(1− q)

pq

)
− wH(c) ln

(
1− p
q

)
− wH(c) ln

(
1− s
s

)]
= arg max

c∈C

[
(c · r) ln

(
(1− p)(1− q)

pq

)
− wH(c) ln

(
(1− p)(1− s)

qs

)]
.

Comparing this approximation to equation (1) we see that the difference between MAP and ML for
sparse codes (s < 1/2) is that the approximate MAP decoder has a larger penalty term associated to
the weight wH(c). This means that the approximate MAP decoder will sometimes return lower-weight
codewords than the ML decoder. Unlike MAP, the ML decoder is completely indifferent to the code
sparsity parameter s.

In our simulations with 2D RF codes, we have found that the above MAP approximation outper-
forms ML decoding when codewords in the distribution of transmitted words are weighted in a manner
dictated by the sparsity of the code (Fig. 3). What if the codeword distribution is instead weighted by
the sizes of the stimulus space regions corresponding to each codeword? In this case, Figure 8 shows
that ML decoding outperforms the MAP approximation, further justifying our use of ML decoding in
our analysis of the error-correcting properties of RF codes.

A.3 Failure of the triangle inequality for dML

Recall that the ML distance dML is defined by

dML(a,b)
def
= − ln

(
µML(a,b)√

µML(a,a)µML(b,b)

)
,
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Figure 8

Figure 8: ML decoding outperforms approximate MAP decoding for a distribution of codewords
weighted by the size of the codeword region. With the false negative probability q fixed at q = 0.055
(top), q = 0.1 (middle) and q = 0.14 (bottom), the false positive probability p was varied in increments of
0.005 from 0.01 to 0.055 to produce different channel conditions for the BAC. On each channel, the performance
of 100 2D RF codes of length 75 and mean sparsity s = 0.596 was assessed using the standard ML decoder
and our approximation to the MAP decoder. For each BAC condition and each code, 10,000 codewords were
selected according to a weighted probability distribution, where the probability of sending codeword c was
proportional to the area of ϕ−1(c), which was approximated by the fraction of points from the 300 × 300 fine
grid that fell within the region ϕ−1(c) (if no grid point lay inside a region, we counted it as 1 grid point to
ensure the probability was nonzero). Each codeword was transmitted across the BAC and decoded using both
the ML decoder and the approximate MAP decoder. The fraction of correctly decoded words was then averaged
across the 100 codes, with error bars denoting standard deviations. ML decoding consistently outperformed
approximate MAP decoding for each channel condition, even though the opposite was true when codewords
were weighted according to the sparsity of the code (see Figure 3A).

where the ML similarity µML is the probability that a and b will be confused in the process of
transmission across the BAC and then running the channel output through an ML decoder.

It is clear that dML is a pseudo-semimetric on {0, 1}n; i.e., for all a,b ∈ {0, 1}n we have dML(a,b) ≥
0, dML(a,a) = 0, and dML(a,b) = dML(b,a). However, dML is not a metric or even a pseudo-
metric on {0, 1}n because it fails to satisfy the triangle inequality. As an example, consider the code
C = {(1, 1, 0), (1, 0, 1), (0, 0, 1)}, and take x = (0, 0, 1), y = (0, 0, 0) and z = (0, 1, 0). For channel
conditions p = 0.05 and q = 0.07, we obtain

dML(x,y) + dML(y, z) = .005 + 3.217 = 3.222 < 4.072 = dML(x, z).

It is interesting to note, however, that both the triangle inequality dML(a,b) + dML(b, c) ≥ dML(a, c)
and the condition that d(a,b) = 0 only if a = b hold in all examples we have tried when a,b and

22



c are chosen to be codewords in some code C. In other words, it is unknown to us whether dML is
a metric when restricted to a code C ⊂ {0, 1}n, even though it is not a metric on the entire ambient
space {0, 1}n.

B Appendix: Details of the simulations

B.1 Generation of 1D RF codes

To generate the 1D RF codes used in our simulations, we took the length of the stimulus space to
be 1, and identified the points 0 and 1 since the stimuli represent angles in [0, π). Each receptive
field (tuning curve) was chosen to be an arc of the stimulus space. We chose our receptive fields to
have a constant radius of 0.08, which corresponds to a radius of 14.4◦ in the orientation selectivity
model. This parameter matches that in (Somers, Nelson, & Sur, 1995), where tuning curves in the
visual cortex were set to have half-width-half-amplitudes of 14.9◦, based on experimental data from
(Watkins & Berkley, 1974; Orban, 1984). Each receptive field was specified by its center point. We
used 75 receptive fields to cover the stimulus space, and so our codewords had length 75. The centers
of the receptive fields were selected uniformly at random from the stimulus space, with the following
modification: while the stimulus space remained uncovered, the centers were placed randomly in the
uncovered region. This modification allowed us to guarantee that the stimulus space would be covered
by the receptive fields; we used a fine grid of 300 uniformly-spaced test points to find uncovered regions
in the stimulus space.

By examining all pairwise intersections of receptive fields, we found all the regions cut out by the
receptive fields, and each such region defined a codeword (see Fig. 1A). Note that each codeword
corresponds to a convex region of the stimulus space. The center of mass of a codeword is the center
point of the interval to which the codeword corresponds.

B.2 Generation of 2D RF codes

To generate the 2D RF codes used in our simulations, we took the stimulus space to be a 1× 1 square
box environment. Each receptive field was the intersection of the stimulus space with a disk whose
center lay within the stimulus space. All disks were chosen to have the same radius; this is consistent
with findings that place fields in the dorsal hippocampus are generally circular and of similar sizes
(Jung, Weiner, & McNaughton, 1994; Maurer, Vanrhoads, Sutherland, Lipa, & McNaughton, 2005).
We chose the radius of our receptive fields to be 0.15, i.e. 15% of the width of the stimulus space,
to produce codes having a reasonable sparsity of ∼ 0.07. As with the 1D RF codes, we generated
75 receptive fields to cover the space, with each receptive field identified by its center point. In our
simulations, the center points of the receptive fields were dropped uniformly at random in the stimulus
space, with the same modification as for the 1D RF codes: while the space remained uncovered, the
centers of the disks were placed uniformly at random in regions of the space that had yet to be covered.
We used a fine grid of 300×300 uniformly-spaced test points to find uncovered regions in the stimulus
space.

Again, by examining all intersections of receptive fields, we found all regions cut out by the
receptive fields, and each region defined a codeword (see Fig. 1B). Unlike with the 1D RF codes,
however, the codeword regions in the 2D RF codes were not guaranteed to be convex or even connected
subsets of the stimulus space, although the typical region was at least connected. For the purpose
of defining a stimulus space distance on these codes, we defined the center of mass of a codeword to
be an appropriate approximation of the center of mass of the region corresponding to the codeword,
regardless of whether that center lay within the region. When the codeword region was large enough
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to contain points from the 300× 300 fine grid, we took the center of mass of the codeword to be the
center of mass of the grid points contained in the codeword region. A small number of codewords had
regions that were narrow crescents or other small shapes that avoided all grid points; in these cases
the center of mass of the codeword was taken to be the center of mass of the receptive field boundary
intersection points that defined the region.

For Figure 7, we generated 10 new 2D RF codes of length 10. For these smaller codes, the radius
was chosen to be .25 to ensure reasonable coverage of the space. All other parameters were as described
above.

B.3 Details of error correction simulations

As a result of the chosen receptive field radii, the mean sparsity of the 1D RF codes was s = 0.165,
while the mean sparsity of the 2D RF codes was s = 0.069. To test how effective each of these types
of codes were compared to the random codes with matched parameters, we chose to make the error
probabilities as high as possible while still abiding by our BAC channel constraints and maintaining
a reasonable value for the expected number of errors in each transmission. Thus, we set q = 0.20 for
the 1D RF codes, and q = 0.10 for the 2D RF codes.14 To test the performance of these codes over
varying degrees of channel asymmetry, the value of p was chosen to range from .05 to .15 in increments
of .01 for the 1D RF codes, while p ranged from .01 to .06 in increments of .005 for the 2D RF codes.
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